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ABSTRACT 

 

The performance of an on-chip interconnection architecture used for communication between IP cores 

depends on the efficiency of its bus architecture. Any bus architecture having advantages of   faster bus 

clock speed, extra data transfer cycle, improved bus width and throughput is highly desirable for a low 

cost, reduced time-to-market and efficient System-on-Chip (SoC). This paper presents a survey of 

WISHBONE bus architecture and its comparison with three other on-chip bus architectures viz. Advanced 

Microcontroller Bus Architecture (AMBA) by ARM, CoreConnect by IBM and Avalon by Altera. The 

WISHBONE Bus Architecture by Silicore Corporation appears to be gaining an upper edge over the other 

three bus architecture types because of its special performance parameters like the use of flexible 

arbitration scheme and additional data transfer cycle (Read-Modify-Write cycle). Moreover, its IP Cores 

are available free for use requiring neither any registration nor any agreement or license.  
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1. INTRODUCTION 

The introduction and advancement of multimillion-gate chips technology with new levels of 

integration in the form of the system-on-chip (SoC) design has brought a revolution in the 

modern electronics industry. With the evolution of shrinking process technologies and increasing 

design sizes [1], manufacturers are integrating increasing numbers of components on a chip. 

Researchers and producers, with every new day, intend to include programmable components like 

the general-purpose processors cores, digital signal processor cores, or application-specific 

intellectual property (IP) cores, on-chip memory, and other application-specific circuits on a SoC 

turning it into a highly complex multimillion transistor integrated circuits. Bernini rightly 

concludes that a SoC these days has turned into an IC that implements most or all the functions of 

a complete electronic system [2].                     
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However, these developments are not free from problems and challenges. In addition to the testing 

of performances of topologies in terms of primary parameters like area, delay and power dissipation 

[3], the biggest challenge, for designers, is the implementation of the on-chip interconnections [4] 

while using buses in the SoC design. With ever increasing emphasis on the application of the 

design re-use, the situation for the designers has become more complex and the task of bus 

interfacing and interconnections has turned into a highly complicated affair. It is a well known 

fact that the balance of computation and communication in any application is quite a significant 

determinant of delivered performance. Therefore, the designing and integration of IP cores, 

having different interfaces and communication protocols, as constituents of SoCs not only assume 

a significant proportion but also turn out to be a major challenge for the designers. One of the 

possible solutions lies in the use of standard internal connection bus for interconnecting design 

components in SoC application modules so as to make it quite convenient for the present and the 

future re-use.  

 

The present VLSI design scenario under the constraints of rapidly increasing operation 

frequencies and ever growing chip size brings the designers face to face with the problem of the 

on-chip bus organized communication architecture in SoC technology. The system performance 

is dependent  on the CPU speed as well as on the efficient bus architecture [5] which along with 

arbitration helps in maximizing the performance of the system by reducing contention. Being 

aware of the fact that the very efficiency of the bus architecture is generally responsible for the 

performance of the SoC design, the manufacturers like the IBM, ARM, ALTERA, SILICORE 

etc. tried successfully solving this problem of organized communication architecture by 

developing standards of on-chip bus structures and making the same publicly available.  

 

This paper attempts mainly to present a survey of the WISHBONE bus architecture developed by 

the SILICORE [6], and making a comparison of its selective features with that of some other 

popular on-chip standardized bus architectures such as AMBA [7], CoreConnect [8], Avalon [9], 

etc. The paper endeavors to survey and review the features like the bus topologies, 

communication protocols, arbitration methods, bus-widths, and types of data transfers in these 

SoC organized communication architectures. 

 

The organization scheme of the paper is as follows: Section 2 presents the background and 

description of the WISHBONE bus architecture including WISHBONE interfaces, protocols and 

signal mapping. Section 3 focuses on the overview of three SoC bus architecture types namely, 

AMBA, CoreConnect and Avalon. Section 4 attempts a comparison of the four Soc Bus 

Architecture types and includes a table of comparison. Finally, the conclusion of this paper is 

presented in Section 5. 

