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Abstract

The Wireless Token Ring Protocol (WTRP) is a medium access control protocol for

wireless networks in Intelligent Transportation Systems. It supports quality of service in

terms of bounded latency and reserved bandwidth. WTRP is efficient in the sense that

it reduces the number of retransmissions due to collisions. It is fair in the sense that

each station takes a turn to transmit and is forced to give up the right to transmit after

transmitting for a specified amount of time. It is a distributed protocol that supports many

topologies since not all stations need to be connected to each other or to a central station. It

can be used with an admission control agent for bandwidth or latency reservations. WTRP

is robust against single node failure. WTRP is designed to recover gracefully from multiple

simultaneous faults. It has applications to inter-access point coordination in ITS DSRC,

and safety-critical vehicle-to-vehicle networking.
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Chapter 1

Introduction

One of the challenges in a communication network is to guarantee quality of service (often

abbreviated as QOS) with high probability. One obvious way to solve the problem is to

increase the network capacity. By increasing network capacity, one increases the chance

that network resources are available on demand. However, this is not always a practical

solution, since increasing the network capacity costs money.

QOS has been tackled in many ways. In wire-line networks, efforts have focused on

network layer queuing and routing techniques. In the IP Differentiation of Services[3],

routers give higher priority, in terms of transmission latency, to time-critical data such as

voice and the video transmission, over non-time-critical data such as email transmissions.

Since typical email users are less sensitive to latencies, it is possible to provide the email

users reasonable satisfaction while giving priority to the voice user. Another approach is

per flow admission control [4]. The idea behind this is to reserve bandwidth for the data

flow before making the connection. The routers along the connection path need to maintain

per flow information about the reserved traffic. The routers control the queuing policy to

ensure that each flow traffic receives the promised network resources.
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In an unreliable medium such as wireless, problem of providing quality of service (QOS)

at the network layer using queuing and routing techniques is not sufficient. QOS must

also be addressed at the data-link layer. The IEEE 802.11[5] in PCF (Point Coordination

Function) mode, the HiperLAN[6], and Bluetooth[7] achieve bounded latency by having a

central station poll the slave stations. Most academic research has focused on this cen-

tralized approach [9] [8]. The centralized approach is suitable for networks where only the

last hop is wireless. In the centralized approach, the network is managed centrally from a

central station. This is a limitation in wireless networks with ad-hoc topologies.

The Wireless Token Ring Protocol (WTRP) discussed in this paper is a distributed

medium access control protocol for ad-hoc networks. The advantages of a distributed

medium access control protocol are its robustness against single node failure, and its sup-

port for flexible topologies, in which nodes can be partially connected and not all nodes

need to have a connection with a master.

As in the IEEE 802.4[2] standards, WTRP is designed to recover from multiple si-

multaneous failures. One of the biggest challenges that the WTRP overcomes is partial

connectivity. To overcome the problem of partial connectivity, management, special tokens,

additional fields in the tokens, and new timers are added to the protocol. When a node

joins a ring, it is required that the joining node be connected to the prospective predecessor

and the successor. The joining node obtains this information by looking up its connectivity

table. When a node leaves a ring, the predecessor of the leaving node finds the next avail-

able node to close the ring by looking up its connectivity table. Partial connectivity also

affects the multiple token resolution protocol (deleting all multiple tokens but one). In a

partially connected network, simply dropping the token whenever a station hears another

transmission is not sufficient. To delete tokens that a station is unable to hear, we have
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designed a unique priority assignment scheme for tokens. Stations only accept a token that

has greater prioirity than the token the station last accepted. The WTRP also has algo-

rithms for keeping each ring address unique, to enable the operation of multiple rings in

proximity.

1.1 Related Works

Wireless Token Ring is a wireless LAN protocol inspired by the IEEE 802.4[2] Token Bus

Protocol. The protocol guarantees bounded delay and a share of bandwidth to all stations

in the network. A version of token ring protocol has been implemented by the author and

used for the automated highway project[11] in 1998. There has also been work on the

token ring protocol by Chao Chen[21]. To date, none of the work has seriously considered

the problems of partial connectivity, fast and graceful recovery time, multiple rings, and

admission control. This report documents a design that solves these problems.

1.2 Application

The Wireless Token Ring has been conceived initially for the UC Berkeley PATH Automated

Highway Project[11], and the Berkeley Aerobot project[12]. These two projects impose a

stringent requirements on the medium access protocol in terms of bandwidth, latency, and

speed and grace of failure recovery. The platoon mode of the automated highway project

involves up to 20 nodes in each platoon, and requires that information (approximately 100

bytes for vehicular speed, acceleration, and coordination maneuvers) be transmitted every

20ms. The failure recovery time for the communication system must be within 40ms.

However the usefulness of the protocol is not limited to these target applications. As
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stated in [13], the wireless Ad-Hoc network has many applications:

1. military (tactical communication) - rapid establishment of a communication infras-

tructure during deployment of forces in a foreign/hostile terrain

2. rescue missions - for communications in areas without adequate wireless coverage

3. national security - for communication during times of national crisis, where the exist-

ing communication infrastructure is non-operational due to a natural disasters or a

global war

4. law enforcement - similar to tactical communication

5. commercial use - for set up of communication in exhibitions, conferences, or sale

presentations

6. education - for operation of virtual classrooms

7. sensor networks - for communication between intelligent sensors

1.3 Wireless Environment

Inspired by the IEEE 802.4 [2] standards, the WTRP builds a logical ring that defines a

transmission sequence among the nodes in the ring. It also provides a distributed way to

add and delete stations from the ring. Additional challenges encountered in the wireless

environment are:

1. Stations may not be fully connected. (i.e. not all nodes in the ring are directly

connected)

2. Radio range can be asymmetrical.
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Figure 1.1: System Architecture

3. Multiple rings can exists in proximity.

1.4 Overall System Architecture

To put WTRP into a context in terms its placement in the communication system, we

describe the overall system architecture in Figure 1.1. In addition to the communication

stack including the Datalink Layer where WTRP will be located, we need Mobility Man-

ager, Channel Allocator, Management Information Base (MIB), and Admission Control

Manager. We assume that multiple channels are available, and that interfering rings are on

different channels. Interfering rings are assigned to different channels by a channel allocator

(Section 1.4.2).

The development of Mobility Here we outline the functions of each module, and discuss

the context in which these modules are designed.

1.4.1 Medium Access Control

Medium Access Control (MAC) enables multiple nodes to transmit on the same medium.

This is where WTRP would be located. The main function of MAC is to control the timing

of the transmissions to increase the chances of successful transmission.
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In our architecture, the MAC layer manages the ring and the timing of the transmissions.

The ring management involves the following:

1. Ensuring that each ring has an unique ring address.

2. Ensuring that one and only one token exists in a ring.

3. Ensuring that the rings are proper.

4. Managing the joining and the leaving operations.

We will describe the operations of the MAC layer in Section 2 and Section 3.

1.4.2 Channel Allocator

In a general sense, the channel allocator chooses the channel on which the station should

transmit. If a large number of token rings exist in proximity, their efficiency can be increased

by achieving spatial reuse through sensible channel allocation. The idea of spatial reuse is

one of the core ideas of the wireless cellular community. The same channel (or a set of

channels) can be reused in region A and B, if the two regions are separated by sufficient

distance measured in terms of the signal to interference ratio. One way to increase spatial

reuse is to reduce the cell size. Reducing the cell size (thus reducing the transmission power)

has the following benefits:

1. Increase in capacity

2. Increase in battery life

3. Decrease in equipment costs
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In addition, dividing the nodes into multiple rings would reduce the number of nodes in

a ring. This would decrease the token rotation time which results in decreased maximum

medium access time.

Finding the globally optimal1 solution is a challenging problem in any large deployment

of many mobile nodes. First, collecting and maintaining channel allocation information can

be difficult and burdensome. This is because the collection and maintenance of information

may involve frequent packet transmissions. Second, the optimal allocation computation

is complex. The complexity of the problem is greater than that of allocating channels to

already divided regions, allocating with the restriction that no adjacent regions can have

the same channel. This problem of allocating each region a channel, using the minimum

number of channels, is an NP-hard problem.

The problem of finding an optimal channel allocation is further complicated by the

following factors in the wireless Ad-Hoc environment.

1. The transmission ranges of the radios are limited.

2. No stationary base station exists.

3. The boundary of each channel is fluid.

Moreover, in our applications, the network capacity must be maintained without violat-

ing the latency and the bandwidth requirements of each node.

A much more scalable solution could be a distributed one that uses a greedy algorithm.

And this is the method that is being studied for our design. In our implementation, the

channel allocator is local to each station, and the channel allocator can access the network

topology information through the MIB. Each node decides on which channel to join in a

1By globally optimal channel allocation we mean an allocation that maximizes the capacity of the network
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distributed manner using the information collected. What information is collected and how

it is used still being investigated.

Mobility Manager

The Mobility Manager decides when a station should join or leave the ring. The problem

that the Mobility Manager has to solve is similar to the mobile hand-off problem. When

a mobile node is drifting away from a ring and into the vicinity of another ring, at some

threshold the Mobility Manager decides to move to the next ring. The level of connection

of a node to a ring can be found from the connectivity table described in Section 2.

