
358 Int. J. Bio-Inspired Computation, Vol. 3, No. 6, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

Wisdom of artificial crowds algorithm for solving
NP-hard problems

Roman V. Yampolskiy*

Duthie Center for Engineering, 215,

Speed School of Engineering,

University of Louisville,

Louisville, KY 40292, USA

E-mail: roman.yampolskiy@louisville.edu

*Corresponding author

Ahmed EL-Barkouky

Electrical and Computer Engineering,

Speed School of Engineering,

University of Louisville,

Louisville, KY 40292, USA

E-mail: arelba01@louisville.edu

Abstract: The paper describes a novel algorithm, inspired by the phenomenon of wisdom of

crowds, for solving instances of NP-hard problems. The proposed approach achieves superior

performance compared to the genetic algorithm-based approach and requires modest

computational resources. On average, a 6%–9% improvement in quality of solutions has been

observed.

Keywords: knapsack problem; KP; NP-complete; optimisation; travelling salesman problem;

TSP; wisdom of artificial crowds; WoAC.

Reference to this paper should be made as follows: Yampolskiy, R.V. and EL-Barkouky, A.

(2011) ‘Wisdom of artificial crowds algorithm for solving NP-hard problems’, Int. J.

Bio-Inspired Computation, Vol. 3, No. 6, pp.358–369.

Biographical notes: Roman V. Yampolskiy received his PhD in Computer Science and

Engineering from the University at Buffalo. He was a recipient of a four-year NSF Fellowship.

Before his doctoral studies, he received his BS/MS (High Honours) combined

degree in Computer Science from Rochester Institute of Technology. In 2008, he accepted an

Assistant Professor position at the Speed School of Engineering, University of Louisville. His

main areas of interest are behavioural biometrics, computer forensics, robot authentication and

pattern recognition. He is the author of over 50 publications including multiple journal articles

and books.

Ahmed EL-Barkouky is currently a PhD student at the ECE Department, University of

Louisville, USA. He received his BSc degree from the Electrical Engineering Department,

Ainshams University, Egypt in 2002 and his MSc degree from the Engineering Mathematics

Department, Ainshams University, Egypt in 2009. His research domain is artificial intelligence

and computer vision.

1 Introduction

NP-hard problems are believed to require exponential

time for exact solutions (Karp, 1972). Since it is not

feasible to practically solve such problems using classical

computer architectures, optimal methods have been

replaced with approximation algorithms that usually need

polynomial time to provide reasonably good solutions

(Rabanal et al., 2007).

Heuristic algorithms capable of addressing diverse

problems are known as metaheuristics. Such algorithms are

computational methods that attempt to find a close

approximation to an optimal solution by iteratively trying to

improve a candidate answer with regard to a given measure

of quality. Metaheuristic algorithms do not make any

assumptions about the problem being optimised and are

capable of searching very large spaces of potential

solutions. Unfortunately, metaheuristic algorithms are

unlikely to arrive at an optimal solution for the majority of

large real world problems. However, research continues to

find asymptotically better metaheuristic algorithms for

specific problems.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 359

Most metaheuristic algorithms in optimisation and

search have been modelled on processes observed in

biological systems: genetic algorithms (GAs) (Goldberg,

1989), genetic programming (GP) (Koza, 1990), cellular

automata (CA) (Wolfram, 2002), artificial neural networks

(ANN), artificial immune system (AIS) (Farmer et al.,

1986). Expanding on this trend of bio-inspired solutions a

large number of animal or plant behaviour-based algorithms

have been proposed in recent years: ant colony optimisation

(ACO) (Dorigo et al., 2006), bee colony optimisation

(BCO) (Pham et al., 2006), bacterial foraging optimisation

(BFO) (Passino, 2002), glow-worm swarm optimisation

(GSO) (Krishnanand and Ghose, 2005), firefly algorithm

(FA) (Yang, 2009), cuckoo search (CS) (Yang and Deb,

2009), flocking birds (FB) (Reynolds, 1987), harmony

search (HS) (Geem et al., 2001), monkey search (MS)

(Mucherino and Seref, 2007) and invasive weed

optimisation (IWO) (Mehrabian and Lucas, 2006). In this

paper, we propose a novel algorithm modelled on the

natural phenomenon known as the wisdom of crowds

(WoC) (Surowiecki, 2004).

1.1 Wisdom of crowds

In his 1907 publication in Nature, Francis Galton reports on

a crowd at a state fair, which was able to guess the weight of

an ox better than any cattle expert (Galton, 1907). Intrigued

by this phenomenon James Surowiecki in 2004 publishes:

“The Wisdom of Crowds: Why the Many are Smarter than

the Few and How Collective Wisdom Shapes Business,

Economies, Societies and Nations” (Surowiecki, 2004). In

that book Surowiecki explains that “Under the right

circumstances, groups are remarkably intelligent, and are

often smarter than the smartest people in them. Groups do

not need to be dominated by exceptionally intelligent people

in order to be smart. Even if most of the people within a

group are not especially well-informed or rational, it can

still reach a collectively wise decision” (Surowiecki, 2004).

Surowiecki further explains that for a crowd to be wise it

has to satisfy four criteria:

• Cognitive diversity – individuals should have private

information.

