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1 Introduction 

NP-hard problems are believed to require exponential  

time for exact solutions (Karp, 1972). Since it is not  

feasible to practically solve such problems using classical 

computer architectures, optimal methods have been  

replaced with approximation algorithms that usually need 

polynomial time to provide reasonably good solutions 

(Rabanal et al., 2007). 

Heuristic algorithms capable of addressing diverse 

problems are known as metaheuristics. Such algorithms are 

computational methods that attempt to find a close 

approximation to an optimal solution by iteratively trying to 

improve a candidate answer with regard to a given measure 

of quality. Metaheuristic algorithms do not make any 

assumptions about the problem being optimised and are 

capable of searching very large spaces of potential 

solutions. Unfortunately, metaheuristic algorithms are 

unlikely to arrive at an optimal solution for the majority of 

large real world problems. However, research continues to 

find asymptotically better metaheuristic algorithms for 

specific problems. 
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Most metaheuristic algorithms in optimisation and 

search have been modelled on processes observed in 

biological systems: genetic algorithms (GAs) (Goldberg, 

1989), genetic programming (GP) (Koza, 1990), cellular 

automata (CA) (Wolfram, 2002), artificial neural networks 

(ANN), artificial immune system (AIS) (Farmer et al., 

1986). Expanding on this trend of bio-inspired solutions a 

large number of animal or plant behaviour-based algorithms 

have been proposed in recent years: ant colony optimisation 

(ACO) (Dorigo et al., 2006), bee colony optimisation 

(BCO) (Pham et al., 2006), bacterial foraging optimisation 

(BFO) (Passino, 2002), glow-worm swarm optimisation 

(GSO) (Krishnanand and Ghose, 2005), firefly algorithm 

(FA) (Yang, 2009), cuckoo search (CS) (Yang and Deb, 

2009), flocking birds (FB) (Reynolds, 1987), harmony 

search (HS) (Geem et al., 2001), monkey search (MS) 

(Mucherino and Seref, 2007) and invasive weed 

optimisation (IWO) (Mehrabian and Lucas, 2006). In this 

paper, we propose a novel algorithm modelled on the 

natural phenomenon known as the wisdom of crowds 

(WoC) (Surowiecki, 2004). 

1.1 Wisdom of crowds 

In his 1907 publication in Nature, Francis Galton reports on 

a crowd at a state fair, which was able to guess the weight of 

an ox better than any cattle expert (Galton, 1907). Intrigued 

by this phenomenon James Surowiecki in 2004 publishes: 

“The Wisdom of Crowds: Why the Many are Smarter than 

the Few and How Collective Wisdom Shapes Business, 

Economies, Societies and Nations” (Surowiecki, 2004). In 

that book Surowiecki explains that “Under the right 

circumstances, groups are remarkably intelligent, and are 

often smarter than the smartest people in them. Groups do 

not need to be dominated by exceptionally intelligent people 

in order to be smart. Even if most of the people within a 

group are not especially well-informed or rational, it can 

still reach a collectively wise decision” (Surowiecki, 2004). 

Surowiecki further explains that for a crowd to be wise it 

has to satisfy four criteria: 

• Cognitive diversity – individuals should have private 

information. 

• Independence – opinions of individuals should be 

autonomously generated. 

• Decentralisation – individual should be able to 

specialise and draw on local knowledge. 

• Aggregation – a methodology should be available for 

arriving at a common answer. 

Since the publication of Surowiecki’s book, the WoC 

algorithm has been applied to many important problems 

both by social scientists (Yi et al., 2010) and computer 

scientists (Wagner et al., 2010; Mozer et al., 2008; Bai and 

Krishnamachari, 2010; Moore and Clayton, 2008; 

Shiratsuchi et al., 2006; Osorio and Whitney, 2005). 

However, all such research used real human beings  

either in person or via a network to obtain the crowd effect. 

In this work we propose a way to generate an artificial 

crowd of intelligent agents capable of coming up with 

independent solutions to a complex problem (Ashby and 

Yampolskiy, 2011). 

2 Wisdom of artificial crowds 

Wisdom of artificial crowds (WoAC) is a novel  

swarm-based nature-inspired metaheuristic algorithm for 

global optimisation (Ashby and Yampolskiy, 2011).  