Admission Control

The Admission Control Manager limits the number of stations that can transmit on the

medium. This is to ensure that a level of quality of service in terms of bounded latency

and reserved bandwidth is maintained for stations already granted permission to transmit

on the medium. There is an Admission Control Manager in each ring. The Admission

Control Manager may move with the token but does not have to move every time the to-

ken moves. The Admission Control Manager periodically solicits other stations to join if

there are “resources” available in the ring. The “resource” of the token ring can be de-

fined in the following way. The MAX MTRT is the minimum of the maximum latency

that each station in the ring can tolerate. RESV MTRT is the sum of token holding

time (THT) of each station. The Admission Control Manager has to ensure the inequal-

ity: RESV MTRT < MAX MTRT . This means that the resource left in the ring is

MAX MTRT − RESV MTRT . Only if there are enough resources left, may the Admis-

sion Control Manager solicit another station to join. During the solicitation, the Admission
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Control Manager also advertises the available resources. Only stations that require less

resource than that available in the ring may join.

Policer

The policer monitors the traffic generated by the application. It throttles the application

when more traffic than reserved is produced. In the WTRP, because the token holding

timer polices the traffic generated by a station, no special policer module is necessary.

Management Information Base (MIB)

The Management Information Base holds all the information that each management mod-

ule needs to manage the MAC module. Majority of this information is collected by the

MAC module and stored there. However, some of the information may need to be commu-

nicated. This is gathered and refreshed by the SNMP agent. Details on this are still being

investigated.
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Chapter 2

The Description of the Protocol

2.1 Definitions

1. WTRP refers to Wireless Token Ring Protocol, the topic of this report.

2. The term “frame” refers to what we pass to the physical layer interface. A “frame”

does not include the preambles, the start delimiter, the CRC check, and the end

delimiter.

3. The terms “station” and “node” are used interchangeably to describe the communi-

cation entities on the shared medium.

4. The predecessor and the successor of station X describe the station that X receives

the token from and the station that the X passes the token to respectively.

5. “Incorrect state” means that a node’s view of the topology is wrong. For example

node X may believe that node Y is its predecessor, but node Y does not.

6. “Stable environment” refers to a state in which the topology of the network is fixed

and there are no transmission errors.
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7. “Proper ring” refers to a ring where the next station and previous station fields of a

node are correct. It is more precisely defined in Section 5.

8. Capacity of the network refers to the total bandwidth.

9. The Channel Allocator, Mobility Manager, and Admission Control Manager intro-

duced in Section 1.4 are referred to as “management modules”.

10. THT refers to the Token Holding Time, i.e., the amount of time that a station can

hold the token for transmission of data.

2.2 Observations

1. Not all stations need to be involved in token passing. Only those stations which

desired to initiate the data transmission need to be involved.

2. Any station may detect multiple tokens and lost tokens. There are no special “moni-

tor” station required to perform token recovery functions.

3. Due to errors, stations may not have a consistent view of the ring.

2.3 Protocol Overview

In the WTRP, the successor and the predecessor fields of each node in the ring define the

ring and the transmission order. A station receives the token from its predecessor, transmits

data, and passes the token to its successor. Here is an illustration of the token frame.

FC RA DA SA Seq GenSeq

1 6 6 6 4 4 bytes
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F

A

E

B

D

C
Address = FSeq = 1

Seq = 2 Address = A

Seq = 3 Unknown

Seq = 4 Unknown

Seq = 5 Address = D

Connectivity Table of E

Reception Range of E

Figure 2.1: Connectivity Table

FC stands for Frame Control and it identifies the type of packet, such as Token, Solicit

Successor, Set Predecessor, etc. In addition, the source address (SA), destination addresses

(DA), ring address(RA), sequence number(Seq) and generation sequence(GenSeq) number

are included in the token frame. The ring address refers to the ring to which the token

belongs. The sequence number is initialized to zero and incremented by every station that

passes the token. The generation sequence number is initialized to zero and incremented at

every rotation of the token by the creator of the token.

The Connectivity manager resident on each node tracks transmissions from its own ring

and those from other nearby rings. By monitoring the sequence number of the transmit-

ted tokens, the Connectivity Manager builds an ordered list of stations in its own ring.

The Connectivity Table of the manager holds information about its ring (Figure 2.1). In

Figure 2.1, station E monitors the successive token transmission from F to D before the

token comes back to E. At time 0, E transmits the token with sequence number 0, at time

1, F transmits the token with the sequence number 1, and so on. E will not hear the
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transmission from B and C, but when it hears transmission from D, E will notice that the

sequence number has been increased by 3 instead of 1. This indicates to E that there were

two stations that it could not hear between A and D.

The Ring Owner is the station that has the same MAC address as the ring address. A

station can claim to be the ring owner by changing the ring address of the token that is

being passed around.

Stations rely on implicit acknowledgements to monitor the success of their token trans-

missions. An implicit acknowledgement is any packet heard after token transmission that

has the same ring address as the station. Another acceptable implicit acknowledgement is

any transmission from a successive nodes regardless of the ring address in the transmission.

A successive node is a station that was in the ring during the last token rotation. In other

words, the successor stations are those present in the local connectivity table.

Each station resets its IDLE TIMER whenever it receives an implicit acknowledgement.

If the token is lost in the ring, then no implicit acknowledgement will be heard in the ring,

and the IDLE TIMER will expire. When the IDLE TIMER expires, the station generates

a new token, thereby becoming the owner of the ring.

To resolve multiple tokens (to delete all tokens but one), the concept of priority is used.

The generation sequence number and the ring address define the priority of a token. A

token with a higher generation sequence number has higher priority. When the generation

sequence numbers of tokens are the same, ring addresses of each token are used to break

the tie. The priority of a station is the priority of the token that the station accepted or

generated. When a station receives a token with a lower priority than itself, it deletes the

token and notifies its predecessor without accepting the token. With this scheme, it can be

shown that the protocol deletes all multiple tokens in a single token rotation provided no
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more tokens are being generated.

The ring recovery mechanism is invoked when the monitoring node decides that its

successor is unreachable. In this case, the station tries to recover from the failure by

reforming the ring. The strategy taken by the WTRP is to try to reform the ring by

excluding as small a number of nodes as possible. Using the Connectivity Manager, the

monitoring station is able to quickly find the next connected node in the transmission order.

The monitoring station then sends the SET PREDECESSOR token to the next connected

node to close the ring.

WTRP allows nodes to join a ring dynamically, one at a time, if the token rotation

time (sum of token holding times per node, plus overhead such as token transmission times)

would not grow unacceptably with the addition of the new node. As illustrated in Figure 2.2,

suppose station G wants to join the ring. Let us also say that the admission control manager

on station B invites another node to join the ring by sending out a SOLICIT SUCCESSOR.

The Admission Control Manager waits for the duration of the response window for inter-

ested nodes to respond. The response window represents the window of opportunity for

a new node to join the ring. The response window is divided into slots of the duration

of the SET SUCCESSOR transmission time. When a node that wants to join the ring,

such as G, hears a SOLICIT SUCCESSOR token, it picks a random slot and transmits a
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SET SUCCESSOR token. When the response window passes, the host node, B can decide

among the slot winners. Suppose that G wins the contention, then the host node passes

the SET PREDECESSOR token to G, and G sends the SET PREDECESSOR to node C,

the successor of the host node B. The joining process concludes.

As shown in Figure 2.3, suppose station C wants to leave the ring. First, C waits for the

right to transmit. Upon receipt of the right to transmit, C sends the SET SUCCESSOR

packet to its predecessor B with the MAC address of its successor, D. If B can hear D, B tries

to connect with D by sending a SET PREDECESSOR token. If B cannot hear D, B will find

the next connected node, in the transmission order, and send it the SET PREDECESSOR

token.

In Figure 2.4, we can see that the ring address of a ring is the address of any one of the

stations in the ring. The station is called the owner of the ring. In the example, the owner
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of ring A is station A. Because we assume that the MAC address of each station is unique

the ring address is also unique. The uniqueness of the address is important, since it allows

the stations to distinguish between messages coming from different rings.

To ensure that the ring owner is present in the ring, when the ring owner leaves the

ring, the successor of the owner claims the ring address and becomes the ring owner. The

protocol deals with the case where the ring owner leaves the ring without notifying the

rest of the stations in the ring as follows. The ring owner updates the generation sequence

number of the token every time it receives a valid token. If a station receives a token without

its generation sequence number updated, it assumes that the ring owner is unreachable and

it elects itself to be the ring owner.

20



Chapter 3

Specification of the Protocol

We will describe in this section the timers and the frame formats of the protocol. The

timers are important in terms of policing the data flow, regenerating a new token in case

of lost token, retransmission of tokens, and recovery from failures as described in Section 2.

The frame formats are also precisely defined here. Brief explanation follows each format.

3.1 Timers

1. IDLE TIMER - The IDLE TIMER is set to the MAX IDLE TIME and starts to

count down. It is reset whenever the station receives an implicit acknowledgement.

When the IDLE TIMER expires (IDLE TIMER < 0), the station claims token.

2. INRING TIMER - The INRING TIMER is set to the MAX NO TOKEN RECEIVED

and starts to count down whenever the station receives a token. If the INRING TIMER

expires (INRING TIMER < 0), the station assume that it has been kicked out of the

ring, and exits the ring.

3. TOKEN PASS TIMER - The TOKEN PASS TIMER is set to the MAX ACK TIME
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whenever a station sends a token and starts to count down. If the timer expires without

the station receiving an implicit acknowledgement of the transmission, it assumes that

the transmission was unsuccessful and transmits the token again.

4. TOKEN HOLDING TIMER - The TOKEN HOLDING TIMER is set to the MAX TOKEN

HOLDING TIME and starts to count down when token is received. While the timer

is positive, the station can transmit data. When the timer expires, the station stops

the transmission and passes the token.