• Independence – opinions of individuals should be

autonomously generated.

• Decentralisation – individual should be able to

specialise and draw on local knowledge.

• Aggregation – a methodology should be available for

arriving at a common answer.

Since the publication of Surowiecki’s book, the WoC

algorithm has been applied to many important problems

both by social scientists (Yi et al., 2010) and computer

scientists (Wagner et al., 2010; Mozer et al., 2008; Bai and

Krishnamachari, 2010; Moore and Clayton, 2008;

Shiratsuchi et al., 2006; Osorio and Whitney, 2005).

However, all such research used real human beings

either in person or via a network to obtain the crowd effect.

In this work we propose a way to generate an artificial

crowd of intelligent agents capable of coming up with

independent solutions to a complex problem (Ashby and

Yampolskiy, 2011).

2 Wisdom of artificial crowds

Wisdom of artificial crowds (WoAC) is a novel

swarm-based nature-inspired metaheuristic algorithm for

global optimisation (Ashby and Yampolskiy, 2011).

WoAC is a post-processing algorithm in which

independently-deciding artificial agents aggregate their

individual solutions to arrive at an answer which is superior

to all solutions present in the population. The algorithm is

inspired by the natural phenomenon known as the WoC

(Surowiecki, 2004). WoAC is designed to serve as a post-

processing step for any swarm-based optimisation algorithm

in which a population of intermediate solutions is produced,

for example in this paper we will illustrate how WoAC can

be applied to a standard GA.

The population of intermediate solutions to a problem is

treated as a crowd of intelligent agents. For a specific

problem an aggregation method is developed which

allows individual solutions present in the population to be

combined to produce a superior solution. The approach is

somewhat related to ensemble learning (Opitz and

Maclin, 1999) methods such as boosting or bootstrap

aggregation (Melville and Mooney, 2003, 2004) in the

context of classifier fusion in which decisions of

independent classifiers are combined to produce a superior

meta-algorithm. The main difference is that in ensembles

“when combining multiple independent and diverse

decisions each of which is at least more accurate than

random guessing, random errors cancel each other out,

correct decisions are reinforced” (Mooney, 2007), but in

WoAC individual agents are not required to be more

accurate than random guessing.

3 Solving TSP

Travelling salesman problem (TSP) has attracted a lot of

attention over the years (Bellmore and Nemhauser, 1968;

Dorigo and Gambardella, 1997; Burkard et al., 1998)

because finding optimal paths is a requirement that

frequently appears in real world applications and because it

is a well defined benchmark problem to test newly

developed heuristic approaches (Rabanal et al., 2007). TSP

is a combinatorial optimisation problem and could be

represented by the following model (Dorigo et al., 2006):

P = (S, Ω, f) in which S is a search space defined over a

finite set of discrete decision variables Xi, i = 1, …, n; a set

of constraints Ω; and an objective function f to be

minimised.

TSP is a well known NP-hard problem meaning that an

efficient algorithm for solving TSP will be an efficient

algorithm for other NP-complete problems. In simple terms

the problem could be stated as follows: a salesman is given

360 R.V. Yampolskiy and A. EL-Barkouky

a list of cities and a cost to travel between each pair of

cities (or a list of city locations). The salesman must

select a starting city and visit each city exactly once and

return to the starting city. His problem is to find the route

(also known as a Hamiltonian cycle) that will have the

lowest cost. In this paper, we will use TSP as a non-trivial

testing ground for our algorithm.

3.1 Dataset

Data for testing of our algorithm has been generated using a

piece of software called Concorde (Cook, 2005). Concorde

is a C programme written for solving the symmetric TSP

and some related network optimisation problems and is

freely available for academic use. The programme also

allows one to generate new instances of the TSP of any size

either with random distribution of nodes, or with predefined

coordinates. For problems of moderate size, the software

could be used to obtain optimal solutions to specific TSP

instances. Below is an example of a Concorde data file with

seven cities:

NAME: concorde7

TYPE: TSP

COMMENT: Generated by CCutil_writetsplib

COMMENT: Write called for by Concorde GUI

DIMENSION: 7

EDGE_WEIGHT_TYPE: EUC_2D

NODE_COORD_SECTION

1 87.951292 2.658162

2 33.466597 66.682943

3 91.778314 53.807184

4 20.526749 47.633290

5 9.006012 81.185339

6 20.032350 2.761925

7 77.181310 31.922361

3.2 Genetic algorithms

Inspired by evolution, GAs constitutes a powerful set of

optimisation tools that have demonstrated good performance

on a wide variety of problems including some classical NP-

complete problems such as the TSP and multiple sequence

alignment (MSA) (Yampolskiy, 2010). GAs search the

solution space using a simulated ‘Darwinian’ evolution that

favours survival of the fittest individuals. Survival of such

population members is ensured by the fact that fitter

individuals get a higher chance at reproduction and survive

to the next generation in larger numbers (Goldberg, 1989).

GAs have been shown to solve linear and non-linear

problems by exploring all regions of the state space and

exponentially exploiting promising areas through standard

genetic operators, eventually converging populations of

candidate solutions to a single global optimum. However,

some optimisation problems contain numerous local optima

which are difficult to distinguish from the global maximum

and therefore result in sub-optimal solutions. As a

consequence, several population diversity mechanisms have

been proposed to delay or counteract the convergence of the

population by maintaining a diverse population of members

throughout its search.

