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1 Introduction

The two most relevant features of dark matter (DM) particles are their feeble interactions
with standard model particles and their cosmological stability. In addition DM is required
to be sufficiently cold in order to allow for efficient structure formation.

A realization of all these features are weakly interacting massive particles (WIMPs).
Thermally produced in the early Universe their large, of order TeV scale mass ensures that
by now they are non-relativistic and therefore sufficiently cold. Their interactions are small
due to the large mass of the mediator particles (such as W or Z bosons) which makes the
interaction very short ranged. Despite this, their large mass and the correspondingly large
phase space is at odds with the required stability on cosmological time-scales. In order to
ensure this stability one is therefore forced to introduce symmetries that conserve the number
of these DM particles. However, motivating these symmetries on theoretical grounds is non-
trivial. Global symmetries may be broken in quantum gravity whereas local symmetries lead
to additional interactions which may cause conflicts with the required weakness of the DM
interactions. Nevertheless good candidates exist. Two of the most famous examples are:
the lightest supersymmetric particle in supersymmetric models with R-parity (see, e.g. [1]
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for a review), or the lightest Kaluza-Klein modes in models with conserved parity in extra
dimensions (see, e.g. [2] for a review), both models very appealing because of their connection
with more fundamental theories of space and time, and their discovery potential at the LHC.

Although it is way too early to make a final judgement it is nevertheless noteworthy
that the initial searches at LHC have not given any indication of the existence of WIMPs.
Because of this and the mentioned theoretical issues it is interesting and timely to consider
alternative ways to realize the essential features of DM.

Sufficient stability of the DM particles can also be achieved by combining the weakness
of their interactions with a sufficiently small mass. The latter drastically reduces the phase
space (and the number/type of possible decay products) thereby increasing the lifetime. This
is the road we want to pursue in this paper: we will concentrate on very weakly interacting
slim particles (WISPs) as DM candidates.

Yet, a thermally produced light DM candidate can run foul of the required coldness
of DM and can prevent structure formation. More precisely, the free-streaming length (the
distance a DM particle can travel before getting trapped in a potential well) would increase
with decreasing mass, and therefore at some point these DM particles would be inconsis-
tent with the existence of dwarf galaxies, galaxies, clusters, superclusters and so on. This
argument can be used for instance to rule out standard neutrinos as DM. This reasoning is
extremely powerful in light of the increasingly precise cosmological data at our disposal and
even subdominant components of thermally produced light DM can be ruled out, the case of
eV mass axions being a prime example (see, e.g. [3]).

However, there are non-thermal means for producing sufficiently cold dark matter made
of light particles. One of the most interesting is the misalignment mechanism, discussed
mostly in the case of the QCD axion [4–6] or (recently) string axions [7–10] and the central
topic of this paper. Very recently, this mechanism has also been proposed to produce cold
dark matter (CDM) out of hidden photons (HPs) [11].

In this paper, we shall revisit the misalignment mechanism for both cases: we treat
first axion-like particles (ALPs — which may arise as pseudo-Nambu-Goldstone bosons in
field theory and appear generically in all string compactifications) and then hidden photons.
Our conclusions turn out to be extremely motivating. Once produced, a population of very
light cold dark matter particles is extremely difficult to reabsorb by the primordial plasma.
Therefore, we find that in both cases, ALPs and HPs, a huge region in parameter space
spanned by their masses and their couplings to standard model particles can give rise to the
observed dark matter. These topics have already been discussed in some detail in [11, 12].
The novelty in this work is that we shall provide new constraints and expose interesting
regions of parameter space relevant for direct and indirect searches.

The outline of this paper goes as follows: in section 2 we review the essentials of the
misalignment mechanism. In sections 3 and 4 we elaborate on two particular cases, axion-
like particles and hidden photons, respectively. We discuss the cosmological constraints, also
noting some misconceptions in the results of [11]. In section 5 we discuss the direct detection
of ALP and HP CDM in microwave cavity experiments. We conclude in section 6.

2 Essentials of the misalignment mechanism

The misalignment mechanism relies on assuming that fields in the early universe have a
random initial state (such as as one would expect, for example, to arise from quantum
fluctuations during inflation) which is fixed by the expansion of the universe; fields with mass
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m evolve on timescales t ∼ m−1. After such a timescale, the fields respond by attempting
to minimize their potential, and consequently oscillate around the minimum. If there is no
significant damping via decays, these oscillations can behave as a cold dark matter fluid since
their energy density is diluted by the expansion of the universe as ρ ∝ a−3, where a is the
universe scale factor.

In order to be more quantitative, let us revisit this mechanism for the simple case of a
real scalar field with Lagrangian,

L =
1

2
∂µφ∂

µφ− 1

2
m2

φφ
2 + LI , (2.1)

where LI encodes interactions of the scalar field with itself and the rest of particles in the
primordial bath. We assume that the universe underwent a period of inflation at a value of
the Hubble expansion parameter H = d log a/dt larger than the scalar mass. After inflation
the field shall be approximately spatially uniform and the initial state is characterized by a
single initial value, φi. After inflation a period of reheating occurs, followed by a period of
radiation dominated expansion. The equation of motion for φ in the expanding Universe is

φ̈+ 3Hφ̇+m2
φφ = 0 . (2.2)

In general, the mass receives thermal corrections from LI which might be crucial, thus mφ =
mφ(t) should be understood.

The solution of this equation can be separated into two regimes. In a first epoch,
3H ≫ mφ, so φ is an overdamped oscillator and gets frozen, φ̇ = 0. At a later time, t1,
characterized by 3H(t1) = mφ(t1) ≡ m1, the damping becomes undercritical and the field
can roll down the potential and start to oscillate. During this epoch, the mass term is the
leading scale in the equation and the solution can be found in the WKB approximation,

φ ≃ φ1

(
m1a

3
1

mφa3

)1/2
cos

(∫ t

t1

mφ dt

)
, (2.3)

where φ1 ∼ φi since up to t1 the evolution is frozen. Note that in obtaining this solution we
have not assumed a particular form for H but just its definition, and so it is valid for the
radiation, matter, and vacuum energy dominated phases of the universe and their transitions.

The solution corresponds to fast oscillations with a slow amplitude decay. Let us call
this amplitude A(t) = φ1(m1a

3
1/mφa

3)1/2 and the phase α(t) =
∫ t

mφ(t)dt. The energy
density of the scalar field is

ρφ =
1

2
φ̇2 +

1

2
m2

φφ
2 =

1

2
m2

φA2 + . . . , (2.4)

where the dots stand for terms involving derivatives of A, which by assumption are much
smaller than mφ (mφ ≫ H in this regime). Let us also consider the pressure,

pφ =
1

2
φ̇2 − 1

2
m2

φφ
2 = −1

2
m2

φA2 cos(2α)−AȦmφ sin(2α) + Ȧ2 cos2(α) . (2.5)

At times t ≫ t1
1 the oscillations in the pressure occur at time scales 1/mφ much much faster

than the cosmological evolution. We can therefore average over these oscillations, giving

〈pφ〉 = 〈Ȧ2 cos2(α)〉 = 1

2
Ȧ2. (2.6)

1When the field just starts to oscillate the averaging employed in the following is not a good approximation
and the equation of state is a non-trivial and strongly time dependent function. Depending on when the
transition occurs this may have interesting cosmological effects on, e.g., structure formation.
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As already mentioned Ȧ ≪ mφA. Thus, at leading order in Ȧ/(Am), the equation of state
is just

w = 〈p〉/〈ρ〉 ≃ 0 , (2.7)

which is exactly that of non-relativistic matter.
It follows from (2.3) that the energy density in a comoving volume, ρa3, is not conserved

if the scalar mass changes in time. The quantity

N = ρa3/mφ =
1

2
m1a

3
1φ

2
1 , (2.8)

is however constant even in this case, and can be interpreted as a comoving number of non-
relativistic quanta of mass mφ. Here, we only need the conservation of N to compute the
energy density today as

ρφ(t0) = m0
N

a30
≃ 1

2
m0m1φ

2
1

(
a1
a0

)3
, (2.9)

where quantities with a 0-subscript are evaluated at present time.
More physics insight is gained using temperatures instead of times and scale factors.

First, we use the conservation of comoving entropy S = sa3 = 2πg∗S(T )T
3a3/45 to write

(a1/a)
3 = g∗S(T )T

3/g∗S(T1)T
3
1 . Then we use the expression for the Hubble constant in the

radiation dominated era H = 1.66
√
g∗(T )T

2/mPl and the definition of T1, 3H(T1) = m1 to
express T1 in terms of m1 and the Planck mass mPl = 1.22×1019GeV. The functions g∗ and
g∗S are the effective numbers of energy and entropy degrees of freedom defined in [13]. The
dark matter density today, (2.9), can then be expressed as

ρφ,0 ≃ 0.17
keV

cm3
×
√

m0

eV

√
m0

m1

(
φ1

1011GeV

)2
F(T1) , (2.10)

where F(T1) ≡ (g∗(T1)/3.36)
3
4 (g∗S(T1)/3.91)

−1 is a smooth function ranging from 1 to ∼ 0.3
in the interval T1 ∈ (T0, 200GeV). The abundance is most sensitive to the initial amplitude
of the oscillations, ∝ φ2

1, and to a lesser degree to today’s mass m0. The factor ∝ 1/
√
m1

reflects the damping of the oscillations in the expanding universe: the later the oscillations
start, i.e. the smaller T1 and therefore H1 and m1, the less damped they are for a given m0.

If we compare the above estimate with the DM density measured by WMAP and other
large scale structure probes [14],

ρCDM = 1.17(6)
keV

cm3
, (2.11)

it is clear that we need very large values of φ1 to account for all the dark matter. However,
a relatively small φ1 could be compensated by a small m1 ≪ m0.