The following relationship must hold

1. MAX TOKEN HOLDING TIME < MAX IDLE TIME < MAX NO TOKEN RECEIVED

2. MTRT1 < MAX IDLE TIME

3.2 Frame Formats

3.2.1 Frame Control Field

1. Control Frame

0 0 C C C C C C

1MTRT is the Maximum Token Rotation Time defined more precisely in Section 5
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C C C C C C Type

0 0 0 0 0 0 TOKEN

0 0 0 0 0 1 CLAIM TOKEN

0 0 0 0 1 0 SOLICIT SUCCESSOR

0 0 0 0 1 1 SET PREDECESSOR

0 0 0 1 0 0 SET SUCCESSOR

0 0 0 1 0 1 TOKEN DELETED

2. Data Frame

F F M M M P P P

F F Frame Type

0 1 data

1 0 reserved2

1 1 reserved

M M M Mac Action

0 0 0 Request with no response

0 0 1 Request with response
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P P P Priority

1 1 1 highest priority

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 lowest priority

3.2.2 Sequence Control

1. Sequence Number (Seq)

Whenever a station passes a token the sequence number is increased. The counter

wraps around to 0 when it reaches 232.

2. Generation Sequence Number (GenSeq)

Whenever the owner of the token (the station that has the same MAC address as

the ring address of the token), the owner increments the generation sequence number.

The counter wraps around when it reaches 232.

Together the sequence number and the generation sequence number defines the pri-

ority of the token. The priority is used for resolving multiple token resolution.

3.2.3 Address Fields

1. Destination Address Field (DA) - The MAC address of the packet destination.

2. Source Address Field (SA) - The MAC address of the packet source.
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3. Ring Address Field (RA) - The MAC address of the station that generated the token.

3.2.4 Invalid Frame

We have assumed that the physical layer filters out the garbled packets. In addition The

following are invalid frames that the MAC layer can discard.

1. The FC field is undefined.

2. DA and SA are the same.

3.2.5 Enumeration of Frame Types

1. Token

0 0 0 0 0 0 0 0 RA DA SA Seq GenSeq

1 6 6 6 4 4 bytes

The token is used to transfer the right to transmit.

2. Claim Token

0 0 0 0 0 0 0 1 RA DA SA

1 6 6 6 bytes

The Claim Token is used when a station generates the token in the case where a

station creates a ring. It is also used when a station regains the token in the case of

lost token.

3. Solicit Successor Token

0 0 0 0 0 0 1 0 RA DA SA SucAddr Reserv

1 6 6 6 6 8 bytes
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The SOLICIT SUCCESSOR token updates the successor field of a station. It is used

for inviting another node to join the ring.

4. Set Predecessor Token

0 0 0 0 0 0 1 1 RA DA SA

1 6 6 6 bytes

The SET PREDECESSOR token updates the predecessor field of a station. It is used

for both joining the ring and exiting the ring.

5. Set Successor Token

0 0 0 0 0 1 0 0 RA DA SA NS

1 6 6 6 6 bytes

The SET SUCCESSOR token updates the successor field of a station. It is used for

both joining the ring and exiting the ring.

6. Token Deleted Token

0 0 0 0 0 1 0 1 RA DA SA

1 6 6 6 bytes

The TOKEN DELETED token is used to give predecessor notification that the token

has been deleted. This is to prevent the predecessor from invoke the ring recovery

mechanism.

7. Data

0 1 M M M P P P RA DA SA Data

1 6 6 6 bytes
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Chapter 4

Implementation

Ideally the implementation should be done on the network card, since

1. access to the physical layer information can improve the performance of the protocol

by decreasing the slot time as described in Section 2.3.

2. the context switch between the micro-controller of the network card and the CPU

introduces delay.

3. the processing of the protocol can be blocked by other processes.

4. the processing of the protocol in the CPU takes time.

5. the processing of the protocol takes the CPU time and memory away from other

resident processes.

We have implemented the token ring protocol on top of the WaveLAN[16] card which

implements the IEEE802.11[5] protocol. This is done by prepending the token ring header to

the IP packet and broadcasting all packets over the IEEE802.11 link. The implementation

of the Wireless Token Ring Protocol is divided into three parts: the kernel module, the
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Figure 4.1: Software Architecture

interface between kernel and the user-space module, and the user-space module. The kernel

module communicates with the network layer and the physical hardware, and manages the

PCMCIA card. The finite state machine of the protocol is implemented in the user-space

module. The flow of execution passes from the kernel to the user space and back to the

kernel for packet transmissions and receptions.

The goal of software implementation of the protocol is:

1. to study the performance of the protocol.

2. to catch errors missed during the simulation phase.

3. to implement quality of service on top of an arbitrary network card.

In this section, the kernel driver, the interface between the kernel and the user-space

module, and the user-space driver are discussed.
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4.1 Linux Kernel Driver

The version of the Linux kernel and the PCMCIA package that this implementation based

on is 2.2.14.5 (RedHat 6.2 distribution) and 3.1.7 respectively. We have modified the wave-

lan2 cs.c[18] driver to implement our token ring driver.

4.1.1 Kernel Process

The Linux Kernel is implemented as a single thread. This means that the module we attach

to the kernel is not a self-contained process, but a set of functions and data structures that

interface with the kernel.

4.1.2 Memory Space

A user and the kernel process are in a different virtual address space. Under normal oper-

ations, the memory of a user and the memory of the kernel processes are kept physically

separated. This prevents the processes from accessing each other’s memory. The separation

can be a problem when exchanging data between a user process and the kernel process.

System calls are a solution to this problem. Unix transfers execution from user space to

kernel space through system calls and hardware interrupts. As described by [14], the “kernel

code executing a system call operates on behalf of the calling process and is able to access

data in the process’s address space.” To illustrate this point, we have included excerpts

from [15].

Below is the kernel function that executes the write system call. One of the arguments

of the function is the buf which points to the user space data.

static ssize_t write(

struct file *file, /* The file itself */
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const char *buf, /* The buffer with input */

size_t length, /* The buffer’s length */

loff_t *offset) /* offset to file - ignore */

{

. . .

}

4.1.3 User-space Device Driver

We implemented our token ring driver partially as a user-space device driver with an inter-

face to the kernel. [14] discusses the advantages and the disadvantages of implementing a

device driver in user space. The following list is a modified one from [14].

1. Advantages

(a) The full C library can be linked in.

(b) A conventional debugger can be run on the driver code.

(c) If the module hangs, you can simply kill it.

(d) The user memory is swappable, whereas the kernel memory is not.

(e) Commercial code generating tools such as Teja [17] can be used to generate code.

2. Disadvantages

(a) Hardware interrupts are not available directly.

(b) Direct access to memory and I/O ports is cumbersome.

(c) Response time is slower. If the driver has been swapped to disk, response time

is unacceptably long.

(d) It is difficult to design a driver program that allows concurrent access to a device.
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(e) It is difficult to design a driver that will support multiple instances of a device.

The reason for implementing the token ring protocol in the user-space is to use the Teja

design environment. Teja allows developers to design, test, and generate code for a protocol

from finite state machine specifications.

Among the disadvantages, the slow response time and the difficulty in supporting mul-

tiple instances of the device are important when writing a network device driver. The slow

response time due to process being swapped out to hard disk can be controlled by a Unix

command called mlock. The mlock or mlockall allows one to lock the memory by pages.

However, locking the user-space driver in the computer memory is costly if the user process

uses a large library. Our implementation grows from 0.17 M-bytes of compiled code to 0.64

M-bytes during run time, due to linkage of large libraries and memory allocation of buffers.

The support for multiple instances of the device driver is not currently supported since

we are initially targeting communication networks with one wireless LAN card per station.

4.1.4 Kernel Modules

One of the useful things about Linux is its use of kernel modules. Kernel modules allow for

the expansion of the kernel code at run time. This means that we can compile individual

modules separately and attach them to the kernel when the system is running, instead of

recompiling the entire kernel. The kernel portion of the token ring driver is modified from

[18] and is implemented as a kernel module.

4.1.5 Viability of Real Time Processes in Linux

The Linux kernel runs at 100 Hz by default in x86 compatible hardware and 1024 Hz

in Sun. The 100 Hz clock translates into the clock granularity of 10 ms. The coarse
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granularity creates problems because when a Teja process is idle and goes to sleep, the

process will sleep for at least the granularity of the clock. This is a problem since the

token ring protocol runs much faster than 10 ms, and the protocol uses many timers. To

combat this problem, one can increase the granularity of the clock by increasing the HZ

value in <asm-i386/param.h> and then recompiling the kernel. Increasing the granularity

results in a more responsive system, however the price paid is the additional overhead of

processing more clock interrupts. We have increased the granularity of the clock on our P3

500 MHz laptops to 2048 Hz. This has resulted in reduced joining and fault recovery time,

and increased stability of the token ring.

4.1.6 Actual Implementation

Below are small portions of the code that illustrate how the interface is implemented. The

understanding of the general idea is necessary to understand the implementation. For details

on the implementation, please reference the appendix section. A brief explanation follows

each function.

At the initialization of the network device driver, all handlers are attached to the device.

The dev->hard start transmit receives packets from the IP layer and the link->irq.Handler

handles packets from the network card. The dev->tbusy flag is used by the logical link

control to control the flow. The skbuff (</Linux/skbuff.h>) is the data structure used by

the Linux kernel to pass the packet up and down the communication protocol stack without

memcopying. The interfaces between the IP and data-link layers, and the data-link layer

and the device library use a pointer to the skbuff structure as an argument. When sending

a packet down the stack, the data field of the skbuff is an Ethernet packet. When receiving

a packet from the network card, the Ethernet header is stripped off.
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int init_module(void)

{

register_PCMCIA_driver(&dev_info, &adapter_attach, &adapter_detach);

proc_register(&proc_root, &Trans_File);

. . .