A typical GA follows the following steps (Yampolskiy

et al., 2004):

1 a population of N possible solutions is created

2 the fitness value of each individual is determined

3 repeat the following steps N/2 times to create the next

generation

a choose two parents using tournament selection

b with probability pc, crossover the parents to create

two children; otherwise simply pass parents to the

next generation

c with probability pm for each child, mutate that child

d place the two new children into the next

generation.

4 repeat new generation creation until a satisfactory

solution is found or the search time is exhausted.

3.3 Implemented GA for solving TSP

The GA used in this project has four main operations:

initialisation, crossover, mutation and cloning.

To understand the effect of initialisation, Figure 1 shows

a totally random route that can represent one of the

chromosomes in the initial population. The total distance is

very long which suggests that starting from a totally random

solution is not the best way to achieve a good result at

the end.

Figure 1 A chromosome from a random initial population

(see online version for colours)

In order to improve fitness of the starting population, we

have undertaken some preprocessing steps. Figures 2 and 3

show two initialisations that use the polar coordinates to

arrange the cities in the increasing direction of theta. This

 Wisdom of artificial crowds algorithm for solving NP-hard problems 361

allows us to make use of a special property of the polar

coordinates, specifically that they span the whole domain

without any intersection. Consequently, the chromosome

looks well organised but it has no diversity to construct a

population of say 50 chromosomes, which means we must

have some randomness in the initial population.

Figure 2 Cities arranged according to the value of theta in

ascending order from –π to π (see online version

for colours)

Figure 3 Cities arranged into two groups according to their ‘r’

values (see online version for colours)

To use polar coordinates we take the following steps:

• shift Cartesian coordinates for all cities such that the

origin is in the middle

• transform all cities coordinates from Cartesian to polar

• arrange cities according to the value of theta in

ascending order from –π to π

• Figure 2 shows the result of the previous steps

• if we split the cities into two groups according to their

‘r’ values then arrange cities in each group according to

theta we will achieve the result in Figure 3.

This allows us to initialise the search in a way that is less

random but still contains enough diversity in the initial

population. This makes the chromosomes able to produce

diverse children that have better characteristics. To do this,

we make use of the polar coordinates by arranging the cities

into ten regions each of 36°. Inside each region, the cities

order is random. So we keep randomness, but in an

organised way. This ensures that the cities in each group are

close to each other but inside any group, they are connected

randomly. This is illustrated in Figure 4.

Figure 4 A chromosome arranged in ten groups in the direction

of ascending increase of theta but inside each group

connected randomly (see online version for colours)

The crossover is done using two different operators.

The first one is a one-point crossover that changes the

position of the crossover point every iteration starting from

being in the middle of the chromosome and going back to

the beginning of the chromosome. Then it takes from the

other parent the remaining cities in order, starting from the

nearest city to the last city, before crossover and choosing

every time the city closest to the previous one.

Figure 5 Random crossover point

The second one is also a one-point crossover but it selects

the longest distance between two cities in the chromosome

as a breaking point and then it takes the rest of the

chromosome from the other parent in the order of

appearance.

Both crossover operators produce two children from

every two parents resulting in the same number of

362 R.V. Yampolskiy and A. EL-Barkouky

chromosomes in each population. To ensure that the

algorithm progresses towards a better solution, the best ten

parents are cloned into the new population instead of the ten

worst children. For the mutation operation we swap two

cities in such a way as to remove one path crossing

(intersection). The mutation operator was designed to

remove one intersection at a time but it does this only if it

will enhance the result by making the final path shorter.

That is why at the end, some intersections will remain, since

when the mutation function tried to remove them the

resulting distance was longer.

Figure 6 Crossover at the longest distance between two cities

3.4 Post processing

A function was designed to check every two segments in a

chromosome. If they are intersected, it removes the

intersection by swapping two points as shown in Figure 7.

This function was added as an optional post processing

step that might enhance the solution. The function

does not check if the resulting solution is better or not. It

simply removes any intersections from the resulting

solution.

Figure 7 Mutation operation removes intersections

3.5 WoAC aggregation method

Building on the work of Yi et al. (2010) who used

a group of volunteers to solve instances of TSP and

aggregated their answers, we have developed an automatic

aggregation method which takes individual solutions and

produces a common solution which reflects frequent local

structures of individual answers. The approach is based on

the belief that good local connections between nodes will

tend to be present in many solutions, while bad local

structures will be relatively rare. After constructing an

agreement matrix, Yi et al. (2010) applied a non-linear

monotonic transformation function in order to transform

agreements between answers into costs. They focused on

the function:

()1
1 21 , ,

ijij ac I b b−= − (1)

where

()1
1 2,

ijaI b b− (2)

is the inverse regularised beta function with parameters b1

and b2 both taking a value of at least 1 Yi et al. (2010).

In our implementation of the aggregation function,

we continue working with agreements between local

components of the solutions.

• initialising the crowds must be done in such a way that

they have diversity

• aggregating population of solutions to produce a better

solution.

To achieve diversity in the crowds we use polar coordinates

in initialising the GA used for making the crowds. To

illustrate that, Figure 8 shows four different initialisations.