If we want the condensate to mimic the behaviour of standard cold dark matter we
should ensure that, at latest at matter-radiation equality, at a temperature Teq ∼ 1.3 eV,
the mass attains its current value m0 and therefore the DM density starts to scale truly as
1/a3. In particular, at this point the field should already have started to oscillate. This
corresponds to a lower limit2 on m1, m1 > 3H(Teq) = 1.8×10−27 eV, which implies an upper
bound on ρφ,0,

ρφ,0 < 1.17
keV

cm3
× m0

eV

(
φ1

53TeV

)2
. (2.12)

2See also [15].
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In other words if we want these particles to be the DM, we need that (m0/eV)(φ1/53TeV)2 >
1, giving us a constraint on the required initial field value as a function of the mass today.

To conclude this section let us note that dark matter generated by the misalignment
mechanism may have interesting properties beyond those of cold dark matter. At the time
of their production, particles from the misalignment mechanism are semi-relativistic. Their
momenta are of the order of the Hubble constant p ∼ H1 ≪ T1; accordingly we have (outside
of gravitational wells) a velocity distribution with a very narrow width of roughly,

δv(t) ∼ H1

m1

(
a1
a0

)
≪ 1 . (2.13)

Combined with the high number density of particles, nφ,0 = N/a30 = ρCDM/m0, this narrow
distribution typically leads to very high occupation numbers for each quantum state,

Noccupation ∼ (2π)3

4π/3

nφ,0

m3
0δv

3
∼ 1042

(
m1

m0

)3/2( eV

m0

)5/2
, (2.14)

where we have used a0/a1 ∼ T1/T0 ∼ √
m1mPl/T0. If the interactions are strong enough

to achieve thermalisation, as argued in refs. [16, 17] for the case of axions, this high occu-
pation number can lead to the formation of a Bose-Einstein condensate. This could lead to
interesting properties which may also lead to interesting signatures in cosmological observa-
tions [16–20]. Although we will not investigate this intriguing possibility here, we note that
these features could also be realized for the more general light DM particles discussed in this
paper.

In the following we discuss two particularly interesting possibilities for DM from the
misalignment mechanism, axion-like particles and hidden photons.

3 Axion-like particles

In this section we will focus on a specific type of WISP, namely axion-like particles (ALPs).
By this we shall mean particles with only derivative couplings to matter, and in particular
an interaction with photons given by

L ⊃ −1

4
gφFµνF̃

µν , (3.1)

where φ is the ALP and g is a dimensionful coupling. The chief examples of ALPs are pseudo
Nambu-Goldstone bosons (pNGBs) and string “axions” which can be treated together. For
concreteness we will focus in this paper on particles of these types.

The cosmology of the ALP condensate depends on the type of interaction generating
its mass and in particular how this mass changes through the evolution of the universe. In
the following we will go through a variety of possibilities for the DM formation as well as its
cosmological viability for different scenarios. The regions which allow for viable ALP DM
are then assembled in figure 1 in the mφ–g plane.

3.1 Axion-like particles from pNGBs and string theory

When a continuous global symmetry is spontaneous broken, massless particles appear in the
low energy theory: Nambu-Goldstone bosons (NGBs). They appear in the Lagrangian as
phases of the high energy degrees of freedom. Since phases are dimensionless the canonically

– 5 –



J
C
A
P
0
6
(
2
0
1
2
)
0
1
3

normalised theory at low energies always involves the combination φ/fφ, where φ is the
NGB field and fφ is a scale close to the spontaneous symmetry breaking (SSB) scale. The
range for φ/fφ is (−π, π) and therefore the natural values for φ1 are ∼ fφ. String axions on
the other hand appear in all compactifications. They share these properties (having a shift
symmetry and being periodic) but with the natural size of fφ being the string scale (in type
II compactifications this can be somewhat modified by a factor of the typical length scale of
the compactification).

Indeed, all of the global symmetries in the standard model are broken.3 Furthermore
the black hole no hair theorem and what we know about quantum gravity tell us that this
should ultimately also occur to any additional global symmetries. Hence we should have
pseudo Nambu-Goldstone Bosons (pNGBs) instead of NGBs. They then have a mass, and
can be a dark matter candidate.

There are many possibilities for breaking the shift symmetry, explicitly or spontaneously,
perturbatively or non-perturbatively; for stringy axions, the shift symmetry is exact to all
orders in perturbation theory and is only broken non-perturbatively, for instance from a
non-abelian anomaly, gaugino condensation or stringy instantons. The ALP potential can
typically be parametrized as

V (φ) = m2
φf

2
φ

(
1− cos

φ

fφ

)
. (3.2)

The mass of the ALP is in general unrelated to the QCD axion mass and in particular will be
independent of the temperature unless generated by a sector that is thermalised. The ALP
will satisfy the equation of motion (2.2) as long as φ/fφ is small, i.e. few oscillations after
t1. The inaccuracy of the quadratic approximation can be cured by an additional correction
factor to (2.10). This is normally an O(1) factor except if we fine tune the initial condition
to φ = πfφ.

The dimensionful coupling parameter g in (3.1) can be parametrised as

g ≡ α

2π

1

fφ
N . (3.3)

In the simplest case N is an integer, but this is not true in general when the ALP mixes,
either kinetically or via symmetry-breaking effects with other ALPs or with pseudoscalar
mesons.

We can then represent the allowed regions of ALP dark matter in the mφ–g plane
by using

φ1 = θ1
αN
2πg

(3.4)

with θ1 = |φ1|/fφ, the initial misalignment angle whose range is restricted to values be-
tween −π and π. The model dependent factor N will from now on be taken to be unity,
but the reader should keep in mind that in principle it can be very different in particular
constructions.

While we shall adopt a phenomenological approach, showing the allowed region in the
mφ–g plane, as mentioned above we are motivated by both field theoretical and stringy
axion models, and so we may ask what the preferred region of the parameter space is. In
both cases, the ALP could be related to the generation of right-handed neutrino masses,

3Assuming that neutrinos are Majorana fermions, otherwise B − L is an exception.
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and hence have a decay constant at an intermediate scale, i.e. within the cosmological axion
window; alternatively it could be associated with a GUT, and have a decay constant at the
corresponding scale. For string axions, the coupling to photons will be related via a loop
factor to either the string scale or the Planck scale (or it could be even weaker — so an ALP
with a large coupling would restrict the string scale to be low). For string and field theoretical
models the most interesting values are therefore g ∼ (10−11, 10−15)GeV−1, ∼ 10−19GeV−1

and∼ 10−21GeV−1 corresponding to intermediate, GUT or Planck scales. On the other hand,
we have no preconceptions regarding preferred ALP masses; as mentioned above the mass mφ

is expected to be generated by non-perturbative effects, and thus suppressed exponentially
relative to some fundamental scale (in IIB string theory it is roughly the gravitino mass which
multiplies the exponential factor) so for example with many stringy axions (an “axiverse” [7–
10]) we could easily populate the allowed parameter region. In the following we will therefore
treat both g and mφ as theoretically unconstrained parameters.

3.2 ALP dark matter from the misalignment mechanism

The value of φ1 that determines the DM abundance depends on the behaviour of the ALP
field during inflation. For a pseudo-Nambu-Goldstone boson, the spontaneous symmetry
breaking (SSB) could take place before or after inflation: the pNGB effectively exists only
after SSB and it is during the associated phase transition that its initial values are set. For
a string axion, provided the inflationary scale is below the string scale (or, equivalently, the
decay constant) we should have control over the field theory, and so it will behave like a
pNGB with symmetry broken before inflation. Assuming its mass to be much smaller than
the Hubble scale at the time of SSB, HSSB, the ALP field will take random values in different
causally disconnected regions of the universe. The initial size of these domains cannot be
larger than

Li,dom ∼ 1

HSSB
∼ mPl

f2
φ

√
g∗(fφ)

. (3.5)

For a string axion, or for a pNGB whose associated SSB happens before inflation,
the initial domains are stretched over a size larger than the current size of the universe.
Consequently the initial field value is the same for every point within our current horizon. The
current DM density then depends on this initial field value, leaving an additional parameter
to tune the DM density.

On the other hand, if the SSB happens after inflation, the DM density has inhomo-
geneities of order O(1) at length scales . Li,dom. Non-linear effects, due to the attractive
self-interaction caused by higher order terms in the expansion of the potential (3.2), drive the
overabundances to form peculiar DM clumps that are called miniclusters [21–24]. These mini-
clusters act like seeds enhancing the successive gravitational clumping that leads to structure
formation. The minicluster mass is set by the dark matter mass inside the Hubble horizon
dH = H−1 when the self-interaction freezes-out, i.e. Mmc ∼ ρφ(Tλ)dH(Tλ)

3 for the freeze-
out temperature Tλ. Long-range interactions will be exponentially suppressed at distances
longer than 1/mφ so we can expect Tλ to be of the order T1, with at most a logarithmic
dependence on other parameters. This is indeed the case for QCD axions, for which the
miniclustering is quenched soon after the QCD phase transition that turns on the poten-
tial (3.2) [16] giving Mmc ∼ 10−12M⊙, where M⊙ = 1.116× 1057GeV is the solar mass, and
a radius Rmc ∼ 1011 cm [25]. In the case of ALPs, Mmc can be larger if the mass is lighter.
The authors of [24] pointed out that the present data on the CDM power spectrum constrain
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Mmc . 4 × 103M⊙ which translates into a lower bound in temperature Tλ > 2 × 10−5GeV
and in the ALP mass mφ > H(T = 2× 10−5GeV) ∼ 10−20 eV.

If some of these miniclusters survive the tidal disruption during structure formation
they should be observable in forthcoming lensing experiments [24, 25]. In any case, at larger
scales, the DM density averages to a constant value corresponding to 〈φ2

1〉 ∼ π2f2
φ/3 bearing

the mentioned O(1) correction due to the non-harmonic behaviour of large initial phases.

