
WiSeKit: A Distributed Middleware to Support

Application-Level Adaptation in

Sensor Networks

Amirhosein Taherkordi1, Quan Le-Trung1, Romain Rouvoy1,2,
and Frank Eliassen1

1 University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, N-0314 Oslo

{amirhost,quanle,rouvoy,frank}@ifi.uio.no
2 ADAM Project-Team, INRIA-USTL-CNRS,

Parc Scientifique de la Haute Borne,
40 avenue Halley, Bt. A, Park Plaza,

F-59650 Villeneuve d’Ascq
romain.rouvoy@lifl.fr

Abstract. Applications for Wireless Sensor Networks (WSNs) are be-
ing spread to areas in which the contextual parameters modeling the en-
vironment are changing over the application lifespan. Whereas software

adaptation has been identified as an effective approach for addressing
context-aware applications, the existing work on WSNs fails to support
context-awareness and mostly focuses on developing techniques to re-
program the whole sensor node rather than reconfiguring a particular
portion of the sensor application software. Therefore, enabling adaptiv-
ity in the higher layers of a WSN architecture such as the middleware and
application layers, beside the consideration in the lower layers, becomes
of high importance. In this paper, we propose a distributed component-
based middleware approach, named WiSeKit, to enable adaptation and
reconfiguration of WSN applications. In particular, this proposal aims
at providing an abstraction to facilitate development of adaptive WSN
applications. As resource availability is the main concern of WSNs, the
preliminary evaluation shows that our middleware approach promises a
lightweight, fine-grained and communication-efficient model of applica-
tion adaptation with a very limited memory and energy overhead.

Keywords: wireless sensor networks, distributed middleware, adapta-
tion, reconfiguration.

1 Introduction

The challenges for application development on WSNs are becoming as promi-
nent as the issues concerning sensor hardware, network architecture, and system

software. It is because the new emerging applications for WSNs do not limit
themselves to a single function called “sense and send” with trivial local data

T. Senivongse and R. Oliveira (Eds.): DAIS 2009, LNCS 5523, pp. 44–58, 2009.
c© IFIP International Federation for Information Processing 2009



WiSeKit: An Adaptation Middleware for WSNs 45

processing tasks [1,2]. Applications for WSNs are gradually moving towards per-
vasive computing environments, where sensor nodes have tight interactions with
actuators, deal with the dynamic requirements and unpredictable future events,
and behave based on the context information surrounding them [3].

In such an environment, in addition to the basic tasks, an application needs to
adapt its behavior to cope with changing environmental conditions, and differ-
ent capabilities of each individual sensor node in the network. As different nodes

are expected to run different tasks, software with dynamic adaptable function-
alities becomes an essential need. Moreover, for applications deployed to a high

number of nodes in inaccessible places, individual software updating becomes an
impractical and inefficient solution.

As the common types of sensor nodes are still suffering from resource scarce-
ness, researchers have not been willing to consider the application code on sensor

node as adaptive software. This is because, on one hand, the typical adaptation
frameworks mostly come with a high level of complexity in the reasoning process

and reconfiguration mechanism. On the other hand, most of the software devel-
opment paradigms for WSN application are not able to support reconfigurability
due to the lack of modularity, such as in the case of script programming. More-
over, the lack of operating system level support for dynamic reconfiguration is
the other critical challenge in the way of achieving application-level adaptivity
in WSNs. Recently, operating systems, such as Contiki [4], have considered this
issue by supporting dynamic binding and loading of software components.

A few works have been reported in the literature that address adaptation for

embedded and sensor systems. In [6,7,8], the main contribution is to provide

adaptivity at the middleware-level (not application-level) in order to make the

network-level services reconfigurable and replaceable. In [9], a small runtime

support is proposed over Contiki to facilitate dynamic reconfiguration of software

components. Although it promises to achieve application-level reconfigurability,
the level of abstraction is low and it does not propose a general framework

supporting all essential aspects of application adaptation. In fact, it plays the

role of component reconfiguration service in a typical adaptation framework.
The performance of the adaptation middleware depends on two major factors.