The cities are arranged in ascending order of theta with the

origin in the middle of the figure, then divided into 2, 3, 5

and 6 groups. After that, the GA is applied to each group

five times to initiate 20 different solutions. These solutions

will be the crowds and in this way they will contain the

required diversity.

Figure 8 Four different initialisations of the GA (see online

version for colours)

To aggregate these solutions we do the following:

• Prepare a list containing in every row a city and the two

cities connected to it. For example if the third row

contains 65 and 34 that means that the third city is

connected to city 65 and 34.

• If 90% of the crowd agreed on a link between two cities

then we will keep this link.

• Finally, we execute a greedy algorithm which

removes all of the remaining intersections as a post

processing step.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 363

The results of the aggregation process are illustrated in

Figures 9 and 10. Figure 9 shows the common segments that

were repeated in 90% of the solutions. Figure 10 shows the

final result after connecting these segments and removing

intersections.

Figure 9 Segments common to 90% of crowd members (see

online version for colours)

Figure 10 Solution based on aggregation of segments and

intersection removal (see online version for colours)

3.6 TSP-experimental results

The developed software was tested on problems with

100, 150 and 200 cities. Table 1 shows achieved results

for the GA and for WoAC. Both minimum and average

performance is reported for the GA. WoAC algorithm

outperformed GA on all problems on average by between

6% and 9%.

Table 1 Performance of GA vs. WoAC

of

Cities

GA

min

GA

average
WoAC

%

Improved

100 894.1571 914.1940 831.1936 9%

150 1,077.9 1,093.1 1,025.4681 6%

200 1,233.7 1,256.7 1,178.4072 6%

Figure 11 Performance of GA (top) and WoAC on a 100 city

problem (see online version for colours)

Figure 12 Performance of GA (top) and WoAC on a 150 city

problem (see online version for colours)

364 R.V. Yampolskiy and A. EL-Barkouky

Figures 11 to 13 display in red the distance of each

of the GA solutions while the blue line is the solution

after applying the WoAC represented as a horizontal

line. It is clear that it enhanced the GA solutions

and produced a solution that is better than all the

20 solutions of the GA. This was achieved up to the case of

200 cities.

Figure 13 Performance of GA (top) and WoAC on a 200 city

problem (see online version for colours)

4 Solving the KP

Knapsack problem (KP) is a classical NP-complete problem

in the field of combinatorial optimisation (Guo et al., 2010).

This problem has very important applications in financial

and industrial domains, in combinatorics, complexity

theory, cryptography and applied mathematics. KP can be

used to model resource distribution, investment decision-

making, items shipment, budget control and project

selection, and it often represents a part of a larger problems.

In KP, a set of items each with a weight and a value is

given and the objective is to determine which items to

include in a collection so that the total weight is less than a

given limit and the total value is as large as possible. The

problem derives its name from the situation of someone

who is constrained by a fixed-size knapsack and needs to fill

it with the most useful items. The decision form of the KP is

the question “can a value of at least V be achieved without

exceeding the weight W?”

Mathematically the problem consists of a knapsack that

has positive integer weight (capacity) W. There are N

distinct items that may potentially be placed in the

knapsack. Item i has a positive integer weight Wi and

positive integer value Vi. In addition, there are Ci copies of

item i available, where quantity Ci is a positive integer

satisfying 1 ≤ Ci ≤ ∞.

Let Xi determines how many copies of item i are to be

placed into the knapsack. The goal is to maximise:

1

N

i ii
v x

=∑ (3)

Subject to the constraint

1

N

i ii
w x w

=
≤∑ (4)

If one or more of the ci is infinite, the KP is unbounded;

otherwise, the KP is bounded. For the bounded KP

xi∈{0, 1,…, Ci}. The 0–1 KP is a special case where

xi∈{0, 1} (Hristakeva and Shrestha, 2004). In this paper, the

work is done on the bounded 0–1 KP, where we cannot have

more than one copy of an item in the knapsack.

To illustrate the problem in more details let’s consider

the case of three items A, B and C with weights 5, 9 and

15 and values 4, 6 and 8 respectively. The knapsack

capacity is 20. Because this is a small problem we can brute

force the solution by checking all the possible solutions as

shown in the Table 2.

Table 2 Simple case of the 0-1 KP

A B C Weight Value

0 0 0 0 0

0 0 1 15 8

0 1 0 9 6

0 1 1 9 + 15 = 24 > 20 rejected 6 + 8 = 14

1 0 0 5 4

1 0 1 5 + 15 = 20 4 + 8 = 12 best

1 1 0 5 + 9 = 14 4 + 6 = 10

1 1 1 5 + 9 + 15 = 29 > 20 rejected 4 + 6 + 8 = 18

It is clear that if we have a 100 items, we should consider

2100 cases and calculate the weight for all of them then

calculate the value for those satisfying the constraint and

finally select the highest value. We can see from this

discussion that brute forcing is not suitable for such a

problem so in this paper we will consider finding an

approximate solution by using a GA and improving results

via a novel postprocessing algorithm we call the WoAC.

