
WISDOM++: An Interactive and Adaptive Document Analysis System

Oronzo Altamura Floriana Esposito Donato Malerba
Dipartimento di Informatica, Università degli Studi di Bari

via Orabona 4, I-70125 Bari, Italy
{ altamura | esposito | malerba} @di.uniba.it

Abstract

WISDOM++ is a document analysis system whose
main design requirements are real-time user interaction
and adaptivity. This paper presents the two-phased skew
estimation algorithm and the adaptive document block
segmentation and classification techniques. An evaluation
of the performance of some of these tasks is also
conducted according to a benchmarking procedure.

1. Introduction

WISDOM++ is a document analysis system that
operates in four steps: document analysis, document
classification, document understanding, and text
recognition with an OCR.1 One of its distinguishing
features is the use of a rule base in order to support some
tasks performed in the first three steps. The rule base is
automatically built from a set of training documents using
symbolic machine learning tools and techniques, which
make the system highly adaptive [1]. Real-time user
interaction is another relevant feature that affected the
design of the whole system.

From a functional point of view, WISDOM++
presents several novelties with respect to its predecessor,
PLRS [2], namely: 1) the two-phased skew estimation; 2)
the application of decision tree learning tecniques to the
block classification problem, that is the separation of text
blocks from graphics; 3) the extension of the learning
techniques for document classification and understanding
in order to deal with both numeric and symbolic data; 4)
the treatment of multi-page documents, each of which is
a sequence of pages; 5) the generation of the
corresponding XML format.

This paper illustrates the first two novelties: the
deskewing algorithm is described in Section2, while the
adaptive block classification is reported in Section 3.
Finally, some experimental results are reported in Section
4.

1 WISDOM++ is a newer version of the system WISDOM (Windows
Interface System for DOcument Management), originally written in C
[3].

2. Data capture and preprocessing

In WISDOM++ each page of a multi-page document
is optically scanned with a resolution of 300 dpi and
thresholded into a binary image, which is stored in TIFF
format. The image is associated with a coordinate system
whose origin is in the top-left hand corner; the X-
coordinate increases from the leftmost to the rightmost
column, while the Y-coordinate increases from to
uppermost to the lowermost row.

The segmentation of the page is performed by a top-
down method, which is quite fast but generally ineffective
when applied to skewed documents. Consequently, the
skew angle has to be estimated and corrected by inverse
rotation of the document image.

The skew angle of a document image I is the
orientation angle θ of its text baselines: It is positive when
the image is rotated counter-clockwise, otherwise it is

negative. In WISDOM++ the estimation θ̂ of the actual
skew angle θ is obtained as composition of two functions:
S(I), which returns a sample region R of the document
image I, and E(R), which returns the estimation of the
skew angle in the sample region R. The selection of a
sample region is necessary to reduce the computational
cost of the estimation step. The system always shows the
selected region of the bitmap and allows the user to
change it interactively. WISDOM++ is not able to
autonomously manage documents with many unknown
skews θ1, θ2, …, θn for text lines, since the function S
returns a text region whose skew is not guaranteed to be
the most frequently occurring one (dominant skew).

In order to select the sample region, WISDOM++
computes both the horizontal projection profile H of the
document image and the average number of pixels per
row (avpx). Then, it extracts a set of regions from H: A
region Ri is a sequence of adjacent rows in H whose
height is greater than avpx/4. In this way, only regions
with prominent peaks will be considered, since E(Ri) is
more likely to be close to the true skew angle θ. Each
region is associated with one of the following three
classes: Horizontal line, text and image. The classification
is based on the height of the region:

height(Ri) < Text_min Î horizontal line,
Text_min ≤ height(Ri) ≤ Text_max Î text,
height(Ri) > Text_max Î image.

The constants Text_min and Text_max are set to 24
and 125, respectively, in order to take into account 6-
point to 30-point text lines. Since the focus is on the
estimation of the skew angle of text regions, the system
selects, if any, the text region Ri with the maximum
average density of black pixels per row. Otherwise, the
system returns the region, classified as horizontal line or
image, satisfying the following conditions: Its base is
smaller than 310 pixels and it has the maximum average
density of black pixels per row.2

Once the sample region R has been selected, E(R) is
computed. Let Hθ be the horizontal projection profile of R
after a virtual rotation of an angle θ. The histogram Hθ
shows sharply rising peaks with base equal to the
character height when text lines span horizontally, while
it is characterized by smooth slopes and lower peaks in
the presence of a large skew angle. This observation is
mathematically captured by a real-valued function,