The first is the reconfigurability degree of software modules. In a highly reconfig-
urable model, the update is limited to the part of the code that really needs to
be updated instead of updating the whole software image. We term this feature

fine-grained reconfiguration. The second is the mechanism by which a module is
reconfigured. In this paper, we concentrate on the latter, whereas the former has

been discussed in [5] by proposing a new component model, called ReWiSe, for

lightweight software reconfiguration in WSNs.
In this paper, we present a novel distributed middleware approach, named

WiSeKit, for addressing the dynamicity of WSN applications. WiSeKit provides

an abstract layer accelerating development of adaptive WSN applications. Using

this middleware, the developer focuses only on application-level requirements for

adaptivity, while the underlying middleware services expose off-the-shelf APIs
to formalize the process of adaptive WSN application development and hide the



46 A. Taherkordi et al.

complexity of the technical aspects of adaptation. The adaptation decision logic
of WiSeKit is also inspired from the hierarchical architecture of typical WSNs

in order to achieve the adaptation goals in a light-weight and efficient manner.
The rest of this paper is organized as follows. In Section 2, we demonstrate

a motivating application scenario. The basic design concepts of our middleware

proposal are described in Section 3. In Section 4, the WiSeKit middleware is
proposed with a preliminary evaluation presented in Section 5. Related work

is presented in Section 6. Finally, Section 7 concludes the paper and gives an
outlook on future research.

2 Motivating Application Scenario

In this section we present an application scenario in the area of home monitoring
to further motivate our work. Most of the earlier efforts in this field employed

a high-cost wired platform for making the home a smart environment [10,11].
Future home monitoring applications are characterized as being filled with dif-
ferent sensor types to observe various types of ambient context elements such

as temperature, smoke, and occupancy. Such information can be used to reason
about the situation and interestingly react to the context through actuators [3].

Figure 1 illustrates a hypothetical context-aware home. Each room is equipped

with the relevant sensor nodes according to its attributes and uses. For instance,
in the living room three “occupancy” sensors are used to detect the movement,
one sensor senses the temperature, and one smoking sensor for detecting the fire

in the room. Although each sensor is configured according to the preliminary
requirements specified by the end-user, there may happen some predictable or

unpredictable scenarios needing behavioral changes in sensor nodes. Basically,
these scenarios can be considered from two different aspects: i) application-level,
and ii) sensor-level. The former refers to the contextual changes related to the

application itself, e.g., according the end-user requirements for the living room,
if one of the occupancy nodes detects a movement in the room, the temperature

nodes should stop sensing and sending tasks. The latter further concerns with the

capabilities and limitations of a particular sensor node, e.g., if the residual energy
of temperature sensor is lower than a pre-defined threshold, the aggregated data

should be delivered instead of sending all individual sensor readings.
Besides the above concerns, the recent requests for remote home monitoring,

which enables the owner to check periodically home state via a web interface,
are being extended by the request of remote home controlling. This need also
brings some other new challenges in terms of dynamicity and makes the issue of

adaptivity more significant.
Considering statically all above concerns becomes quite impossible when you

have many of these scenarios that should be supported simultaneously by the

application on a resource-limited node. Moreover, at the same time you need

to maintain the relation between the context elements and reason timely on
a change. Obviously, supporting all these requirements during application run-
time needs an abstract middleware approach to address the dynamicity and

adaptivity challenges w.r.t. the unique characteristics of WSNs.



WiSeKit: An Adaptation Middleware for WSNs 47

Fig. 1. Description of the home monitoring system

3 Basic Design Concepts

In this section, we describe the basic design concepts of WiSeKit middleware.

Adaptation Time. Basically, adaptation can be performed in two manners:
statically and dynamically. Static adaptation relates to the redesign and recon-
figuration of application architectures and components before deployment of the

application. Dynamic adaptation is performed at application run-time due to the

changing needs, resource and context conditions. We adopt dynamic adaptation
in our proposal because most WSN applications are expected to work seamlessly
for a long time and mostly deployed in inaccessible places.