}

void cleanup_module(void)

{

unregister_PCMCIA_driver(&dev_info);

proc_unregister(&proc_root, Trans_File.low_ino);

. . .

}

A kernel module needs both the init module and the cleanup module function to register

and deregister itself with the running kernel. In the function, init module, the module regis-

ters itself as a PCMCIA driver. Also in the init module function, the proc register function

are used to register the necessary files under /proc file systems that is used to communicate

the data between the kernel and the user process. One can see the deregistration process

in the cleanup module function.

static dev_link_t * adapter_attach(void)

{

dev_link_t *link;

struct device *dev;

. . .

link->irq.Handler = &wvlan2_isr;
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. . .

/* Make up a wvlan2-specific-data structure. */

dev->priv = kmalloc(sizeof(struct wvlan2_private), GFP_KERNEL);

. . .

/* Setup the device defaults as an Ethernet device. */

ether_setup(dev);

. . .

dev->hard_start_xmit = &token_ring_tx;

. . .

dev->tbusy = 1;

. . .

}

The above function is needed to attach a PCMCIA driver. Two important handlers are

link->irq.Handler to handle hardware interrupts from the network card and dev->hard start xmit

to handle the packet sent down by the IP layer. One important structure that can be uti-

lized in the implementation of the data-link layer with states is dev->priv. Private states

for each instance of the device driver can be implemented using this. For instance, one

can implement a finite state machine. ether setup(dev) lets the kernel know that this is an

Ethernet device driver. dev->tbusy is used by the logical link control to do the flow control.

When this value is set to 1, the logical link control does not try to send the packet to the

Ethernet driver.

static int

token_ring_tx(struct sk_buff *skb, struct device *dev)

{

if (dev->tbusy)
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{

if ((jiffies - token_ring_trans_start) >= HCF_TX_TIMEOUT)

{

. . .

token_ring_trans_start = jiffies;

set_devicetbusy(0);

}

}

else

{

trans_data_len = skb->len;

memcpy(trans_data, skb->data, skb->len);

token_ring_trans_start = jiffies;

set_trans_data_flag(1);

wake_up(&trans_wait);

. . .

}

}

The above function is called when receiving data from the IP layer. If there has been

a timeout, the function resets the transmission timer and turns off the transmission busy

flag (set devicetbusy(0)). If there has not been a timeout, the function consumes the buffer

and saves the buffer and the buffer size for the user module.

static int

my_wvlan2_rx(struct device *dev)

{
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struct sk_buff *skb;

struct wvlan2_private *lp;

. . .

skb->dev = dev;

. . .

GET_PACKET(dev, skb, pktlen);

. . .

receive_data_len = skb->len;

memcpy(receive_data, skb->data, skb->len);

set_receive_data_flag(1);

DEV_KFREE_SKB(skb);

. . .

}

The above function is called when hardware interrupt is raised by the network interface

card. This means that the network interface card received a packet from the medium

(i.e. packet has arrived). The function GET PACKET actually moves the packet from the

memory of the network card into the computer memory. If the packet is a data packet the

device driver forwards it to the top without going through the token ring driver.

4.2 Implementation of the Interface between Kernel and User

Module

From Figure 4.2, one can see how the kernel and the user modules interact in more detail.

The following are the details of each operation.
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kernel user process

devtbusy=0

devtbusy=1

rbusy=1

rbusy=0

time time

wavetbusy=1
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devtbusy=1

devtbusy=0
user process reads from trans_file

send signal to user process

user process reads from direction_file

user process reads from receive_file

user process writes to trans_file

send signal to user process

user process reads from direction_file

user process reads from direction_file

send signal to user process
message to send

receives token

start transmiting

transmission done

events

Figure 4.2: Interaction between the Kernel and User Modules

4.2.1 Sending Messages

When a new message arrives, the kernel module sets dev->tbusy to 1. This variable is used

by the logical link control for flow control. By setting dev->tbusy to 1, the kernel module

prevents the logical link control from sending another packet until the user module has

received the packet. When receiving the signal from the kernel, the user process checks the

direction file to find out why the kernel has interrupted the user module. The user module

finds out that the kernel module has a message to be transmitted by examining the file.

Then the user module proceeds to receive the message by reading from the trans file.

Although not shown in the figure, it is important to mention that the user module can

set the dev->tbusy flag at the kernel side by writing into a file called dev->tbusy file. The

user process sets dev->tbusy to 1 whenever its queue is full. And when space becomes
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available in the queue, the user module sets the dev->tbusy flag to 0.

4.2.2 Receiving the Token

When the token arrives at the network interface card, the interface card sends a hardware

interrupt to the kernel module. The kernel module then sets rbusy to 1 and sends the

signal to the user. The rbusy flag indicates the user module is busy, receiving information

from the kernel and the kernel should refrain from giving the user module another packet.

The user module finds out that the kernel module has received a token by inspecting the

direction file. Then the user module proceeds to receive the packet by reading from the

receive file.

4.2.3 Packet Transmission

The transmission is allowed when the station has the right to transmit. In such cases where

the station receives a valid token as in Figure 4.2, the station is allowed to transmit. At

this time, the user module writes into the trans file. The wavetbusy flag at the user module

is set to 1 to prevent the user from sending another packet before the network card finishes

transmitting. When the network card finishes transmission, it gives the kernel module a

hardware interrupt. At this moment the kernel module sends a signal to the user, prompting

it to inspect the direction file, and the user module finds out that the transmission is over.

4.2.4 Sending a Signal to the User Process

There are two ways to interrupt the user. The first way is to implement the polling function

at the user side to poll on a proc file. The second way is to directly send the signal to

the user process. The second method is implemented in the final version of the software.

However, the first version has also merits. It was implemented in the first implementation
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and the method performed well. In addition, no documentation in the linux community

exists showing how to do this. The second method is an improvement on the first method.

Method 1 The user process polls on the direction file to see if there are any “changes” in

the file. The trick here is to write our own polling function on the kernel side and wake up

the user process whenever the kernel module wants to. The following is the polling function

at the kernel module.

struct wait_queue * direction_wait = NULL;

static unsigned int direction_poll(struct file *file, poll_table * wait)

{

poll_wait(file, &direction_wait, wait);

if (direction_data_flag == 1)

{

return POLLIN | POLLRDNORM;

}

else

return 0;

}

The linux kernel periodically checks the wait queues to see if any process is sleeping on a

poll function. If there are any such process in the queue, it evaluates the poll function that

is attached to the file. In our case, we attached the above poll function to direction file.

According to our function, whenever the direction_data_flag is set, the poll function will

return non zero, waking up the user process. In a time critical application, it may be neces-

sary for the kernel to evaluate the poll function right away after the direction_data_flag
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is set. And this is done using the following command.

wake_up(&direction_wait);

The command forces any polling functions that are associated with the direction wait

queue to be evaluated.

Method 2 To be able to send a signal to a user process, the kernel module needs to be

able to find the task struct that is associated with the process. This is done by the following

function.

static ssize_t getpid_input(struct file *file, const char *buf, size_t len,

loff_t *offset)

{

. . .

tokenring_task = NULL;

read_lock(&tasklist_lock);

for_each_task(p) {

if (p->pid == tokenring_pid)

{

tokenring_task = p;

break;

}

}

read_unlock(&tasklist_lock);

. . .

}
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When the user module writes to the file \proc\getpid_file, the above procedure is

invoked. The user module gives as the argument buf, the pid of the module. At this time

the kernel module goes through all the task structure that is registered with the kernel and

finds the task structure with the matching process id.

The kernel module later sends the SIGUSR1 to the user by calling send_sig_info(SIGUSR1,

,tokenring_task).

4.3 Implementation of the User Module

The user module implements the MAC protocol. We will describe the implementation as a

finite state machine. The finite machine essentially is a Mealy machine where the action is

associated with the transition. The transient states are represented as small circles. This

section will give an overview of the finite state machine without much detail. Please refer

to the appendix for further details.

4.3.1 Mac Macro State (Figure 4.3)

The Macro State is the main finite state machine of the protocol. The finite state machine

begins with the offline state, and the transition from the offline state to the offring state

is immediate. This transition allocates all memories that are needed during the execution1

and sets up all the dependencies between modules.

As one can see from the finite state machine, there are two ways to go to the inring

state. They are the path that goes though the enter state and the path that goes through

the claim token state, which corresponds to the joining process, and claiming token process

respectively.

1The NIMR connectivity table is the only dynamic memory allocation after this point.
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Figure 4.3: Mac Macro State
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During normal operations, the state will circulate from the inring to the have token, the

have token to the pass token, and the pass token back to the inring.