WoAC is a post-processing algorithm in which 

independently-deciding artificial agents aggregate their 

individual solutions to arrive at an answer which is superior 

to all solutions present in the population. The algorithm is 

inspired by the natural phenomenon known as the WoC 

(Surowiecki, 2004). WoAC is designed to serve as a post-

processing step for any swarm-based optimisation algorithm 

in which a population of intermediate solutions is produced, 

for example in this paper we will illustrate how WoAC can 

be applied to a standard GA. 

The population of intermediate solutions to a problem is 

treated as a crowd of intelligent agents. For a specific 

problem an aggregation method is developed which  

allows individual solutions present in the population to be 

combined to produce a superior solution. The approach is 

somewhat related to ensemble learning (Opitz and  

Maclin, 1999) methods such as boosting or bootstrap 

aggregation (Melville and Mooney, 2003, 2004) in the 

context of classifier fusion in which decisions of 

independent classifiers are combined to produce a superior 

meta-algorithm. The main difference is that in ensembles 

“when combining multiple independent and diverse 

decisions each of which is at least more accurate than 

random guessing, random errors cancel each other out, 

correct decisions are reinforced” (Mooney, 2007), but in 

WoAC individual agents are not required to be more 

accurate than random guessing. 

3 Solving TSP 

Travelling salesman problem (TSP) has attracted a lot of 

attention over the years (Bellmore and Nemhauser, 1968; 

Dorigo and Gambardella, 1997; Burkard et al., 1998) 

because finding optimal paths is a requirement that 

frequently appears in real world applications and because it 

is a well defined benchmark problem to test newly 

developed heuristic approaches (Rabanal et al., 2007). TSP 

is a combinatorial optimisation problem and could be 

represented by the following model (Dorigo et al., 2006):  

P = (S, Ω, f) in which S is a search space defined over a 

finite set of discrete decision variables Xi, i = 1, …, n; a set 

of constraints Ω; and an objective function f to be 

minimised. 

TSP is a well known NP-hard problem meaning that an 

efficient algorithm for solving TSP will be an efficient 

algorithm for other NP-complete problems. In simple terms 

the problem could be stated as follows: a salesman is given 
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a list of cities and a cost to travel between each pair of  

cities (or a list of city locations). The salesman must  

select a starting city and visit each city exactly once and 

return to the starting city. His problem is to find the route 

(also known as a Hamiltonian cycle) that will have the 

lowest cost. In this paper, we will use TSP as a non-trivial 

testing ground for our algorithm. 

3.1 Dataset 

Data for testing of our algorithm has been generated using a 

piece of software called Concorde (Cook, 2005). Concorde 

is a C programme written for solving the symmetric TSP 

and some related network optimisation problems and is 

freely available for academic use. The programme also 

allows one to generate new instances of the TSP of any size 

either with random distribution of nodes, or with predefined 

coordinates. For problems of moderate size, the software 

could be used to obtain optimal solutions to specific TSP 

instances. Below is an example of a Concorde data file with 

seven cities: 

NAME: concorde7 

TYPE: TSP 

COMMENT: Generated by CCutil_writetsplib 

COMMENT: Write called for by Concorde GUI 

DIMENSION: 7 

EDGE_WEIGHT_TYPE: EUC_2D 

NODE_COORD_SECTION 

1 87.951292 2.658162 

2 33.466597 66.682943 

3 91.778314 53.807184 

4 20.526749 47.633290 

5 9.006012 81.185339 

6 20.032350 2.761925 

7 77.181310 31.922361 

3.2 Genetic algorithms 

Inspired by evolution, GAs constitutes a powerful set of 

optimisation tools that have demonstrated good performance 

on a wide variety of problems including some classical NP-

complete problems such as the TSP and multiple sequence 

alignment (MSA) (Yampolskiy, 2010). GAs search the 

solution space using a simulated ‘Darwinian’ evolution that 

favours survival of the fittest individuals. Survival of such 

population members is ensured by the fact that fitter 

individuals get a higher chance at reproduction and survive 

to the next generation in larger numbers (Goldberg, 1989). 

GAs have been shown to solve linear and non-linear 

problems by exploring all regions of the state space and 

exponentially exploiting promising areas through standard 

genetic operators, eventually converging populations of 

candidate solutions to a single global optimum. However, 

some optimisation problems contain numerous local optima 

which are difficult to distinguish from the global maximum 

and therefore result in sub-optimal solutions. As a 

consequence, several population diversity mechanisms have 

been proposed to delay or counteract the convergence of the 

population by maintaining a diverse population of members 

throughout its search. 