Adaptation Scope. Two popular adaptation mechanisms are introduced in the

literature [12], [13]: parameter adaptation and component adaptation. Parame-
ter adaptation supports fine tuning of applications through the modification of

application variables and deployment parameters, while component adaptation
allows the modification of service implementation (replacement of component),
adding new components, and removing running components. We explain later

in this paper why and how our middleware supports both of these mechanisms.

Adaptation Policy. In general, there are three different approaches for identi-
fying a policy: situation-action rules [13,14], goal-oriented [15] and utility-based

[16]. The two latter techniques represent high level forms of policies, while the

former specifies exactly what to do in given situations. As the adaptation policies
of most WSN applications can be described easily through a set of conditional
statements, WiSeKit follows the situation-action rules approach. Situations in
our proposal are provided from the framework we proposed in [17]. This frame-
work proposes a context processing model to collect data from different sources

(environment, application, sensor resources, and user) and process them for the

use of adaptation reasoning service.



48 A. Taherkordi et al.

Fine-grained Reconfiguration. Adaptation reasoning specifies through which
mechanism (either parameter-based or component-based) which parts of the ap-
plication should be reconfigured. As the major cost of reconfiguration in WSNs

is in transferring the new update code across the network, fined-grained reconfig-
uration becomes very important. Note that fine-grained reconfigurability should
be supported by the underlying system software.

Hierarchical Adaptation. As the sensor nodes are mostly organized in a hi-
erarchical way [18], our proposal distributes the adaptation tasks among nodes

according to the level of hierarchy of a particular node. Hierarchical adaptation
is based on the idea of placing adaptation services according to: i) the scope of

information covered by a particular node, and ii) the resource richness of that

node.

4 WiSeKit Adaptation Middleware

WiSeKit aims to provide a set of APIs at the middleware level of WSNs in order

to make an abstraction layer that formalizes and simplifies the development of

adaptive WSN applications. In general, WiSeKit is characterized by the following

features:

– Local-adaptivity: an application running on the sensor nodes has the possi-
bility of identifying its adaptation policies. The APIs exposed at the middle-
ware layer are able to read the policy object and maintain the application
components’ configuration according to the context information gathered

periodically from both sensor node and application.
– Intermediate-observation: using WiSeKit, we can specify adaptation require-

ments for a region of the network, e.g., a floor or a room in a building. At this
level, we can specify high-level adaptation policies through WiSeKit APIs
provided at more powerful nodes such as cluster head or sink node.

– Remote-observation: the end-user or the agent checking the application sta-
tus locally through sink interface or remotely via a web interface might need

to specify his/her own requirements regarding adaptation.
– Component-based reconfiguration: updates in WiSeKit can take place both

at component attribute level and at component level. WiSeKit expects ap-
plication developers implement predefined interfaces for components which
are subject to reconfiguration. We present later in this section the signature

of such interfaces and the mechanisms for reconfiguration.
– Distribution: The heterogeneity of WSNs in terms of the node’s resource

capabilities and functionalities necessitates support for distribution at the

middleware layer in order to achieve the above goals and also optimize net-
work resources usage. WiSeKit is within all nodes types built up over a set

of Core Services which provides an infrastructure for distribution.

Figure 2 illustrates the complete logical architecture of the WiSeKit mid-
dleware distributed over the different node types. It shows how the adaptation



WiSeKit: An Adaptation Middleware for WSNs 49

services are located in different node types and mapped to a typical WSN ar-
chitecture. At the left side of the figure, sensor node features a set of services
for realizing Local-adaptivity and Component-based reconfiguration. Next to the

sensor nodes, the cluster head has the responsibility of Intermediate-observation
to observe data and analyze it in terms of adaptation required within the scope

of a cluster. Finally, at the right side of Figure 2, WiSeKit in the sink node

is able to retain the “whole” WSN application in a high degree of adaptivity
via Intermediate-observation and Remote-observation. Therefore, the end user

of the application can specify his/her own adaptation needs through the APIs
provided within the sink node. Middleware services in different nodes interact

through core services customized for each type of node. The details of WiSeKit
services within each type of node are explained in the rest of this section.

