Wirelessly Pickpocketing a Mifare Classic Card

Flavio D. Garcia Peter van Rossum Roel Verdult Ronny Wicl@aisreur

Radboud University Nijmegen, The Netherlands
{flaviog,petervr,rverdult,ronny@cs.ru.nl

Abstract the Charlie Card in BostBn the SmartRider in Aus-
tralidd, EasyCard in Taiwdh and the OV-chipkadttin

The Mifare Classic is the most widely used contactless The Netherlands. It is also widely used for access con-
smartcard on the market. The stream cipher CRYPTOL trol in office and governmental buildings and military
used by the Classic has recently been reverse engi- objects.
neered and serious attacks have been proposed. The According to [MESO8] the Mifare Classic complies
most serious of them retrieves a secret key in under a with parts 1 to 3 of the 1SO standard 14443:ATISO01],
second. In order to clone a card, previously proposed specifying the physical characteristics, the radio fre-
attacks require that the adversary either has access quency interface, and the anti-collision protocol. The
to an eavesdropped communication session or exe- Mifare Classic does not implement part 4 of the
cutes a message-by-message man-in-the-middle attackstandard, describing the transmission protocol, but in-
between the victim and a legitimate reader. Although stead uses its own secure communication layer. In this
this is already disastrous from a cryptographic point layer, the Mifare Classic uses the proprietary stream
of view, system integrators maintain that these attacks cipher CRYPTO1 to provide data confidentiality and
cannot be performed undetected. mutual authentication between card and reader. This ci-

This paper proposes four attacks that can be ex- pher has recently been reversed engineéred [NESPO08],
ecuted by an adversary having only wireless access [GKM*08].
to just a card (and not to a legitimate reader). The In this paper, we show serious vulnerabilities of the
most serious of them recovers a secret key in less than Mifare Classic that enable an attacker to retrieve all
a second on ordinary hardware. Besides the crypto- cryptographic keys of a card, just by wirelessly com-
graphic weaknesses, we exploit other weaknesses in municating with it. Thus, the potential impact is much
the protocol stack. A vulnerability in the computation larger than that of the problems previously reported
of parity bits allows an adversary to establish a in [GKM*08], [CNOO8], [KHGO08], [Noh08], where
side channel. Another vulnerability regarding nested the attacker either needs to have access to a legitimate
authentications provides enough plaintext for a speedy reader or an eavesdropped communication session. The

known-plaintext attack. attacks described in this paper are fast enough to allow
] an attacker to wirelessly ‘pickpocket’ a victim’s Mifare
1. Introduction Classic card, i.e., to clone it immediately.

With more than one billion cards sold, the Mi- \ulnerabilities. The vulnerabiliies we discovered
fare Classic covers more thai% of the contactless concern the handling of parity bits and nested authen-
smartcard markt Such cards contain a slightly more tjcations.
powerful IC than classical RFID chips (developed « The Mifare Classic sends a parity bit for each
for identification only), equipping them with modest byte that is transmitted. Violating the standard,

computational power and making them suitable for ap- the Mifare Classic mixes the data link layer
plications beyond identification, such as access control and secure communication layer: parity bits are

and ticketing systems. . _ computed over the plaintext instead of over the
The Mifare Classic is widely used in public transport

payment systems such as the Oyster|card_ondon, .[http://www.mbta.com/faregnd_passes/charlie

. http://www.transperth.wa.gov.au

. http://www.easycard.com.iw

.| http://www.ov-chipkaart.nl

1. http://www.nxp.com
2. http://oyster.tfl.gov.uk

o0 h W

To appear in IEEE Symposium on Security and Privacy (S&P.’09)

http://www.nxp.com
http://oyster.tfl.gov.uk
http://www.mbta.com/fares_and_passes/charlie
http://www.transperth.wa.gov.au
http://www.easycard.com.tw
http://www.ov-chipkaart.nl

bits that are actually sent, i.e., the ciphertext.
This is, in fact, authenticate-then-encrypt which
is generically insecure [Kra01].

Furthermore, parity bits are encrypted with the
same bit of keystream that encrypts the first bit
of the next byte of plaintext. During the authenti-

cation protocol, if the reader sends wrong parity
bits, the card stops communicating. However, if
the reader sends correct parity bits, but wrong
authentication data, the card responds with an
(encrypted) error code. This breaks the confi-
dentiality of the cipher, enabling an attacker to

establish a side channel.

o The memory of the Mifare Classic is divided
into sectors, each of them having its ow&-bit
secret key. To perform an operation on a specific
sector, the reader must first authenticate using
the corresponding key. When an attacker has
already authenticated for one sector (knowing the
key for that sector) and subsequently attempts to
authenticate for another sector (without knowing
the key for this sector), that attempt leak bits
of information about the secret key of that sector.

Attacks. We describe four attacks exploiting these
vulnerabilities to recover the cryptographic keys from
a Mifare Classic card having only contactless com-
munication with it (and not with a legitimate reader).
These attacks make different trade-offs between online
communication time (the time an attacker needs to
communicate with a card), offine computation time
(the time it takes to compute the cryptographic key
using the data gathered from the card), precomputation
time (one-time generation time of static tables), disk

for the odd-numbered bits of the internal state of
the cipher. This reduces the offline search space
to approximately33 bits. On a standard desktop
computer this search takes about one minute.

« In the third attack the attacker keeps her own
challenge constant, but varies the challenge of the
tag, again ultimately obtaining a special internal
state of the cipher. These special states have to be
precomputed and stored in384 GB table. This
attack requires on averageé? = 4096 authenti-
cation attempts, which could in principle be done
in about two minutes. A few extra authentication
attempts allow efficient lookup in the table.

« The fourth attack assumes that the attacker has
already recovered at least one sector key. When
the attacker first authenticates for this sector and
then for another sector, the authentication protocol
is slightly different, viz., the challenge nonce of
the tag is not sent in the clear, but encrypted with
the key of the new sector. Because the random
number generator has onlylé-bit state, because
parity bits leak three bits of information, and be-
cause the tag’s random number generator runs in
sync with the communication timing, this allows
an attacker to guess the plaintext tag nonce and
hence32 bits of keystream. Due to weaknesses
in the cipher [GKM"08], we can use thesg2
bits of keystream to compute approximataif
candidate keys. These can then be checked offline
using another authentication attempt. Since this
attack only requires three authentication attempts,
the online time is negligible. The offline search
takes under a second on ordinary hardware.

space usage (of the static tables) and special assump-Related work. De Koning Gans et al[[KHG08] have
tions (whether the attacker has already one sector key proposed an attack on a Mifare Classic tag that exploits

or not).