∑
∈

θ=θ
Rj

jHA)()(2 ,

which has a global maximum at the correct skew angle.
Thus finding the actual skew angle is cast as the problem
of locating the global maximum value of A(θ). Since this
measure is not smooth enough to apply gradient
techniques, the system adopts some peak-finding
heuristic. Initially, it takes thirty-two samples of A(θ) for
rotation steps of 20 pixels.3 Then it selects the angle θ′
maximizing A(θ) and rotates the sample region at finer
steps (10 pixels), starting from 30−θ′ , until a peak is
found. The final estimate of the skew angle is determined
by computing the vertex of the parabola interpolating
three points around the peak in the space (θ, A(θ)). The
main advantage of this approach is its low computational
cost with respect to methods based on Hough transforms,
Fourier transforms, or connected components. The
estimated skew angle is used as default value when the
user asks the system to rotate the document. The user can
repeat the loop "skew estimation - document rotation"
until satisfying results are obtained.

Another parameter computed during the preprocessing
phase is the spread factor of the document image. It is
defined as the ratio of the average distance between the
regions Ri (avdist) and the average height of the same
regions (avheight). In quite simple documents with few
sparse regions, this ratio is greater than 1.0, while in
complex documents with closely written text regions the

2 When no full region satisfying these conditions exists, a sub-region of
exactly 310 pixel is selected.
3 For an A4-sized document with 2,496 columns, this corresponds to a
rotation of an angle equal to arctan(20/2496)≈0.46°. The system can
detect skews smaller than ±7.2°, thus only 32 rotations of step 0.46° are
possible.

ratio is lower than the unit. This factor is used to define
some smoothing parameters of the segmentation
algorithm.

At the end of the preprocessing phase, the resolution
of the document image is reduced from 300 to 75 dpi:
This is deemed a reasonable trade-off between the
accuracy and the speed of the segmentation process.
Moreover, noisy black specks on white background are
filtered out in this way.

3. Adaptive block classification

WISDOM++ segments the reduced document image
into rectangular blocks by means of an efficient variant of
the Run Length Smoothing Algorithm [5]. The
segmentation algorithm returns blocks that may contain
either textual or graphical information. In order to
facilitate subsequent document processing steps, it is
important to classify these blocks according to the type of
content: text block, horizontal line, vertical line, picture
(i.e., halftone images) and graphics (e.g., line drawings).

The classification of blocks is performed by means of
a decision tree automatically built from a set of training
examples (blocks) of the five classes. The choice of a
"tree-based" method is due to its inherent flexibility, since
decision trees can handle complicated interactions among
features and give results that can be easily interpreted.
The numerical features used by the system to describe
each block are the following: height (height of the
reduced image block); length (length of the reduced
image block); area (height*length); eccentricity
(length/height); blackpix (total number of black pixels in
the reduced image block); bw_trans (total number of
black-white transitions in all rows of the reduced image
block); pblack (percentage of black pixels in the reduced
image block, blackpix/area); mean_tr (average number of
black pixels per black-white transition,
blackpix/bw_trans); F1 (short run emphasis); F2: (long
run emphasis); F3 (extra long run emphasis).4

In order to make WISDOM++ interactive and
adaptive, users are allowed to train the system on-line:
When they are dissatisfied with the classification made by
the decision tree, they can ask the system to revise the
classifier without starting from scratch. In this way, some
blocks, such as the logo of a business letter, can be
considered text for some users and graphics for others.
The decision tree learning system currently used by
WISDOM++ is ITI 2.0 [7]. It can operate in three
different ways. In the batch mode, it cannot change the
decision tree when some blocks are misclassified, unless a
new tree is generated from scratch using an extended
training set. In the other two modes ITI supports the
incremental construction of decision trees by revising the
current tree in response to each newly observed training

4 Computed using the following thresholds: T1=10 and T2=20 [8].

instance. In particular, in the normal operation mode, it
first updates the frequency counts associated to each node
of the tree as soon as a new instance is received. Then it
restructures the decision tree according to the updated
frequency counts. In the error-correction mode,
frequency counts are updated only in case of
misclassification of the new instance. The main difference
between the two incremental modes is that the normal
operation mode guarantees to build the same decision tree
independently of the order in which examples are
presented, while the error-correction mode does not.