Fig. 2. WiSeKit in the hierarchical WSN architecture

4.1 Sensor Side

To address the middleware requirements of adaptive applications, we need first

to explore the desired structure of an application deployed over the sensor nodes,
then the adaptation middleware services will be discovered accordingly. Figure 3
illustrates a sample configuration of application components for a home moni-
toring application. There are three main aspects that should be considered for

application development.
Firstly, the components which are subject to reconfiguration should implement

the relevant interfaces. In general, four types of reconfigurations are likely to
happen during the application runtime, including: i) replacing a component with
a new one, ii) adding a new component, iii) component removal, and iv) changing

the values of component member variables. For each type of reconfiguration the

relevant interface(s) should be implemented. We explain later in this section the

name and specification of those interfaces.
Secondly, as shown in the figure, the deployable package should include a pre-

defined policy file describing situation-actions rules. It is one of the main sources

of local adaptation decision. The local decision is limited to changing the values

of component member variables, while the decision of full component image re-
placement is made by the cluster head. It is because the decisions for replacing or



50 A. Taherkordi et al.

Fig. 3. A sample component configuration for an adaptive home application

adding components fall in the category of heavyweight reconfiguration requests.
Such a decision should be assigned to a node being aware of what happens in
the scope of a cluster. Moreover, sometimes we need to send a component image

to a set of sensor nodes having similar attributes or responsibilities.
Finally, Application Context is a meta-data reporting application-related con-

textual information. Application components can update it when a contextual
event is detected through APIs provided by WiSeKit. The content of application
context is used together with sensor context information against the situations

described in the policy object to check whether any adaption is needed.
Figure 4 describes the architecture of our adaptation middleware for sensor

nodes. As shown, WiSeKit addresses three main areas of adaptation concern.

Fig. 4. WiSeKit services in the sensor node

Local Adaptation is in charge of carrying out local parameter adaptation re-
quests. LocalReasoner, as the main service receives both the adaptation policies
of the application and context information, then it checks periodically the sit-
uations within policy file against application context and sensor context for

adaptation reasoning. Upon satisfying a situation, the corresponding action,



WiSeKit: An Adaptation Middleware for WSNs 51

changing the values(s) of component attribute(s), is performed via calling the

updateAttributes interface of the component and passing the new values.
Remote Adaptation is concerned with adapting the whole component. In fact,

the corresponding cluster node performs the reasoning task and notifies the sen-
sor node the result containing which component should be wholly reconfigured.
The key service in this part is ReplacementMng. Upon receiving either newComp or

updatedComp event, it reads the component image from CompRepository, loads

the new component and finally removes the image stored by CompRepository

from the repository.
After loading the component image, the current component is periodically

checked to identify whether it is in a safe state of reconfiguration or not. The

safe state is defined as a situation in which all instances of a component are tem-
porarily idle or not processing any request. There are several safe state checking

mechanisms in the literature [19], [20]. In some solutions, safe state recognition is
the responsibility of the underlying reconfiguration service, whereas in the other

mechanisms this checking is assigned to the component itself. We adopt the sec-
ond method because of its low overhead. Therefore, WiSeKit expects from each

reconfigurable component to implement the checkSafeState interface.
Distribution Adaptor provides a distribution platform for adaptation decision

and accomplishment. Specifically, it is proposed to address three issues: i) the

possibility of updating adaptation policies during application lifespan, ii) re-
ceiving the result of high-level adaptation decision from cluster head, i.e., the

image of a component, and iii) providing an abstraction for distributed interac-
tions between WiSeKit services. ReconfRequestDelegator reads the data received

through the Communication service, checks whether it encompasses any event

such as new policy, new component, or updated component, and finally unmar-
shals the content and generates the corresponding event object.

The bottom part of middleware is decorated with the core to provide an in-
frastructure for distribution as well as the utility and common services. The

Communication service has the responsibility of establishing connection to the

other nodes in the hierarchical structure. This service not only sends the data,
but also receives the reconfiguration information (component image or policy).
Aggregator is a service for performing aggregation of data received from Core-

SenseComp. EventHandler handles events generated by the services within the

middleware. The context information related to the sensor hardware and system

software is reported by SensorContext service as an newSensorContext event.