A typical GA follows the following steps (Yampolskiy 

et al., 2004): 

1 a population of N possible solutions is created 

2 the fitness value of each individual is determined 

3 repeat the following steps N/2 times to create the next 

generation 

a choose two parents using tournament selection 

b with probability pc, crossover the parents to create 

two children; otherwise simply pass parents to the 

next generation 

c with probability pm for each child, mutate that child 

d place the two new children into the next 

generation. 

4 repeat new generation creation until a satisfactory 

solution is found or the search time is exhausted. 

3.3 Implemented GA for solving TSP 

The GA used in this project has four main operations: 

initialisation, crossover, mutation and cloning. 

To understand the effect of initialisation, Figure 1 shows 

a totally random route that can represent one of the 

chromosomes in the initial population. The total distance is 

very long which suggests that starting from a totally random 

solution is not the best way to achieve a good result at  

the end. 

Figure 1 A chromosome from a random initial population  

(see online version for colours) 

 

In order to improve fitness of the starting population, we 

have undertaken some preprocessing steps. Figures 2 and 3 

show two initialisations that use the polar coordinates to 

arrange the cities in the increasing direction of theta. This 
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allows us to make use of a special property of the polar 

coordinates, specifically that they span the whole domain 

without any intersection. Consequently, the chromosome 

looks well organised but it has no diversity to construct a 

population of say 50 chromosomes, which means we must 

have some randomness in the initial population. 

Figure 2 Cities arranged according to the value of theta in 

ascending order from –π to π (see online version  

for colours) 

 

Figure 3 Cities arranged into two groups according to their ‘r’ 

values (see online version for colours) 

 

To use polar coordinates we take the following steps: 

• shift Cartesian coordinates for all cities such that the 

origin is in the middle 

• transform all cities coordinates from Cartesian to polar 

• arrange cities according to the value of theta in 

ascending order from –π to π 

• Figure 2 shows the result of the previous steps 

• if we split the cities into two groups according to their 

‘r’ values then arrange cities in each group according to 

theta we will achieve the result in Figure 3. 

This allows us to initialise the search in a way that is less 

random but still contains enough diversity in the initial 

population. This makes the chromosomes able to produce 

diverse children that have better characteristics. To do this, 

we make use of the polar coordinates by arranging the cities 

into ten regions each of 36°. Inside each region, the cities 

order is random. So we keep randomness, but in an 

organised way. This ensures that the cities in each group are 

close to each other but inside any group, they are connected 

randomly. This is illustrated in Figure 4. 

Figure 4 A chromosome arranged in ten groups in the direction 

of ascending increase of theta but inside each group 

connected randomly (see online version for colours) 

 

The crossover is done using two different operators. 

The first one is a one-point crossover that changes the 

position of the crossover point every iteration starting from 

being in the middle of the chromosome and going back to 

the beginning of the chromosome. Then it takes from the 

other parent the remaining cities in order, starting from the 

nearest city to the last city, before crossover and choosing 

every time the city closest to the previous one. 

Figure 5 Random crossover point 

 

The second one is also a one-point crossover but it selects 

the longest distance between two cities in the chromosome 

as a breaking point and then it takes the rest of the 

chromosome from the other parent in the order of 

appearance. 

Both crossover operators produce two children from 

every two parents resulting in the same number of 
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chromosomes in each population. To ensure that the 

algorithm progresses towards a better solution, the best ten 

parents are cloned into the new population instead of the ten 

worst children. For the mutation operation we swap two 

cities in such a way as to remove one path crossing 

(intersection). The mutation operator was designed to 

remove one intersection at a time but it does this only if it 

will enhance the result by making the final path shorter. 

That is why at the end, some intersections will remain, since 

when the mutation function tried to remove them the 

resulting distance was longer. 

Figure 6 Crossover at the longest distance between two cities 

 

3.4 Post processing 

A function was designed to check every two segments in a 

chromosome. If they are intersected, it removes the 

intersection by swapping two points as shown in Figure 7. 

This function was added as an optional post processing  

step that might enhance the solution. The function  

does not check if the resulting solution is better or not. It  

simply removes any intersections from the resulting 

solution. 