 

2. ON-CHIP WISHBONE BUS ARCHITECTURE 

 
2.1.Background 

 
The WISHBONE specification document [10] defines the WISHBONE bus as the System-on-

Chip (SoC) architecture which is a portable interface for use with semiconductor IP cores. It is 

intended to be used as an internal bus for SoC applications with the aim of alleviating SoC 

integration problems by fostering design reuse. This objective is achieved by creating a common 

interface between IP cores [11]. It improves the portability, reliability of the system, and results in 

faster time-to-market for the end user [12]. However, the cores can be integrated more quickly 
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and easily by the end user if a standard interconnection scheme is adopted. The WISHBONE bus 

helps the end user to accomplish all these objectives at one platform. Intended as a general 

purpose interface, WISHBONE bus defines a standard set of signals and bus cycles to be used 

between IP core modules making no attempt to regulate the application specific functions of the 

IP core. On-Chip design of WISHBONE Bus Architecture addresses the following three issues: 

 

2.1.1 Definition of WBA Interface 

 

The issue of the physical structure of the Wishbone Bus Architecture is defined under the WBA 

Interface. There are two types of interfaces under the WISHBONE bus. These are called 

MASTER and SLAVE interfaces. Cores that help to generate bus cycles are identified as 

MASTER interfaces and the cores capable of receiving bus cycles are designated as SLAVE 

interfaces. As these interfaces range from single to complex architectures, there are a number of 

ways to connect between the MASTER and the SLAVE interfaces in a WISHBONE bus. These 

include Point-to-point interconnection, Data flow interconnection,  Shared bus interconnection 

and Crossbar switch interconnection. All these different ways of interface interconnections have 

been elaborated under sub section 2.2 below.  

 

2.1.2 Selection and configuration of WISHBONE Bus Protocols 

 

WISHBONE Bus protocols specify the manner in which transactions occur. These protocols 

include the implementation of arbitration mechanism in centralized or distributed bus arbiters. 

The issue of bus contention during the selection and configuration of WISHBONE bus protocol is 

settled or decided with the help of Handshaking protocol; deployment of different arbitration 

schemes such as Round Robin, TDMA, CDMA, Static Priority, Token Passing etc. All these 

strategies are application specific in WISHBONE Bus. These issues find a detailed elaboration 

under sub section 2.3 of this paper. 

 

2.1.3 Signal Mapping 

 

Signal Mapping under WISHBONE bus is a process of associating Master and Slave devices in 

the bus Architecture. It also includes Bus Cycles. Although WISHBONE allows combining of all 

its signals between the MASTER and SLAVE interfaces yet each can do it at its own expense. 

WISHBONE signals have been grouped into three categories: Common Signals, Data Signals, 

and Bus Cycle Signals [13]. The issues of WISHBONE signal types and WISHBONE bus cycles 

have been dealt with relevant details in sub section 2.4 of this paper. 

 

2.2 Interfaces 

 

Bus interfacing involves an electronic circuit that is responsible for driving or receiving data or 

power from a bus. So far as the interfacing in the WISHBONE bus is concerned, the on-chip 

WISHBONE bus architectures [14] can be classified as: Point-to-point interconnection, Shared 

bus interconnection, Crossbar switch interconnection, Data flow interconnection, and Off-chip 

interconnection. As the implementation of the Off-chip interconnection, fits generally into one of 

the other four basic types, therefore it is not included under a separate heading for discussion in 

this paper. The other four basic types of WISHBONE interconnections are:   
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2.2.1 Point to Point Interconnection 

 
 A Point-to-Point interconnection supports direct connection of two participants that transfer data 

according to some handshake protocol. It implies that a single master has a direct connection to a 

single slave. This is the simplest way of connecting two IP cores and the traffic is controlled by 

the handshaking signals. As the Point-to-point INTERCON only supports connection of a single 

master interface and a single slave interface, its limitations do not make it suitable for SoC multi-

device inter-connection.    

 
 

                                                                     

 

 

 

 

 

Figure – 1 Point to Point Interconnection 

 

2.2.2 Shared Bus Interconnection 
 

In a Shared Bus interconnection many masters and slaves share the bus with each other. 

However, only one master at a time can use the bus, and the other masters have to wait for their 

turn. An arbiter controlling the bus decides which master may use it at a particular moment. As a 

Shared bus INTERCON supports a single channel connection allowing only one master to initiate 

a bus cycle to a target slave through connected channel at a time, the data transfer rate of the 

shared bus INTERCON also turns out to be of limited nature. 

 
 

         

                                                            

                                                             

 

 

 

 

 

 Figure – 2   Shared Bus Interconnection 

 

2.2.3 Crossbar Switch Interconnection 
 

 A Crossbar Switch Interconnection WISHBONE supported topology can be used in multi core 

SoCs where more than one master can simultaneously access several slaves. There are multiple 

ways for data to be transferred between masters and slaves in a crossbar switch interconnection. 