The close ring state is reached when there is need for ring repair.

from to reason

offline offring initialized

enter received the solicit_successor

claim token the idle_timer expired

enter have token received the set_successor

offring enter failed

claim token have token broadcasted the claim_token now use the token

inring have token received the token

offring heard a transmission from an another ring

have token inring token deleted or heard an another transmission

pass token used the token

pass token close ring didn’t receive the implicit acknowledgement

inring heard the implicit acknowledgement

inring heard transmission from an another ring

close ring inring close ring attempt was a success

pass token close ring attempt was a failure, try an another node

offring the close ring attempt failed and tried enough times
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Figure 4.4: Offring Micro State

4.3.2 Offring Micro State (Figure 4.4)

In the offring state, the MAC layer waits until it either receives the invitation to join a ring,

decides that there is no ring in the medium, or receives an explicit command to create a

ring from a management module defined in Section 1.4.

from to reason

start offring start the Offring Micro State

offring start got the solicit_successor, move to the Enter Micro

State

offring received an irrelevant packet, update the connectivity

cache and discard

start the idle_timer has expired, create own ring

start an explicit command to create ring from a management

module is received

4.3.3 Claim Token Micro State (Figure 4.5)

In the Claim Token Micro State, the station broadcasts claim_token.
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Figure 4.5: Claim Token Micro State

Figure 4.6: Enter Micro State

from to reason

start claim token start the Claim Token Micro State

claim token start received the “done transmitting” signal from the kernel

4.3.4 Enter Micro State (Figure 4.6)

The contention for the joining process is implemented in this state. When the station

solicits successor from the Offring Micro State, it enters this state. During the transition

from demand in to wait end tx, the stations contend by sending the set successor. After
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the transmission, the station waits for an acknowledgement in the demand delay state.

from to reason

start demand in start the Enter Micro State

demand in fail heard an another transmission

fail not connected with the successor

wait end tx wait a random slot and transmit the set_successor

wait end tx fail heard an another transmission

demand delay failed to receive the “done transmission” signal from the

kernel

demand delay received the “done transmission” signal from the kernel

demand delay fail contention timer expired

success received set successor from the soliciting node

demand delay heard an another contender

4.3.5 Inring Micro State (Figure 4.7)

The Inring Micro State corresponds to the “idle” state of the protocol. In this state the

station monitors incoming packets and builds the connectivity table. When the station

receives a token destine for itself, the flow of execution moves to the Have Token Micro

State.
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Figure 4.7: Inring Micro State

from to reason

start inring start Inring Micro State

inring s8 the sol_suc_timer expired

selfring? the idle_timer expired

selfring?2 the inring_timer expired

got frame received a frame from the physical layer

s8 inring not selfring, reset the sol_suc_timer

wait for tx done transmit the solicit_successor

wait for tx done inring received the “done transmitting” signal from the kernel
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from to reason

selfring? start this station is not a selfring, reset timers and go to the

Claim Token Micro State

inring this station is a selfring, reset timers

selfring?2 start this station is not a selfring, reset timers and go to the

Claim Token Micro State

inring this station is a selfring, reset timers

got frame got frame for us the frame is intended for this station

outofring? the frame is not intended for this station

outofring? start this station is out of the ring, go to the Offring Micro State

inring not out of ring, process the frame and go back to inring

state

got frame for us inring the frame is a data frame, send it to the IP sender and go

back to inring state

inring received an invalid frame, ignore

start the token received, go to the Have Token Micro State

start the set_successor received, go to the Have Token Micro

State

start the solicit_successor token received, go to Have Token

Micro State

4.3.6 Have Token Micro State (Figure 4.8)

The MAC finite state machine enters this Micro State when it receives the right to transmit.

One of the main functions of this Micro state is the implementation of the multiple token
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Figure 4.8: Have Token Micro State
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resolution protocol, which is implemented in a loop that involves the state check token, s11

and wait for tx done0. The token inspects the token and deletes it if it has lower priority

than that of the station. If the token is accepted, the sequence numbers of the token is

updated (update mem).

If there is data to be transmitted, it is transmitted up to the token holding time, while

switching between the state data to send and send data. After the transmission of data,

the station solicits a successor before sending the token.
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from to reason

start check token received a token before, invoke the multiple token res-

olution protocol

update mem token is generated by this station, refresh the token

update mem token is not generated by this station, do not refresh

the token

data to send no need to invoke the multiple token resolution pro-

tocol, since no token has been accepted in the past

(probably just came on line)

check token s11 this token has equal or less priority than the token

that this station has accepted the last time.

s11 start this station is the sole station, so this station is not

required to send the token_deleted token.

wait for tx done0 start received an another transmission

start received the “done transmitting” signal from the ker-

nel

data to send send data there is data to be transmitted and the token holding

time is still positive

dummy wait used for testing purposes, not used any more
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from to reason

send data data to send received the “done transmitting” signal from the ker-

nel

data to send failed to receive the “done transmitting” signal from

the kernel

start heard an another transmission

should solicit flip a coin to decide to solicit successor

should solicit start do not solicit successor

wait for tx done1 solicit successor by sending the solicit_successor

packet

wait for tx done1 wait ss window wait finished transmitting

wait ss window wait got frame received a new frame from the physical layer

start the token_holding_timer is expired

got frame wait ss window wait identify and process the frames accordingly

4.3.7 Pass Token Micro State (Figure 4.9)

In the Pass Token Micro State, the station transmits the token (pass token). After trans-

mission, the station monitors if its token transmission has been successful (check pass). This

is done by monitoring successive transmissions. If the station does not hear an acknowl-

edgement for the first token transmission, it tries again by retransmitting from check pass

to wait for tx2. If there is no acknowledgement for the second transmission, it moves into

the Close Ring Micro State.
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Figure 4.9: Pass Token Micro State

from to reason

start pass token start the Pass Token Micro State

pass token wait for tx1 transmitted the token

delay this is a selfring, don’t need to send out anything

delay start the delay_timer expired

wait for tx1 check pass received the “done transmitting” signal from the kernel

check pass pass ok heard an another transmission

start received the implicit acknowledgement

wait for tx2 check pass1 received the “done transmitting” signal from the kernel

check pass1 pass ok heard an another transmission

start received the implicit acknowledgement
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Figure 4.10: Close Ring Micro State

4.3.8 Close Ring Micro State (Figure 4.10)

The Close Ring Micro State checks to see if the station is connected. If the station is not

connected, it kicks itself out of the ring. If this station is the sole station left, it creates a

self ring. Otherwise, the station updates the successor of the current station and goes back

to the Pass Token Micro State.

from to reason

start close ring start the Close Ring Micro State

close ring start this station is connected with the new station, try to close

the ring

start this station is not connected with any other node, create

a self ring

wait for tx close ring has failed, kick itself out of the ring by sending

the set_successor packet

start received the “done transmitting” signal from the kernel

start failed receive the “done transmitting” signal from the ker-

nel
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Figure 4.11: Physical Receiver

4.3.9 Physical Receiver (Figure 4.11)

This module is not part of the MAC protocol. This is one of the four helper finite state

machines along with the Physical Sender, the IP receiver, and the IP sender. These modules

act as the interface between the kernel and the MAC finite state machine.

After catching the interrupt from the kernel, the Physical Receiver needs to inspect the

direction_file to see what kind of message is received (Section 4.2). One of the difficulties

in designing these modules was the fact that the signal between the user and the kernel

modules (Section 4.2) can be lost when the linux system is highly loaded. This can put the

kernel or the user module into a inconsistent state, which may deadlock the two modules.

This is what is behind the four different signals used in this module. In the state

inspect, there are four different branches that the state machine can take, based on the

signal described in the following table:
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signal received from kernel

module

kernel busy transmitting kernel is not busy trans-

mitting

kernel received a packet 3 2

kernel didn’t receive a

packet

1 0

If none of the signals are lost, there is no need to have four different signals. Two signals

are enough.

from to reason

init idle initialize

idle inspect received signal from the kernel

inspect idle received the “done transmitting” signal from the kernel

idle received garbage

idle received no data at this time

receiving received the “done transmission” signal and data from the

kernel

receiving received data from the kernel

receiving idle the physical receiver can receive more packets

buffer full the physical receiver is unable to receive more packets,

wait until the queue is not full

4.3.10 Physical Sender (Figure 4.12)
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Figure 4.12: Physical Sender

Figure 4.13: IP Receiver

from to reason

init idle initialize

idle transmitting has packets to transmit

transmitting wait for tx done transmit the packet

wait for tx done idle received the “done transmitting” signal from the kernel

idle failed to receive the “done transmitting” signal from the

kernel

4.3.11 IP Receiver (Figure 4.13)
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Figure 4.14: IP Sender

from to reason

init idle initialize

idle inspect received a signal from the kernel

inspect idle received a reset signal from the kernel

enqueue received data from the kernel

4.3.12 IP Sender (Figure 4.14)

from to reason

init idle initialize

idle transmit has data to send

transmit idle finished transmitting data
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Chapter 5

Proof of Token Ring Protocol

5.1 Summary

We will prove that when transmission losses and topological changes of the graph stop at

time t, and stations do not go into the OFFRING state voluntarily, then the algorithm will

come to a stable state where all stations will belong to a ring at time s > t. The following

is a brief outline of the proof.

We first prove that all equivalent tokens are deleted by multiple token resolution pro-

tocol in finite time. Then we prove that the bijection that represents correct relationship

between predecessor and successor (see definitions under Section 5.2.4 for the exact defini-

tion) increases monotonically to the number of nodes in the graph in finite time. When the

number of bijection converges, then we say that all rings are correct since rings are defined

by predecessor and successor relationship.
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5.2 Model

5.2.1 Constants

1. MTRT: Maximum Token Rotation Time. (Defined more precisely in lemma 5.3.3)

2. M: set of all MAC addresses

3. IDLE TIME: the amount of time that a station waits before regenerating a token

when the medium is quiescent. IDLE TIME≥MTRT

4. INRING TIME: the amount of time that a station waits when the station is not receiv-

ing any acceptable token, before going into the OFFRING state. INRING TIME≥IDLE TIME≥MTRT,

INRING TIME < 2 IDLE TIME

5.2.2 Graph

1. Definitions

(a) The adjacent graph, G(t), is defined by a set of undirected edges, E(t), and a set

of stations, V(t), at time t.