Our preference for ITI 2.0 is also due to its exclusive
capability to handle numerical features. From the practical
point of view, the main problem we observed is that ITI
creates large files since it needs storing examples in the
nodes of the induced tree. This inefficiency can be
contained when the system operates in the error-
correction mode, since training examples are stored only
in case of misclassification. Currently, two new functions
have been added to the interface of WISDOM++: The
interactive correction of the results of the classification,
and the incremental update of the block classifier.

4. Benchmarking of WISDOM++

By considering WISDOM++ as a chain of modules,
we intend to assess the absolute performance of two of
them, namely the skew evaluation module and the block
classification module, by following the evaluation method
proposed by Märgner et al. [4].

A set of 112 real, single-page documents have been
considered as input data. Documents are distributed as
follows: Thirty are the first page of articles appeared on
the proceedings of the International Symposium on
Methodologies for Intelligent Systems (ISMIS94),5

twenty-eight are the first page of articles published on the
proceedings of the 12th International Conference on
Machine Learning (ICML95), thirty-four are the first page
of articles published on the IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) during the
period January-June 1996, and twenty documents of
different type or published on other proceedings,
transactions and journals (Reject). The text is organized
into one column for the first class of documents and into
two columns for the second and third class. No uniform
layout can be detected for the documents in the fourth
class.

Benchmarking of the deskew algorithm is performed
in two different ways. Firstly, the optimal output (ground
truth) is determined by a human expert, who decides
which is the right skew angle of the scanned document
image. This real assessment may contain some
imprecision, that we tried to keep under control by

5 Published by Springer Verlag in the series “Lecture Notes in Artificial
Intelligence,” Vol. 869.

providing the expert with two effective tools in the
interface: Zooming functions and a straight-edge. The
second way aims at having an error-free ideal assessment
through artificial rotations of the document image for
some known angles. In both cases, the evaluation function
computes the error made with respect to the real/ideal
assessment value.

Results concerning the real assessment are reported in
Table 1, where all measurements are absolute values of
angles expressed in degrees. The following observations
should be made. Documents have been scanned by a
careful user, who placed documents on the flat surface of
a scanner with a skew less than three degrees. The
smallest non-null skew angle that can be detected for A4
documents is 0.023°, which corresponds to a tilt of one
pixel in a bitmap with 2496 columns. For single-column
documents (ISMIS94), the error made by WISDOM++ is
two pixels on average, while for documents organized in
two columns (ICML95 and TPAMI), it is about nine
pixels on average.

Table 1: Errors made w.r.t. the ground truth.

Ismis Tpami Icml Reject
Average error 0,0470 0,2166 0,2045 0,1120

Average Real Skew 0,3115 0,4530 0,5130 0,3659
Standard Deviation 0,2827 0,3489 0,5121 0,3896

Document images correctly rotated by the expert are
used in the second benchmarking of the deskew
algorithm. Each of them is rotated at various degrees
using the rotation algorithm implemented in
WISDOM++. The absolute errors averaged on all
documents of a class are reported Table 2.

A comparison with other published results is not easy.
A similar benchmarking was performed by Smith [6],
whose best results seem not to be different from ours. Our
experimental design allows us to observe that the skew
estimation procedure exhibits a good performance for
single-column documents, but it is not always reliable for
documents organized in two or more columns. This limit
is more evident with clockwise rotations, and is generally
due to the difficulty in selecting a good sample region.
Moreover, the error generally increases with the size of
the skew angle, so that for a relatively large tilt it would
be necessary to repeat the deskew process more than
once. As to the time performance, which is a critical
factor for a real-time system, it is always lower than 0,41
s on a Pentium PC 200MMX with 64Mb SDRam.

In order to test the performance of the block classifier,
the set of documents has been split into a training set
(70%) and a test set (30%) according to a stratified
random sampling. The number of training blocks is 9,429
while the number of test blocks is 4,670. Three
experiments have been organized. ITI 2.0 has been trained
in the batch mode in the first experiment, in the pure
error-correction mode in the second, and in a mixed mode

in the third (incremental mode for the first 4,545
examples and error-correction mode for the remaining
4,884).