4.1 Prior work

There are two kinds of algorithms for KP. The first

kind consists of precise algorithms such as dynamic

programming, backtracking, and branch and bound, and the

other kind is the set of approximate algorithms including

greedy method and Lagrange method. The time complexity

for solving the KP increases rapidly as the problem scale

grows. Specifically, the time complexity is O(2n) in the

worst case. So, it is important to design an effective

approximation algorithm for solving the KP (Qiao et al.,

2008).

Several works in literature used GAs combined with

other methods to solve the 0-1 KP. In Zhao et al. (2009), a

 Wisdom of artificial crowds algorithm for solving NP-hard problems 365

GA based on Greedy strategy is introduced. It begins with

analysis of three kinds of commonly used greedy algorithms

to solve 0–1 KP. Combining this with the basic principles of

GAs, the achieved improvement lies in the establishment of

the original population using greedy strategy. In Guo et al.

(2010), a solution of the problem by Chaotic GA is

presented. It introduces Chaos idea into GA, adding the

disturbance to help find better solutions compared to the

traditional GA. The work in Zhao et al. (2008) combines

multi-agent theory and master-slave model parallel GA

(MSM-PGA) together into one union. This union solves the

0–1 KP via coordination between many Agents inside the

union.

GA is not the only approximation approach for solving

the KP. In Zhang and Wei (2008), particle swarm

optimisation (PSO) algorithm is used. This is a bio-inspired

optimisation algorithm based on group intelligence. In Qiao

et al. (2008), the authors combine the mobile agent

technology with the traditional parallel algorithm which

enables changing the parallel process handled in a parallel

computer to the process performed by several ordinary

computers, and by doing so avoid the restrictions of the

limited computational resources. In Jun and Jian (2009), a

discrete binary version of differential evolution (DBDE)

was employed, where each component of a mutated vector

component changes with the differential probability and will

take on a zero or one value.

A schema-guiding evolutionary algorithm (SGEA) is

proposed in Liu and Liu (2009). It improves the diversity of

the population and the local and global search power. The

work in Martello et al. (1999) presents a combination of

dynamic programming and strong bounds, in addition valid

inequalities are generated and surrogate relaxed, and a

new initial core problem is adopted.

In this paper, a GA is developed and the results are

enhanced using the postprocessing algorithm we call the

WoAC. The original WoC concept was introduced by James

Surowiecki in 2004 (Surowiecki, 2004). It highlights the

aggregation of information in groups, resulting in decisions

that are often better than could have been made by any

single member of the group (Narasimhan et al., 2010;

Osorio and Whitney, 2005; Kostakos, 2009).

4.2 The 0–1 KP using GA and WoAC

To solve the KP using GA the chromosome length is set

equal to the number of items and each gene will represent

one item and take the value 0 if we will not put that item in

the knapsack or 1 if we will put it. The population starts

randomly with chromosomes that do not necessarily satisfy

the capacity constraint.

Two types of crossover are tested. The one-point

crossover selects randomly a point and does the crossover

after that point and the two-point crossover selects two

points randomly and does the crossover between them as

follows:

Parent 1: |

Parent 2 : |

Child 1: |

Child 2 : |

0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0

0 1 0 0 1 0 0 0

1 1 1 0 0 1 1 1

1 0 1 1 0 1 1 0 1 0 11 0 11 0
1 0 1 1 0 1 0 1

1 0 1 1 0 1 1 0
 One point Two-point

To make this clear one of the parents is represented in the

bold font and the other is in italic and the children after the

crossover can be seen by tracking the bold and italic genes.

The mutation is done on a small percentage of the

children to ensure that the algorithm does not get stuck at a

local maximum point. The mutation simply picks randomly

a chromosome then picks randomly a gene in that

chromosome and reverses its value as follows:

1 0 1 0 1 0 1 mutation 1 0 1 0 1 0 1→ →1 0

The cloning is used to ensure that every new generation has

the best value which is equal to the best in the previous

generation if not higher. This is done through keeping the

best 10% of the parents. The ratio will vary because we

insert these best parents in place of the children that exceed

the capacity, so if in a generation: less than 10% exceeds the

capacity this means that this generation has good children

and will keep them so fewer parents are cloned. The

minimum cloning is to keep the best parent, and so to ensure

that the best value in the new generation will not be less

than the previous generation.

The WoAC is used after that to refine the results. To

initiate a crowd that has diversity of opinions, we run the

GA 100 times for the one-point crossover and another

100 for the two-point crossover. In this way we have

200 solutions that came from two different ‘cultures’. The

method used to aggregate opinions can be summarised as

follows: If 80% of the crowd set an item to zero, the item is

not included. If 55% of the crowd set an item to one it is

included in the knapsack. Doing this will lead to total

weight less than the allowed capacity, so we use a greedy

algorithm to fill the rest of the knapsack with higher

value items.

An important thing to note is that different percentages

were used in the case of aggregating opinions in the zero

and one cases. It was found that accepting the crowds

opinion in the case of zero (not taking the item) should be

more accurate than the case of one (taking the item). The

disadvantage in using the WoC in this way is that it took a

lot of time to initiate the crowds, but this is important to

ensure diversity of opinions.

4.3 Experimental results

4.3.1 Data

Generating instants of the 0–1 KP to test the algorithm was

not a hard task since we simply need N items with different

weights and values. First, a vector of length N with values

taken randomly between 1 and 1,000 is created to represent

the weights of the N items arranged in ascending order.