« The first attack exploits the weakness of the parity
bits to mount an offline brute-force attack on the
48-bit key space. The attacker only needs to try
to authenticate approximatehp00 times (which
takes under a second).

o The second attack also exploits the weakness of
the parity bits but this time the attacker mounts
an adaptive chosen ciphertext attack. The at-
tacker needs approximate®g500 authentication
attempts. In this attack, she needs to make sure
that the challenge nonce of the card is constant,
which is why this takes approximately fifteen
minutes. During these authentication attempts,
the attacker adaptively chooses her challenge to
the card, ultimately obtaining a challenge that
guarantees that there are onlg6 possibilities

the malleability of the CRYPTO1 stream cipher to read
partial information from a tag, without even knowing
the encryption algorithm. By slicing a Mifare Classic
chip and taking pictures with a microscope, the cipher
was reverse engineered by Nohl et al. [NESPO0S8].
Courtois et al. claim in[[CNOQ8] that the CRYPTO1
cipher is susceptible to algebraic attacks and Nohl
shows a statistical weakness of the cipher in [Noh08].
A full description of the cipher was given by Garcia et
al. in [GKM™08], together with a reverse engineered
authentication protocol. They also describe an attack
with which an attacker can recover a sector key by
communicating with a genuine reader or by eavesdrop-
ping a successful authentication.

All attacks described in these papers have in com-
mon that they need access to a legitimate reader or
intercepted communication. In contrast, the attacks

described in our paper only need access to a card. oxif | Key A, Access Conditions, U, Key B

Sector 0x27
16 blocks, 256 bytes

Impact. The implications of the attacks described in oxfo | Data E}lock

this paper are vast. § Sector trailer
Many ticketing and payment systems using the 0x07| Key A, Access Conditions, U, Key B
Mifare Classic sequentially authenticate for several 0x06 Data Block Sector 0x01
sectors verifying the data in the card. In case of %% Data Block 4 blocks, 64 bytes
0x04 Data Block /

invalid data, the protocol aborts. With previous attacks,
this means that an attacker has to either eavesdrop a | . Doto Block Soctor 0x00
full trace or walk from the reader to the card holder 0x01 Data Block 4 blocks, 64 bytes
several times, executing a message-by-message man- .o [UiDIEce anuracturer Data
in-the-middle attack. In practice, both options are hard
to accomplish undetected. Furthermore, there is no Figure 2.1. Memory layout of the Mifare Classic
guarantee that this allows an attacker to recover all

useful data in the card, since some sectors might not

be read in this particular instance. Our attacks always 14443-A. We have used the Proxmarkifor commu-
enable an attacker to retrieve all data from the card. \jcation: this device implements, among others, these

Our fourth attack, where the attacker already knows g Jayers of this standard and can emulate both a card
a single key, is extremely fast (less than one second 54 3 reader.

per key on ordinary hardware). The first key can be re- Using information from [[KHGOB] about the
trieved using one of our first three attacks, butin many .ommand codes of the Mifare Classic and

situations this is not even necessary. Most deployed fom [GKMT08], [NESP083] about the cryptographic
systems leave default keys for unused sectors or do aspects of the Mifare Classic, we implemented
not diversify keys at all. Nearly all deployed systems ipe functionality of a Mifare Classic reader on
that do diversify have at least one sector key that is the Proxmark. Note that we can observe a tag’'s
not diversified, namely for storing the diversification ~ommunication at the data link level, implying that
information. This is even specified in NXP’s guideline \ye can observe the parity bits as well. Furthermore,
for system integrators [MADO7]. This means thatitis \ye have the freedom to send arbitrary parity bits,
possible for an adversary to recover all keys necessary \yhich is not possible using stock commercial Mifare
to read and write the sixteen sectors of a Mifare Classic cjassic readers. However, many newer NFC readers
1k tag in less than sixteen seconds. can be used to communicate with a Mifare Classic
card as well and are capable of sending and receiving
Overview. We start by gathering the relevant informa- arbitrary parity bitd We have also executed the
tion that is already known about the Mifare Classic attacks described in this paper using an inexpensive
in Section2: its logical structure, the encryption algo- (30 USD) stock commercial NFC reader. However,
rithm, the authentication protocol and the initialization these readers are typically connected to a host
of the stream cipher, how to undo the initialization PC using USB and it is harder to obtain accurate
of the stream cipher, and information about how the communication timing.
tag generates its random numbers. In Sedfibn 3, we
continue with a precise description of the discovered 2 2. Memory structure of the Mifare Classic
weaknesses in the handling of the parity bits and
nested authentications. In SeCUEh 4, we show how The Mifare Classic tag is essentia”y a memory Ch|p
these weaknesses can be exploited to recover a sectoryjth secure wireless communication capabilities. The
key by communication with just a card. Sectidn 5 gives memory of the tag is divided into sectors, each of

0x03| Key A, Access Conditions, U, Key B

some concluding remarks. which is further divided into blocks of sixteen bytes
each. The last block of each sector is the sector trailer

2. Background and stores two secret keys and the access conditions
for that sector.

2 1. Communication To perform an operation on a specific block, the

reader must first authenticate for the sector containing

The physical layer and data link layer of the Mifare 7. Thttp://www. proxmark.org/
family of cards are described in the ISO standard 8.|http://www.libnfc.org/

http://www.proxmark.org/
http://www.libnfc.org/

that block. The access conditions determine which of
the two keys must be used. See Figlrel 2.1 for an
overview of the memory of a Mifare Classic tag.

2.3. CRYPTO1

After authentication, the communication between
tag and reader is encrypted with the CRYPTO1 stream
cipher. This cipher consists of 48-bit linear feed-
back shift register (LFSR) with generating polynomial
1‘48+£C43+1‘39+1‘38+1‘36+1‘34+1‘33+$31+$29+$24+
P+ 22t 429 42+ 2% + 2" + 2% + 25+ 1 and
a non-linear filter functionf [NESPO8]. Each clock
tick, twenty bits of the LFSR are put through the filter
function, generating one bit of keystream. Then the
LFSR shifts one bit to the left, using the generating
polynomial to generate a new bit on the right. See
Figure[2.2 for a schematic representation.

We letFy = {0,1} the field of two elements (or
the set of Booleans). The symbel denotes addition
(XOR).

Definition 2.1. The feedback functior: F38 — F,
is defined byL(SCQ,Tl c. 1'47) =20DPx5 PDroPDx190D
T12@ 214 D15 D T17 D XT19 D T24 D 25 D T27 O T29 D
T35 D 39 D 41 D Ta2 D T43.

The specifics of the filter function are taken
from [GKM™08].

Definition 2.2. The filter functionf: F3® — Ty is
defined by

f(xoxy ... 247) := fe(fa(xo, 211, 213, 215),
fb($17,$19,$2175€23),fb($25,5€27,$29,$31),

Ja(233, 35, 37, 39), fo (241, %43, Ta5, Ta7)).

Here f., f»: F3 — Fy and f.: F3 — F, are defined
by fa(yo,y1,92,y3) = ((yo Vy1) © (Yo Ay3)) ® (y2 A
((vo @ y1) V y3)), fo(yo,y1,y2,93) == ((yo Ay1) V
y2)®((yo®y1)A(y2Vys)), andfe(yo, y1, y2, y3, ya) :=
(yo V (51 Vya) Ayz©ya))) & (Yo (y1 Ays)) A ((y2 &
y3)V(y1Ay4))). Becausef (zoxy . .. z47) Only depends
onzg,x11,..., 247, We shall overload notation and see
f as a functionf3? — F, writing f(xor ...747) @S
f(l‘g,l‘ll, . 7LL‘47).