During the spontaneous symmetry breaking of a global symmetry topological defects
such as cosmic strings [26] and domain walls can be formed. Strings have a thickness δ ∼ 1/fφ
and typical sizes of the order of the horizon, L ∼ t. As strings enter into the horizon they
can rapidly reconnect, form loops and decay into pNGBs. If the SSB happens after inflation,
we have to consider also their contribution to the energy budget of the universe. Axions
resulting from string decay are known to contribute significantly to their cold DM density,
but the exact amount is subject to a long-standing controversy [13]. The debate is focused
around the axion emission spectrum. Some authors argue that the decay proceeds very
fast, with an emission spectrum 1/k with high and low energy cutoff of order respectively
1/δ and 1/L. In this case the contribution to nφ is similar to that from the misalignment
mechanism [27, 28]. Others put forward that the string decays happen after many oscillations,
with a radiation spectrum peaked around 2π/L, which enhances the contribution to cold
DM by a multiplicative factor of log(L/δ) ∼ log(fa/ma) ∼ O(60) [29–35]. Once the axion
potential builds up at the QCD phase transition, domain walls build up. If the axion potential
has only one minimum these domain walls can still efficiently decay into axions, leading to a
third axion population which is thought not to be significant in the fast decay scenario, while
a recent analysis has shown that it can be the main contribution to the axion energy density
in the many oscillations one [36]. If different exactly degenerate vacua exist the domain walls
are persistent and can very easily run in conflict with observations. Therefore one assumes
a small explicit breaking of the Peccei-Quinn symmetry, which breaks the degeneracy and
allows domain walls to decay. It is possible although somehow fine-tuned to do so without
compromising the solution to the strong-CP problem. For a recent review on axion cosmology
see e.g. [37].

We expect the same type of behavior for ALPs with similar characteristics than axions,
i.e. ALPs whose mass is generated at a late phase transition due to a hidden sector which
becomes strongly interacting. In this case we should keep in mind the controversy of the string
decay spectrum and assume an uncertainty of order log(fφ/mφ) in the DM abundance. The
domain wall problem can in principle be solved by strong enough explicit breaking, and their
contribution to the DM appears to be subdominant as well. In models where the cosmological
evolution of the ALP mass is different, the situation can differ from the above. These models
have to be studied case by case, which is beyond the scope of this paper.

3.3 Sufficient production of dark matter

As we have seen in section 2 a general constraint arises from the fact that we get a sufficient
amount of DM but at the same time the mass at matter radiation equality has to be greater
than the Hubble constant. This is the bound eq. (2.12). For pNGB ALPs we however also
have that the field value itself cannot be larger than πfφ which itself is connected to the
coupling to photons. Combining these two restrictions gives us a way to constrain the viable
regions. The light red region in figure 1 labelled “m1 > 3H(Teq)” corresponds to this general
bound with φ1 ≤ fφ and N=1.
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ticles. The regions where they could form DM are displayed in different shades of red (for details
see text). The lines representing DM regions are uncertain through a model-dependent multiplicative
factor, N , which we have set equal to 1 here. The DM regions move towards larger couplings g, pro-
portional to this factor. The exclusion regions labelled “ALPS”, “CAST+Sumico” and “HB” arise
from experiments and astrophysical observations that do not require ALP dark matter (for a review,
see [38]). The remaining constraints are based on ALPs being DM and are described in the text.

Any ALP model should satisfy this bound for its zero mode to behave as DM before
matter-radiation equality. Realistic models attempting to saturate this bound will have
problems either fitting the cosmic microwave background (CMB) data or with the WKB
approximation we have used. In this sense this bound is very conservative. Importantly, for
N ∼ 1, it seems to exclude the possibility of providing DM from the type of ultralight ALP
field that has been invoked to explain the puzzlingly small opacity of the universe for ∼ TeV
gamma rays (see ref. [39] and references therein) in terms of photon ↔ ALP conversions in
astrophysical magnetic fields, requiring4 g ∼ 10−11GeV−1 and mφ . 1 neV, see [40–43]. To
allow an ALP to explain these observations and simultaneously to be dark matter requires
N & 10 which is still conceivable, or a fine tuning of θ1.

4The required coupling is determined by the extragalactic background light and the size of the astrophysical
magnetics fields, therefore plagued by sizeable uncertainties.
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Let us now turn to the stronger constraints that can be obtained for specific
time/temperature dependencies of the ALP mass. The simplest realization of an ALP model
has mφ constant throughout the universe expansion. In this case, we can infer the DM yield
from eq. (2.10) using m1 = m0. The region of ALP DM in this case is depicted in pink
in figure 1 and labelled “Standard ALP CDM (m1 = m0)”. We have assumed N = 1 and
used the a-priori unknown value of θ1 to tune the right DM abundance. The upper bound
on g reflects the fact that θ1 cannot be larger than π, and thus assumes θ1 ∼ π. Moving
to lower values of g requires inflation happening after SSB in order to have a homogeneous
small value of θ1 which is increasingly fine-tuned to zero. In this sense the values closest to
the boundary, corresponding to the largest values of the photon coupling, can be considered
the most natural values.

Quantum fluctuations generated in the ALP field during inflation will produce unavoid-
able inhomogeneities in θ1 of order δθ1 ∼ HI/(2πfφ). This precludes fine-tuning of the
universe average of φ1 below HI/2π, and sets a minimum DM abundance for a specified
value of HI .

Since the ALP is effectively massless during inflation, these inhomogeneities correspond
to isocurvature perturbations of the gravitational potential; this has been discussed exten-
sively in the literature in the context of axions (see e.g. [44]) and for many string axions,
see [8]. The WMAP7 observations of the primordial density fluctuations set very stringent
constraints on isocurvature perturbations from which one can obtain an upper bound on HI

assuming a given ALP DM defined essentially by fφ. Assuming that the decay constant fφ
does not change during inflation (it certainly should not for string axions, for example) the
constraint is [14]

α ≡ 〈|S2|〉
〈|S2|〉+ 〈|R2|〉 < 0.077 , (3.6)

where 〈|S2|〉 is the isocurvature power spectrum, and 〈|R2|〉 the adiabatic one (generated by

the inflation or other fields). We can approximate 〈|S2|〉 ≈ H2
I

π2φ2
1

where HI is the Hubble

constant during inflation. At the pivot scale k0 = 0.002MPc−1 WMAP finds 〈|R2|〉 =
2.42× 10−9 so we have a bound

HI < 4.5× 10−5φ1 . (3.7)

In principle we can constrain the mass of the ALP at the time when it starts oscillating by
requiring 3HI > 3H(T1) = m1,

φ1 > 7× 103m1 ,

1 > 2× 10−18F2 ×
(
1.17 keV cm−3

ρ

)2(
m0

eV

)2( φ1

1011GeV

)3
, (3.8)

where in the last equation we used (2.10) to get an expression for m1. Therefore, at the
boundary of sufficient dark matter production when φ1 = πfφ, and taking gφ = α/2πfφ this
translates into

1 > 0.08F2 ×
(
1.17 keV cm−3

ρ

)2(
m0

eV

)2(10−19GeV−1

g

)3
. (3.9)

Clearly this is a rather weak constraint, and we are therefore allowed many orders of mag-
nitude between the inverse of the inflationary Hubble constant and the time when the ALP
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oscillations begin. Conversely, the reheating temperature TRH is bounded by T 2
RH . HIMP ;

with additional assumptions this can constrain φ1: for example, requiring leptogenesis with
TRH ∼ 109GeV would bound φ1 & 103GeV.

We do not have strong arguments against values of TRH larger than a few MeV [45], only
appealing theoretical prejudices at most, so we shall leave this question aside. In any case,
the most interesting region from observational purposes corresponds to the largest values of
g, where the initial angle is not fine-tuned.

This simple ALP model predicts quite weakly coupled ALP CDM. Models in which
m1 ≪ m0 can provide larger DM abundances with smaller values of fφ and therefore stronger
interactions.

An interesting example of this case arises if the ALP acquires a mass from coupling to
some (hidden) non-abelian group. For a pNGB, this would mean that the associated global
symmetry is anomalous under some the non-abelian group, just as the η′ or the hypothetical
axion acquire their mass via QCD instantons. For our ALP we need in principle another
unbroken SU(N) group, which condenses at a scale Λ. Then we can parametrize the ALP
mass as

mφ ≃
{

Λ′2

fφ
≡ m0 for T ≪ Λ ,

m0

(
Λ′′

T

)β
for T ≫ Λ .

(3.10)

Here T is the temperature of the new sector. Naively it makes sense to assume Λ′ ∼ Λ′′ ∼ Λ.
At temperatures larger than Λ, electric-screening damps long range correlations in the plasma
and thus the instantonic configurations, resulting in a decrease of the ALP mass. In specific
models the exponent β can be obtained for instance from instanton calculations but here we
will treat it as a free parameter. Assuming the onset of ALP coherent oscillations happens
in the mass suppression regime, it is easy to obtain an expression for m0/m1 which is the
expected enhancement in the DM abundance. We find

√
m0

m1
=

(√
m0mPl

Λ′′

) β
β+2 (

3× 1.66
√
g∗1

) −β
2β+4 (3.11)

and the factor that controls the enhancement is
√
m0mPl

Λ′′
∼ Λ′

Λ′′

√
mPl

fφ
. (3.12)

Unfortunately these models can provide only a moderate enhancement of the DM density
with respect to the constant mφ case. The gained regions for the ALP DM case for values
of β = 1, 3, 5, 7, 9 can be seen in figure 1 from bottom to top (the lowermost region m1 =
m0 corresponds, of course, to β = 0, i.e. to the previously considered case). Actually,
even considering unrealistic huge values of β does not help much, as can be seen from the
asymptotic approach of the highest β cases. This is reflected by the finite limit of eq. (3.11)
when β → ∞, but it follows from its definition, eq. (3.10). In the β → ∞ limit mφ is a step
function of temperature mφ = Θ(T − Λ), and the relation m0 = Λ2/fφ determines Λ from
m0 and fφ (or g) so each point in the mφ–g parameter space has an implicit maximum DM
abundance, independent of β.

