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ABSTRACT

Analysts report spending upwards of 80% of their time on problems
in data cleaning. The data cleaning process is inherently iterative,
with evolving cleaning workflows that start with basic exploratory
data analysis on small samples of dirty data, then refine analysis
with more sophisticated/expensive cleaning operators (e.g., crowd-
sourcing), and finally apply the insights to a full dataset. While an
analyst often knows at a logical level what operations need to be
done, they often have to manage a large search space of physical
operators and parameters. We present Wisteria, a system designed
to support the iterative development and optimization of data clean-
ing workflows, especially ones that utilize the crowd. Wisteria
separates logical operations from physical implementations, and
driven by analyst feedback, suggests optimizations and/or replace-
ments to the analyst’s choice of physical implementation. We high-
light research challenges in sampling, in-flight operator replace-
ment, and crowdsourcing. We overview the system architecture and
these techniques, then provide a demonstration designed to show-
case how Wisteria can improve iterative data analysis and cleaning.
The code is available at: http://www.sampleclean.org.

1. INTRODUCTION

The ease of acquiring and merging many large-scale data sources
has led to a prevalence of dirty data. Unfortunately, blindly using
results that are derived from dirty data can lead to hidden yet sig-
nificant errors in modern data-driven applications, so data must be
cleaned before it is used. But because data cleaning is often spe-
cific to the domain, dataset, and eventual analysis, analysts report
spending upwards of 80% of their time on problems in data clean-
ing [9]. The analyst is faced with a breadth of possible errors that
are manifest in the data and a variety of options to resolve them.
She must go through the cleaning process via trial and error, decid-
ing for each of her data sources what to extract, how to clean it, and
whether that cleaning will significantly change results.

Data cleaning is inherently iterative and Figure 1 shows a com-
mon progression for the development of a data cleaning plan, in
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Figure 1: Example iterations on the design of the portion of a
cleaning plan that extracts restaurant addresses from their un-
structured webpages. 1) An exploratory plan that uses a sample
to evaluate a simple address extraction method. 2) A plan that
applies the method to the entire dataset. The quality is unsat-
isfactory. 3) An alternate plan that uses manual crowd extrac-
tion. The quality is now high, but the crowd-based extractor is
slow. 4) A hybrid plan that sends only difficult webpages to the
crowd, maximizing accuracy without sacrificing latency.

this case the extraction of a restaurant’s address from its unstruc-
tured webpage. While this operation can easily be represented at a
logical level by its input and output schema, there is a huge space of
possible physical implementations of the logical operators. For ex-
ample, extraction could depend on manually specified rules (rule-
based), use models trained on previously extracted ground truth
records (learning-based), ask crowd workers to extract the desired
data fields (crowd-based), or some combination of the three (e.g.,
active learning, which uses crowd workers to provide labels for a
learning-based approach). Even after selecting (say) a crowd-based
operator, many parameters might influence the quality of the output
data or the speed and cost of cleaning: the number of crowd work-
ers who vote on the extraction for a given webpage, the amount
each worker is paid, etc. A priori, a data analyst has little intuition
for what physical plan will be optimal in this large space.

Note that in the evolution of the data cleaning plan in Figure 1,
our data analyst needed to make many decisions manually about
the choice of physical operators by reasoning about their latency,
accuracy, and cost. Making the wrong decision, for example using
the crowd when it only marginally improves accuracy, can be very
costly. A general, scalable, and interactive system that supports
rapid iteration on candidate plans would greatly aid this process.

Existing systems seldom address the end-to-end iterative data
cleaning process described above. Extract-transform-load (ETL)
systems [1-3] require developers to manually write data cleaning
rules and execute them as long batch jobs, and constraint-driven
tools allow analysts to define “data quality rules” and automatically
propose corrections to maximally satisfy these rules [6]. Unfortu-

2004



nately, neither provide the opportunity for iteration or user feed-
back, inhibiting the user’s ability to rapidly prototype different data
cleaning solutions. Projects such as Wrangler [4,8] and OpenRe-
fine [15] support iteration with spreadsheet-style interfaces that en-
able the user to compose data cleaning sequences by directly ma-
nipulating a sample of the data and applying these sequences to the
full dataset. However, they are limited to specific cleaning tasks
such as simple text transformations, do not support crowd-based
processing at scale, and cannot incorporate user feedback to opti-
mize the physical implementation of the data cleaning sequences.
Crowd-based [7,13] systems have been proposed to relieve the data
analyst of the burden of rule specification or manual cleaning, but
are usually specific to a single cleaning task (e.g., [5,7,11,12]), pre-
venting end-to-end optimization of the entire cleaning plan. These
existing limitations suggest the need for a system that is general
enough to adapt to a wide range of data cleaning applications,
scales to large datasets, and natively supports fast-feedback inter-
actions to enable rapid data cleaning iteration.