(b) A station represents a data-link layer of a communication station.

(c) The set of edges, E(t), corresponds to the set of transmission links between

stations. e(x,y)∈E(t), if and only if x is in the transmission range of y, x is in the

reception range of y, y is in the transmission range of x, and y is in the reception

range of x, then we say x and y are connected.

(d) |E(t)| - the number of the edges in the graph at time t.

(e) |V (t)| - the number of the stations in the graph at time t.

2. Assumptions
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(a) If station x is in transmission range of station y, then y is also in the transmission

range of x.

(b) If station x is in reception range of station y, then y is also in the reception range

of x.

(c) No station hears corrupted messages (The physical layer filters out all corrupted

messages.)

5.2.3 Token

1. Attributes

p.type ∈ {SET PREDECESSOR,SET SUCCESSOR,TOKEN,SOLICIT SUCCESSOR}

p.ra ∈ M //ring address of the token

p.sa ∈ M //source address of the token

p.da ∈ M //destination address of the token

p.seq ∈ Z //sequence number of the token

p.genseq ∈ Z //generation sequence number of the token

2. Definitions

(a) ri(t) = a set of nodes in ring i.

(b) ti(t) = a set of tokens in ri(t).

(c) Token x and token y are said to be equivalent when their ring addresses are the

same.

(d) The proriority of the token is as follows: Token x is said to have higher priority

than y if its generation sequence number is higher than y. Given that x has the
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same generation sequence number as y, x has higher priority if it has the higher

ring address.

(e) In this proof, we often refer to the same token in the future. This is not a cause

for confusion since a token does not split into multiple tokens as suggested by

our assumption of no transmission error.

5.2.4 Station

1. Attributes

x.genseq(t)∈Z // The generation sequence number of the last token that x accepted.

x.ra(t) ∈M // ring address of x

x.TS ∈M // the MAC address of x

x.NS(t) ∈M // the MAC address of the station to which x forwards tokens.

x.PS(t) ∈M // the MAC address of the station from which x accepts tokens.

2. Definitions

(a) x is said to be the owner of token p if x.TS = p.RA.

(b) The priority of a station is the priority of the token that the station accepted

the last.

3. Assumptions

(a) The MAC address is unique to each station. x.TS 6=y.TS if x6=y

5.2.5 Network

1. Definitions
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(a) Network, N(t), is defined by a set of directed edges, L(t), and a set of vertices,

V(t), at time t.

(b) For station x and y, an edge ps(x,y) exists if and only if x.PS = y, and an edge

ns(x.y) exists if and only if x.NS = y.

(c) Set L(t) corresponds to the set of PS and NS mapping between stations. L(t) =

{ps(x,y), ns(x,y) | for all x in V(t)}

(d) For stations x and y, if x.NS = y, y.PS = x, and if y can receive and accepts

NORMAL tokens from x then, we say that x has the bijection with y.

(e) S = {< x.y > | x has the bijection with y}

(f) A set of stations, ri(t), is called a ring if for all x∈ri(t), x has the bijection with

its successor, y.

5.3 Proof

5.3.1 Assumptions

1. No transmission error occurs after t. (All transmissions are successful.)

2. Graph, G(t), remains constant after t.

3. Stations do not voluntarily go into the OFFRING state.

Lemma 5.3.1 While a station is not in the OFFRING state, the priority of the station

increases with time.

A station does not accept a token from another station with a equal or lower priority than

that of itself, by the implementation. Also, when a station generates a token upon expiration
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of the IDLE TIMER, the station increases its priority by increasing the generation sequence

number by 2.

Lemma 5.3.2 Choose any token p at time t = t0, and build an ordered list of paths taken

by p, say < (x0, t0), (x1, t1), (x2, t2), ..., (xm, tm) >, where tn is the time that token p visits

the station xn, and ti + 1 > ti. If there exists a station xi = xj in the pair list such that

0≤i < j≤m and tj − ti < MTRT , then there must be a k such that i≤k≤j, and xk owns p.

Let us assume the contradiction: Suppose we find xi = xj such that 0≤i,j≤m and tj − ti <

MTRT, but we cannot find the owner of token p, xk, such that i≤k≤j. This means that the

generation sequence numbers of the token when it arrives at xi and the generation sequence

number when it arrives at xj is the same, because no station other than the owner of the

token modifies the generation sequence number.

Also, xj could not have been in the OFFRING state at any time since ti, because xi

could not have been able to rejoin another ring after exiting a ring for one MTRT (or more

precisely, exiting of the OFFRING state for one MTRT), by the implementation. Because

a station is not allowed to receive a token when it is in the OFFRING state, it could not

have received p before time ti + MTRT. Thus, xi could not have been in the OFFRING

state since time ti. Because of lemma 5.3.1, the priority of a station can only increase while

it is not in the OFFRING state and thus, it does not make sense that token p could have

survived station xj .

Lemma 5.3.3 Token p must have visited a station twice if it survives until time t + MTRT.

We define MTRT to be the maximum time it takes for a token to visit a station twice if it

survives, under our assumption of no transmission errors and no topological change. This

cannot be longer than the amount of time for all stations to transmit in the graph, because
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the token must run out of stations that it can visit and choose among one of the stations

that it has already visited to visit.

Lemma 5.3.4 If no multiple equivalent tokens exist at time t, then no multiple equivalent

tokens exist at time s > t.

Suppose that there exist multiple equivalent tokens at time s when there were no multiple

equivalent tokens at time t, such that s > t. Because of our assumption, it is impossible for

a station to generate multiple equivalent tokens from transmission errors. Then a station

must have generated a token when a token that it has previously generated is still in the

graph. But the IDLE TIME is greater than MTRT. And we know that a token dies when it

doesn’t see its owner for MTRT. Thus the station could not have generated the equivalent

token when the token that it has previously generated is still in the graph.

Lemma 5.3.5 No multiple equivalent tokens exist at time t + 2MTRT.

All surviving equivalent tokens will go though the owner of the token in one MTRT

as shown in 5.3.3. After one MTRT, the owner will remember the highest priority token

among them. Within the next MTRT, all or all but one equivalent token will be deleted,

because the owner will not pass any token that has a lower priority than the highest priority

token that it received.

If the owner of the token leaves the ring at any time, all tokens will be deleted since the

owner is not able to come back to a ring in less than one MTRT.

Lemma 5.3.6 There exist a time s, such that s < t + 2MTRT and no multiple equivalent

tokens exist any time u > s.

This directly follows from 5.3.4 and 5.3.5. From 5.3.5, we know that no multiple

equivalent tokens exist at time t + MTRT. This means all multiple equivalent tokens must
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have been removed at time s before t + MTRT. From 5.3.4, no multiple equivalent tokens

exist at u > s.

Lemma 5.3.7 If station x has the bijection with its successor y, then the INRING TIMER

of x goes off before y.

The fact that x has the bijection with y shows that the last token y accepted was from x.

Then x must have reset its INRING TIMER before y had. Thus, INRING TIMER of y

cannot go off before x.

Lemma 5.3.8 When a station goes out of ring (into the OFFRING state), |S|, the number

of the bijections, does not decrease.

Let us say the predecessor of y is x, and the successor of y is z. When station y goes into

the OFFRING state, it forms a ring of its own by the following assignment: y.NS = y and

y.PS = y. We distinguish the two cases where a station can be kicked out. The first case

is when the INRING TIMER expires (Section 3.1). In this case, from the lemma 5.3.5, x

could not have the bijection with y, because if it did, the INRING TIMER of x would have

gone off before y. In this case, regardless of whether y had bijection with z or not, |S| will

not decrease, because in the worst cases |S| stays the same if y had the bijection with z.

The second case is when y is kicked out because it is not successful in finding a successor.

Again regardless of whether x had the bijection with y or not, |S| will not decrease, because

in the worst case we lose the bijection from x to y, but gains a self-bijection of y.

Lemma 5.3.9 When a station accepts a token some time after t, |S|, the number of the

bijections, does not decrease.

After accepting a token, station y goes into the OFFRING state, attempts to pass the token

to its successor, or sends the SOLICIT SUCCESSOR token. According to lemma 5.3.8, |S|
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is non-decreasing in the first case when the station involuntarily goes into the OFFRING

state. So we are left to prove that |S| is non-decreasing in the last two cases where station

y attempts to pass the token to its successor, or sends the SOLICIT SUCCESSOR token.

Let us see what happens if y decides to pass the token to its successor, z. If y has the

bijection with z, then it will pass the token successfully and there will be no change in the

network. In the case that y does not have the bijection with z, y will try to find a station

to form the bijection with. If y is not successful within a certain window of time, it will go

into the OFFRING state. And we have already shown in the lemma 5.3.8, that |S| does

not decrease. Now Let us consider the case where y successfully finds a station to form the

bijection with. U is the station that y finally forms the bijection with. W is the predecessor

of u, before y became its predecessor. Suppose w had the bijection with u, before y came

along. Then |S| is the same as before because we gained one bijection from x to u, but lost

one from w and u. If there was no bijection from w to u to begin with, then, we would have

gained on |S| by one.

Now Let us see what happens if y decides to sends a SOLICIT SUCCESSOR token. If

no station wins the contention, then y will proceed to pass the token to its successor. And

we have already shown in the previous paragraph that |S| does not decrease. If station z

wins the contention and successfully sends the SET SUCCESSOR token, then y now has

the bijection with z. Station z inherits the generation sequence number, the ring address,

and the PS pointer from y, allowing successful establishment of the bijection with w the

successor of y. If y did not have the bijection with w, then |S| will likely stay the same.