Therefore two or more masters can communicate with slaves at the same time, as long as it isn't 

the same slaves. As compared to a shared bus, it leads to a higher data transfer rate. In this type of 

interconnection, there is always an arbiter to control the bus. Arbiter decides which master may 

communicate with which slave. As the use of a cross-bar interconnect system in WISHBONE 

enables multiple masters to communicate, concurrently, with multiple slaves, these interconnect 

has a limited scalability due to a centralized resource. The square of connected component 

numbers increases complexity. 
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Figure – 3 Crossbar Switch Interconnection 
                

2.2.4 Data Flow Interconnection 

 
A Data Flow interconnection works in such a way as the data is processed in a sequential manner. 

Every IP core in the data flow architecture has both a MASTER and a SLAVE interface. An IP 

Core acts as a master to the next IP Core in the sequential chain and as a slave to the IP Core prior 

to it. Data flows from core-to-core. Sometimes this process is called pipelining. The data flow 

architecture also exploits parallelism, thereby speeding up execution time. The traffic is 

controlled by the handshaking signals. A dataflow interconnection topology supported by 

WISHBONE can be useful for linear systolic array architectures used in implementation of DSP 

algorithms [15].  
  

 

 

 

 

               

 

 

Figure – 4 Data Flow Interconnection 

 

 

2.3. WISHBONE PROTOCOLS 

 
All Communication Protocols deal with different types of algorithms which are used for 

determining access to different interconnections [16]. A brief survey pertaining to the main 

protocol strategies and the main features of the existing protocols with special reference to the 

particular bus type making use of the same is presented as under:  
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2.3.1 Static – Priority 

 
The Static-Priority protocol is used in shared bus interconnection architectures. It employs an 

arbitration technique wherein centralized arbiter examines requests accumulated from each 

master and grants access to the master of the highest priority. The use of this arbitration technique 

in WISHBONE protocol is application specific while in Avalon bus protocol [9] it is on the slave 

side or distributed arbitration. Like WISHBONE bus, AMBA bus [7] also deploys Static-Priority 

protocol which is application specific except in the case of the APB or the Advanced Peripheral 

Bus. 

 

2.3.2 Round Robin 

 
This protocol deploys an arbitration mechanism which makes use of statically assigned arbitration 

numbers for resolving the conflict during the process of arbitration [17]. Under the Round Robin 

mechanism every master shares the bus with each slave device. Appropriately, this protocol is 

used in crossbar- bus interconnection. The use of this protocol is application specific. 

 

2.3.3 Time Division Multiple Access (TDMA) 

 
The arbitration Mechanism under TDMA is based on a timing wheel with each slot statically 

reserved for a unique master. The problem of wasted slots under this protocol is tackled by using 

special techniques. AMBA, AVALON and WISHBONE deploy this protocol. 

 

2.3.4 Lottery  
 

Under this protocol, the request for ownership of shared communication resources from one or 

more masters is accumulated with the help of a centralized lottery manager. Each and every one 

of these masters is, statically or dynamically, assigned a number of “lottery tickets” [18]. 

 

2.4 Signal Mapping 

 

This section presents a brief overview of signals of the WISHBONE bus and the bus cycles. 
 

2.4.1 WISHBONE Signals 

 

The WISHBONE interface consists of signals. These are master signals, slave signals and signals 

that are common to both masters and slaves. All WISHBONE signals use active high logic. Table 

No.1 helps in understanding the process how a master is connected to a slave. It also highlights 

whether the signals are optional or not for a WISHBONE interface. As evident from Table-1, it is 

not necessary for an IP Core to implement all signals to be WISHBONE compatible. For example 

the signals for handling error detection are optional. 
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   Table – 1 WISHBONE Signals 

 

Signal  Name  Optional  Description  

Acknowledged Out  ACK_O  No  Acknowledged signal 

from the Master to Slave 

Address Out/In  ADR_O/I()  No  Address Array  

Clock In  CLK_I  No  System Clock for 

Wishbone Interface.  

Error In/Out ERR_I/O  Yes  Indicates an abnormal 

cycle termination 

occurred.  

Data In/Out  DAT_I/O  No  Data input/output array, 

used to send/receive data.  