Note thatf, andf, here are negated when compared
to [GKM™08] and f. is changed accordingly. The
expressions fof,,, fy, andf. given here have the min-
imal number of logical operators ifA, Vv, @, —}; in
practice, this allows for a fast bitsliced implementation
of f [Bih97].

For future reference, note that each of the building
blocks of f (and hencef itself) have the property that

it gives zero for half of the possible inputs (respectively
one).

Theorem 2.3. Let Yy, Yy,..., Y, be independent uni-
formly distributed variables oveF,. Then

P[fa(}/O,Yl,}/Q,}/g):o]zl/2
Plfp(Yo,Y1,Y2,Y3) =0 =1/2
P[fC(YOaYhY%YB,YAL) :O] = 1/2

Proof. By inspection.

2.4. Tag nonces

For use in the authentication protocol, described
in Section[2.b below, Mifare Classic tags possess a
pseudo-random generator. In_[NFP0O7] it was revealed
that the 32-bit tag nonces are generated bylébit
LFSR with generating polynomial'® 4 24 + 213 +
2! + 1. Every clock tick the LFSR shifts to the left
and the feedback bit is computed usibgs.

Definition 2.4. The feedback functio.;5: Fi6 — F,
of the pseudo-random generator is defined by

L16(I0£C1 .. .I15) =29 D T2 D3 D T5.

Let us define the functiosuc that computes the next
32-bit LFSR sequence of th&-bit LFSR. This func-
tion is used later on in Secti@n 2.5 in the authentication
protocol.

Definition 2.5. The successor functiosuc: F3? —
F32 is defined by

SuC(ZC()Il e Igl) =12 ... I31L16(I16I17 . Igl) .

Because the period of the pseudo-random generator
is only 65535 and because it shifts eve®44us, it
cycles in618ms.

Under similar physical conditions (i.e., do not move
the tag or the reader), the challenge nonce that the tag
generates only depends on the time between the mo-
ment the reader switches on the electromagnetic field
and the moment it sends the authentication request. In
practice, this means that an attacker who has physical
control of the tag, can get the tag to send the same
nonce every time. To do so, the attacker just has to
drop the field (for approximatel30us) to discharge all
capacitors in the tag, switch the field back on, and wait
for a constant amount of time before authenticating.

Alternatively, by waiting exactly the right amount
of time before authenticating again, the attacker can
control the challenge nonce that the tag will send. This
works whenever the tag does not leave the electromag-
netic field in the mean time. On average, this takes
618ms/2 = 309ms.

[o1]2]3]4]s][s]7]8]o [r0]11]12]13[14]15]16]17]18]10]20]21]22]23]24]25[26]27]28] 20[30]31]32[33]34 35 [36[37]38]30[4041] 42[43]44] 4546 [47|«—D

Lot

SN A

| fa Jo | fo fa fo
| | | | |
| e |

!

Figure 2.2. Structure of the CRYPTO1 stream cipher

2.5. Authentication protocol and initialization

The authentication protocol was reverse engineered
in [GKM T08]. During the anti-collision phase, the tag
sends its uidu to the reader. The reader then asks
to authenticate for a specific sector. The tag sends
a challengeny. From this point on, communication
is encrypted, i.e., XOR-ed with the keystream. The
reader responds with its own challenge and the
answerar := suc®(nr) to the challenge of the tag;
the tag finishes with its answerr := suc®(nr) to
the challenge of the reader. See Figluré 2.3. Note that
later on we will send messages; that deviate from
this protocol; this will be explained in SectiGh 4.

u

{nri{ar}
{ar}

Figure 2.3. Authentication protocol

Tag Reader

During the authentication protocol, the internal state
of the stream cipher is initialized. It starts out as the
sector keyk, thennr @ u is shifted in, thenng is
shifted in. Because communication is encrypted from
ng onwards, the encryption of the later bits ok
is influenced by the earlier bits ofz. Authentication
is achieved by reaching the same internal state of the
cipher after shifting inng.

The following precisely defines the initialization of
the cipher and the generation of the LFSR-stream
apay ... and the keystrearyb;

Definition 2.6. Given a keyk = koky ... k7 € F38,
a tag nonceny = nronri...nrs € F32, a
uid v = woui...uz € F32, and a reader nonce
nRr = nRongr1-.-nr31 € F32, the internal state of
the cipher at time is a; := a;ait1...a;147 € F32.

Here thea; € 5 are given by

a; = k; Vi € [0,47]
asgri = L(ai, ..., a4714) ©nr; ©uy Vi€ [0,31]
S aro4i) ®ngr,; Vi€ |0,31]
S A11144) Vi € N.

agoti = L(as2yi, - -
a112+i = L(agati, - -

Furthermore, we define the keystream hitc F, at
time i by

bi == f(aia14i - .. aa74i) Vi € N.
We denote encryptions by{—} and define
{nr,;},{ar,:} € Fa by
{nri} =nr:® bsati Vi € [0, 31]
{ar:} = ar: @ bea+ Vi € [0,31].

Note that thea;, «;, b;, {ngr.}, and {agr;} are
formally functions ofk, ny, u, and ng. Instead of
making this explicit by writing, e.g.q;(k,np,u,ng),

we just writea; wherek, ny, u, andng are clear from
the context.

2.6. Rollback

For our attacks it is important to realize that to
recover the key, it is sufficient to learn the internal state
of the ciphery; at any point in time. Since an attacker
knowsu, np, and{nr}, the LFSR can then be rolled
back to time zero. This is explained in Section 6.2 of
[GKM ™08]; below we show their method translated
into our notation.

Definition 2.7. The rollback functionR: IF%S — [y is
defined byR(z1xs ... x48) := 25 ® x9 B T10 D T12 D
14 DX 15 DX17 D X19D Tog D x25 D x27 D X299 © X35 D
T39 B 41 D a2 D T3 D T4s.

If one first shifts the LFSR left using to generate
a new bit on the right, therR recovers the bit that
dropped out on the left, i.e.,

1)

R($1I2 PN Y L4 L(xoxl e I47)) = Xp.

Theorem 2.8. In the situation from Definitioh 216, we
have

apati = R(ae5+i - - - G11244) VieN
asayi = R(as34i .. agoti) ® {nr,i} ®
f(O a334; - - - CL79+Z') Vi € [O, 31]
a; = R(a1+i . a4g+i) D nr; D u; Vi € [O, 31].

Proof. Straightforward, using Definition 2.6 and Equa-
tion (@). For the second equation, note thgt
does not depend on its leftmost input. Therefore
f(0as3yi-..ar94i) = f(asati...aroti) = bsaq; and
hence{nR,i} D f(O a334i - - - a79+i) = NR;- O

Consequently, if an attacker somehow recovers the
internal state of the LFSRy; = a;a;41 ... a;147 at
some timei, then she can repeatedly apply Theo-
rem[2.8 to recoveryy = apa; ...asr, Which is the
sector key.