366 R.V. Yampolskiy and A. EL-Barkouky

Then, the values are also arranged in ascending order from 1

to 200 which means items with higher weight will have

higher values. The capacity of the knapsack is considered as

1/4 of the sum of all of the weights rounded to the nearest

thousand by the floor function. The problem generated in

this way will consist of four variables:

• N: the number of the items (will be the length of the

chromosome)

• weights: a 1 × N vector arranged in ascending order

represents weights of items

• values: a 1 × N vector represents value of items

• capacity: 1/4 of the sum of all of the weights rounded to

the nearest thousand.

For example an instance with nine items of weights and

values will be:

[50 200 357 411 473 556 670 910 950]

 [20 40 60 80 1 00 1 20 140 1 60 1 80]

=
=

Weights

Values

The solution of the problem takes the form of a vector of

length N that has a value of 1 if this item is taken into the

knapsack or 0 if it is not taken, for example:

 [1 0 0 1 0 1 0 1 1] with total value 56= =Solution

4.3.2 Results

The code was written using MATLAB 7.8.0 (R2009a) and

was tested on a PC with a processor Intel(R) Pentium(R)

4 CPU 3.00 GHz and installed memory (RAM) 4.00 GB

(3.25 GB usable). It was tested on the previously illustrated

problem with number of items N = 100. To visualise the

results a 10 × 10 matrices are plotted which illustrate the

items with the value of the item written inside each cell and

its weight written under the cell. If we will put an item in

the knapsack then its colour is green and if we will not take

it, its colour is red. In this way we can see how the GA

evolves from one generation to another.

In Figure 14, we can see the best chromosome in the

initial population which had a total value of 2,362 and

utilised 12,862 unit of weight out of the 13,000 possible.

Figures 15 and 16 show the best chromosome in the

population after 2000 generations using one-point crossover

and two-point crossover respectively. For the one-point

crossover the value was 2,576 and in the two-point

crossover it was 2,556. In both cases the whole weight of

13,000 was utilised. Figure 17 shows the result of applying

the WoAC to 200 chromosomes obtained from running the

GA 200 times half of them with one-point crossover and the

other half with two-point crossover. The total value

increased to 2,602 achieving 1% increase over the one-point

crossover and 1.8% increase over the two-point crossover.

To illustrate more, Figure 17 shows green boxes with red

frame which denote items that were not taken in GA but the

WoAC decided to take them and the red boxes with green

frames representing the items the WoAC removed from the

knapsack.

It is clear from the results that the GA was suitable to

the problem because its implementation was very simple

which makes a population of size 100 processed in just

0.005 seconds. This enabled doing a large number of

generations. The evolution curves for 2,000 generation and

20,000 generation are displayed in Figures 18 and 19

respectively. The WoAC was suitable for postprocessing

and allowed us to obtain better results compared to running

GA for 20,000 generations. The disadvantage of the WoAC

approach is that it takes a lot of time to produce the initial

crowd, specifically we need to run 2,000 generations

200 times.

Figure 14 Initial population (see online version for colours)

Figure 15 After 2,000 generation of GA using one-point

crossover (see online version for colours)

 Wisdom of artificial crowds algorithm for solving NP-hard problems 367

Figure 16 After 2,000 generations of two-point crossover

(see online version for colours)

Figure 17 Applying WoAC (see online version for colours)

Figure 18 Evolution curve for 2,000 generations of GA only

(see online version for colours)

Figure 19 Evolution curve for 20,000 generations of GA only

(see online version for colours)

5 Conclusions

We have presented a novel swarm-based nature-inspired

metaheuristic algorithm for global optimisation. In many

cases WoAC outperformed even the best solutions

produced by the GA. As the datasets increase in size, the

GA performs worse, but this allows more room for

improvement for WoAC. WoAC is a postprocessing

algorithm with running time in milliseconds which is

negligible in comparison to the algorithm it attempts to

improve, genetic search. While, WoAC does not always

produce a superior solution, in cases where it fails

it can be simply ignored since the GA itself provides a

better solution in such cases. Consequently, WoAC

is computationally efficient and can only improve

the quality of solutions, never hurting the overall

outcome.

In the future, we plan on conducting additional

experiments aimed at improving overall performance

of the WoAC algorithm. In particular we are going to

investigate how WoAC could be combined with non-GA,

swarm-based approaches such as ACO (Dorigo et al., 2006),

BCO (Pham et al., 2006), (BFO) (Passino, 2002), or (GSO)

(Krishnanand and Ghose, 2005). Special attention should

be given to investigating better aggregation rules and

optimal ways of achieving diversity in the populations. An

important question to ask, deals with an optimal percentage

of the population to be used in the crowd. In other words,

should the whole population be used or is it better to select a

sub-group of ‘experts’.

References

Ashby, L.H. and Yampolskiy, R.V. (2011) ‘Genetic algorithm and

wisdom of artificial crowds algorithm applied to light up’,

16th International Conference on Computer Games: AI,

Animation, Mobile, Interactive Multimedia, Educational &

Serious Games, Louisville, KY, USA, 27–30 July.