Figure 7 Mutation operation removes intersections 

 

3.5 WoAC aggregation method 

Building on the work of Yi et al. (2010) who used  

a group of volunteers to solve instances of TSP and 

aggregated their answers, we have developed an automatic 

aggregation method which takes individual solutions and 

produces a common solution which reflects frequent local 

structures of individual answers. The approach is based on 

the belief that good local connections between nodes will 

tend to be present in many solutions, while bad local 

structures will be relatively rare. After constructing an 

agreement matrix, Yi et al. (2010) applied a non-linear 

monotonic transformation function in order to transform  

agreements between answers into costs. They focused on 

the function: 

( )1
1 21 , ,

ijij ac I b b−= −  (1) 

 

 

where 

( )1
1 2,

ijaI b b−  (2) 

is the inverse regularised beta function with parameters b1 

and b2 both taking a value of at least 1 Yi et al. (2010). 

In our implementation of the aggregation function,  

we continue working with agreements between local 

components of the solutions. 

• initialising the crowds must be done in such a way that 

they have diversity 

• aggregating population of solutions to produce a better 

solution. 

To achieve diversity in the crowds we use polar coordinates 

in initialising the GA used for making the crowds. To 

illustrate that, Figure 8 shows four different initialisations. 

The cities are arranged in ascending order of theta with the 

origin in the middle of the figure, then divided into 2, 3, 5 

and 6 groups. After that, the GA is applied to each group 

five times to initiate 20 different solutions. These solutions 

will be the crowds and in this way they will contain the 

required diversity. 

Figure 8 Four different initialisations of the GA (see online 

version for colours) 

 

To aggregate these solutions we do the following: 

• Prepare a list containing in every row a city and the two 

cities connected to it. For example if the third row 

contains 65 and 34 that means that the third city is 

connected to city 65 and 34. 

• If 90% of the crowd agreed on a link between two cities 

then we will keep this link. 

• Finally, we execute a greedy algorithm which  

removes all of the remaining intersections as a post 

processing step. 

 



 Wisdom of artificial crowds algorithm for solving NP-hard problems 363 

The results of the aggregation process are illustrated in 

Figures 9 and 10. Figure 9 shows the common segments that 

were repeated in 90% of the solutions. Figure 10 shows the 

final result after connecting these segments and removing 

intersections. 

Figure 9 Segments common to 90% of crowd members (see 

online version for colours) 

 

Figure 10 Solution based on aggregation of segments and 

intersection removal (see online version for colours) 

 

3.6 TSP-experimental results 

The developed software was tested on problems with  

100, 150 and 200 cities. Table 1 shows achieved results  

 

 

 

for the GA and for WoAC. Both minimum and average 

performance is reported for the GA. WoAC algorithm 

outperformed GA on all problems on average by between 

6% and 9%. 

Table 1 Performance of GA vs. WoAC 

# of 

Cities 

GA 

min 

GA 

average 
WoAC 

% 

Improved 

100 894.1571 914.1940 831.1936 9% 

150 1,077.9 1,093.1 1,025.4681 6% 

200 1,233.7 1,256.7 1,178.4072 6% 

Figure 11 Performance of GA (top) and WoAC on a 100 city 

problem (see online version for colours) 

 

Figure 12 Performance of GA (top) and WoAC on a 150 city 

problem (see online version for colours) 
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Figures 11 to 13 display in red the distance of each  

of the GA solutions while the blue line is the solution  

after applying the WoAC represented as a horizontal  

line. It is clear that it enhanced the GA solutions  

and produced a solution that is better than all the  

20 solutions of the GA. This was achieved up to the case of 

200 cities. 

Figure 13 Performance of GA (top) and WoAC on a 200 city 

problem (see online version for colours) 

 

4 Solving the KP 

Knapsack problem (KP) is a classical NP-complete problem 

in the field of combinatorial optimisation (Guo et al., 2010). 

This problem has very important applications in financial 

and industrial domains, in combinatorics, complexity 

theory, cryptography and applied mathematics. KP can be 

used to model resource distribution, investment decision-

making, items shipment, budget control and project 

selection, and it often represents a part of a larger problems. 

In KP, a set of items each with a weight and a value is 

given and the objective is to determine which items to 

include in a collection so that the total weight is less than a 

given limit and the total value is as large as possible. The 

problem derives its name from the situation of someone 

who is constrained by a fixed-size knapsack and needs to fill 

it with the most useful items. The decision form of the KP is 

the question “can a value of at least V be achieved without 

exceeding the weight W?” 