3. Weaknesses

This section describes weaknesses in the design of

the Mifare Classic. We first treat weaknesses in the way
the Mifare Classic handles parity bits and then the ones

reader sendén} and{ar}, the tag checks the parity
bits before the answer of the reader. If at least one of
the eight parity bits is wrong, the tag does not respond.
If all eight parity bits are correct, but the answes is
wrong, the tag responds with thebit error codeOx5
signifying failed authentication, called ‘transmission
error’ in [KHGOS]. If all eight parity bits are correct
and the answeutp is also correct, the tag responds,
of course, with its answet. Furthermore, in case
the reader sends the correct parity, but the wrong
answer, the-bit error codeDx5 is sent encrypted. This
happens even though the reader has not authenticated
itself and hence cannot be assumed to be able to
decrypt.

Figure[3.1 shows an authentication trace where the
attacker sends incorrect authentication data but correct
parity bits. The exclamation marks represent parity bits
that deviate from what is specified in the standard.
The final message of this trace is the encrypted error
messagéx5.

3.2. Nested authentications

concerning nested authentications. These weaknesses Once an attacker knows a single sector key of a

will be exploited in Sectionl4.

3.1. Parity weaknesses

The ISO standard 14443-A [ISO01] specifies that
every byte sent is followed by a parity bit. The
Mifare Classic computes parity bits over the plaintext
instead of over the ciphertext. Additionally, the bit of
keystream used to encrypt the parity bits is reused to
encrypt the next bit of plaintext.

This already breaks the confidentiality of the encryp-
tion scheme. In this paper we shall only be concerned
with the four parity bits ofny, ng, andag. The 1SO
standard specifies odd parity, hence thgl" in the
definition below.

Definition 3.1. In the situation from Definitioh 216, we
define the parity bitg; € Fy by
pj=nrg Dnrgipl O Snrgjr @1
Pj+4 :="NRg PNrgj+1 D Dnrgj4rO1
Pj+8 = aRrg; D argj+1 ® - Dargjy7r D1
vj€10,3]
and the encryptiongp;} of these by
{pi} :==p; ®bsys; vj € [0,11].

There is a further weakness concerning the parity
bits. During the authentication protocol, when the

Mifare Classic, there is a vulnerability that allows
an adversary to recover more keys. When a reader
is already communicating (encrypted) with a tag, a
subsequent authentication command for a new sector
also has to be sent encrypted. After this authentication
command, the internal state of the cipher is set to the
key for the new sector and the authentication protocol
from Sectiof 2.6 starts again. This time, however, the
challenge of the tag is also sent encrypted. Because
there are only2'® possible nonces, an attacker can
simply try to guess a nonce to recovg&2 bits of
keystream.

Also here, the information that leaks through the
parity bits can be used to speed up the attack. Although
there are' tag nonces, we show below that the parity
bits sent with the encrypted tag nonce leak three bits
of information, so that there are onf/3 tag nonces
possible.

Definition 3.2. In the situation from Definitioh 216, we
define{nr;} € F2 by

{nri} ==nr; ®b; Vi € [0, 31].
Theorem 3.3. For everyj € {0,1,2} we have

nrg; Dnrgi+1 D - Bnrgj+r B nrsits
={p;j} & {nrsj+s} ®1

Reader | 26 req type A

Tag 02 00 answer req
Reader | 93 20 select

Tag cl 08 41 6a e2 uid, bec

Reader | 93 70 c1 08 41 6a e2 e4 7c select(uid)

Tag 18 37 cd Mifare Classic 4k
Reader | 60 00 f5 7b auth(block 0)
Tag ab cd 19 49 nr

Reader | 59! d5 92 0Of! 15 b9 d5! 53! | {ng}{ar}

Tag a {5}

Figure 3.1. Trace of a failed authentication attempt

Proof. We compute as follows. Repeating the above procedure sufficiently many
times (in practice six is enough) uniquely determines
nr8j DNrgj+1 Do DT 8j+7 D NT 8548 the key. Since the key length is onlg8 bits, the
=p; D1 O nrgjs (by Dfn.[3.3) attacker can now brute force the key: she can just
=p;j ©bsysj D nrgjrs ©bsys; ©1 check which of the2*® keys produces all six times the

— (p Y@ {nrs; @ 1 (by Dfns.[31 and 312 correcF parity bits_ and recgiveq response. In_ practice,
{ps} @ nrsgs) (by) gathering those six authentication sessions with correct

O parity bits only takes on average- 256 = 1536
Since the attacker can obseryg;} and{nr.s; s}, authentication attempts which can be done in less than
this theorem gives an attacker three bits of information ©One second. The time it takes to perform the offline
aboutn . brute-force attack of course is strongly dependent on

In practice, timing information between the firstand ~the resources the attacker has at her disposal. We

second authentication attempt leaks so much additional 9Ive an estimate based on the performance of COPA-
information that the attacker can accurately predict COBANA [KPPT06]; this is a code-cracker built from

what the challenge nonce will be. off-the-shelf hardware costing approximatel$000
It turns out that the distance between the tag nonces USD- Based on the fact that COPACOBANA finds a

used in consecutive authentication attempts strongly 96-bit DES key in on averagé.4 days, pessimisti-

depends on the time between those attempts. Here Cally assuming that one can fit the same number of
distance is defined as follows. CRYPTOL1 checks on an FPGA as DES-decryptions,

and realizing that the search space is a factor of
Definition 3.4. Let ny andny. be two tag nonces. We 956 smaller, we estimate that this takes on average
define the distance between andn/. as 6.4 days/256 = 36 min.
In Sectiond 412 and 4.3 the same idea is exploited
in a different way, trading online communication for
computation time.

d(np,nl) == 1;%11{11 suc’(ng) = np.

4. Attacks

4.2. Varying the reader nonce
This section shows how the weaknesses described

in the previous section can be exploited. This section shows how an attacker can mount a
chosen ciphertext attack by adaptively varying the
4.1. Brute-force attack encryption ofng. We assume that the attacker can

control the power up timing of the tag, thereby causing
The attacker plays the role of a reader and tries to the tag to produce the samg- every time.
authenticate for a sector of her choice. She answers We first give the idea of the attack. The attacker runs
the challenge of the tag with eight random bytes (and authentication sessions until she guesses the correct

eight random parity bits) fo{nz} and {ar}. With parity bits. The internal state of the stream cipher just
probability 1/256, the parity bits are correct and the after feeding inng is ags. She then runs another
tag responds with the encryptedbit error code. A authentication session, keeping the firsbits of {ny}
success leak$2 bits of entropy (out of8). (and the three parity bits) the same, flipping the last

bit of {nr} (and randomly picking the rest until the
parity is ok). Now the state of the stream cipher just
after feeding in the reader noncedgy @ 1, i.e., agy
with the last bit flipped. Since the parity of the last
byte ofnr changed (since the attacker flipped just the
last bit), and since its parity in the first run is encrypted
with f(ae4) and in the second run witfi(aes®1), she
can deduce whether or not the last bitof influences
the encryption of the next bit, i.e., whether or not
flags) = f(apss @ 1). Approx. 9.4% of the possible
aes’s hasf(aes) # f(ass) @1 and they can easily be
generated since only the twenty bits that are inpuf to
are relevant. By repeating this, the attacker eventually
(on average after0.6 tries) finds an instance in which
aeq 1S in those9.4% and then she only has to search,
offline, 9.4% of all possible states.