Surprisingly, it appears that the crucial assumption that leads to these conclusions is
that Λ′ ∼ Λ because it does not allow to consider arbitrary small values for Λ for a given
mass. Therefore, models in which Λ′ ≫ Λ imply generically higher DM abundance and
therefore require smaller initial amplitudes φ1 and consequently stronger interactions more
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prone to discovery. Unfortunately, at the moment we cannot provide for a fully motivated
example.

Finally let us note that the hidden sector responsible for the thermal mass of the ALP
can have implications for cosmology if it survives until SM temperatures below the MeV
range. For instance it can behave as dark radiation or dark matter during BBN. These
constraints have to be studied case by case but can be easily avoided if the temperature of
the hidden sector is smaller than the SM bath.

3.4 Survival of the condensate

The ALP CDM scenario can be tested via its coupling to photons. However, a blessing for
detection purposes might also be the model’s curse. Firstly, the two photon coupling endows
ALPs with the decay channel φ → γγ. The corresponding lifetime in vacuum5 is

τφ ≡ 1

Γγγ
=

64π

g2m3
φ

≈ 1.3× 1025 s

(
g

10−10GeV−1

)−2(mφ

eV

)−3

. (3.13)

ALPs with a lifetime shorter than the age of the universe, ∼ 13.7Gyr, cannot account for the
DM observed in galaxies and have to be discarded. In the mφ–g plane this corresponds to
the region in the up-right corner of figure 1, labelled “τ < 1017 s” and excluded from further
discussion in this paper. Even if ALPs have much longer lifetimes, the few decay photons
can still be significantly above the measured photon backgrounds. We explore this possibility
later on.

Secondly, ALPs from the condensate can be absorbed by a thermal photon which is
either on-shell (γφ → γ∗) or off-shell (γ∗φ → γ). Off-shell photons γ∗ are understood to
be absorbed or emitted by another participating particle. The inverse-Primakoff process is
a notable example of the latter, with the extra particle being a charged particle from the
plasma, for instance an electron.

The thermalization rate of ALPs due to the Primakoff process has been treated in the
literature and found to be [46, 47]

Γφq± =
α g2

12
T 3

(
log

(
T 2

m2
γ

)
+ 0.8194

)
. (3.14)

This is much faster than the decay rate ∼ g2m3
φ, since at early times the temperature exceeds

mφ. However, this rate is thermally averaged over ALP energies with a thermal distribution.
If this rate would apply to the thermalization of the condensate, i.e. of the zero mode, the
condensate would perish if g2T 3 ever exceeded the expansion rate H ∼ T 2/mPl. The higher
temperatures would be the most relevant and the condensate survives if g . 1/

√
TRmPl.

However, let us convince ourselves that this is not the case.

First, note that the inverse-Primakoff process φ + e± → γ + e± is exponentially sup-
pressed at high temperatures because the energy of the incoming electron E has to be enough
to produce a photon, which at finite temperature has a non-zero mass ∼ eT . This thresh-
old implies 2mφE > m2

γ or E/T > e2T/mφ which can be huge if mφ is tiny.6 Since the
abundance of these electrons will be exponentially suppressed so would be the rate.

5In the presence of a photon thermal bath the decay is stimulated by a factor 1/(1− e−mφ/2T )2.
6One can check that after electron-positron annihilation, when the formulas we have used are not valid

anymore, the evaporation is still slow.

– 12 –



J
C
A
P
0
6
(
2
0
1
2
)
0
1
3

This is however not a showstopper, since the threshold can be easily overcome by con-
sidering an additional photon in the initial state, i.e. γ + φ + e± → γ + e±. However, these
and similar processes are also suppressed at high temperatures T ≫ mφ. The reason is that

the two-photon coupling involves the derivative of the axion field (since FµνF̃
µν is a total

derivative) whose only component is the time component ∂0φ ∼ mφφ (after t1) and therefore
all amplitudes involving the zero mode ALP absorption are necessarily proportional to mφ

and absorption probabilities to m2
φ. To provide a more complete example, we can compare

the rate of Compton scattering of a photon of energy ω, denoted by ΓC(ω), with the rate
of the process γ(ω) + φ + e± → γ + e±. In the limit of very small mφ the ALP absorption
and the virtual photon scattering factorize and the differential ALP absorption rate due to
photons of energy ω is

dΓφC =
1

2mφ
ΓC(ω)|M(γφ → γ∗)|2 1

(2ωmφ)2 + (ωΓC(ω))2
dnγ(ω) (3.15)

= g2mφβ
2 ω2ΓC(ω)

(2ωmφ)2 + (ωΓC(ω))2
dnγ(ω) (3.16)

where dnγ(ω) is the density of photons with energy ω and β ∼ 1 is the photon velocity. We
have included ΓC as the imaginary part of the propagator to account for the finite photon
lifetime in the thermal bath. For the rate of ALP absorption we have to integrate over the
initial photon energies thermally distributed. In the mφ → 0 limit it is

ΓφC ∼ g2T 3 mφ

〈ΓC〉
(3.17)

where 〈ΓC〉 denotes a certain thermal average, expected to be ∼ α2T bearing phase space
factors. In practice this is a very large suppression factor with respect to the naive thermal-
ization rate g2T 3, which leaves the parameter space shown in figure 1 untouched. We believe
that a similar kind of reasoning can be applied to other ALP couplings of derivative type, like
to fermions.7 We plan to expand on these arguments at length in a forthcoming publication.

If large scale magnetic fields are generated in the early universe, for instance during the
electroweak phase transition, they can trigger ALP-photon oscillations. The ALP condensate
then oscillates into a large scale coherent electric field which can be easily damped due
to the high conductivity of the primordial plasma [49]. However, the high conductivity
strongly suppresses the ALP-photon mixing and in practice the required magnetic fields are
unreasonably large. For instance, if we assume magnetic fields are frozen into the medium,
their strength redshifts as B = B0(1 + z)2 = B0(a0/a)

2 and requiring no damping of the
condensate produces the constraint

(
g

10−10GeV−1

)2( B0

3 nG

)2 TB

109GeV
. 1 (3.18)

where TB is the temperature of the universe when magnetic fields form. This damping would
have implications in the ALP parameter space figure 1 if strong primordial magnetic fields of
very early origin are eventually discovered and conversely, if WISPy ALP DM is established by
direct detection experiments, one could use this bound to constrain the existence of magnetic
fields in the very early universe. If the magnetic fields are produced during the electroweak

7It seems that this argument was not taken into account in the axion case [48]. However, there it has no
phenomenological consequences.
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Figure 2. Region that would be affected by resonant ALP-photon oscillations leading to the evapo-
ration of the ALP condensate in the case where primordial magnetic fields exist and they evolve with
redshift as B = B0(1 + z)2.

phase transition, the plausible constrains are not very promising. One would then need to
have primordial fields of the order of B ∼ T 2 (close to equipartition with radiation), which
means a value B0 ∼ 3µG today, for them to have consequences for ALPs which are not
already excluded by stellar evolution, i.e. for g < 10−10GeV−1. These fields are very close
to the exclusion limits for primordial magnetic fields (if not excluded) and they would imply
distortions of the CMB spectrum for sub-eV mass ALPs, see [50] and references therein.

Note that the constraint (3.18) is independent of the ALP mass. This happens for
relatively large values of TB but if the primordial fields are created relatively late, a resonance
in the ALP-photon oscillations (not considered in [49]) will dominate the ALP condensate
evaporation, and this does depend on the ALP mass. This resonance is very sharp in time
and only depends on the size of the magnetic fields at that particular time, and therefore is
independent of the very early universe. We postpone the quantitative aspects to the next
section, devoted to hidden photons, because HP-photon oscillations are the most relevant
HP evaporation mechanism and the required formalism is essentially the same. The resulting
bound is displayed in figure 2.

3.5 Thermal population of ALPs

The Primakoff process is able to create a thermal ALP population if Γφq± exceeds the ex-
pansion rate at some point in the history of the universe. This population competes with
the condensate to form DM. The phenomenological implications of this population have
been recently reviewed in [51] (see also [12]). In particular, thermal ALP CDM exceeds the
measured value eq. (2.11) unless

mφ < 154 eV

(
106.75

g∗(Td)

)
, (3.19)

where Td is the temperature at which Γφq± ∼ H where the ALP bath decouples from the SM
bath. This bound assumes that

Td ∼ 104GeV

(
10−10GeV−1

g

)2
(3.20)
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Figure 3. Exclusion bounds on axion-like particles from relic photons in the mass-lifetime parameter
space.

is somewhat smaller than the reheating temperature. In the large mass region this puts a
quite stringent limit on ALP CDM. However, it can be circumvented in scenarios with a low
reheating scale and we therefore do not include it in figure 1.

3.6 Detecting photons from ALP decay

Even if the ALP lifetime is longer than the age of the universe some ALP decays inevitably
happen and the resulting monochromatic photons can signal the existence of ALP CDM.
We show the bounds coming from relic photon detection in figure 1 and more specifically in
figure 3, where they are plotted in the mφ–τ parameter space (where τ is the ALP lifetime).

To obtain these bounds we have compared the extragalactic background light (EBL)
spectrum from ref. [52] with the estimated flux of photons due to the decay of the ALP [53, 54],

dFE

dEdΩ
=

1

2π

Γγ

H(z)

ρφ(z)/mφ

(1 + z)3
=

≃ ρφ0/mφ

2πτH0

(
E0

mφ/2

)3/2
exp

(
− t0

τ

(
E0

mφ/2

)3/2)
θ(mφ − 2E0) (3.21)

where we wrote all present quantities with a subscript “0” and the decay-redshift as 1 + z =
(mφ/2)/E0, with E0 being the photon energy today.