368 R.V. Yampolskiy and A. EL-Barkouky

Bai, F. and Krishnamachari, B. (2010) ‘Exploiting the wisdom

of the crowd: localized, distributed information-centric

VANETs’, Communications Magazine, IEEE, May, Vol. 48,

No. 5.

Bellmore, M. and Nemhauser, G.L. (1968) ‘The traveling salesman

problem: a survey’, Operations Research, May–June,

Vol. 16, No. 3, pp.538–558.

Burkard, R.E., Deineko, V.G., Dal, R.V., Veen, J.A.A.V.D. and

Woeginger, G.J. (1998) ‘Well-solvable special cases of the

traveling salesman problem: a survey’, SIAM Review, Vol. 40,

No. 3, pp.496–546.

Cook, W. (2005) ‘Concorde TSP solver’, available at:

http://www.tsp.gatech.edu/concorde/index.html

(accessed on 4 December 2010).

Dorigo, M. and Gambardella, L.M. (1997) ‘Ant colonies for the

traveling salesman problem’, Biosystems, July, Vol. 43,

No. 2, pp.73–81.

Dorigo, M., Birattari, M. and Stutzle, T. (2006) ‘Ant colony

optimization: artificial ants as a computational intelligence

technique’, IEEE Computational Intelligence Magazine,

November, Vol. 1, No. 4, pp.28–39.

Farmer, J.D., Packard, N. and Perelson, A. (1986) ‘The immune

system, adaptation and machine learning’, Physica D, Vol. 2,

Nos. 1–3, pp.187–204.

Galton, F. (1907) ‘Vox Populi’, Nature, Vol. 75, No. 1949,

pp.450–451.

Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001)

‘A new heuristic optimization algorithm: harmony search’,

Simulation, February, Vol. 76, No. 2, pp.60–68.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization

and Machine Learning, Addison-Wesley Pub. Co., Boston,

MA, USA.

Guo, X-H., He, D-X. and Liu, G-Q. (2010) ‘An algorithm based on

chaotic genetic algorithm for 0-1 knapsack problem’,

International Conference on Biomedical Engineering and

Computer Science (ICBECS), Wuhan, China, 23–25 April.

Hristakeva, M. and Shrestha, D. (2004) ‘Solving the 0-1 knapsack

problem with genetic algorithms’, Science & Math

Undergraduate Research Symposium, Simpson College,

Indianola, Iowa.

Jun, S. and Jian, L. (2009) ‘Solving 0-1 knapsack problems via a

hybrid differential evolution’, Third International Symposium

on Intelligent Information Technology Application (IITA

2009), Nanchang, China, 21–22 November.

Karp, R.M. (1972) ‘Reducibility among combinatorial problems’,

in Miller, R.E. and Thatcher, J.W. (Eds.): Complexity of

Computer Computations, Plenum, New York.

Kostakos, V. (2009) ‘Is the crowd’s wisdom biased? A quantitative

analysis of three online communities international conference

on computational science and engineering’, CSE ’09,

Vancouver, Canada, 29–31 August.

Koza, J.R. (1990) ‘Genetic programming: a paradigm for

genetically breeding populations of computer programs to

solve problems’, Technical Report No. STAN-CS-90-1314,

Stanford University. Stanford, California.

Krishnanand, K.N. and Ghose, D. (2005) ‘Detection of multiple

source locations using a glow-worm metaphor with

applications to collective robotics’, IEEE Swarm Intelligence

Symposium (SIS’05), Pasadena, California, 8–10 June.

Liu, Y. and Liu, C. (2009) ‘A schema-guiding evolutionary

algorithm for 0-1 knapsack problem’, International

Association of Computer Science and Information Technology

– Spring Conference (IACSITSC ‘09), Singapore, Singapore,

17–20 April.

Martello, S., Pisinger, D. and Toth, P. (1999) ‘Dynamic

programming and strong bounds for the 0-1 knapsack

problem’, Management Science, March, Vol. 45, No. 3.

Mehrabian, A.R. and Lucas, C. (2006) ‘A novel numerical

optimization algorithm inspired from weed colonization’,

Ecological Informatics, December, Vol. 1, No. 4,

pp.355–366.

Melville, P. and Mooney, R.J. (2003) ‘Constructing diverse

classifier ensembles using artificial training examples’,

18th International Joint Conference on Artificial Intelligence

(IJCAI’03), Acapulco, Mexico, August.

Melville, P. and Mooney, R.J. (2004) ‘Diverse ensembles for

active learning’, 21st International Conference on Machine

Learning (ICML’04). Banff, Canada, July.

Mooney, R.J. (2007) ‘Machine learning: ensembles’, available at

http://www.cs.utexas.edu/~mooney/cs391L/slides/

ensembles.ppt (accessed on 8 January 2011).

Moore, T. and Clayton, R. (2008) ‘Evaluating the wisdom of

crowds in assessing phishing websites’, Lecture Notes in

Computer Science, Vol. 5143, pp.16–30.

Mozer, M.C., Pashler, H. and Homaei, H. (2008) ‘Optimal

predictions in everyday cognition: the wisdom of individuals

or crowds?’, Cognitive Science, October, Vol. 32, No. 7,

pp.1133–1147.