We now make this idea precise and at the same time
generalize it to the last bit of each of the four bytes in
the reader nonce. The following definition says that a
reader nonce has properfy; (for j € {0,1,2,3}) if
flipping the last bit of thgj + 1)th byte of the reader
nonce changes the encryption of the next bit.

Definition 4.1. Let j € {0,1,2,3} and letny and
n'r be reader nonces with the property that; , , =
Trs;+7 and n'Rﬂ- = npg, for all i < 8+ 7 (and no
restrictions omg; andnp, ; fori > 85 + 7). We say
thatnp has propertyr if bs;a0 # bg; 1 40-

Formally this is not just a property ofg, but also
of k, ny, andu. Now k& andu of course do not vary,
so we ignore that here. Furthermore, when deciding
whether or notny has propertyF; in Protocol[4.2
below, the attacker also keepg constant.

After the tags sends its challenger, the attacker
answers{ng}, {agr}. Inside this answer, the attacker
also has to send the (encryptions of) the parity bits:
{pa},...,{p11}. For these, she tries &lb6 possibili-
ties. After on averag@28 authentication sessions, and
after at mos56, with different choices for thep;},
the parity bits are correct and the attacker recognizes
this because the tag responds with an error code.
Now the attacker definefn’ g: 7} :== {nrs;+7},
i.e., she changes the last bit of thih byte of {ng}.
The earlier bits of{n’;} she chooses the same as
those of {ngr}; the later bits of {n};} and {az}
the attacker chooses arbitrarily. Again, the attacker
repeatedly tries to authenticate to find the correct parity
bits {p/} to send. Note that necessari{y;} = {p;}
fori € {4,...,7 + 3}, so this takes on averagg—/
authentication attempts and at ma8tJ.
Now ng has propertyF; if and only if {pj;4} #
{p;-+4}.

Proof. Because the attacker modified the cipher-
text of the last bit of thejth byte of ng, the
last bit of the plaintext of this byte also changes:

Nrsitr = \Nrsitrt ® bgjizg = {Nggjir} @
bsj130 = {NR8j+7} D bsj439 = MR sj+7 ® bsjt39 @
bgj+39 = Mrgjt7. Hence, the parity of this byte

changesp), , = nl 5, @ - BNk 5 16PN g7 EL =
nRrg; D...NR8j+6 DNRsj+7 D1 =014

NOW {pjta} © {Pji4} = Pjra © bsjtao ©Pjyg ©
bl8j+40 = Pj+4 @ b8j+40 @ Im D blgj+40 = b8j+40 D
tjra0- Hence {p; 4} = {pj .} if and only if
bsj+a0 = bgjia00 1-€4 {Pj+a} # {Pj4} if and only
if nr has propertyF;. O

=

The attacker does change the reader nonce. We use The theorem below shows that the probability that

a; to refer to the bits of the LFSR-stream where the
reader nonce:, is used and similarly fory;, b}, etc.
l.e., a denotesu;(k, ny, nly).

Note that agjio (resp. ag;,40) is the internal
state of the cipher just after feeding iy + 1)th
byte of NR (resp. 7’LIR) and bgj+40 = f(Oégj+4Q)
(resp.bg; 440 = f(ag;40), SO thatF; does not depend
onng,; andn; for i > 8j + 7. Also observe that
O/8j+40 = a8;+40 - - - a8j+86agj+87, i.e., a8 +40 and
ag,;440 ONly differ in the last position.

The crucial idea is that an attacker can decide
whether or notny has propertyF;, only knowing
{nr}. (In practice, the attacker of coursghooses

{nr})

Protocol 4.2. Given {ngr}, an attacker can decide
as follows whether or nokr has propertyF;. She
first chooses{ar} arbitrary. She then starts, consec-
utively, several authentication sessions with the tag.

ng has the property; is approximatelyd.4%.

Lemma 4.3. Let Yy, ..., Y, be independent uniformly
distributed random variables ovéf,. Then

Plfp(Yo,Y1,Y2,Y3) # f5(Y0,Y1,Y2,Y3)] = 2
Pfe(Yo, Y1, Y2, Y3, Ys) # fo(Yo, Y1, Y2, Y3, Y3)] = .

Proof. By inspection.

Theorem 4.4.LetYy, Yy, ..., Yis, Y19 be independent
uniformly distributed random variables ové&s. Then

Plf(Yo,.... Y15, Y10) # f(Yo,..., Y15, Yig)] = .

Proof. Write Zy := f.(Yo,...,Ys), Z1 =
fb(}/él,---;y7): ZQ - fb(}%v"'ayll)! Z3 =
fa(Ylg,...,Ylg,), and Zy = fb(Yls,...,ﬁg). Fur-
thermore, writeZ], := f,(Yis,...,Y1s, Y19). Note

that Zg, ..., Z, are independent and, by Theoreml 2.3,

0x000041414110 0x000041414140 0x000141414110 0x000141414140 0x000441414110
i ictri 0x000441414140 0x001441414110 0x001441414140 0x001541414110 0x001541414140
unlformly distributed OVGﬂFQ. Then 0x004141414110 0x004141414140 0x004441414110 0x004441414140 0x005141414110
0x005141414140 0x010041414110 0x010041414140 0x010141414110 0x010141414140

SV 0x010441414110 0x010441414140 0x011441414110 0x011441414140 0x011541414110

P[f(YO, Yl, ey Y187 YlQ) 7£ f(YO, Y17 ceey Y18, Y19)] 0x011541414140 0x014141414110 0x014141414140 0x014441414110 0x014441414140
0x015141414110 0x015141414140 0x040010414110 0x040010414140 0x040011414110

= P[fc(ZO . Z4) 7& fc(ZO e 3 Z’)] 0x040011414140 0x040040414110 0x040040414140 0x040041414110 0x040041414140
’ ’ ’ ’) 4 0x040110414110 0x040110414140 0x040111414110 0x040111414140 0x040140414110

! ! 0x040140414140 0x040141414110 0x040141414140 0x040441414110 0x040441414140

= P[fc(Zm ERE Z4) 7é fc(Zm ERE Z4)|Z4 75 Z4] 0x041410414110 0x041410414140 0x041411414110 0x041411414140 0x041440414110
0x041440414140 0x041441414110 0x041441414140 0x041510414110 0x041510414140

. P[Z4 ?é Zi] 0x041511414110 0x041511414140 0x041540414110 0x041540414140 0x041541414110
0x041541414140 0x044141414110 0x044141414140 0x044410414110 0x044410414140