In this paper, we introduce Wisteria, a system designed to sup-
port the iterative development and optimization of data cleaning
plans end to end. Wisteria allows users to specify declarative data
cleaning plans composed of rule-based, learning-based, or crowd-
based operators, then iterate rapidly on plans with cost-aware rec-
ommendations for improving the accuracy or latency of a plan. The
effects of a plan can be viewed early using sampling and approxi-
mate query processing techniques [16].

Supporting these capabilities requires a combination of careful
engineering as well as tackling several research challenges:

e Sampling: We provide sampling as a first-class logical operator
for data cleaning plans that tolerate approximation, and use it to
speed up iteration on early-stage plans.

Recommendation: We recommend cost-aware changes to in-
flight cleaning plans that allow users to trade off accuracy and la-
tency, and provide efficient mechanisms for implementing recom-
mended changes without re-executing the plan on already cleaned
tuples.

Crowd Latency: We leverage techniques for straggler mitiga-
tion [14] and model crowd worker speed and accuracy to reduce
the (often rate-limiting) latency of crowd data cleaning, consis-
tently retrieving results in seconds rather than hours.

In our demonstration, we will run an entity resolution plan on
two restaurant datasets, and show how Wisteria can be used to 1)
specify, modify, and execute a data cleaning plan, 2) quickly clean
a sample to characterize how a plan is performing, and 3) observe
the same cleaning plans running on multiple datasets. Users can
execute plans over a live crowd that uses the audience as workers,
or a simulated crowd that uses pre-collected crowd responses. The
dashboard (Figure 3) also provides a live inspection interface to
view the status of the cleaning plan as it executes.

2. SYSTEM ARCHITECTURE

In this section, we provide a brief overview of the Wisteria sys-
tem and its APIs. Figure 2 depicts the system architecture.

2.1 Architecture Overview

The Wisteria architecture provides Ul, language, and systems
tools for building data cleaning plans. Users interact with the
system through the Planning UI, which allows them to compose
data cleaning workflows from modular operators. These workflows
are represented as expressions in our data cleaning language (sec-
tion 2.2), then synthesized as data cleaning plans by our DSL com-
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Figure 2: Wisteria system architecture, with an example entity
resolution plan.

piler. As the Data Cleaning Plan Executor executes the compiled
plans, users can interact with the plans via tight feedback loops
in two ways. First, users can issue queries to the Sampling-based
Approximate Query Processing (SAQP) module and observe ap-
proximate results based on the data that has been cleaned thus far.
Second, the Recommendation Engine displays a set of suggested
modifications to the active cleaning plan (for example, making a
similarity join more permissive) in the Planning UI, and users can
update the data cleaning plan in-flight by accepting a suggestion
and using the Hot Swapper to modify components of the pipeline.
Intermediate results and cleaned data are maintained in a Lineage
and Storage engine that tracks each tuple’s lineage in order to en-
force the semantics of hot-swapping correctly on in-flight tuples.
Logical cleaning operators may have a number of physical imple-
mentations (section 2.3). Automated rule-based or learning-based
operators leverage Spark and MLLib for efficient distributed com-
putation, and operators that require human intervention call out to
Wisteria’s Crowd Manager API, which renders and displays data
cleaning tasks to crowd workers from multiple crowds (e.g., Ama-
zon Mechanical Turk) in a web-based Cleaning UI for processing.

2.2 Cleaning DSL

We provide a language for specifying the composition of data
cleaning operators. The logical operators define the input and out-
put behavior of the operation and the physical operators specify the
implementation. The general syntax of this language is:

<logical operator> on <relations>
with <physical operators> , <params>

These expressions are composable. For example, the following
represents the cleaning plan in Figure 2 (an entity resolution plan):

Filtering on (
SimilartyJoin on (
Sampling on BaseTable
with Uniform)
with Jaccard, thresh=0.8)
with CrowdDeduplication, numVotes=3

Additionally, Wisteria provides integration of our DSL with
Scala/Apache Spark, allowing DataFrames (Spark RDDs with ad-
ditional schema information) to serve as base tables in expressions.

2.3 Cleaning Operators

Wisteria supports a small set of operators that can express a
wide variety of common data cleaning workflows. For example,
the pipeline depicted in Figure 2 performs crowd-based entity reso-
lution: the SimilarityJoin operator generates candidate tuple pairs



(the blocking step), and the crowd-based Filter operator uses hu-
mans to identify duplicates from the candidates (the matching step).
Additional operators include Extraction and Sampling.

Individual logical operators have multiple physical implementa-
tions, each with its own cost, latency, and accuracy profile. For
example, crowd-based implementations tend to be high cost, high
latency, and high accuracy, whereas rule-based implementations
tend to be low cost, low latency, and low accuracy. The with
clause of our data cleaning language allows users to explicitly spec-
ify physical operators, and Wisteria’s recommendation engine sug-
gests pipeline modifications to navigate the tradeoff space.

3. RESEARCH CHALLENGES

To support evolving data quality needs, there are three main re-
search challenges in Wisteria: (1) sampling, (2) recommendation,
and (3) crowd sourcing.