4.2 Cluster Head Side

Based on hierarchical adaptation, when the context information of a sensor node

is not sufficient to make an adaptation decision, the cluster head attempts to
decide on an adaptation based on the data received from sensor nodes in its own
cluster. Similarly, if the current information in the cluster head is not enough for

the adaptation reasoning, the final decision is left to the sink node, e.g., in our

motivation scenario, if the occupancy sensors detect a movement in the living

room, the cluster head notifies the temperature sensors to reduce the sampling



52 A. Taherkordi et al.

rate. Figure 5 illustrates both the structure of WSN application and the WiSeKit
architecture over the cluster head. The WiSeKit services within the cluster head

make the high-level adaptation decisions through processing application context
model and cluster-level adaptation policies.

The context model defines the possible contextual situations by describing

the relations between the application data gathered by sensor nodes [17]. For

example, “room occupied” is a situation that can be deduced from checking

the data values of both occupancy sensors and light sensors in a room. The

cluster-level adaptation policies are described in the same way as for sensor

nodes (situation-action). However, in this case, the situations are those defined

in the context model. The action also include loading a new policy or a new
component in some selected nodes.

Fig. 5. WiSeKit in the cluster head

As depicted in Figure 5, WiSeKit aims at addressing the high-level reasoning

issues within the cluster head. To this end, the middleware services expect from

the application to provide: i) the context model, and ii) the adaptation poli-
cies. In this way, WiSeKit processes at first the context model along with the

data received from sensor nodes in order to find out the current context situa-
tion(s) of environment, then the Reasoner service checks whether any adaption
is needed. In fact, this service analyzes the adaptation policies based on the cur-
rent context information, thereby it decides on update notifications, i.e., either

new policy or new component. If Reasoner makes the decision of a component

update, AdptationNotifier loads the binary object of new component from the

Local Repository and multicasts it along with the required meta-information to
the nodes in its vicinity. AdaptationNotifier is also responsible for forwarding the

adaptation requests of the sink node to the cluster members. We assume that

the local repository of cluster head contains all versions of a component that

might be needed during the application lifespan.



WiSeKit: An Adaptation Middleware for WSNs 53

4.3 Sink Side

WiSeKit in the sink node is designed in the same way as it is proposed for the

cluster head. The main differences between the sink node and the cluster head in
the context of our middleware are in two aspects. Firstly, the scope of network

covered by the sink node is the whole sensor network, while the cluster head has

only access to the information retrieved within a cluster. Therefore, the global
adaptation, the highest level of adaptation decision, takes place only in the sink

node, where it has access to the status of all clusters. Secondly, the sink node is
able to receive end-user preferences regarding to the adaptation requirements.

The component repository within the sink node contains all versions of all
components. As the sink node is a powerful node with sufficient resources for

processing tasks and storing application components, WiSeKit in the sink node

has the ability of reasoning on the sophisticated adaptations and providing dif-
ferent versions of a component according to the adaptation needs.

The communication service within the core of sink provides the following

functionalities: i) global context information exchange between the sink and

the cluster heads, ii) code distribution, and iii) internetworking between WSNs

and external networks, e.g., the Internet. While the context information can
be piggybacked into either the code distribution or routing protocols to reduce

the signaling overhead, the internetworking provides more flexible facilities to
manage and control WSNs remotely.

5 Preliminary Evaluation

As our adaptation middleware is customized for each type of node, the evaluation
should take into account many performance figures. At first, we need to evaluate

each type of node separately, then the effectiveness of WiSeKit should be assessed

for all nodes together. As considering the evaluation for all nodes is a huge work,
this paper focuses only on middleware performance in the sensor node as the

critical part of our proposal, while evaluating the whole adaptation middleware

is a part of our future work.
The efficiency of our approach for sensor node can be considered from the

following performance figures:

– The memory overhead of middleware run-time, with respect to both program

and data memory. The former can be evaluated by measuring the size of

binary images after compilation. The latter includes the data structures used

by the programs.
– The energy usage during adaptation, which refers to the energy overhead of

running an adaptation task.
– The communication overhead between sensor nodes and cluster head in the

presence of middleware for a typical adaptive application.