The EBL spectrum shows no particular features. Thus it can be used to exclude any
ALP which would provide too strong signal. From the comparison we exclude the portion of
parameter space labelled “EBL” in figures 1 and 3.
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Galaxies, being denser, should provide an enhanced signal for decaying ALPs. Again, if
the decay rate of ALP CDM is high enough, we should be able to detect a spectral line whose
energy is E = mφ/2. Axions in the visible part of the spectrum [55–57] and sterile neutrinos
in X-ray spectra [58, 59] have already been searched using this technique. Following these
references and conveniently rescaling their results for ALPs, we obtain the exclusion bounds
in figures 1 and 3 labelled “Optical” and “X-Rays”, respectively. The bounds from searches
of gamma-ray lines in the data from FERMI [60] have been discussed in [51]. Unfortunately,
the very suggestive yet tentative claim of a detection at E0 ≃ 130GeV [61], can only be
attributed to annihilating DM and not to decaying DM.

The search for ALP decay photons is blinded in the ultraviolet range by the humongous
opacity of the atmosphere. However, a substantial amount of ionizing radiation at high
redshifts can strongly affect the reionization history of the universe. The optical depth of
reionization has been estimated by WMAP7 to be 0.088±0.015, out of which nearly a factor
0.04–0.05 can be attributed to a fully ionized universe up to redshift ∼ 6 as supported by the
absence of Ly-α features in quasar spectra. The origin of the remaining part of the optical
depth is still matter of debate, and thus we require the ionization caused by decaying ALPs
to be less than what this fraction would require. Assuming one ionization per ALP decay
photon, we have computed the reionizaton history using RECFAST [62] and obtained the
modified optical depth from z = 6 to z = 100, τ6. In the region labelled “xion” in figures 1
and 3, ALP decays produce too early reionization and exceed the measured τ6 ≃ 0.04 by 1
standard deviation. This is a conservative bound. If we assume that the full energy of the
photon can be converted into ionization this bound strengthens increasingly with mass up to
one order of magnitude at the largest masses for which ionization is effective, mφ . 300 eV.

3.7 Other indirect observational constraints on ALPs

The propagation of photons and cosmic rays in today’s ALP background might have poten-
tially detectable consequences. The ALP background implies time-dependent birefringence
which produces rotation of the polarization plane of photons propagating across the uni-
verse [63]. For simplicity, let us consider the case in which the ALP field is homogenous
and the frequency of light is bigger than the ALP mass, ω ≫ mφ. Then the rotation of
the polarization plane in the WKB approximation is independent of ω and given by the
line-of-sight integral

∆ϕ ≃ g

∫
dlφ̇ ∼ g

√
ρ/2

mφ

(
cos(mφl + β)− cos(β)

)

≃ 2× 10−25 g

10−10GeV−1

eV

mφ

(
cos(mφl + β)− cos(β)

)
(3.22)

where β is an unknown phase and we have neglected the expansion of the universe (including
the expansion is straightforward). Clearly, this effect is O(1) only for extremely small masses,
and this only if we observe objects at distances ≫ 1/mφ. For instance, the bounds implied
by the non-observation of such rotation in the emissions of AGNs [64] seem to be irrelevant.
Indeed, recalling that todays ALP density, and therefore its field, is bounded by (2.12) and
using φ1 = N θ1α/2πg with N = 1 and θ1 < π one finds

∆ϕ < 10−8

√
1.8× 10−27 eV

mφ

(
cos(mφl + β)− cos(β)

)
. (3.23)
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This shows that ALP DM can produce only minute polarization changes.8 In (3.22) and (3.23)
we have used the average value of DM which is much smaller than the values currently present
in the galaxy or in the universe after recombination, which are bigger by factors ∼ 105 and
109, respectively. Unfortunately, this does not change our conclusions. Even going to the
largest possible distances, i.e. looking at the CMB, the effects have been found to be small in
the range of masses relevant for ALP DM [7]. Other consequences, like the existence of gaps
in the photon dispersion relation at frequencies close to integer multiples of mφ have been
discussed in the literature [66] and found to be not promising for the detection of ALPs.

Another possible signature would be the radiation generated by cosmic rays propagating
in the time-varying ALP background. Low energy radiation was considered in [67] and
found to be many orders of magnitude below the backgrounds. At high energies, the inverse
Primakoff process q+φ → q+ γ could in principle contribute to the relatively small gamma-
ray backgrounds, however the contribution arising from of inverse Compton scattering of
cosmic rays off the CMB photons q + γCMB → q + γ dominates because of the much larger
cross section.

3.8 Direct experimental and observational constraints on ALPs

So far we have focussed on the astrophysical and cosmological constraints specific to ALP
CDM. However, in figure 1 we also show a variety of constraints that arise from the properties
of ALPs alone without them needing to form all or part of the DM. In the mass region
shown in figure 1 three constraints are most important. The constraint labelled “ALPS”
is the result of the light-shining-through-walls experiment9 ALPS [69]. As we can see this
experiment does not yet test the ALP CDM region. However, in the near future significant
improvements by several orders of magnitude are expected by enhancing the signal with
resonant cavities [70, 71]. Moreover improvements are expected from upcoming experiments
in the microwave regime [72–74].

The “CAST+SUMICO” constraint arises from the helioscopes10 [75] CAST [76, 77] and
SUMICO [78]. As we can see these experiments already exclude sizable regions of the ALP
CDM parameter space. Also for these experiments significant improvements are expected in
the future. In particular if a next generation axion helioscope such as IAXO [79] is realized.

Finally, the bound “HB” arises from comparing the observed cooling rate of horizontal
branch stars with the expected rate. This places strong bounds on additional energy losses
caused by a production of ALPs in the star’s core [80, 81]. These bounds are currently
the strongest and probe the ALP DM region. However, as these bounds are limited by
astrophysical uncertainties we expect that the more controlled experiments discussed above
will overtake them in the not too distant future.

As already alluded none of these experiments make use of ALPs being DM. This makes
them particularly model independent, but also ignores a potential plentiful source of ALPs.
We will return to haloscopes which indeed exploit this source in section 5.

8This rotation is proportional to the amplitude of the sidebands looked for in the experiment proposed
in [65] to search for meV mass axions or ALPs. Therefore, eq. (3.23) seems to make their detection quite
challenging.

9In such an experiment strong magnetic fields are used to induce photon-ALP oscillations in incoming laser
light. The very weakly coupled ALP state can then pass through a wall. On the other side the ALPs can
then oscillate back into photons which can be detected. See [68] and references therein. For HPs the same
technique works but no magnets are required.

10Helioscopes use the same idea as light-shining-through walls experiments. The ALPs are however produced
inside the sun from photons interacting with the electromagnetic fields of electrons and ions in the plasma.
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4 Hidden photons

In a recent article [11], Nelson and Scholtz have considered the possibility that the misalign-
ment mechanism could also be applied to generate a population of hidden photons (HPs), an
Abelian gauge boson under which SM particles are uncharged. The Lagrangian is

L = −1

4
XµνX

µν +
m2

γ′

2
XµX

µ + Lgrav + LI , (4.1)

where Xµ is the HP gauge field and Xµν its field strength. Moreover LI contains the inter-
actions with the Standard Model particles and Lgrav specifies potential non-minimal gravita-
tional couplings discussed below. The HP mass might result from the Higgs or Stückelberg
mechanisms. In the first case, we have to worry when the phase transition happens and
we might have a similar scenario to the one sketched in the previous section for Nambu-
Goldstone bosons. Also a Higgs particle appears in the spectrum, with mass ∼

√
λmγ′/gh

where gh is the hidden sector gauge coupling and λ the Higgs self-coupling. Even if we
take gh to be really small, the Higgs particle phenomenology tightly constrains this scenario,
especially for the sub-eV values of mγ′ we explore [82]. As in the original proposal [11],
we focus therefore on the Stückelberg case, which occurs naturally in large volume string
compactifications [83–85]. In this case, there is no SSB phase transition.

Let us briefly discuss the evolution of the HP in an expanding Universe.11 For reasons
that will become clear at the end of this discussion we also include a non-minimal coupling
to gravity of the form12

Lgrav =
κ

12
RXµX

µ. (4.2)

For simplicity let us focus on the homogeneous solution, ∂iXµ = 0. The equation of
motion then enforces X0 = 0. As explained in [86] the invariant XµXµ = −1/a2(t)XiXi is a
coordinate independent measure for the size of the vector and it is convenient to introduce
X̄i = Xi/a(t). Using this the equation of motion is,

¨̄Xi + 3H ˙̄Xi +
(
m2

γ′ + (1− κ)(Ḣ + 2H2)
)
X̄i = 0 . (4.3)

The energy density is

ρ(t) = T 0
0 =

1

2

( ˙̄Xi
˙̄Xi +m2

γ′X̄iX̄i + (1− κ)H2X̄iX̄i + 2(1− κ)H ˙̄XiX̄i

)
. (4.4)

For H ≪ mγ′ and Ḣ ≪ m2
γ′ the expressions (4.3) and (4.4) reduce to the same form as

eqs. (2.2) and (2.4), independent of the value of κ. In consequence, the same approximate
solution eq. (2.10) holds for the HP case. In particular for mγ′ = const the energy density
behaves (for any value of κ) just like that of non-relativistic matter ρ(t) ∼ 1/a3(t).

In the following we will derive constraints that arise from the evolution in this phase of
the evolution. When the expansion rate is slow one can check that X̄i actually is the properly
normalized field. Therefore, from the following subsection on, we will simply drop the bar.

Let us now have very brief a look at the initial conditions and the evolution before
oscillations begin. In contrast to the ALP case, there is no natural value for the initial

11We would like to thank Valery Rubakov and Christof Wetterich for noticing an error in the treatment of
the cosmological evolution of a vector field (which is also present in ref. [11]).