Mathematically the problem consists of a knapsack that 

has positive integer weight (capacity) W. There are N 

distinct items that may potentially be placed in the 

knapsack. Item i has a positive integer weight Wi and 

positive integer value Vi. In addition, there are Ci copies of 

item i available, where quantity Ci is a positive integer 

satisfying 1 ≤ Ci ≤ ∞. 

Let Xi determines how many copies of item i are to be 

placed into the knapsack. The goal is to maximise: 

1

N

i ii
v x

=∑  (3) 

Subject to the constraint 

1

N

i ii
w x w

=
≤∑  (4) 

If one or more of the ci is infinite, the KP is unbounded; 

otherwise, the KP is bounded. For the bounded KP  

xi∈{0, 1,…, Ci}. The 0–1 KP is a special case where  

xi∈{0, 1} (Hristakeva and Shrestha, 2004). In this paper, the 

work is done on the bounded 0–1 KP, where we cannot have 

more than one copy of an item in the knapsack. 

To illustrate the problem in more details let’s consider 

the case of three items A, B and C with weights 5, 9 and  

15 and values 4, 6 and 8 respectively. The knapsack 

capacity is 20. Because this is a small problem we can brute 

force the solution by checking all the possible solutions as 

shown in the Table 2. 

Table 2 Simple case of the 0-1 KP 

A B C Weight Value 

0 0 0 0 0 

0 0 1 15 8 

0 1 0 9 6 

0 1 1 9 + 15 = 24 > 20 rejected 6 + 8 = 14 

1 0 0 5 4 

1 0 1 5 + 15 = 20 4 + 8 = 12 best 

1 1 0 5 + 9 = 14 4 + 6 = 10 

1 1 1 5 + 9 + 15 = 29 > 20 rejected 4 + 6 + 8 = 18 

It is clear that if we have a 100 items, we should consider 

2100 cases and calculate the weight for all of them then 

calculate the value for those satisfying the constraint and 

finally select the highest value. We can see from this 

discussion that brute forcing is not suitable for such a 

problem so in this paper we will consider finding an 

approximate solution by using a GA and improving results 

via a novel postprocessing algorithm we call the WoAC. 

4.1 Prior work 

There are two kinds of algorithms for KP. The first  

kind consists of precise algorithms such as dynamic 

programming, backtracking, and branch and bound, and the 

other kind is the set of approximate algorithms including 

greedy method and Lagrange method. The time complexity 

for solving the KP increases rapidly as the problem scale 

grows. Specifically, the time complexity is O(2n) in the 

worst case. So, it is important to design an effective 

approximation algorithm for solving the KP (Qiao et al., 

2008). 

Several works in literature used GAs combined with 

other methods to solve the 0-1 KP. In Zhao et al. (2009), a  
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GA based on Greedy strategy is introduced. It begins with 

analysis of three kinds of commonly used greedy algorithms 

to solve 0–1 KP. Combining this with the basic principles of 

GAs, the achieved improvement lies in the establishment of 

the original population using greedy strategy. In Guo et al. 

(2010), a solution of the problem by Chaotic GA is 

presented. It introduces Chaos idea into GA, adding the 

disturbance to help find better solutions compared to the 

traditional GA. The work in Zhao et al. (2008) combines 

multi-agent theory and master-slave model parallel GA 

(MSM-PGA) together into one union. This union solves the 

0–1 KP via coordination between many Agents inside the 

union. 

GA is not the only approximation approach for solving 

the KP. In Zhang and Wei (2008), particle swarm 

optimisation (PSO) algorithm is used. This is a bio-inspired 

optimisation algorithm based on group intelligence. In Qiao 

et al. (2008), the authors combine the mobile agent 

technology with the traditional parallel algorithm which 

enables changing the parallel process handled in a parallel 

computer to the process performed by several ordinary 

computers, and by doing so avoid the restrictions of the 

limited computational resources. In Jun and Jian (2009), a 

discrete binary version of differential evolution (DBDE) 

was employed, where each component of a mutated vector 

component changes with the differential probability and will 

take on a zero or one value. 