We chose the Instant Contiki simulator [22] to measure the overhead of mem-
ory. The prototype implementation shows the memory footprint for reconfig-
uration program and its data is no more than 3 Kbytes in total. As most of



54 A. Taherkordi et al.

sensor nodes are equipped with more than 48 Kbytes of program flash (TelosB
node), WiSeKit does not impose a high overhead in terms of memory. It should
be noted that this cost is paid once and for all, regardless of the amount of

memory is needed for the application components. There is also an application
level memory overhead for the description of adaptation policies and implement-
ing the reconfiguration interfaces (checkSafeState, updateAttributes, etc.).
This cost depends directly on the degree of application adaptivity. Moreover, the

amount of memory used by CompRepository varies with respect to the number of

new components downloaded simultaneously in the sensor node. As WiSeKit re-
moves the image of a component from repository when loading it to the memory,
this overhead is kept at a very low level in the order of zero.

For measuring energy consumption, we assume that our hypothetical WSN
application is similar to the configuration depicted in Figure 6 and Sampler is
the replacement candidate. The main reconfiguration tasks include: i) checking

the old Sampler to ensure that it is not in interaction with the other components

before starting reconfiguration, ii) saving the state of old Sampler, iii) creating

the new one and transferring the last state to it.

Fig. 6. Sample configuration

Each loadable module in Contiki is in Compact Executable and Linkable For-
mat (CELF) containing code, data, and reference to other functions and variable
of system. When a CELF file is loaded to a node, the dynamic linker in core re-
solves all external and internal references, and then writes code to ROM and the

data to RAM [21]. For our sample configuration, the Sampler CELF file (764

bytes) must be transferred to the node, and all mentioned tasks for dynamic
loading must be done for the Sampler program (its code size is 348 bytes). As

the energy consumption depends on the size of new update, the model of energy
consumption will be [21]:

E = SNew CELF × (Pp + Ps + Pl) + SNew Sampler × Pf + EsafeStateCheck

Where SNew CELF is the size of new CELF file and Pp, Ps, Pl and Pf are scale
factors for network protocol, storing binary, linking and loading, respectively.
SNew Sampler is the code size of new Sampler, and EsafeStateCheck is the energy
cost of performing reconfiguration. Concretely, we obtain the following energy
consumption for the considered adaptation scenario:

E = 764 × (Pp + Ps + Pl) + 348 × Pf + EsafeStateCheck



WiSeKit: An Adaptation Middleware for WSNs 55

In this equation, we take into account the overhead of checking safe state

(dependencies to the other two components). We believe that this value is very
low compared to the first part, which is the reconfiguration cost imposed by
Contiki.

To measure the communication overhead, we assume a scenario in the living

room of home application in which the “occupancy” of context changes occa-
sionally. According to the monitoring rules of home, when the room is empty the

temperature sensors should report the temperature of room every 10 minutes.
Once the room is occupied the temperature sensors should stop sensing until the

room becomes empty again.
According to this scenario, when the room is occupied, ContextProcessor

within the cluster head observes the new context and Reasoner notifies the rel-
evant sensor nodes to stop sampling. WiSeKit does not impose any communi-
cation cost for context detection because it piggybacks the current value of a

node’s attributes at middleware layer of cluster head. Therefore, the communi-
cation cost is limited to sending policy objects to stop/restart sampling task.