Write Enable In  WE_I  No  Read or Write Signals. If 

asserted it is Write signal 

otherwise Read Signal.  

Strobe In  STB_I  No  Indicates that the slave is 

selected The slave asserts 

either ACK_O, ERR_O  

Strobe Out  STB_O  No  Handshaking Signal.  

Address tag Out  TGA_O()  Yes  Contains Information 

about the address array.  

Cycle tag type Out  TGC_O()  Yes  Contains Information 

about the transfer cycle. 

Write Enable Out  WE_O  No  Shows if the transfer 

cycle is a Read or Write 

cycle. 

Reset RST_I No Reset signal 

 

          

2.4.2 WISHBONE Bus Cycles 

 

WISHBONE supports three types of bus cycles; Single Read/Write cycles, Block Read/Write 

cycles and Read-Modify-Write cycles. 

 

2.4.2.1 Single Read/Write Cycle 

 

A single read/write cycle means that only one data transfer is made each time. For example when 

a master wants to make a single read operation it presents a valid address on its address out port. 

Then it negates the write enable signal to show that a read operation is to be done. After that it 

asserts its cyclic out and strobe out signals to tell the slave that the transfer is ready to start. When 

the slave has noticed the assertion of the strobe and cyclic signals it places the right data on the 

data out port and asserts its acknowledged out signal. At the next clock edge the master will read 

the data and pull down its strobe out and cyclic out signal, which leads to that the slave negates its 

acknowledged out signal and thereby the transmission is complete. 
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2.4.2.2 Block Read/Write Cycle 

 
Block Read/Write cycles are used when a master wants to read or write multiple data arrays and 

works in a similar way as the single read/write cycle. The main difference is that the negation of 

the cyclic signal from the master does not occur until all data is transferred, instead the strobe and 

acknowledge signals control the flow of data arrays between the master and the slave. The master 

can put in wait states by pulling down its strobe signal, whereas the slave can put in wait states by 

pulling down it’s acknowledge signal. 

 

2.4.2.3 Read-Modify-Write (RMW) Cycle 

 
RMW cycle is used to avoid the possibility of two or more masters gaining access to the same 

slave. Such a possibility may occur in systems having multiple processors that share memories. It 

becomes important to ensure that they don't access the same memory at the same time. To prevent 

such a happening, a slave under use must be blocked. This is often done by assertion of a 

semaphore bit. If a master reads that a semaphore bit is asserted it knows that the slave is 

accessed by another master. The master has to use a RMW cycle in such a situation. First the 

master reads the semaphore bit and if it is cleared the master will assert it by writing something to 

it during the same transfer cycle. If the same procedure would be done by using single read and 

write operations another master could try to access the slave between the read and write 

operation, leading to that both masters would get access to the slave at the same time. In other 

words a RMW cycle gives a master the opportunity to both do a read and a write operation before 

any other master may use the bus and thereby avoiding a system crash. 
 

3. SOC BUSES OVERVIEW 
 

As an overview of the WISHBONE bus has been attempted in the previous section, therefore the 

focus in this section is on presenting an overview of only three SoC buses -- AMBA, 

CoreConnect and Avalon. Due to space limitation, the strategy used here in this section is to rely 

on describing the selective and more distinctive features of every one of these buses.  

 

3.1 AMBA 

 

AMBA is an abbreviation of the Advanced Microcontroller Bus Architecture. This particular bus 

standard has been devised by ARM [7] to support on-chip communications among the processor 

cores manufactured by this particular company.  AMBA is, nowadays, one of the leading on-chip 

bus systems used in high performance SoC design. The most important issue in a SoC these days 

is not only the housing of components or blocks but also the way these are interconnected. 

AMBA provides an efficient solution for the blocks to interface with each other [19]. AMBA 

(shown in Fig. 5) is organized hierarchically into two bus segments --- System- bus and 

Peripheral-bus, which are mutually connected through a bridge that serves to buffer data and 

operations between these segments. Specifications issued along with AMBA define the Standard 

bus protocols used for connecting on-chip components generalized for different SoC structures, 

and independent of the processor type. However, the method of arbitration is not defined in 

AMBA specifications. Instead, the arbiter is allowed to be designed as per the suitability of the 

application requirements. There are three distinct bus types specified within the AMBA bus. 

These are ASB, AHB and APB. 
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3.1.1 ASB or Advanced System Bus 

 
It is meant to be used for simple cost-effective designs that support burst transfer, pipelined 

transfer operation, and multiple bus masters. This is the typical first generation bus of the AMBA 

system bus series.  