- p 7z 720 7z Z.1 0x044411414110 0x044411414140 0x044440414110 0x044440414140 0x044441414110
- [fc(05+ + -y 43,) 5& fc(05«00y 43,)] 0x044441414140 0x045141414110 0x045141414140 0x140041414110 0x140041414140
0x140141414110 0x140141414140 0x140441414110 0x140441414140 0x141441414110

Plfa(Yie, .-, Y18,0) # fa(Vis, -, Yis, 1)] OX1L48441414110 OX1L44441414140 OXI4SLALALAII0 Ox 145141414140 0150041414110

by L dIB 0x150041414140 0x150141414110 0x150141414140 0x150441414110 0x150441414140
(y Lemm) 0x151441414110 0x151441414140 0x151541414110 0x151541414140 0x154141414110
0x154141414140 0x154441414110 0x154441414140 0x155141414110 0x155141414140

0x410010414110 0x410010414140 0x410011414110 0x410011414140 0x410040414110

0x410040414140 0x410041414110 0x410041414140 0x410110414110 0x410110414140

0x410111414110 0x410111414140 0x410140414110 0x410140414140 0x410141414110

H H H H 0x410141414140 0x410441414110 0x410441414140 0x411410414110 0x411410414140
Alternatlvely, 2%[‘16 can also obtain this result by Slmply 0x411411414110 0x411411414140 0x411440414110 0x411440414140 0x411441414110
H ihiliti 0x411441414140 0x411510414110 0x411510414140 0x411511414110 0x411511414140
CheCkmg all2 p055|b|I|t|es. U 0x411540414110 0x411540414140 0x411541414110 0x411541414140 0x414141414110
0x414141414140 0x414410414110 0x414410414140 0x414411414110 0x414411414140

w ool
e !
ST

We now describe how an attacker can f|nd{an{} 0x414440414110 0x414440414140 0x414441414110 0x414441414140 0x415141414110

) 0x415141414140 0x440041414110 0x440041414140 0x440141414110 0x440141414140

such thatng has all four properties;. Recall that 0x440441414110 0x440441414140 0x441441414110 0x441441414140 0x441541414110
. g . 0x441541414140 0x444141414110 0x444141414140 0x444441414110 0x444441414140

these properties also depend op and it is p053|b|e 0x445141414110 0x445141414140 0x510010414110 0x510010414140 0x510011414110

0x510011414140 0x510040414110 0x510040414140 0x510041414110 0x510041414140

that for a fixedn nong has all four properties. In that 0x510110414110 0x510110414140 0x510111414110 0x510111414140 0x510140414110
0x510140414140 0x510141414110 0x510141414140 0x510441414110 0x510441414140

case, as is explained in the protocol below, the attacker oxs11410414110 0x511410414140 0x511411414110 0x511411414140 0x511440414110

0x511440414140 0x511441414110 0x511441414140 0x511510414110 0x511510414140

makes the tag generate a different and starts the 0x511511414110 0x511511414140 0x511540414110 0x511540414140 0x511541414110

. 0x511541414140 0x514141414110 0x514141414140 0x514410414110 0x514410414140
search again. 0x514411414110 0x514411414140 0x514440414110 0x514440414140 0x514441414110
0x514441414140 0x515141414110 0x515141414140

Protocol 4.5. An attacker can findng} such that g
has propertie), I, F», F5 in a backtracking fashion.
She first loops over all possibilities for the first byte of
{ngr} (taking the other bytes dfnr} arbitrary). Using
Protocol[4.2, the attacker decidesrif; has property

Fy (WhICh onIy depends on the first byte). If it has, for the odd-numbered bits Qf64- Table[Z.1 lists (|n
she continues with the second byte {ofz }, looping hexadecimal, with zeros on the places of the even-
over all possibilities for the second byte pir} while numbered bits) the18 of those possibilities that have
keeping the first byte fixed, trying to finfluz} such the last bita;1; equal to0; the other218 are the same
thatng also has property;. She repeats this for the except that they have,;; equal tol.

third and fourth byte of{ng}. If at some stage no

possible byte has properfy;, the search backtracksto ~ Proof. By explicit computation. For each of the
the previous stage. It fails at the first stage, the attacker 2°* elements yoy1...y23 of F3*, one checks
has to try a different tag nonce. it f(ya,y5, -, y23) # f(ya,ys,- -, 23),

. . . f(yanla"'7y19) # f(y07yla"'7m)a and
By simulating this protocol (for a random key and ihere exist Yos,Y_7,...,y—1 € T, such that

random uid, and a random tag nonce in every outer Fynsyss i) £ Fy_as fos.....775) and
loop of the search), we can estimate the number of f(y,g’;;,77...7y11) £ F(y s f,; o yTl,)(- O

authentication attempts needed to find a reader nonce
P Consequently, when the attacker has found a reader

havi Il f tied’;. .
aving all four properties:; nonceng that has propertiegy, F1, F», andF3, there
Observation 4.6. The expected number of authentica- are only436-22* ~ 232-8 ~ 7.3.10° possibilities for the

Table 4.1. Odd bits of ag4 ending in 0 when ng
has all properties F)

tion attempts needed to find ar; which has all four internal statevg, of the cipher just after shifting in the
propertiesF; is approximately28500. reader nonce. Using Theordm 2.8, these can be used

to compute7.3 - 10° candidate keys. The attacker can
then check these candidate keys by trying to decrypt
the received!-bit error messages.

Once the attacker has found am having all four
propertiesF;, the number of possibilities for the inter-
nal state of the cipher after feeding in this particular
ng IS seriously restricted. The following theorem states

how many possibilities there still are. 4.3. Varying the tag nonce

Theorem 4.7. Suppose thatig has propertiesFy, In the previous approach, the attacker kept
Fy, F», and F5. Then there are only36 possibilities constant and tried to find a speciéhr} such that

0x0000004d4d1f 0x0000012d7b8b 0x000001513ca3 0x0000049e0e78 0x000004caf ecl
0x000006f 945be 0x000007089ea5 0x0000072b67df 0x000008e79d8e 0x00000a137cd9
0x00000aed7467 0x00000b92342b 0x00000c6db6a0 0x00000chd2daa 0x00000cda7817
0x00000d0cbd27 0x00000e98af 03 0x00001089393d 0x0000129d78db 0x000012f 4cde6
0x000015382c19 0x000016a7a95¢c 0x0000172bebc6 0x0000173f 2299 0x00001821aala
0x000018769666 0x00001a6d513e 0x00001blc2ff7 0x00001c259261 0x00001c46edf 7
0x00001c5a3f de 0x00001c97ee44 0x00001f 19da5e 0x00001f ef 9ec2 0x000022ce6797
0x000023a396ce 0x000023a92baa 0x000026bc6el8 0x0000278a7954 . ..

Table 4.2. Excerpt from table Toya04 Of internal
cipher states a3, at index Oxa04

she gained knowledge about the internal cipher state.
Now the attacker does the opposite: she kepps}
(and {ar} and the{p;} as well) constant, but varies
np instead. As before, the attacker waits for the tag

to respond; when this happens, she gains knowledge

about the internal state of the cipher.