Three parameters should be taken into account to measure the overhead of

communication: i) sampling rate (r), ii) context consistency duration (c), and

iii) number of context changes during a particular period of time (k). For the

hypothesis scenario, if a room is occupied for two hours during one day, we have:
r = 10 min, c = 120 min, and k = 1. In this case, the temperature sensors do
not send the data for two hours, thus the number of communication for one day
(24 hours) is:

Ntotal = NforWholeDay − NoccupiedTime + NWiSeKitOverhead

= (24 × 60)/r − c/r + k × NpolicySending

= 144 − 12 + 2 = 134

Therefore for this case the number of saved communications is 10. Generally,
we can evaluate that the saved number of communications is:

{

Nsaved = c/r × k − 2 × k

1 � k � 24/y

Fig. 7. Number of saved communications for a sample home monitoring scenario



56 A. Taherkordi et al.

Figure 7 shows the saved number of communication. As the consistency period

of new context is increased and sampling rate is decreased, more number of

communications will be saved. This is because the middleware prevents a sensor

node to send data during the period of new context activation.

6 Related Work

The first prominent work reported to address reconfigurability for resource-
constrained systems is [7]. In this paper, Costa et al. propose a middleware

framework for embedded systems. Their approach focuses on a kernel provid-
ing primary services needed in a typical resource-limited node. Specifically, their
work supports customizable component-based middleware services that can be

tailored for particular embedded systems. In other words, this approach enables
reconfigurability at the middleware level, while our proposal tries to give this
ability to the application services through underlying middleware services.

Efforts for achieving adaptivity in WSNs have continued by Horr et al [6].
They proposed DAVIM, an adaptable middleware enabling dynamic service man-
agement and application isolation. Particularly, their main focus in this work is
on the composition of reusable services in order to meet the requirements of

simultaneously running applications. In fact, they consider the adaptivity from

the view of dynamic integration of services, whereas our work tries to make the

services adaptable.
A fractal composition-based approach for constructing and dynamically recon-

figuring WSN applications is introduced in [23]. The approach uses π-calculus

semantics to unify the models of interaction for both software and hardware com-
ponents. The novel feature of that approach is its support for a uniform model of

interaction between all components, namely communication via typed channels.
Although the reconfiguration model in [23] is promising, it fails to explain under

which conditions a reconfiguration should take place.
The most relevant work in the context of reconfiguration for WSN has been

reported recently under the name of FiGaRo framework [9]. The main con-
tribution of FiGaRo is to present an approach for what and where should be

reconfigured. The former one is related to runtime component replacement, and

latter is concern with which nodes in the network should receive update code.
In fact, FiGaRo provides a run-time support for component loading, while our

approach proposes a generic solution which includes all of-the-shelf adaptation
services besides the feature of run-time component loading.

7 Conclusion and Future Work

In this paper, we proposed WiSeKit as a middleware solution making adaptation
and reconfiguration of WSN application software possible. We categorized our

proposal into three different layers according to the hierarchical architecture of

WSN and presented WiSeKit features for each type of node. The hierarchical
adaptation decision of WiSeKit conforms the hierarchical architecture of WSNs



WiSeKit: An Adaptation Middleware for WSNs 57

so that based on the resource availability in a node as well as the portion of the

network covered by a node, adaptation and reconfiguration are performed.
This paper focused only on adaptation for the portion of application running

on sensor nodes, while the part of application deployed on cluster head and sink

may need to be adapted as well. This issue will be addressed in our future work.
The work reported in this paper is a part of our comprehensive solution for

self management in WSNs. Integrating this work with the other work reported

in [5], [17] is another future direction. Developing a complete home monitoring

application based on the proposed middleware is also included in the plan for

future work.

Acknowledgments. This work was partly funded by the Research Council of

Norway through the project SWISNET, grant number 176151.

References

1. Puccinelli, D., Haenggi, M.: Wireless Sensor Networks: Applications and Challenges
of Ubiquitous Sensing. IEEE Circuits and Systems 5(3) (2005)

2. Costa, P., et al.: The RUNES middleware for networked embedded systems and its
application in a disaster management scenario. In: Proc. of PERCOM (2007)

3. Akyildiz, I.F., Kasimoglu, I.H.: Wireless Sensor and Actor Networks: Research
challenges. Ad Hoc Networks Journal 2(4), 351–367 (2004)

4. Dunkels, A., Grnvall, B., Voigt, T.: Contiki-A Lightweight and Flexible Operating
System for Tiny Networked Sensors. In: Proc. of EmNetS-I (2004)