With any luck, |S| will actually increase by one if w and z has the same ring address and w

does not have a higher priority than z. Otherwise, the result will be the same as the case

where a station tries to pass a token to a successor that it does not have the bijection with,
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as discussed in the previous paragraph.

Lemma 5.3.10 A ring will not break after time t + 2MTRT + INRING TIME, and the

number of stations in the ring will not decrease.

A station updates its NS pointer when it is unable to pass the token to its successor,

leaves the ring, or receives SET SUCCESSOR. Because all stations in a ring have the

bijections with its successor, it does not make sense that it is unable to pass the token to its

successor. Thus, no station will be kicked out of the ring. Also, according to our assumption,

a station will not leave the ring voluntarily. When a station receives the SET SUCCESSOR,

the NS pointer of the station will change. However, the ring will still not break since all

contending stations must have a connection with the successor of the soliciting station,

according to our assumption.

A station updates its PS pointer when it accepts a token from a station different from

its predecessor. A station may accept the SET PRED token from another station, if the

station has the same ring address, causing the ring to break. This situation cannot possibly

arise. A station in the ring could not possibly have received a token from a station in the

same ring that is not its predecessor since all stations in the ring has the bijection with its

successor and could not have failed to pass a token to its successor. Moreover, from our

assumption, a station is not allowed to leave the ring voluntarily and induce its predecessor

to generate SET PRED.

Now we will show after t + MTRT + INRING TIME, a station outside a ring cannot

possibly send a SET PRED token to a station inside the ring with the same ring address.

Let us suppose that station y, with the ring address B, receives a token from station w,

outside of the ring. Let us label the predecessor of station y as x. From time t + MTRT

and on, no more multiple equivalent tokens exist according to lemma 5.3.6. A station
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cannot possibly remember about a token that did not exist at time t + MTRT, and at time

t + MTRT + INRING TIME, because a station must have accepted a token during [t +

MTRT, t + MTRT + INRING TIME] or have formed a self-ring. Thus, by t + MTRT

+ INRING TIME, if a station remembers anything about the token with a particular ring

address, B, they are remembering the same token. If a station receives a token from a

station outside the ring, then the token must have made a loop from station y to w and

back to y. This means that there was a breach in the ring that x and y belongs to, because

when a token travels it makes bijection between the sender and the acceptor of the token.

For station x and y to be in the same ring at time t + MTRT + INRING TIME, a new

token must have been regenerated by a station in the loop after the token with ring address

B has passed them by. But this does not make sense because y must have received the

token with the ring address B within MTRT since the last time it saw it, and all stations

in the loop have seen the token after station y accepted it.

Lemma 5.3.11 |S| monotonically increases and will converge to |V | in a finite time.

From lemma 5.3.8 and lemma 5.3.9, we have proven that |S| is non-decreasing. We

have also shown in lemma 5.3.10 that a ring will not break nor decrease in size after time

t + MTRT + INRING TIME. In addition a station will not solicit another station to join

unless it sees two successful token rotations. If there are no topological change, a station

will not join a node unless it is part of a ring. This means that the number of stations in a

ring does not decrease.

If |S| 6= |V | at some time s such that s > t + 2MTRT + INRING TIME, then there

exists station y that will not receive a NORMAL token from its predecessor at time t. If

station y does not accept a token within the INRING TIME since the last time it accepted

a token, it will form a self-ring (Section 3.1). In this case, we gained a station that belongs
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to a ring. If the station y accepts a token, allowing another station to form the bijection

with y, then we gain in the size of |S|. This is because the former predecessor did not have

the bijection with y, and the new predecessor did not have the bijection with its former

successor since it could not have generated SET PRED token to form the bijection with y.

Since within every INRING TIME, the number of bijection that belongs to a ring, or the

number of bijections increase, |S| will converge to |V | in finite time.

When |S| finally converges to |V | at time u > s, using the multiple token resolution

lemma 5.3.9, we know that there exists one and only one token in all rings within u +

IDLE TIME + INRING TIME.

Lemma 5.3.12 If |S| = |V | at time s > t, then within s + IDLE TIME + 3MTRT, there

exists one and only one token in any ring.

There could be multiple tokens in a ring at time s. Either one and only one of these tokens

will survive or none will survive by time s + 2MTRT. Station y in a ring will only accept

a token if it has higher priority than the last token that it accepted. This means that after

one revolution, the priority of all existing tokens must be increasing in terms of its order of

visits to station y. All of these tokens must visit station y within another MTRT, and will

be deleted but one token.

Even if all tokens get deleted at time u > s, within u + IDLE TIME, there exists at

least a one token in the ring. From the bijection, we know that if x has the bijection with

y, y must accept tokens from x. This means that the station that holds the token has the

higher priority than its successor. The only station that is an exception to this rule is the

owner of the token, because the owner increments the generation sequence number by one

when it passes the token. The only generation sequence number assignment that will satisfy

these constraints is the following. The generation sequence number of the stations from the
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successor of the owner to the station to the station with the token has the same generation

sequence number as the token. The generation sequence number from the successor of the

station with the token to the owner is one less than that of the token. This means that

when one or more stations regenerate token during [u, u + IDLE TIME], the generation

sequence number of these tokens will be higher than that of any stations at time s. Because

these tokens will be passed around as a NORMAL token, only the highest priority token

will survive within one MTRT, and lower priority tokens will be deleted.

5.4 Conclusion

For this proof to be practical, the assumptions must be reasonable. The assumption of this

proof was that after a certain time t, transmission errors and the topological changes stop.

One of the things that we can hope for when using this kind of assumption is that the

algorithm reaches the correct state fast enough when the assumption holds. However, we

found that the protocol, at worst case, can take time in the order of magnitude of MTRT.

One can argue for the first assumption of fixed topology by supposing that the rate topology

changes will probably be slow compare to the rate of transmission. But the assumption that

there will be no transmission errors for the duration in magnitude of MTRT may not be valid

when considering the fact that collision is a type of transmission error. This is especially

true when there are multiple tokens in the ring, or when there are multiple rings that run

on the same channel near one another.

According to this proof, the IDLE TIME can be very large if we are unable to effectively

put a bound on MTRT, because we have a constraint — IDLE TIME > MTRT. A large

IDLE TIME can significantly degrade the performance of the network because there will

be a long duration before the network regenerates the token in case of loss of token. One
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way to get around is to put an upper bound on the number of stations that can be in the

graph. One solution based on this idea would be channel assignment based on geographical

locations. For instance, automated highway system, adjoining sections in the freeway can

be assigned distinct channels and thus limiting number of cars that can be in one token

ring.
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Chapter 6

Performance

6.1 Affective Bandwidth

The affective raw bandwidth was measured in the following way. Using the original Wave-

LAN driver, one Linux box pinged another machine with different sizes of ping packets. The

ping implementation in the Linux kernel 2.2.14.5 uses an ICMP Echo Reply [19] packet.

According to [19], the original packet that was pinged is copied and sent back in the ac-

knowledgement. This is illustrated by Figure 6.1.

From the above observations, one can deduce that the difference between the round-trip

times of the two different ping transmissions is twice the time taken to transmit the packet

size difference.

R1 = 2a + b + 2s (6.1)

R2 = 2a + b + 2S (6.2)

R2 − R1 = 2(S − s) (6.3)

73



a s b s

time

time

round trip time for ping(s) round trip time for ping(S)
station 1

station2
a a S b S a

Figure 6.1: Ping Process

In the Equations 6.1, 6.2 and 6.3, we are assuming that a and b stays constant. The

assumption is reasonable since we observed very consistent ping rotation times. We have

done the ping experiment with various packet sizes from 108 bytes to 1008 at interval of

100 bytes. We observed a linear relationship between the round-trip time and the size of

the ping packet. (Figure 6.2).

1.5135 ∗ 106 = 2
(908 − 208)bytes

(12.3 − 4.9)ms

1000ms

1sec

8bit

1byte
(6.4)

From Equation(6.4), we find that the raw bandwidth is 1.51M-bit/sec.

6.2 Observed Bandwidth

Using the original driver[18] that uses the IEEE802.11 directly, we were able to obtain 180

to 190 K-bytes/sec which translates to approximately 1.48 M-bits/sec transfer rate. This

is measured by a FTP session of a large file (4M-bytes) from one machine to the next.

On the other hand, in the token ring, the throughput of 140 K-bytes/sec translates into

1.12 M-bits/sec in a two node ring. This is a reduction in the affective bandwidth from 1.5

M-bits/sec. The reduction in the throughput is the result of added header, and a processing

delay of the protocol. The issue of bandwidth will be further discussed in Section 7.1.
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6.3 Bound on Latency

In the trial shown in Figure 6.3, a large file size 5830080 Bytes was transferred using FTP

between two nodes running the token ring medium access protocol. The token rotation

time was measured at the FTP server for each token rotation. The file transfer of the same

file was done three times with a single transfer, 2 concurrent transfers, and 3 concurrent

transfers. The three peaks in Figure 6.3 correspond to the three FTP transmission periods.

From the figure, one can see that the token rotation time did not increase in spite of

an increased number of simultaneous transmissions. Rather, the transfer took longer to

complete in direct proportion to the number of concurrent FTP transfers. This bound

on latency is the most salient property of the token ring protocol. It enables real time

application support.