12We use a coordinates such that ds2 = dt2−a2(t)dx2
i , i.e. the metric is gµν = diag(1,−a2(t),−a2(t),−a2(t)).

Moreover, the gravitational part of the Lagrangian is LGR = −R/(16πGN ).
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value of the amplitude,13 X̄1,i. Therefore choosing a suitable value for X̄1,i any HP model
can provide DM, i.e. nature might have tuned the value of X̄1,i to fit the observed value
eq. (2.11). However, one might want to be a bit more ambitious and also consider the
evolution before t1. Here, we will only consider the simplest case, κ = 1. Then eqs. (4.3)
and (4.4) reduce to the same form as in the scalar case [86]. Accordingly, for H ≫ mγ′ both
the field X̄i and the energy density are approximately constant, and we can think of these
values being stuck there from some time at the beginning of, or even before, inflation.

One further comment is in order. The direction of the X field remains unchanged for
most of the universe history. However, it is conceivable that it changes during the process of
structure formation where inhomogeneities in the gravitational potential grow relevant and
eq. (2.2) is no longer valid. This has important consequences for direct detection, that will
be discussed in section 5.

4.1 Survival of the condensate

Under the assumption that SM particles are uncharged under the hidden photon gauge group,
the dominant interaction between the visible and the hidden sector is through gauge kinetic
mixing between photons and hidden photons [87],

L = −1

4
FµνF

µν − 1

4
XµνX

µν +
m2

γ′

2
XµX

µ − χ

2
FµνX

µν + JµAµ , (4.5)

where Aµ is the photon field and Fµν the corresponding field strength, and Jµ is the current
of electrically charged matter. Kinetic mixing is generated at one-loop by the exchange of
heavy messengers that couple both to the ordinary photon as well as to the hidden photon,
its natural value therefore being determined by the visible and hidden gauge couplings via
χ ∼ egh/(16π

2). In field theory and in compactifications of heterotic string theory, the
hidden gauge coupling is of order one and thus χ ∼ 10−3 [88, 89]. In large volume string
compactifications, the hidden gauge coupling gh can be very small and there is no clear
minimum for χ: values in the 10−12–10−3 range have been predicted in the literature [84, 85].

For a Stückelberg mass the same string scenarios typically prefer values & 10−4 eV.
Nevertheless, to be as inclusive and model-independent as possible we will take both χ and
mγ′ as free parameters in our phenomenological study.

By means of the re-definition Aµ = Ãµ−χX̃µ, Xµ = X̃µ we can identify the propagation
basis in vacuum (Ãµ, X̃µ), where the kinetic mixing has been removed and the Lagrangian
looks like

L̃ = −1

4
F̃µνF̃

µν − 1

4
X̃µνX̃

µν +
m2

γ′

2
X̃µX̃

µ + Jµ
(
Ãµ − χX̃µ

)
. (4.6)

The universe is not empty though. The interactions of photons with the charged parti-
cles in the primordial plasma induce refraction and absorption. This can be described with
an effective photon mass squared M2 ≡ m2

γ + iωΓ, where both the plasma mass mγ and
the interaction rate Γ only depend14 on the photon frequency, ω, and the modulus of the
wavenumber, k [90]. The corresponding effective term in the Lagrangian can be written as

13If the hidden photon mass arises from a Higgs mechanism one may wonder if there is no limitation on the
field value from the fact that one component of the field arises from the “eaten” Goldstone boson which has a
limited field range, similar to the situation we discussed for ALPs. However, in effect the extra field component
of the gauge field corresponds to a derivative of the Goldstone boson, which is not bounded. Similar reasoning
can be applied to the Stückelberg case.

14In an isotropic homogeneous universe.
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L = M2AµA
µ/2. This is non diagonal in the {Ã, X̃} basis and crucially determines the

propagation eigenstates and their eigenvalues [90–93].

M2 grows with the charge density nQ and the temperature and therefore varies signif-
icantly during the history of the Universe. After inflation we can assume the universe has
been efficiently emptied and thus M2 = 0. During reheating, nQ and T grow very rapidly
up to extremely large values and then decrease with smooth power laws until today, where
we shall assume them to be zero again. Forgetting pre-/reheating times for a moment, at
sufficiently early times M2 is the largest scale in the problem. Neglecting H, the e.o.m. for
the photon A = Ã − χX̃ is that of a damped oscillator, while the orthogonal combination
X̃ + χÃ is (almost) a free field with a mass ≃ mγ′ . The latter is the combination which can
form a condensate.

Today M2 tends to 0, so Ã and X̃ are the propagation eigenstates, their e.o.m. decouple
and both follow the solution outlined in section 2. Therefore, the condensate has to follow a
trajectory in field space from X̃ + χÃ to X̃ without losing too much amplitude.

Assuming that the universe expands slowly compared to the microscopic timescales of
photon absorption (dΓ/dt ≪ Γ2, or Γ ≫ H) the two eigenstates adiabatically follow their
static solutions. The adiabatic propagation eigenstates are given by an effective mixing angle,
χeff , the angle between the sterile state (X̃+χÃ) and the condensate. The eigenstates decay
with rates Γ1 = (1 − χ2

eff)Γ and Γ2 = χ2
effΓ. At the lowest order in χ, the effective mixing

angle can be approximated by

χ2
eff ≃

χ2m4
γ′

(
m2

γ −m2
γ′

)2
+ µ4

. (4.7)

where µ2 = max{χm2
γ′ ,mγ′Γ}.

Before recombination m2
γ is positive so there might be a moment where the mixing is

resonant. Characterizing it by the temperature of the universe at the time of the resonance
m2

γ(Tres) = m2
γ′ we can distinguish three regimes

• At high temperatures T ≫ Tres: mγ ≫ mγ′ and the mixing is suppressed as χeff ≃
χm2

γ′/
√

m4
γ + µ4 ≪ χ.

• At low temperatures T ≪ Tres: mγ ≪ mγ′ and we recover the vacuum mixing parameter
χeff ≃ χ (since usually µ4 < m4

γ′).

• At resonance T = Tres: the mixing is significantly enhanced. If χmγ > Γ the mixing
angle is maximal and one can have a resonant transition similar to the MSW effect in
neutrinos. For small χ the mixing still is enhanced with respect to the vacuum case by
a factor mγ/Γ ≫ 1.

Thus, in general the condensate does not move smoothly in field space from X̃ +χÃ to
X̃. It overshoots X̃ during the resonance only to then return to X̃.

Let us first discuss the case of over-damped oscillations during the resonance, i.e. χ2
eff ∼

χ2m2
γ′/Γ2. The amplitude of the HP condensate decreases by the ratio

X2,today

X2,initial
=

(
ainitial
atoday

)3/2
exp

(
− 1

2

∫ ttoday

tinitial

dtΓ2

)
. (4.8)
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Figure 4. The decay rate of the HP condensate, Γ2, normalized to Hχ2, as a function of temperature,
for different HP masses. The curves, ordered by their resonance from left to right, correspond to
mγ′ = 10−5, 10−4, 10−3, 10−2 and 0.1 eV. The dashed line corresponds to the expression used in
ref. [11].

Approximating T/T0 = a0/a, we can write Γ2dt as Γ2/Hd log T . The function Γ2/Hχ2 =
Γχ2

eff/Hχ2 is plotted for different HP masses in figure 4. In the plot we have used

M2 = iωσ = ω2
P

(ωτ)2 + iωτ

1 + (ωτ)2
+ iωΓTh (4.9)

where ω = mγ′ is understood, ωP is the plasma frequency, ΓTh = σThne is the absorption
due to Thomson scattering off the electrons and τ the characteristic time between electron
collisions, which sets the friction time scale.15

As expected the decay rate is heavily enhanced at Tres, and rapidly drops at higher
temperatures. The integral can be well approximated by the contribution near the resonance.
Using m2

γ = m2
γ′ + |dm2

γ′/dT |res(T − Tres) and evaluating the other T -dependent quantities
at Tres we have

1

2

∫ Tinitial

Ttoday

dT

T

Γ2

H
≃ χ2π

2

mγ′

rHres
≡ τ2

2
(4.10)

15The zero-frequency conductivity σ0 = ω2
Pτ is normally used instead of τ . We have followed the approx-

imations for σ0 that can be found in [49] and supplemented them in the non-relativistic electron case with

Thomson friction σ0 ≈
45

2π2α

nem
2

e

T4 where α is the fine-structure constant, and ne,me the electron density
and mass.
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where r = d logm2
γ/d log T is an O(1) factor, see figure 2 of [90]. Moreover, exp(−τ2) gives

the damping of the total energy density due to the resonance. Note that the result is inde-
pendent of Γ.

If the resonance is not over-damped, i.e. χmγ′ > Γ, the HP survival probability after
the level-crossing can be approximated by the Landau-Zener expression used in [93]. The
result coincides almost exactly with (4.8), only requiring an extra factor of 2 in the argument
of the exponential, i.e. τ2 → 2τ2.

The plasma effects were neglected in ref. [11] which forced the authors to conclude that
the most relevant period for the evaporation of the condensate was at high temperatures
(the corresponding “approximation” is shown as a dotted line in figure 4). As we have seen,
at high temperatures the evaporation process is strongly suppressed by the effective mixing
angle. The resonance dominates the condensate evaporation and for the sub-eV masses of
main interest here happens at temperatures smaller than the electron mass [92].