5. Taherkordi, A., Eliassen, F., Rouvoy, R., e-Trung, Q.: ReWiSe: A New Component
Model for Lightweight Software Reconfiguration in Wireless Sensor Networks. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008 Workshops. LNCS, vol. 5333,
pp. 415–425. Springer, Heidelberg (2008)

6. Horré, W., Michiels, S., Joosen, W., Verbaeten, P.: DAVIM: Adaptable Middleware
for Sensor Networks. IEEE Distributed Systems Online 9(1) (2008)

7. Costa, P., et al.: A Reconfigurable Component-based Middleware for Networked
Embedded Systems. Journal of Wireless Information Networks 14(2) (2007)

8. Grace, P., Coulson, G., Blair, G., Porter, B., Hughes, D.: Dynamic reconfiguration
in sensor middleware. In: Proc. of the 1st ACM MidSens, Australia (2006)

9. Mottola, L., Picco, G., Sheikh, A.: FiGaRo: Fine-Grained Software Reconfiguration
for Wireless Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913,
pp. 286–304. Springer, Heidelberg (2008)

10. Huebscher, M.C., McCann, J.A.: Adaptive middleware for context-aware applica-
tions in smart homes. In: Proc. of the MPAC, Canada, pp. 111–116 (2004)

11. Mozer, M.: Lessons from an Adaptive Home. In: Smart Environments: Technology,
Protocols, and Applications, pp. 273–298. Wiley, Chichester (2004)

12. Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.: Dynamic Configuration of
Resource-Aware Services. In: ICSE, pp. 604–613. IEEE Computer Society, Los
Alamitos (2004)

13. Garlan, D., et al.: Rainbow: Architecture-based self-adaptation with reusable in-
frastructure. Computer 37(10), 46–54 (2004)

14. Lutfiyya, H., et al.: Issues in Managing Soft QoS Requirements in Distributed
Systems Using a Policy-Based Framework. In: Sloman, M., Lobo, J., Lupu, E.C.
(eds.) POLICY 2001. LNCS, vol. 1995, p. 185. Springer, Heidelberg (2001)



58 A. Taherkordi et al.

15. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–52 (2003)

16. Kephart, J.O., Das, R.: Achieving Self-Management via Utility Functions. IEEE
Internet Computing 11(1), 40–48 (2007)

17. Taherkordi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: A Self-Adaptive Context
Processing Framework for Wireless Sensor Networks. In: Proc. of the 3rd ACM
MidSens in conjunction with Middleware 2009, Belgium, pp. 7–12 (2008)

18. Le-Trung, Q., Engelstad, P., Taherkordi, A., Pham, N.H., Skeie, T.: Information
Storage, Reduction, and Dissemination in Sensor Networks: A Survey, In: Proc. of
the IEEE IRSN Workshop, Las Vegas, US (2009)

19. Paula, J., et al.: Transparent dynamic reconfiguration for CORBA. In: Proc. of the
3rd International Symposium on Distributed Objects and Applications (2001)

20. Zhang, J., Cheng, B., Yang, Z., McKinley, P.: Enabling safe dynamic component-
based software adaptation. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems III. LNCS, vol. 3549, pp. 194–211. Springer,
Heidelberg (2005)

21. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-Time Dynamic Linking for
Reprogramming Wireless Sensor Networks. In: Proc. of ACM SenSys (2006)

22. http://www.sics.se/contiki/

23. Balasubramaniam, D., Dearle, A., Morrison, R.: A Composition-based Approach
to the Construction and Dynamic Reconfiguration of Wireless Sensor Network
Applications. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954,
pp. 206–214. Springer, Heidelberg (2008)


	WiSeKit: A Distributed Middleware to SupportApplication-Level Adaptation inSensor Networks
	1 Introduction
	2 Motivating Application Scenario
	3 BasicDesignConcepts
	4 WiSeKit Adaptation Middleware
	4.1 Sensor Side
	4.2 Cluster Head Side
	4.3 Sink Side

	5 Preliminary Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments.
	References