Mucherino, A. and Seref, O. (2007) ‘Monkey search: a novel

metaheuristic search for global optimization’, AIP Conference

on Data Mining, Systems Analysis and Optimization in

Biomedicine, Gainesville, FL, 28–30 March.

Narasimhan, N., Wodka, J., Wong, P. and Vasudevan, V. (2010)

‘TV answers – using the wisdom of crowds to facilitate

searches with rich media context’, 7th IEEE Consumer

Communications and Networking Conference (CCNC),

Las Vegas, Nevada, USA, 9–12 January.

Opitz, D. and Maclin, R. (1999) ‘Popular ensemble methods: an

empirical study’, Journal of Artificial Intelligence Research,

Vol. 11, pp.169–198.

Osorio, F.C.C. and Whitney, J. (2005) ‘Trust, the “wisdom of

crowds”, and societal norms: the creation, maintenance,

and reasoning about trust in peer networks’, Workshop of

the 1st International Conference on Security and Privacy

for Emerging Areas in Communication Networks,

5–9 September.

Passino, K.M. (2002) ‘Biomimicry of bacterial foraging for

distributed optimization and control’, Control Systems

Magazine, IEEE, June, Vol. 22, No. 3, pp.52–67.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and

Zaidi, M. (2006) ‘The bees algorithm – a novel tool for

complex optimisation problems’, Virtual International

Conference on Intelligent Production Machines and Systems

(IPROMS’06), Web Based, 13–14 July.

Qiao, S., Wang, S., Lin, Y. and Zhao, L. (2008) ‘A distributed

algorithm for 0-1 knapsack problem based on mobile agent’,

Eighth International Conference on Intelligent Systems

Design and Applications (ISDA’08), Kaohsiung City, Taiwan,

26–28 November.

 Wisdom of artificial crowds algorithm for solving NP-hard problems 369

Rabanal, P., Rodriguez, I. and Rubio, F. (2007) ‘Using river

formation dynamics to design heuristic algorithms’, Lecture

Notes in Computer Science, Vol. 4618, pp.163–177.

Reynolds, C.W. (1987) ‘Flocks, herds, and schools: a distributed

behavioral model’, 14th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH’87),

Anaheim, CA, 27–31 July.

Shiratsuchi, K., Yoshii, S. and Furukawa, M. (2006)

‘Finding unknown interests utilizing the wisdom of crowds in

a social bookmark service’, IEEE/WIC/ACM International

Conference on Intelligence and Intelligent Agent Technology,

Hong Kong, December.

Surowiecki, J. (2004) The Wisdom of Crowds: Why the Many Are

Smarter Than the Few and How Collective Wisdom Shapes

Business, Economies, Societies and Nations, Little, Brown.

Wagner, C., Schneider, C., Zhao, S. and Chen, H. (2010) ‘The

wisdom of reluctant crowds’, 43rd Hawaii International

Conference on System Sciences (HICSS’10), Honolulu, HI,

5–8 January.

Wolfram, S. (2002) A New Kind of Science, 14 May, Wolfram

Media, Inc., Canada.

Yampolskiy, R., Anderson, P., Arney, J., Misic, V. and Clarke, T.

(2004) ‘Printer model integrating genetic algorithm for

improvement of halftone patterns’, Western New York Image

Processing Workshop (WNYIPW) – IEEE Signal Processing

Society, Rochester, NY, 24 September.

Yampolskiy, R.V. (2010) ‘Application of bio-inspired algorithm to

the problem of integer factorisation’, International Journal

of Bio-Inspired Computation (IJBIC), Vol. 2, No. 2,

pp.115–123.

Yang, X.S. (2009) ‘Firefly algorithms for multimodal

optimization’, Lecture Notes in Computer Sciences,

Vol. 5792, pp.169–178.

Yang, X-S. and Deb, S. (2009) ‘Cuckoo search via Levy flights’,

World Congress on Nature and Biologically Inspired

Computing (NaBIC’09), Coimbatore, India, 9–11 December.

Yi, S.K.M., Steyvers, M., Lee, M.D. and Dry, M. (2010) ‘Wisdom

of crowds in minimum spanning tree problems’, 32nd Annual

Conference of the Cognitive Science Society, Austin, TX.

Yi, S.K.M., Steyvers, M., Lee, M.D. and Dry, M. (2010) ‘Wisdom

of the crowds in traveling salesman problems’, available at:

http://www.socsci.uci.edu/~mdlee/YiEtAl2010.pdf (accessed

on 7 January 2011).

Zhang, G-L. and Wei, Y. (2008) ‘An improved particle swarm

optimization algorithm for solving 0-1 knapsack problem’,

International Conference on Machine Learning and

Cybernetics, Kunming, China, 12–15 July.

Zhao, J.F., Huang, T.L., Pang, F. and Liu, Y.J. (2009) ‘Genetic

algorithm based on greedy strategy in the 0-1 knapsack

problem’, 3rd International Conference on Genetic and

Evolutionary Computing (WGEC ‘09), Guilin, China,

14–17 October.

Zhao, T., Yang, L. and Man, Z. (2008) ‘A MSM-PGA based on

multi-agent for solving 0-1 knapsack problem’, International

Conference on Computer Science and Information

Technology (ICCSIT ‘08), Singapore, 29 August –

2 September.