Before we continue, it is now time to describe the differences between HP-photon and
ALP-photon oscillations in the presence of a background homogeneous magnetic field of
primordial origin. The physics is essentially the same, except that for ALP-photon oscillations
the mass mixing term in (4.7) is gBmφ [49] with B the magnetic field strength, instead of
χmγ′

2. The important difference is that the value B is expected to change during the
evolution of the universe. The most relevant effects appear when magnetic fields are frozen
to the medium, in which case B = B0(a0/a)

2 ≃ B0(T/T0)
2. In this case, the integral (4.10)

tends to be dominated by the highest temperatures, which in this case are the temperatures
at which the magnetic fields are created TB

τ2
2

∣∣∣∣
ALP

≈
(

g

10−10GeV−1

)2( B0

3 nG

)2 TB

109GeV
. (4.11)

Imposing τ2 < 1 leads to the bound (3.18). The resonance contribution can be computed, in
full analogy to (4.10). We obtain

τ2
2

∣∣∣∣
ALP

≈ π

2

g2B2
res

rmφHres
. (4.12)

Let us now come back to the discussion on HPs. Since we can adjust the value of
X2,initial almost without restrictions16 it seems that we can overcome any evaporation factor,
even if it is enormously exponentially suppressed, and still have today HP CDM. There are,
however, several limitations to this due to the fact that the evaporation process dumps some
energy into the photon bath,

∆ρ = ρCDM(eτ2 − 1) . (4.13)

This photon injection dilutes neutrinos and baryons with respect to photons, which can be
constrained by the effective number of relativistic neutrino species N eff

ν and by the successful
agreement of CMB and big bang nucleonsynthesis (BBN) to estimate the baryon to photon
ratio ηB. Considering three massless neutrino species, a number of effective neutrinos smaller
than 2.39 is excluded at 95%C.L. [94], which translates into a photon temperature increase
T ′/T ∼ 1.06. A similar value is obtained from BBN limits but the corresponding bound
only applies to injections between CMB and BBN times, while the N eff

ν one applies until the

16One may wish to impose that the initial field value is smaller than mPl. But this does not lead to any
relevant additional constraints.

– 22 –



J
C
A
P
0
6
(
2
0
1
2
)
0
1
3

Figure 5. Allowed parameter space for hidden photon cold dark matter (HP CDM) (for details see
text). The exclusion regions labelled “Coulomb”, “CMB”, “ALPS”, “CAST” and “Solar Lifetime”
arise from experiments and astrophysical observations that do not require HP dark matter (for a
review see [38]). We also show constraints on the “cosmology of a thermal HP DM”. Note that
only constraints on HPs with masses below twice the electron mass are shown since otherwise the
cosmological stability condition requires unreasonably small values of the kinetic mixing, χ. The four
constraints that bound the allowed region from above, “τ2 > 1”, “CMB distortions”, “N eff

ν
” and

“X-rays” are described in the text.

neutrino decoupling T ∼ 2MeV. If the injected photons thermalize, the photon temperature
increases to

T ′ =

(
T 4
res +

15

π2
∆ρ

)1/4
∼ Tres

(
1 + 1.85

mp

Tres
ηB(e

τ2 − 1)

)1/4
, (4.14)

where we used ρCDM ∼ 5mpηBnγ , with mp being the proton mass and nγ the photon number
density. We see from eq. (4.14) that to obtain a significant increase in temperature one needs
τ2 ≫ − ln(ηB) ∼ 21. Imposing17 T ′/Tres < 1.06, we can exclude the region above the curve
labelled “N eff

ν ” in figure 5.
If the resonance happens below a critical temperature, the interactions of photons with

the relic electrons and ions of the plasma might not be enough to fully recover a blackbody
spectrum. The photons are initially injected at ultra-low energies, ω ∼ ωPl ≪ T , at which

17In this high τ2 regime, our formula (4.10) is not completely consistent. But, as long as T ′/T ∼ 1, it should
provide a reasonable estimate.
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inverse bremsstrahlung (γ + e− + p+ → e− + p+) and, to a lesser extent, inverse double
Compton scattering (γ + γ + e− → γ + e−) are always efficient in absorbing them. This
results in the establishment of a blackbody distribution at a higher temperature than the
initial, but only at low frequencies, where these processes are effective. The equilibration of
the low energy and high energy parts of the spectrum can be achieved by a combination of
Compton scattering (which is efficient in reshuffling photons up and down in energy) and
the photon-number changing processes mentioned above which adjust the number density
towards a blackbody. The injection of a relatively high number of low energy photons,
δnγ/nγ ≫ δργ/ργ , has not been considered in the literature and the use of numerical methods,
even if possible, is clearly beyond the scope of this paper. In order to obtain a first educated
guess, we have followed the analytical solutions derived in the limit of small distortions
in [95] and the powerful constraints set by FIRAS on a possible chemical potential µ and a
Comptonization y distortion which imply bounds up to ∆ργ/ργ . O(10−4) [96], depending
on Tres. These arguments lead to the constraint shown in figure 5 labelled “CMB distortions”,
which is the strongest requirement in the HP mass range neV–2× 10−4 eV.

The lower limit of the CMB constraints, mγ′ ∼ neV, corresponds to resonances hap-
pening around the onset of recombination. Smaller HP masses suffer resonant transitions
around this epoch because neutral Hydrogen contributes to m2

γ with a negative quantity
which increases with time and eventually makes m2

γ = 0 by compensating the contribution
of free electrons. HPs with masses down to ∼ 2× 10−14 eV have their resonance around this
epoch [93]. It is very likely that CMB distortions will be produced for sub-neV masses, but
since we cannot ascertain the fate of the low energy photons injected during recombination,
we cannot use the results of [95] and we must leave the study of this region for a future
detailed numerical analysis. It is intriguing that a possible small distortion of the CMB spec-
trum due to HP CDM can in principle appear in the next generation of CMB spectral probes,
such as PIXIE [97]. We believe, these signatures can be quite distinctive and strengthen the
physics case for such probes, since they can help identifying the nature of the DM.

There is however a simple way of constraining the kinetic mixing of CDM HPs in this
low energy region. At late recombination, the density fluctuations are already imprinted in
the CMB and they provide us with the estimate (2.11) for the DM density. Since this value
agrees roughly with the average DM density observed today we cannot allow the resonant
depletion of HPs into photons at this epoch or any later, thus requiring τ2 . 1. This bound
is depicted also in figure 5 and labelled as “τ2 > 1”. In order to compute it, we have used
the model for m2

γ provided in [93].

Hidden photons with masses below twice the electron mass, can only decay via an
electron loop into three photons. This decay rate is extremely suppressed for low mass HPs,
Γ3γ ∝ α4m9

γ′/m8
e [90]. However, for the most massive HPs considered here the decay can

be effective. Imposing that the population of decay photons is smaller than the diffuse X-
ray backgrounds one can constrain the cold HP population. This was done in [90] and we
reproduce their bounds, labelled “X-rays”, as the rightmost boundary of our HP CDM region
in figure 5.

4.2 Thermal population of HPs

During the resonance a thermal population of HPs can be generated without interfering
with the arguments above. The role of this population as DM has been addressed in [90]
(which excludes the region labelled “Cosmology of thermal HP DM” in figure 5) and, as
dark radiation, i.e. contributing to the number of effective neutrinos, in [92]. This conversion
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also produces distortions of the CMB spectrum, which can be constrained by FIRAS. These
arguments give rise to the bounds labelled “CMB” in figure 5.

These thermal contributions are very much constrained by astrophysics and cosmology
and on the verge of detectability by solar HP searches or searches for the contribution of the
γ′ → 3γ decay to the interstellar diffuse photon background.

One could ask the question whether it is possible to have HP CDM and also explain
the small excess of N eff

ν observed by WMAP7 and other CMB and large scale structure
probes. The situation is a bit tricky since, for the parameters required to have the latter
effect (mγ′ ∼ O(meV), χ ∼ 10−6) [92], the CDM evaporation is huge, τ2 ≫ 20, and the
required absorption of the CDM energy decreases N eff

ν opposing the first effect. Further
studies are required to see if such a scenario is plausible, but it seems complicated to avoid
the BBN bound coming from the dilution of the baryon density.

4.3 Indirect observational constraints on HPs

For ALPs we have found powerful constraints from ALP decay and one may wonder if similar
constraints exist for HPs. Indeed, as mentioned above, HPs can decay via γ′ → 3γ and this
constrains the high mass region in figure 5.

Similar to the ALP case one may also wonder about constraints from photon and cos-
mic ray propagation. Photon propagation is essentially unaffected by a HP dark matter
background since the combined photon-HP equations of motion are still linear and conse-
quently the superposition principle holds. In other words photons pass right through the HP
background without interacting.

Cosmic rays on the other hand could scatter of the HPs via Compton scattering, q+γ′ →
q + γ. However, for the relevant values of the kinetic mixing parameter the cross section is
too small to have a significant effect.

4.4 Direct experimental and observational constraints on HPs

In figure 5 we have also displayed the existing experimental bounds on the existence of HPs
which do not rely on HPs being DM. The bounds labelled “Solar lifetime” and “CAST”,
coming from the non-observation of HP emission from the Sun, exclude a large portion of
parameter space [91]. It is clear that improving the sensitivity of future searches of solar HPs
one has access to new parameter space in which HPs can be CDM [98]. The solar hidden
photon search (SHIPS) [99] in the Hamburg Observatory is currently exploring the sub-eV
mass region greatly improving over the previous CAST experiment and will soon publish
results.

Light-shining-through-walls experiments are also a powerful tool in the search for hidden
photons [100], the current best bound being provided by ALPS [69], and shown in figure 5.
As in the case of ALPs they currently do not probe the DM region, but significant future
improvements are expected [68]. Indeed, here the microwave regime is particularly promis-
ing [73, 74], with several new experiments already taking data [101, 102].