 

3.1.2 AHB or Advanced High-performance Bus 

 

This is a later generation bus of the AMBA bus system series. Unlike the ASB, it is intended for 

high performance designs and for providing communication channel with a high bandwidth. It 

supports multiple bus masters operation, peripheral and burst transfers, split transactions, wide 

data bus configurations, and non tristate implementations.  Master, slave, arbiter, and decoder are 

the main constituents of the AHB. The high bandwidth communication channel is meant to serve 

between embedded processor (ARM, MIPS, AVR, DSP 320xx, 8051, etc.); and peripherals meant 

for high performance as well as hardware accelerators such as MPEG, ASICs, Colour LCD, etc; 

on-chip SRAM; APB bridge and on-chip external memory interface.  

 
 

 
  

 

  

 

 

 

 

 

 

 

 

 

             

           

                                                                     

                                                             

 

   

 

Figure – 5   AMBA based System Architecture 
 

3.1.3 APB or Advanced Peripheral Bus 

 
It is the bus system devised to connect general purpose low-speed low-power peripheral devices. 

Except for the bridge that is deployed as the peripheral bus master, all other APB bus devices 

such as the Timer, UART, PIA, etc. are used as slaves. In order to achieve the target of easy 

interfacing, the APB provides a simple addressing with latched addresses and control signals. 

This type of internal mechanism renders APB as a static bus. Recently, two new specifications 

(Multi-Layer AHB and AMBA AXI) have been added and defined under the AMBA bus system 

series. The Multi-layer AHB [20] provides more flexible interconnect architecture with respect to 

AMBA AHB. It is in the form of matrix which enables parallel access paths between multiple 

masters and slaves. It helps to keep the AHB protocol unchanged. On the other hand, AMBA 

AXI is based on the concept of point-to-point connection [21]. 

High 

Bandwidth 

External 

Memory  

MPEG 

DSP 

320xx 

On- Chip 

RAM 

ARM 

Processor 

8051 

LCD 

Control 

UART 

Keypad 

TIMER 

PIO 

Bridge 



International Journal of  VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012 

116 

3.2 CoreConnect 

 
CoreConnect, an on-chip bus developed by IBM [8], allows the reuse of processor, sub-system 

and peripheral core, supplied from different sources, and helps these to integrate into a single 

VLSI design. This bus architecture is hierarchically organized.  “Fig. 6,” shows not only the 

architecture of the three buses (PLB, OPB, and DCR) but also how these three combine to 

comprise the CoreConnect bus and its hierarchical organization. The architecture of this type 

helps in providing an efficient interconnection of cores, custom logic and library macros within a 

SoC 
 

3.2.1 PLB or Processor Local Bus 

 
This comprises the main system bus under CoreConnect. As per its features, it is a synchronous, 

multi-master, centrally arbitrated bus capable of achieving high-performance and low-latency on-

chip communication. Concurrent read and write transfers are supported by separate address bus, 

and data bus.  Interconnection of various master and slave macros is achieved by using PLB 

macro, as glue logic. PLB is attached to each PLB master through separate addresses, read or 

write data buses and control signals. On the other hand shared, but decoupled, read and writes 

data buses, addresses are used to attach the slaves to PLB. It can support up to 16 masters. 

However, there are no restrictions in the number of slave devices to be attached to the PLB [8]. 

 

3.2.2 OPB or On-chip Peripheral Bus  

 

CoreConnect is designed to connect low speed, low throughput peripherals, (like serial and 

parallel port, UART, etc). As per its features, the OPB is capable of fully synchronous operation, 

dynamic bus sizing, separate address and data buses, multiple OPB bus masters. The bus cycle 

and data transfer features include single cycle transfer of data between OPB bus master and OPB 

slaves, single cycle transfer of data between bus masters, etc. In terms of its implementation the 

OPB is a multi-master, arbitrated bus that makes use of distributed multiplexer instead of tristate 

drivers. In case of the PLB masters trying to gain access to the peripherals on the OPB bus, it is 

allowed through the OPB bridge macro that acts as a slave device on the PLB and a master device 

on the OPB. 