Protocol 4.8. The attacker repeatedly tries to authen-
ticate to the tag, every time with a different tag nonce
np and sending all zeros as its response (including
the encrypted parity bits), i.e{nr} =0, {ar} =0,
{ps} = --- = {p11} = 0. She waits for ams such
that the tag actually responds (i.e., the parity bits are
the correct parity bits) and where the encrypted error
code isOx5 (i.e., bog = bg7r = bgg = bgg = O)

Note that twelve bits have to be ‘correct’ (the eight
parity bits and the four keystream bits), so this will
take on averag@!'? = 4096 authentication attempts.

The following defines a large table that needs to be
precomputed.

Definition 4.9.

T:={az € Fy® | {ng} ={ar} =0 =
{p4}:"':{pll}:b96:"':b99:0}.

So the attacker knows that after the tag sends the
challengens found in Protocd[418, the current state of
the cipherss, appears ifl’. Now 7' can be precom-
puted; one would expect it to contait® /212 = 236
elements; in fact, it contain8.82% fewer elements
due to a small bias in the cipher. In principle, the
attacker could now use Theorém]2.8 to roll back each
of the LFSRs in the table to find candidate keys and

check each of these keys against a few other attempted

authentication sessions.

In practice, searching through takes about one
day, which is undesirable. The attacker can shrink the
search space by splitting as follows.

Protocol 4.10. After finding n in Protocol[4.8, the

parity bits until the tag responds with an encrypted
error code. l.e.{ng} = Oxffffffff and{ar} =
oxffffffff and successively tries all possibilities
for {p4},...,{p11} until one is correct.

This time, because eight bits have to be ‘correct’,
on average 28 authentication attempts are needed.

The tableT” can be split ir2'? = 4096 parts indexed
by the eight encrypted parity bits and four keystream
bits that encrypt the error code.

Definition 4.11. For everyy = v...v11 € Fi? we
define

T, := {as € T | {np} = {an) = OXFFFFFEFF =
{pa} =v N ANpu} =1 A
bog =8 A -+ Abgg = Y11}

So instead of storind” as one big table, during
precomputation the attacker creates #®6 tables
T,. Takingy := {pa} ... {p11}bos . .. by at the end of
Protocol4.1D, the attacker knows thaf, must be an
element ofT’,. Now 7', contains only approximately
224 entries, so this can easily be read from disk to
generate2?* candidate keys and check them against
a few other authentication sessions. Tdbld 4.2 shows,
as an example, the first part &f, for v = 0xa04 =
1010 0000 0100.

4.4. Nested authentication attack

We now assume that the attacker already knows at
least one sector key; let us call this sector the exploit
sector.

The time between two consecutive authentication
attempts might vary from card to card, although it is
quite constant for a specific card. Therefore, an attacker
can first estimate this time by authenticating two times
for the exploit sector. In this way the attacker can
estimate the distancgebetween the first and the second
tag nonce.

As explained in Sectioh_3.2, the attacker can now
authenticate for the exploit sector and subsequently
for another sector. In the authentication for the exploit
sector the tag nonce’. is sent in the clear; during
the second authentication the tag noneg is sent
encrypted agnr}. By computingsuc’(n%) for i close
to ¢, the adversary has a small number of guesses for
nr. The adversary can further narrow the possibilities
for nr using the three bits of information from the
parity bits (Theoreni_3]3). In this way the adversary

attacker again repeatedly tries to authenticate to the can accurately guessr and hence recover the fir32
tag, every time with the tag noneer she just found. bits of keystreambgb; . .. b3;.

Instead of zeros, she now sends ones for the response We shall show how a variant of the attack of
and this time she tries all possibilities for the encrypted Section 6.3 of [[GKM08] can be used to recover

10

approximately2' possible candidate keys. By doing
this procedure two or three times, the attacker can
recover the key for the second sector as well by taking
the intersection of the two or three sets of candidate
keys.

The crucial ingredient in the attack is the fact that the
inputs to the filter function are only on odd-numbered
places of the LFSR. This makes it possible to compute
separately all possibilities for the odd-numbered bits
of the LFSR-stream and the even-numbered bits of the
LFSR-stream that are compatible with the keystream.

Definition 4.12. We define the odd tableE® by

T(? = {xgxll ... T45T47 € F%O |
f(.ngIll e I45I47) = bo}
and fori € {1,...,15}

o ._ 2044
T = {x9x11 ... Tasp2iTar2s €F5 " |

O
T9L1] - .. Tas42i € Tifl AN
f($9+2i$11+2i cee x45+2i1747+2i) = b2i}-

Symmetrically, we define the even tablE§ by

TOE = {Iloxlg ... L4648 € F%O |
f($105012 ce - I46$48) = bl}

and fori € {1,...,15}

E ._ 20+i
T;" = {10212 . . . Ta642iTag4+2; € F5 " |
E
L10L12 - - - L4642 € Tifl AN
f(1710+2i$12+2i cee x46+2i$48+2i) = b2i+1}-
We write 7€ := TR andTF := TE.

Because of the structure of the filter functipn7,"
and TF are exactly of size2!® (Theorem2B). The
other tables are approximately of this size as well. An
entry zox1; . .. z4512; of T, leads to four different
possibilities inT'C: it can appear if© extended with
0 and with 1; it can appear extended only wifhy it
can appear extended only wiih or it can not appear
at all. Overall, these possibilities are equally likelydan
henceT® has, on average, the same sizel#5, (and
similarly for T'F).

The feedback functioi, can also be split in an even
and an odd part.

Definition 4.13. We define the odd part of
the feedback function, LO: F3* Fy, by
LO(leg .. .I47) = x5 D x9 D x15 D T17 D T19 D
Tos @D To7 D Tog D T35 O 39 D 141 D 243 and the
even part of the feedback functioh? : F3* — Fy, by
LE(2oxs ... T46) 1= X0 D210 B T12 D T14 D T2s B Tao.

—

11

Note thatL” and L® combine to giveL, in the
sense that

L(xol'll'g e 1'47) = LE(xo.’L'g e $46)

® LO(.IlIQ .. .I47).

)

As the agayg ... arra7g are being shifted through

the LFSR, the uid: and the tag noncer are shifted

in as well. In the following definition we compute the
22 bits of feedback from the LFSR from time to
time 31, taking care of the shifting in of. ® ny, and
also splitting the contribution from the odd- and even-
numbered bits of the LFSR. At this point, the situation
in [GKMT08] is slightly simpler. There, the attacker
tries to find the state of the LFSR after initialization,
so nothing is being shifted in.

Definition 4.14. We define the contribution of the en-
tries of the odd table to the feedbagk; : T° — F32,

by

o .,
1/) (ngll . .I77) =
E
(L™ (942iT1142i - - - T5542i) B Nr,942i B Ugt24,
o
LY (z1142i%13+42i - - - To742i) D NT,104+2

© U1042i)i€[0,10]

and we define the contribution of the entries of the
even table to the feedback?: T¥ — F32, by

1/)E(I10I12 e I78) =
(LO ($10+2i$12+2i cee I56+2i) @D T57424,

E
L™ (x1042iT1242i - - - T5642i) D T58+2i)ic[0,10]-

Definition 4.15. We define the combined tabE® as
follows.