The main characteristics of the learned trees are
reported in Table 3, where the last column refers to the
number of examples stored in the nodes of the induced
trees.The decision tree built in the batch mode takes more
than 24Mb, since all instances have to be stored, while the
decision three obtained in the error-correction mode
requires only 982Kb. The total number of instances
incorporated in the third experiment is 4,670, where 4,545
are the training examples used in the first incremental
step, while the remaining 125 have been incorporated in
the subsequent error-correction step. Nevertheless, this
difference in tree size corresponds to a very little
difference in predictive accuracy estimated on the
independent test set (see Table 4). This justifies the use of
the decision tree built according to the error-correction
mode in this application.

Table 3. Main characteristics of the learned
decision trees.

Size
Kb

No.
Nodes

No.
leaves

No. incorporated
examples

Batch 24,320 229 114 9,429
Pure Error-correction 982 159 79 277
Mixed 13,150 235 117 4,545+125

Table 4. Predictive accuracy of the learned
decision trees.

ISMIS94 ICML95 TPAMI Reject Total
Batch 95.78 97.74 98.26 97.00 97.48
Pure EC 97.05 98.39 98.01 95.06 97.45
Mixed 95.99 97.63 98.18 97.35 97.51

The learned trees are not shown in the paper because
of their huge size. We limit ourselves to report that the set
of features actually used in the decision tree built by the
pure error-correction procedure does not contain two
features, namely width of a block and F3. The latter

exclusion is probably due to the documents considered in
this benchmarking, with few occurrences of large text
blocks for which the long run emphasis actually helps.

Acknowledgments

 The authors thank Giacomo Sidella and Ignazio
Sardella for their help in conducting benchmarking.

References

[1] F. Esposito, D. Malerba, and G. Semeraro, “Automated
acquisition of rules for document understanding,” Proc. of
the Second Int. Conf. on Document Analysis and
Recognition, 650-654, IEEE Computer Society Press, 1993.

[2] F. Esposito, D. Malerba, and G. Semeraro, “Multistrategy
learning for document recognition,” Applied Artificial
Intelligence, 8, 1, 33-84, 1994.

[3] D. Malerba, F. Esposito, G. Semeraro, and L. De Filippis,
“Processing paper documents with WISDOM,” in M.
Lenzerini (Ed.), AI*IA 97: Advances in Artificial
Intelligence, LNAI - 1321, Springer, 439-442, 1997.

[4] V.F. Märgner, P. Karcher, and A.-K. Pawlowski, “On
benchmarking of document analysis systems,” Proc. of the
Fourth Int. Conf. on Document Analysis and Recognition,
331-336, IEEE Computer Society Press, 1997.

[5] F.Y. Shih, and S.-S. Chen, “Adaptive document block
segmentation and classification,” IEEE Trans. on Systems,
Man, and Cybernetics - Part B, 26, 5, 797-802, (1996).

[6] R. Smith, “A simple and efficient skew detection algorithm
via text row accumulation,” Proc. of the Third Int. Conf. on
Document Analysis and Recognition, 1145-1148, IEEE
Computer Society Press, 1995.

[7] P.E. Utgoff, “An improved algorithm for incremental
induction of decision trees,” Proc. of the Eleventh Int. Conf.
on Machine Learning, Morgan Kaufmann, 318-325, 1994.

[8] D. Wang and R.N. Srihari, “Classification of newspaper
image blocks using texture analysis,” Computer Vision,
Graphics, and Image Processing, 47, 327-352, 1989.

Table 2. Average absolute error in the skew angle for the four classes.

Counter-clockwise Clockwise
Reject TPAMI ICML95 ISMIS94 Degrees ISMIS94 ICML95 TPAMI Reject
0,1260 0,2516 0,2303 0,0377 0,5 0,0390 0,3563 0,2384 0,1798
0,1928 0,5957 0,6265 0,0514 1,0 0,0505 0,6099 0,5119 0,3670
0,2214 0,2049 0,4495 0,0699 1,5 0,0709 0,4096 0,2846 0,2630
0,1639 0,0736 0,1841 0,0606 2,0 0,0562 0,1505 0,0743 0,1040
0,1587 0,1097 0,5090 0,0526 3,0 0,1123 0,4837 0,0789 0,5205
0,4534 0,2639 0,2781 0,0734 4,0 0,1318 0,5521 0,2180 0,7142
0,8134 0,5126 0,4883 0,1482 5,0 0,5046 1,3710 0,1220 0,8743
1,3723 0,5874 0,5403 0,4071 6,0 0,4546 1,7466 0,4971 0,6652
1,3564 0,6439 1,4304 0,4440 7,0 0,4340 2,2474 1,2674 0,7813