 

3.2.3 DCR bus or Device Control Register Bus 

 
CoreConnect is a single master bus mainly used as an alternative (relatively low speed data path) 

to the system for two reasons. First, it is used for passing status and setting configuration 

information into the individual device-control- registers between the Processor Core and others 

SoC constituents such as Auxiliary Processors, On-Chip Memory, System Cores, Peripheral 

Cores etc. Second, it is used as a design for testability purposes. As per its features, DCR bus is a 

synchronous bus based on a ring topology which is implemented as distributed multiplexer across 

the chip. The address bus in DCR bus consists of 10-bits and the data bus consists of 32-bit. The 

arbitration in the CoreConnect is implemented on the basis of static priority, and with 

programmable priority fairness. 
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 Figure – 6 CoreConnect Bus Architecture 

 

3.3 AVALON 
 

The Avalon bus [22] is the bus system owned and used by Altera Corporation to interconnect 

SOPC devices, especially the Nios processor(s) and other Avalon peripherals. Being an Altera’s 

parameterized bus, Avalon is mainly used for FPGA SoC design based on Nios processor [23]. 

The Avalon implements simultaneous multi-master bus architecture. The main advantage of this 

architecture lies in its eliminating the bandwidth-bottleneck as it offers increased bandwidth 

between peripherals regardless of the bus standard that connects them. [24] In Avalon bus the bus 

masters contend for individual slaves, not for the bus itself, therefore, multiple masters can be 

active at the same time and can simultaneously transfer data to their slaves. As long as another 

master does not access the same slave at the same time,   Masters can access a target slave 

without any delay or waiting. As Arbitration is required when two masters contend for or connect 

to the same slave, Avalon implements distributed arbitration by using the technique called slave-

side arbitration.    

 

The Avalon bus supports an entirely in-built arbitration implementation for its Nios-based 

systems using this bus module. The Avalon bus is an active, on-chip bus architecture consisting 

of logic and routing resources inside a PLD. It supports a set of predefined signal types and a user 

can connect IP blocks with the help of the same. It uses separate address, data and control lines. 

Avalon has a synchronous interface. It specifies the port connections between master and slave 

components. The Avalon specification also includes and indicates the timing by which the master 

and slave components communicate. Avalon includes a number of features and conventions to 

support automatic generation of systems, busses, and peripherals by the SOPC Builder software. 
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 Figure – 7 Avalon Bus Architecture  

 

In addition to the Multiple Masters Bus Architecture, the other features available to the Avalon 

supported peripherals include --  up to 4GBytes address space; synchronous interface; separate 

address, data and control lines; built-in address decoding; Wizard-based configuration; dynamic 

bus sizing; wait state generation;  interrupt priority assignment; latent transfer capabilities; and a 

streaming Read and Write capabilities. 

 

4. COMPARISON OF SoC BUSES 
 

It was Rudolf Usselmann of OpenCores, who attempted a comparison of noted significance on 

three bus types – AMBA, WISHBONE and CoreConnect [25]. Patrick Pelgrims, Tom Tierens 

and Dries Driessens have added Avalon bus with the above mentioned three bus types, thus 

carrying the number under analytical survey to four buses [26]. Another comparative survey has 

been made by Milica Miti´c and Mile Stojˇcev. It is based on a criterion comprising five 

parameters namely; Topology, Synchronicity, Arbitration, Bus width and Operating Frequency 

[27]. The present paper adds three more features -- Nature of the Open Source, Architecture and 

Data Transfer -- to the earlier existing parameters to make the comparison more comprehensive in 

its application in respect of four bus types briefly mentioned above in this part of the paper. A 

Comparative Table (i.e. Table -2) at the end sums up this section comparing the four bus types in 

their selective features. 

 

4.1 Nature of the Open Source/ Standard 

 
First three out of the four bus types included in this review are open standard buses. No license 

/royalty are required to develop and sell products that use, or are based on the interfaces of these 

buses. AMBA and CoreConnect are open and free but require a registration before use. The user 

is required to register though free of cost before using their interfaces. Avalon leans a bit towards 

proprietary nature. The ModelSim-Altera Starter Edition software of Avalon, the Quartus II Web 

Edition software of Avalon and Altera IP mega functions in Avalon [28], do not require license 

MASTER 1 

(SYSTEM CPU) 

MASTER 2 

DMA 

CONTROLLER 

UART Parallel   

I/O 

Program 

Memory 

Data Memory 

ARBITER 



International Journal of  VLSI design & Communication Systems (VLSICS) Vol.3, No.2, April 2012 

119 

files, but one needs a valid license file to run and use other software manufactured and marketed 

by this company. However, among all the four buses discussed in this paper, it is the 

WISHBONE bus which is open standard in the real sense because it doesn’t bind its user in any 

way. It is not copyrighted. It requires no license agreement or registration at all. As it is in the 

public domain, its IP cores are available free for use to every user.  In other words, the 

WISHBONE standard may be used for designing and production of integrated circuit components 

without royalties or other financial obligations.  