A schema-guiding evolutionary algorithm (SGEA) is 

proposed in Liu and Liu (2009). It improves the diversity of 

the population and the local and global search power. The 

work in Martello et al. (1999) presents a combination of 

dynamic programming and strong bounds, in addition valid 

inequalities are generated and surrogate relaxed, and a  

new initial core problem is adopted. 

In this paper, a GA is developed and the results are 

enhanced using the postprocessing algorithm we call the 

WoAC. The original WoC concept was introduced by James 

Surowiecki in 2004 (Surowiecki, 2004). It highlights the 

aggregation of information in groups, resulting in decisions 

that are often better than could have been made by any 

single member of the group (Narasimhan et al., 2010; 

Osorio and Whitney, 2005; Kostakos, 2009). 

4.2 The 0–1 KP using GA and WoAC 

To solve the KP using GA the chromosome length is set 

equal to the number of items and each gene will represent 

one item and take the value 0 if we will not put that item in 

the knapsack or 1 if we will put it. The population starts 

randomly with chromosomes that do not necessarily satisfy 

the capacity constraint. 

Two types of crossover are tested. The one-point 

crossover selects randomly a point and does the crossover 

after that point and the two-point crossover selects two 

points randomly and does the crossover between them as 

follows: 

Parent 1:    |                    

Parent 2 :  |            

Child 1:     |              

Child 2 :   |                 

 

0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0

0 1 0 0 1 0 0 0

1 1 1 0 0 1 1 1

1 0 1 1 0 1 1 0  1 0 11 0 11 0
1 0 1 1 0 1 0 1

1 0 1 1 0 1 1 0 
                  One point                  Two-point

 

To make this clear one of the parents is represented in the 

bold font and the other is in italic and the children after the 

crossover can be seen by tracking the bold and italic genes. 

The mutation is done on a small percentage of the 

children to ensure that the algorithm does not get stuck at a 

local maximum point. The mutation simply picks randomly 

a chromosome then picks randomly a gene in that 

chromosome and reverses its value as follows: 

1 0 1 0 1  0 1    mutation      1  0 1 0 1  0 1→ →1 0  

The cloning is used to ensure that every new generation has 

the best value which is equal to the best in the previous 

generation if not higher. This is done through keeping the 

best 10% of the parents. The ratio will vary because we 

insert these best parents in place of the children that exceed 

the capacity, so if in a generation: less than 10% exceeds the 

capacity this means that this generation has good children 

and will keep them so fewer parents are cloned. The 

minimum cloning is to keep the best parent, and so to ensure 

that the best value in the new generation will not be less 

than the previous generation. 

The WoAC is used after that to refine the results. To 

initiate a crowd that has diversity of opinions, we run the 

GA 100 times for the one-point crossover and another  

100 for the two-point crossover. In this way we have  

200 solutions that came from two different ‘cultures’. The 

method used to aggregate opinions can be summarised as 

follows: If 80% of the crowd set an item to zero, the item is 

not included. If 55% of the crowd set an item to one it is 

included in the knapsack. Doing this will lead to total 

weight less than the allowed capacity, so we use a greedy 

algorithm to fill the rest of the knapsack with higher  

value items. 

An important thing to note is that different percentages 

were used in the case of aggregating opinions in the zero 

and one cases. It was found that accepting the crowds 

opinion in the case of zero (not taking the item) should be 

more accurate than the case of one (taking the item). The 

disadvantage in using the WoC in this way is that it took a 

lot of time to initiate the crowds, but this is important to 

ensure diversity of opinions. 

4.3 Experimental results 

4.3.1 Data 

Generating instants of the 0–1 KP to test the algorithm was 

not a hard task since we simply need N items with different 

weights and values. First, a vector of length N with values 

taken randomly between 1 and 1,000 is created to represent 

the weights of the N items arranged in ascending order. 
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Then, the values are also arranged in ascending order from 1 

to 200 which means items with higher weight will have 

higher values. The capacity of the knapsack is considered as 

1/4 of the sum of all of the weights rounded to the nearest 

thousand by the floor function. The problem generated in 

this way will consist of four variables: 

• N: the number of the items (will be the length of the 

chromosome) 

• weights: a 1 × N vector arranged in ascending order 

represents weights of items 

• values: a 1 × N vector represents value of items 

• capacity: 1/4 of the sum of all of the weights rounded to 

the nearest thousand. 