6.4 Fairness

In the simulation, only one queue was implemented at the MAC layer. Thus the bandwidth

was equally divided among the receivers, and all three transmissions finished at approxi-

mately the same time. The throughput of each FTP connection was 140 K-bytes/sec, 72

K-bytes/sec, and 49K-bytes/sec during the first, the second and third transmission peri-

ods respectively. The test was duplicated with different files of size 7403520 bytes: 145

K-bytes/sec for a single transfer, 75 K-bytes/sec for two simultaneous transfers, and 51

K-bytes/sec for three simultaneous transfers.
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Figure 6.3: Token Rotation Time (Two Nodes, Hz=100)
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6.5 Clock Resolution

The second trial was again conducted with two nodes and the same FTP transfers as the

first trial but with different LINUX clock rates (Figure 6.4). The clock resolution was 100Hz

and 2048Hz for the first (Figure 6.3) and second trials (Figure 6.4) respectively.

The lower clock resolution affects the speed at which the protocol can recover from

failure. The failure recovery time can be estimated by observing the token rotation time.

We assumed a token rotation time of greater than 20ms to be a failure. This is the token

rotation time that is required by the Automated Highway Project[11]. We found that with

the slow clock, the mean failure recovery time was 127.2917ms, while we observed 79.9529

ms with the fast clock. The worst case (677.07ms) was observed with the slow clock.

The Figure 6.6 shows the distribution of the token rotation time. We can see the increase

in token rotation time as we go from two to three nodes.

6.6 Responsiveness

From Figure 6.4, one can see that the token rotation time is approximately 2 ms in a

system of two nodes when there is no data transmission and approximately 18 ms during

the FTP transmission. Since the data queue length at the MAC layer was set at 2 during the

simulation, two 1500byte packet were transmitted in one token rotation. The responsiveness

of the system can be varied by controlling the queue length at the MAC layer and controlling

the token holding time.

The responsiveness of the system could be increased by reducing the latency caused by

the token ring protocol computation, reducing the header size of the token ring protocol,

or using a wireless network interface card with a higher bandwidth. To get an insight into
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Figure 6.4: Token Rotation Time during FTP (Two Nodes, 2048Hz)
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Figure 6.5: Token Rotation Time during FTP (Three Nodes, 2048Hz)
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the possible performance improvements, the system was tested with a higher bandwidth

wireless network interface card. When tested with 2 M-bit/sec WaveLAN card (Figure 6.5)

the token rotation time was approximately 3 ms in a system of three nodes. When tested

with the 11 M-bit/sec WaveLAN card, the responsiveness of the system was increased to

approximately 2 ms token rotation time when the system was not loaded.

6.7 Scalability

6.7.1 Responsiveness

The scalability of the responsiveness of the system can be measured by observing the increase

in token rotation time as the number of the nodes in the ring is increased. As expected, the

mean token rotation time increases linearly with the number of nodes in the ring as shown

in Figure 6.7.

6.7.2 Variance

Another measure of scalability is the variance of the token rotation time. Figure 6.6 shows

the variation in the token rotation time. Figure 6.5 shows the trial done with three nodes.

A file of size 7403520 bytes was transferred. As with the above trial, FTP transfer was

from one server node to one client node. For single FTP, a transfer rate of 130 K-byte/sec

was achieved. In the second trial with two simultaneous transmissions, 69 K-bytes/sec

was achieved. Lastly, the third transfer involved three concurrent transfers, achieving 47

K-bytes/sec. The LINUX clock resolution was set at 2048Hz.

Comparing Figure 6.5 to Figure 6.4, we can see that the variance of token rotation time

was increased during the FTP transfers and during no transfers. However, the increase in

the variance is ameliorated by the fact that token rotation time is well contained. To be
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Figure 6.8: Standard Deviation of the Token Rotation Time

more precise, less than 0.01% of the time that the rotation time took longer than 40ms

during the trial(0.0017% for Figure 6.5 and 0.0064856%. for Figure 6.4).

Figure 6.8 shows the variance of the token rotation time as the function of the number

of nodes. Since the variation was dependent on the token loss rate, the trial was repeated

several times to obtain a large number of samples. The result is promising since, at least

with small number of node, the variance increased linearly.

6.8 Randomness of the Rotation Time

Access to the hard disk is a factor in the randomness of the rotation time. Access to hard

disk occurs for many reasons including data logging of the token rotation time to data

access from the FTP agents. The hard drive that was used in the testing platform (Dell
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5000 Inspiron) has the following specifications.

Rotational Speed 4200rpm

Average Latency 7.1ms

Average Seek Time 13ms

Data Buffer 512 K-bytes 1

Data Transfer Rate 108.8-202.9 M-bit/sec 2

13.0ms + 7.1ms + 512Kbytes
8bits

bytes

Mbits

1000Kbits

sec

150Mbits

1000ms

sec
= 47.4067ms (6.5)

The above calculation is for an idealized case where hard disk buffer size (512 KB) is

sufficient for entire transfer, and all memory required is contiguous. When starting a large

application, the time takes for disk operation will be significantly higher than 47ms.
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Chapter 7

Comparison with the IEEE802.11

in DCF mode

7.1 Performance Comparison

The token ring protocol in its current implementation is disadvantaged relative to the origi-

nal IEEE802.11 driver because the token ring protocol is implemented on top of IEEE802.11

in DCF mode, incurring all the overhead that is associated with IEEE802.11 plus the over-

head from the token ring. The overhead is the increased computation time and packet

header size. In spite of these disadvantages, we find that under heavy load, the token ring

implementation performs better than the IEEE802.11 in DCF mode. This is shown in

Figure 7.1. In the figure, the aggregate FTP bandwidth is plotted against the number of

simultaneous FTP transfers. Both cases involved five nodes. Regardless of the number of

simultaneous transmissions, the ring was formed with five nodes. The FTP was done as

follows. For the case of two simultaneous transfers, one transfers went from station 1 to

station 2 another from station 2 to station 3. For the case of three simultaneous transfers,
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Figure 7.1: FTP performance (IEEE802.11 vs. Token ring)

1 to 2, 2 to 3, and 3 to 1.

In Figure 7.1, the solid line represents the IEEE802.11 in DCF mode and the dotted line

represents the token ring protocol. At least with the number of nodes that were involved,

we observed a decrease. The decrease in the throughput is expected since the number of

collisions increase in a CSMA medium access control.

The performance surprisingly improves in the Wireless Token ring case when going

from 1 to 3 simultaneous transfers. This can be explained as follows. Since for all trials

in Figure 7.1, the ring size remained constant regardless of the number of simultaneous

transfers, the number of token transmissions per token rotation remained constant in all

trials. However, on increasing the number of simultaneous transfers, the number of data

transmissions per token rotation is increased. This increases the ratio of data to token
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transmissions. This decreases the overhead per data bit. The need for retransmission

of the data due to collisions is eliminated since there is no collision in the token ring

implementation. We found that the token ring actually performs better when there are

more than three simultaneous transfers.

7.2 Topological Comparison

The Centralized approach (802.11 PCF mode) uses the star topology, meaning that all slave

nodes need to have a connection with the master. It is then easier to manage the network

since all management information can be stored at the master. However, the approach is

vulnerable to a single node failure at the master.

In addition, the star topology can be of a concern in an environment where flexibility

in topology is required. As shown in Figure 7.2, the network that is required for the

centralized approach is much more complex than the network that can be formed with the

token ring. The network formed by the centralized approach requires two base stations that

are connected with each other. The link between base station to base station may need to

be on a different channel. In the case of the token ring, the network was formed by one

ring, since the token ring only requires that a node is connected with its predecessor and

successor.

In some cases, one can even achieve higher spatial reuse by utilizing the token ring, as

shown in Figure 7.3, the vehicle platooning example[11]. In the platooning application, a

network connects the platoon of vehicles. In our ring topology, one does not need to increase

the transmission range even if the number of nodes in the ring increases[21]. However, in

the centralized approach, one would be forced either to increase the transmission range of

each radio to maintain the connection between master and all slaves, or to create multiple
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subnets and connect them together.

7.3 Working Together with Centralized Approach

At a particular level in the hierarchy of communication network, the centralized approach

may make more sense than the distributed approach. The centralized and the distributed

approach can be mixed in a hierarchy as shown in Figure 7.4.
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Figure 7.4: Hierarchically Mixed Structure
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Chapter 8

Conclusion

The performance results from the Linux implementation of the token ring protocol is good.

Even though the token ring protocol was implemented on top of the IEEE802.11 in DCF

mode, incurring all the overhead that is associated with IEEE802.11 plus overhead intro-

duced by the token ring protocol, we found that the token ring performs well or even better

under heavy load. We expect that the advantage of WTRP over the IEEE802.11 in DCF

mode would increase as the number of interfering nodes increases. A larger testing platform

is currently being built to test this hypothesis. This shows that we have designed a protocol

that is fast in terms of recovery (since there were several tokens lost during the tests) and

efficient in terms of header size. One reason for the fast recovery is the use of a connectivity

cache in each station. The performance results also show that we have a software imple-

mentation that is useful under a controlled application environment when utilized on top

of an arbitrary network interface card.

The consistency of the token rotation time, regardless of the number of simultaneous

transmissions is key to bounding the medium access latency. This perhaps is the most

valuable feature of the wireless token ring protocol, since this is necessary in real time
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applications like intersection decision support, emergency management, and automated

highway systems. In fact, the development of IEEE802.4 was initiated by people from

General Motors and other companies interested in factory automation[22]. It has been

established as a “mandatory protocol within the General Motor’s manufacturing automation

protocol (MAP)”[23]. Features such as bounded latency and robustness against multiple

node failures are some of the reasons for this choice. Our design bring the same bounded

latency and robustness features to the wireless medium. Moreover, WTRP accomodates

ad-hoc topologies.
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