 

4.2 Architecture 

 
In terms of architecture AMBA and CoreConnect support hierarchical structure [29]. There are 

three levels of hierarchy in the CoreConnect bus. These are: On-chip Peripheral Bus (OPB), 

Processor Local Bus (PLB) and Device Control Register (DCR) bus. AMBA (Advanced Micro 

controller Bus Architecture) from ARM has two levels of hierarchy. These are: the Advanced 

High performance Bus (AHB), and the Advanced Peripheral Bus (APB). While AHB is similar to 

PLB in CoreConnect, the APB of AMBA is similar to OPB in CoreConnect. However, 

WISHBONE and Avalon do not support hierarchical structure. WISHBONE, in the hierarchical 

view of its architecture only supports structured design methodologies [30]. All other three buses 

except WISHBONE are capable of supporting features of pipelined architecture. In WISHBONE 

the possibility of this type of feature may only occur under the Dataflow interfacing. All the four 

bus types are similar in terms of supporting the multiplexed structure of architecture. AMBA and 

Avalon are (Multi) MASTER- (Multi) SLAVE buses and their arbitration scheme depends upon 

logic interface. CoreConnect also deploys (Multi) MASTER- (Multi) SLAVE architecture but in 

its case the maximum limit of the MASTERS deployed is eight only. Its arbitration depends on 

different priority schemes available. The architecture of WISHBONE bus is also (Multi) 

MASTER / (Multi) SLAVE but its arbitration logic is user defined.  

 

4.3 Topology 
 

The topology refers to the way SoC components are connected. It can be in the form of single 

shared architecture, dedicated communication channels or more complex architectures such as 

hierarchical buses, token ring or crossbars. AMBA makes use of hierarchical bus topology; 

Avalon deploys the point to point topology; CoreConnect is different from these because its 

topology has the shared data lines while the control lines form a point to point ring; the topology 

of WISHBONE is comparatively open ended as it may make use of a point to point, a ring, a 

shared bus or a cross-bar interconnection network. The multi-master capability of WISHBONE 

enables it for multi-processing [31]. 

 

4.4 Synchronicity 

 
Synchronicity is a feature of Clocking in a bus. If a single clock is used for the communication 

medium and its connected cores, the system is referred to as a synchronous system. 

Communication medium synchronization occurs with the help of handshaking protocol that uses 

request-acknowledgement signals to ensure that data transfer is completed successfully. 

Handshaking is also used in synchronous systems for a data transaction consisting of several data 

transfers. All the four buses included in this review are synchronous buses. 
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4.5 Arbitration 

 
AMBA (except APB which doesn’t require any arbitration) uses application specific arbitration; 

Avalon makes use of distributed arbitration also popular as the slave- side- arbitration; 

CoreConnect depends on programmable priority fairness arbitration while WISHBONE deploys 

application specific arbitration.  

 

4.6 Bus Width 
 

The Data bus width in AMBA is 8, 16, 32 bits for APB and 32, 64, 128 or 256 bits for AHB and 

ASB. The address bus width is 32 bits for AMBA. The Data bus width is 1 to 128 and the address 

bus width is 1 to 32 bits for Avalon. The Data bus width of CoreConnect is 32, 64, 128 or 256 

bytes for PLB; 8, 16 or 32 bytes for OPB; 32 bytes for its DCR while the address bus width of 

CoreConnect is 32 bytes for PLB and OPB and 10 bytes for its DCR variant. In the case of 

WISHBONE, the Data bus width is 8, 16, 32, or 64 bits and the address bus width is 1 to 64 bits. 

 

4.7 Operating Frequency 

 
AMBA and WISHBONE are quite similar in terms of their Operating Frequency because both are 

user defined. In the case of CoreConnect the operating frequency depends on the PLB width. In 

the case of Avalon it is not applicable. 