For example an instance with nine items of weights and 

values will be: 

[50  200  357  411  473  556  670  910  950] 

  [20   40     60    80 1 00 1 20   140 1 60 1 80]

=
=

Weights

Values
 

The solution of the problem takes the form of a vector of 

length N that has a value of 1 if this item is taken into the 

knapsack or 0 if it is not taken, for example: 

 [1 0 0 1 0 1 0 1 1] with total value  56= =Solution  

4.3.2 Results 

The code was written using MATLAB 7.8.0 (R2009a) and 

was tested on a PC with a processor Intel(R) Pentium(R)  

4 CPU 3.00 GHz and installed memory (RAM) 4.00 GB 

(3.25 GB usable). It was tested on the previously illustrated 

problem with number of items N = 100. To visualise the 

results a 10 × 10 matrices are plotted which illustrate the 

items with the value of the item written inside each cell and 

its weight written under the cell. If we will put an item in 

the knapsack then its colour is green and if we will not take 

it, its colour is red. In this way we can see how the GA 

evolves from one generation to another. 

In Figure 14, we can see the best chromosome in the 

initial population which had a total value of 2,362 and 

utilised 12,862 unit of weight out of the 13,000 possible. 

Figures 15 and 16 show the best chromosome in the 

population after 2000 generations using one-point crossover 

and two-point crossover respectively. For the one-point 

crossover the value was 2,576 and in the two-point 

crossover it was 2,556. In both cases the whole weight of 

13,000 was utilised. Figure 17 shows the result of applying 

the WoAC to 200 chromosomes obtained from running the 

GA 200 times half of them with one-point crossover and the 

other half with two-point crossover. The total value 

increased to 2,602 achieving 1% increase over the one-point 

crossover and 1.8% increase over the two-point crossover. 

To illustrate more, Figure 17 shows green boxes with red 

frame which denote items that were not taken in GA but the 

WoAC decided to take them and the red boxes with green  

 

 

frames representing the items the WoAC removed from the 

knapsack. 

It is clear from the results that the GA was suitable to 

the problem because its implementation was very simple 

which makes a population of size 100 processed in just 

0.005 seconds. This enabled doing a large number of 

generations. The evolution curves for 2,000 generation and 

20,000 generation are displayed in Figures 18 and 19 

respectively. The WoAC was suitable for postprocessing 

and allowed us to obtain better results compared to running 

GA for 20,000 generations. The disadvantage of the WoAC 

approach is that it takes a lot of time to produce the initial 

crowd, specifically we need to run 2,000 generations  

200 times. 

Figure 14 Initial population (see online version for colours) 

 

Figure 15 After 2,000 generation of GA using one-point 

crossover (see online version for colours) 
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Figure 16 After 2,000 generations of two-point crossover  

(see online version for colours) 

 

Figure 17 Applying WoAC (see online version for colours) 

 

Figure 18 Evolution curve for 2,000 generations of GA only  

(see online version for colours) 

 

 

Figure 19 Evolution curve for 20,000 generations of GA only 

(see online version for colours) 

 

5 Conclusions 

We have presented a novel swarm-based nature-inspired 

metaheuristic algorithm for global optimisation. In many 

cases WoAC outperformed even the best solutions  

produced by the GA. As the datasets increase in size, the 

GA performs worse, but this allows more room for 

improvement for WoAC. WoAC is a postprocessing 

algorithm with running time in milliseconds which is 

negligible in comparison to the algorithm it attempts to 

improve, genetic search. While, WoAC does not always 

produce a superior solution, in cases where it fails  

it can be simply ignored since the GA itself provides a  

better solution in such cases. Consequently, WoAC  

is computationally efficient and can only improve  

the quality of solutions, never hurting the overall  

outcome. 

In the future, we plan on conducting additional 

experiments aimed at improving overall performance  

of the WoAC algorithm. In particular we are going to  

investigate how WoAC could be combined with non-GA, 

swarm-based approaches such as ACO (Dorigo et al., 2006), 

BCO (Pham et al., 2006), (BFO) (Passino, 2002), or (GSO) 

(Krishnanand and Ghose, 2005). Special attention should  

be given to investigating better aggregation rules and 

optimal ways of achieving diversity in the populations. An 

important question to ask, deals with an optimal percentage 

of the population to be used in the crowd. In other words, 

should the whole population be used or is it better to select a 

sub-group of ‘experts’. 
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