Finally, tests of Coulomb’s law provide strong constraints in the low mass region, see
figure 5. Although these bounds do not reach into the HP DM region one can hope that
improvements can be made since the best experiments [103] on this are more than 40 years old.
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5 Direct searches with haloscopes

One well-known tool to search for axion dark matter are so-called axion haloscopes [75].
Let us briefly recap the basic principle of a haloscope. Using the abundance of axions all
around us the task at hand is to exploit their coupling to photons and to convert those axions
into photons which can be detected. For axions this can be achieved by utilizing off-shell
photons in the form of a strong magnetic field. Moreover, this conversion can be made more
efficient by employing a resonator, resonant at the frequency corresponding to the energy
of the produced photons. The energy of the outgoing photons is equal to the energy of
the incoming axions. As the DM particles are very cold their energy is dominated by their
mass. For axions in the natural dark matter window this mass is in the 1–100µeV range
corresponding to microwave photons. A number of experiments of this type have already
been done [104–108] and further improvements are underway [109–111].

5.1 Axion-like particles

For axion-like particles the experiment proceeds exactly as in the axion case [75] (and very
similar to the hidden photon case described below). The important point is, however, that
now even bounds which do not reach the predictions of axion models (axion band in figure 1)
become meaningful since they test viable models.

For completeness we recap. In the axion case, the power output of a cavity of volume V ,
quality Q and coupling κ to the detector is

Pout = κg2V |B0|2ρ0Gaxion
1

ma
Q , (5.1)

with ρ0 the local axion CDM energy density, |B0| the strength of the magnetic field and

Gaxion =

( ∫
dV Ecav ·B0

)2

|B0|2V
∫
dV |Ecav|2

. (5.2)

For cylindrical cavities in the TM010 mode as, e.g., used in the ADMX experiment, Gaxion =
0.68. The currently excluded region from various axion haloscopes is shown as gray area in
figure 1. It already excludes a part of the ALP CDM parameter space.

5.2 Hidden photons

Microwave cavity experiments looking for relic axions could also be used to constrain and
search for the hypothetical cold HP condensate that we have discussed above. Starting from
eq. (4.5) we can follow the usual route and trade the kinetic mixing term for a mass mixing
by performing a shift of the HP field X → X − χA. Neglecting terms of second order in χ
the equation of motion for the photon field A then reads,

∂µ∂
µAν = χm2

γ′Xν . (5.3)

We can therefore see that the hidden photon field acts as a source for the ordinary photon.
Let us first determine the strength of this source. As discussed above we can take

X0 = 0. For the spatial components we write X. The energy density in the hidden photons
is equal to the dark matter density. Therefore we have,

ρCDM =
m2

γ′

2
|X|2. (5.4)
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At this point a comment concerning the direction of the HP field is in order. In the
discussion above it was assumed that the HP field is homogeneous in space and points in
the same direction everywhere. Due to structure formation the DM is clumped. A com-
mon estimate for the DM energy density on Earth is therefore the energy density in the
galactic halo,

ρCDM,local ∼
0.3GeV

cm3
≫ ρCDM,average ∼

keV

cm3
. (5.5)

As we can see the local density is much higher than the average density, signifying that
structure formation clearly is very important. This raises the question whether structure
formation also influences the direction of the HP condensate. To answer this question one
would have to study structure formation for a vector field like our HP field. This is beyond
the scope of the current paper. Instead we will consider two possible scenarios:

(a) The direction of the HP field is (essentially) unaffected by structure formation and all
HPs point in the same direction (at least for a suitably big region of space).

(b) The direction of HPs behave like a gas of particles with the vector pointing in random
directions.

In scenario (a) the HP direction is characterized by a fixed vector n̂, whereas in the
case (b) we have to average the final result over all directions for n̂. With this understood,
let us write,

X(x) = n̂

√
2ρ0
mγ′

, (5.6)

with ρ0 the dark matter density on earth.

Let us now return to our cavity experiment. The photon field A inside the cavity can
be expanded in terms of the cavity modes,

A(x) =
∑

i

αiA
cav
i (x) ,

∫
d3x|Acav

i (x)|2 = Ci , (5.7)

with Ci the normalisation coefficients. Using this expansion and including losses in the cavity
we obtain for the expansion coefficients,

(
d2

dt
+

ω0

Q

d

dt
+ ω2

0

)
αi(t) = bi exp(−iωt) , (5.8)

with ω0 the frequency of the cavity and Q its quality factor. The driving force bi can be
written as

bi =
χm2

γ′

Ci

∫
dVA⋆

i (x) ·X(x) (5.9)

and the frequency is given by the energy of the HPs,

ω = Eγ′ ≈ mγ′ . (5.10)

The asymptotic solution for the cavity coefficients is then,

αi(t) = αi,0 exp(−iωt) =
bi

ω2
0 − ω2 − iωω0

Q

exp(−iωt) . (5.11)
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Finally, the power emission of the cavity is related to the energy stored and the quality
factor of the cavity as

Pout = κ
U

Q
ω0 , (5.12)

where κ is the coupling of the cavity to the detector and

U =
|αi,0|2ω2

2

∫
d3x |Acav

i (x)|2. (5.13)

Replacing in this equation and evaluating at resonance ω0 = mγ′
18 we find

Pout = κχ2mγ′ρQV G , (5.14)

where the geometric factor G is defined as

G =

∣∣ ∫ dVA∗cav(x) · n̂
∣∣2

V
∫
d3 x|Acav(x)|2 . (5.15)

In a cavity E = ωA. This geometry factor has exactly the same form as in the axion
case (cf. [107] and the subsection above) but with the direction n̂ replacing the direction of
the external magnetic field B0 in the axion case. Accordingly,

G = Gaxion cos
2(θ) , (5.16)

where θ is the angle between the magnetic field direction used in the axion case (this is
usually chosen to be optimal) and the direction n̂ of the hidden photon field.

We can now use this formula to constrain the HP CDM with the present microwave
cavity searches for axions [104–108].

For scenario (a) the result depends on the relative orientation of the cavity at the time
of the measurement with respect to an a priori unknown direction of the HP field. This
requires detailed knowledge of the timing of the experiment etc. A conservative estimate for
the sensitivity can be obtained, however, by assuming that all directions in space are equally
likely and taking a value for cos2(θ) such that the real value is bigger with 95% probability.
The corresponding value is cos2(θ) = 0.0025. For situation (b) one can average over all
possible directions and obtain 〈cos2(θ)〉 = 1/3.

The results of the analysis are shown in figure 5, under the label “Haloscope Searches”.
Blue shows scenario (a) with our simplified estimate and red scenario (b). With a more careful
analysis of the experiment, including the timing information, the sensitivity in scenario (a)
would be very similar to the one in scenario (b).

18As in the axion case using this condition requires that the Q is not too large since after structure forma-
tion the DM particles move with different velocities of order 300 km/s∼ 10−3c. This restricts the maximal
usable Q to be . 106. If axions form a Bose-Einstein condensate (see [16, 17] and section 2) or the galac-
tic exhibits special structures as suggested in [112, 113], the velocity distribution could have significantly
narrower structures potentially allowing to utilize a cavity with higher Q. Moreover, in this case one could
also benefit from using narrow bandwidth techniques. Strong magnetic fields typically limit the maximal
Q . 106. Therefore, the former only works for hidden photons, where no magnetic field is needed and one
can use superconducting cavities. The latter however, would work for both HPs and ALPs and has indeed
been employed in ADMX [114].
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5.3 Non-resonant searches

Both for ALP DM and for HP DM the coupling to photons can be orders of magnitude bigger
than in the axion case. At the same time it is desirable to explore a bigger mass range. For a
first broadband search one may therefore be prepared to give up the resonant enhancement
in the cavity. Indeed the formulas in section (5.2) up to eq. (5.13) are valid also off resonance.
One can obtain the general result by replacing19

Q → Q(ω0)

Q2(ω)

κ(ω)

κ(ω0)

ω0

ω

∣∣∣∣∣
ω2

ω2
0 − ω2 − i ωω0

Q(ω)

∣∣∣∣∣

2

. (5.17)

In principle one can therefore explore a wide range off masses with a single fixed frequency
cavity (at the price of some loss of sensitivity). However, it should be noted that in order to
do so one also has to have a receiver sensitive in a sufficiently wide range of frequencies and
also check for signals off the resonance of the cavity.

6 Conclusions

Vacuum misalignment in the very early universe is a very generic mechanism capable of
producing a cold dark matter condensate from any very light, but massive (quasi-)stable
bosonic field. Clearly, its self-interactions and its interactions with the SM should be very
weak if it is to survive and to be a candidate for the observed cold dark matter today —
in other words their particle excitations should be very weakly interacting slim particles
(WISPs).

We found that for the most prominent and theoretically well-motivated WISP candi-
dates — axion-like particles (ALPs) and hidden photons (HPs), whose dominant interaction
with the standard model arise from couplings to photons — a huge region in parameter space
spanned by their masses and their photon coupling can give rise to the observed cold dark
matter.

WISPy CDM coupled to photons is particularly interesting because it can be probed
by both astrophysical observations as well as laboratory experiments. Figures 1 and 5 show
that sizable regions of this parameter space have already been excluded by experiments
searching for WISPs without relying on them being dark matter. In particular, helioscopes
— experiments looking for WISPs produced in the sun — have already probed regions that
allow WISPy DM and will improve further in the near future. Soon also purely laboratory-
based light-shining-through-walls experiments (in the optical as well as in the microwave
regime) will reach a sensitivity that will allow them to test hidden photon DM with masses
in the µeV–meV region.

The possibility that WISPs can form all or part of DM allows for additional search
strategies. One way to exploit this is via haloscopes which already test both ALPs and
hidden photons extremely sensitively in the µeV mass region. Moreover, searches for light
emitted from decaying ALPs already provide interesting constraints in a large range of masses
from meV to MeV and will hopefully further improve in the future.

Despite these bright prospects for future searches it is clear that huge areas of parameter
space allowing for WISPy CDM are so far unexplored and demand not only new searches
but also new search strategies — a challenge for both experiment and phenomenology.

19Note Q may be a function of ω.
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