 

4.8 Data Transfer 

 
AMBA and CoreConnect can transfer data through Handshaking, Pipelined, Split and Burst 

transfer. Avalon makes use of Pipelined and Burst transfer mode. WISHBONE deploys 

Handshaking Protocol and Burst Transfer mode for the specific purpose of data transfer. 
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Table - 2 Comparisons of WISHBONE Bus, AMBA Bus, Avalon Bus and CoreConnect Bus 

  

Sr. 

No. 

Main 

Feature 

Sub Features                     Name of the Bus and its Owner 

WISHBONE     AMBA               Avalon       CoreConnect 

     (1)                    (2)                    (3)                     (4) 

1. Originator/ 

Owner 

Of  the Bus  

               ------ OpenCores       ARM    Altera 

Corporation 

    

IBM 

     

2. Status Open 

Architecture 

Yes Yes Yes (Partial) Yes 

Registration  No  Yes  Yes   Yes 

License  No No Yes No 

      

 3. Architecture  Hierarchical  No  Yes  No Yes  

Pipelined  No  Yes  Yes Yes  

Multiplexed  Yes  Yes  Yes Yes  

     

4. Topology  Point-to-Point  Yes  No  Yes  No  

Dataflow / 

Ring  

Yes  No  No  Yes  

Shared bus 

(unlevel) 

Yes  No  No  No   

Crossbar 

Switch  

Yes  Yes  No  No  

     

5. 

  

Arbitration  

 

 

 

 

 

 

 

 

 

 

 

 

Arbitration  

Static Priority Yes  

(Application 

Specific) 

Yes  

(Application 

Specific 

 (Except 

APB) 

Yes 

 (Slave Side) 

Yes  

TDMA Yes  

(Application 

Specific) 

Yes  

(Application 

Specific)  

(Except  

APB) 

Yes 

 (Slave Side) 

No  

CDMA Yes  

(Application 

Specific) 

Yes  

(Application 

Specific) 

 (Except  

APB) 

Yes 

 (Slave Side) 

No 

Round Robin Yes  

(Application 

Specific) 

Yes  

(Application 

Specific) 

(Except  

APB) 

Yes 

 (Slave Side) 

No 

Lottery Yes  

(Application 

Specific) 

Yes  

(Application 

Specific) 

(Except  

Yes  

(Slave Side) 

No 
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APB) 

Token Passing Yes  

(Application 

Specific)  

Yes  

(Application 

Specific) 

(Except  

APB)  

Yes  

(Slave Side) 

No 

     

6. Data 

Transfer 

Handshaking  Yes  Yes  No  Yes  

Pipelined  No  Yes  Yes  Yes  

Split Transfer  N/A  Yes  No  Yes  

Burst Transfer  Yes  Yes  Yes  Yes  

     

 7. Bus Width  

 

 

System bus or  

Data bus 

width 

(In  Bits) 

 

8 – 64  8 -- 1024  1 – 128  64-- 

2048 

Peripheral bus 

or 

Address bus                              

width (in Bits) 

1 -- 64  1 – 32  1 -- 32 8 -- 

256 

     

8. Clocking  Synchronous  Yes  Yes  Yes  Yes  

 Asynchronous  No  No  No  No  

     

9. Operating 

Frequency  

             ------- User 

defined 

User 

defined 

User 

defined 

Depen

ds on        

PLB 

Width 

 

5. CONCLUSION 

 
A survey of the WISHBONE bus and its comparison with three other buses AMBA from the 

ARM, CoreConnect from the IBM and Avalon by the Altera Corporation reveals that in terms of 

compared performance parameters, the WISHBONE bus tends to gain an upper edge over the 

other three types because it provides for connecting circuit functions together in a way that is 

simple, flexible and portable [32] due to its synchronous design. It aides the system integrator by 

standardizing the IP Core interfaces that  makes it much easier not only to connect the cores but 

also to create a custom System-on-Chip. The performance parameters like variable 

interconnection and variable timing specification provide flexibility to its programming process 

and its frequency range respectively. The WISHBONE bus differs from other buses over the 

issues of registration before use, in offering Support and Development Tools, in terms of 

designing one’s own Libraries for plug-and-play logic utilization, in terms of Bus Architecture 

and Transfer Cycles because WISHBONE offers  Read-Modify-Write (RMW) transfer that none 

of the other bus architectures does. At the end, this paper endorses the view held by Rudolf 

Usselmann [33] that it would be a wise choice to adopt WISHBONE as a primary interface to our 

cores because its signaling appears to be very intuitive and should be easily adopted to the other 

interfaces when needed.  
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