C._ 70
T = {$9$10$11 ... T8 € FQ |
r9x11 ...T77 € T° N Z10T12...278 € TF

A ’L/Jo(xgl'll L. 1'77) = ’L/JE(.”L'lo.CClQ .. .£L'78)}.

Note thatT'“ can easily be computed by first sorting
T by v andT¥F by ”.

The crucial point is the following theorem; it shows
that the actual LFSR-stream of the tag under attack is
in the tableT“.

Theorem 4.16.aga1paqs . .. ars € TC.

Proof. By definition of 7€ and 7%, agai; ...a7r €
T° andajpais...a7s € TE. We only have to check
that the sequencegaigas - ..arg satisfies the con-

straint definingl’®. For this, we have

YO (agary . .. a7r) ® vE (arpas . . . arg)

E
(L™ (x942iT1142i - - - T5542i) B Nr,942i B Ugt2i

2] LO(I10+21'I12+21' . T5642i) D Ts742i),
LO(£C11+21'9€13+2¢ e T742i) D N 10420 D Uto42i
2] LE(I10+21'5612+2¢ . T5642i) D I58+2i)ie[0,10]
(by Din.[4.13)
= (L(z9+42iT10+2i - - - T5642i)
D nr9ro; D ugto; D Ts742i,
L(x1042i1142i - - - T57+42i)
@® nr10+2i O U10+2i D Tss+2i)ie(0,10]

(by Eqn. [2))

=(0,0)ic0,10]» (by Dfn.[2:8)

as required. O

Taking the first48 bits of every entry of7'“, the
attacker can apply Theorelm P.8 nine times for every
entry, obtaining one candidate key for every entry
of T¢. Because we have useéi® bits of keystream
and the key is48 bits, on average there will b2!®
candidate keys. Doing this procedure once more gives
another set of approximate®'® candidate keys; the
actual key must be in the intersection. In practice, most
of the time the intersection only contains a single key;
occasionally it contains two keys and then a third run
of this whole procedure can be used to determine the
key (or both candidate keys can just be tested online,
of course).

5. Conclusions

We have found serious ‘textbook’ vulnerabilities
in the Mifare Classic tag. In particular, the Mifare
Classic mixes two layers of the protocol stack and
reuses a one-time pad for the encryption of the parity

bits. It also sends encrypted error messages before
a successful authentication. These weaknesses allow

an adversary to recover a secret key within seconds.

Moreover, tag nonces are predictable which, besides

allowing replays, provides known plaintext for our

nested authentication attack. We have executed thesel[lSO01]

attacks in practice and retrieved all secret keys from a

number of cards, including cards used in large access

control and public transport ticketing systems.
To slightly hamper an adversary, system integrators
could consider the following countermeasures:

« diversify all keys in the card;
« cryptographically bind the contents of the card to
the uid, for instance by including a MAC;

12

« perform regular integrity checks in the back of-
fice.

For the time being, the second countermeasure pre-
vents an attacker from cloning a card onto a blank one.
However, this does not stop an attacker from emulating
that card with an emulator like the Proxmark.

Early on we have notified the manufacturer NXP of
these vulnerabilities. Since the protocol is implemented
in hardware, we do not foresee any definitive counter-
measure to these attacks that does not require replacing
the entire infrastructure. However, NXP is currently
developing a backwards compatible successor to the
Mifare Classic, the Mifare Plus. We are collaborating
with NXP, providing feedback to help them improving
the security of their new prototypes, given the limita-
tions of the backwards compatibility mode.

Acknowledgments

We are grateful to our faculty’s computer department
(C&C2) for providing us with computing power and
to Ben Polman in particular for his assistance.

References

[Bih97] Eli Biham. A fast new DES implementation
in software. InFast Software Encryption (FSE
'97), volume 1267 ofLecture Notes in Com-
puter Sciencepages 260-272, 1997.

[CNOO08] Nicolas T. Courtois, Karsten Nohl, and Sean
O'Neil. Algebraic attacks on the Crypto-
1 stream cipher in Mifare Classic and Oys-
ter Cards. Cryptology ePrint Archive, Report
2008/166, 2008.

[GKM*08] Flavio D. Garcia, Gerhard de Koning Gans,
Ruben Muijrers, Peter van Rossum, Roel Ver-
dult, Ronny Wichers Schreur, and Bart Jacobs.
Dismantling MIFARE Classic. In Sushil Jajodia
and Javier Lopez, editorEuropean Symposium
on Research in Computer Security (ESORICS
'08), volume 5283 ofLecture Notes in Com-
puter Sciencepages 97-114. Springer, 2008.

Identification cards — contactless integrated cir-
cuit cards — proximity cards (ISO/IEC 14443),
2001.

[KHGO08] Gerhard de Koning Gans, Jaap-Henk Hoepman,
and Flavio D. Garcia. A practical attack on
the MIFARE Classic. In Gilles Grimaud and
Francois-Xavier Standaert, editoSmart Card
Research and Advanced Application (CARDIS
'08), volume 5189 ofLecture Notes in Com-
puter Sciencepages 267—-282. Springer, 2008.

[KPP'06]

[Kra01]

[MADO7]

Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd
Pfeiffer, and Manfred Schimmler. Breaking ci-
phers with COPACOBANA - a cost-optimized
parallel code breaker. I€ryptographic Hard-
ware and Embedded Systems (CHES, 06)-
ume 4249 ofLecture Notes in Computer Sci-
ence pages 101-118. Springer, 2006.

Hugo Krawczyk. The order of encryption and
authentication for protecting communications
(or: How secure is SSL?). lAdvances in Cryp-
tology (CRYPTO '01)pages 310-331. Springer,
2001.

Mifare application directory.

http://www.nxp.com/acrobatiownload/other/
identification/M001830.pdf, May 2007.

13

[MFS08]

[NESPOS]

[Noho8]

[NPO7]

MF1ICS50 functional specification.
http://www.nxp.com/acrobat/other/identification/
M001053 MF1ICS50 rev5_3.pdf, January
2008.

Karsten Nohl, David Evans, Starbug, and Hen-
ryk Plotz. Reverse-engineering a cryptographic
RFID tag. In USENIX Security 20Q8pages
185-193, 2008.

Karsten Nohl. Cryptanalysis of Crypto-
1. http://www.cs.virginia.eda/kn5f/Mifare.
Cryptanalysis.htm, 2008.

Karsten Nohl and Henryk Plotz. Mifare, little
security despite obscurity. Presentation at Chaos
Computer Congress, 2007.

	Introduction
	Background
	Communication
	Memory structure of the Mifare Classic
	CRYPTO1
	Tag nonces
	Authentication protocol and initialization
	Rollback

	Weaknesses
	Parity weaknesses
	Nested authentications

	Attacks
	Brute-force attack
	Varying the reader nonce
	Varying the tag nonce
	Nested authentication attack

	Conclusions
	References