3.1 Sampling

In prior work, we explored the problem of estimating aggregate
query results over dirty data [10,16]. In SampleClean [16], we
found that aggregate queries can often be answered with very high
accuracy (i.e 99%) with only a small fraction of clean data, and
we can clean just enough for the application’s data quality require-
ments. In Wisteria, we implement sampling as a logical operator
that can be used for quickly prototyping and optimizing workflows
on samples of data and then transferring these optimizations to full
datasets. We find that many important features of iterative data
cleaning workflows can be posed as aggregate queries on samples
with confidence intervals. If we want to know whether a data clean-
ing operation has a significant effect, we can use a query to test the
effects of this operation on a sample. For example, if we are dedu-
plicating restaurant categories, we can count the number of Chinese
restaurants in a sample to test if different deduplication algorithms
significantly affect the count. Sampling and result estimation are
salient features of Wisteria that allow us tune parameters and pro-
vide recommendations for chaning a workflow without evaluating
all possible workflows on the full data. Next, we discuss how we
can efficiently generate these recommendations.

3.2 Recommendation

We also have implemented a basic recommendation engine that
recommends changes to a data cleaning plan based on user feed-
back. A user can specify a set of ground truth tuples, and our sys-
tem will optimize over data cleaning plans that best reproduce the
ground truth. There are three types of recommendations: (1) pa-
rameter change, (2) operator replacement, and (3) operator addi-
tion. To realize and execute the recommendations, we use caching
and lineage to efficiently re-evaluate a workflow.

Parameter Change. Many of the physical operators in Wiste-
ria have tunable parameters, whose values are often very dataset-
specific, and the user feedback gives us a way to evaluate the qual-
ity of the initial parameter choice. For example, Similarity Joins
have a similarity threshold and a similarity function. Increasing this
threshold reduces the selectivity of the join, and Wisteria needs to
choose a threshold that maximizes accuracy. This problem can be
solved by a minimum-cost spanning tree over a similarity graph
(edges represent non-zero similarity) over tuples.

Operator Replacement. Wisteria recommends changes to physi-
cal operators when the user indicates that they are not satisfied with
the output. For example, we can treat user feedback as a proxy for
crowd labels and estimate the value of replacing a physical operator
with an active learning variant. Additionally, we can try different

variants of automated operators to test how accurate they are with
respect to the user feedback.

Operator Addition. There are also cases where we may want
to add another physical operator, while still preserving the logical
input-output behavior of the workflow. It is common in extraction
tasks to have most tuples accurately extracted with an automated
extractor but only a small subset requiring additional inspection.
For these cases, we can add a crowd-based Filter operator to sepa-
rate these examples for additional cleaning.

Cost Estimates. Of course, changing plans when using crowd-
sourcing may significantly change its cost. For every recommenda-
tion, we estimate the number of additional tuples processed by the
crowd operators and provide the user with an estimated cost. Based
on a user-specified cost per task, we estimate the number of tasks
needed to clean the dataset.

Caching allows for result re-use if a downstream operator is
modified or added. If the system has sufficient memory, then we
can naively cache all intermediate results. Otherwise, the key chal-
lenge is to select a subset of results to cache. We choose which
results to cache by integrating the caching framework with our
recommendation engine. When we make a recommendation for
a change, we must cache the preceding operator.

Lineage allows us to understand how results change if upstream
operators are modified. For example, decreasing a similarity join
threshold increases the number of output pairs without affecting
existing output pairs. The key property here is monotonicity, and
some types of monotone Filter and SimilarityJoin operators are
data cleaning analogs for a Select-Join relational algebra. We can
therefore model upstream hot-swapping as an incremental view
maintenance problem and update the final result based on the in-
sertion or deletion of tuples earlier in the plan.

3.3 Crowdsourcing

Working with crowds is inherently challenging. Unlike when us-
ing automated operators, the accuracy and speed of processing each
tuple varies widely with the crowd worker assigned to it. Comple-
tion time of an operator depends on the response times of individ-
ual workers, and on real-world crowdsourcing platforms, the dis-
tribution of response latencies is highly skewed; analogous to the
straggler problem in distributed systems. We address this problem
by maintaining a pool of high-speed, high-quality crowd workers
and develop task routing strategies that can avoid assigning tasks to
slow workers and leverage redundancy to significantly reduce the
time that is required to clean data with the crowd. Additionally,
active learning techniques reduce the number of tuples that require
crowd work to clean the data.

4. DEMONSTRATION

In this section, we detail the proposed demonstration. The objec-
tive of this demonstration is to illustrate how Wisteria enables the
rapid iterative construction of data cleaning plans and the ability to
transfer workflows between similar dirty datasets.

4.1 Datasets

In the demo, we will consider cleaning workflows on three dif-
ferent datasets. The first dataset contains 858 Zagat reviews', each
tagged with the cuisine of the restaurant reviewed (e.g. “Chinese”
or “French”). The second dataset, which is similar to the first, is
from Yelp 2 and contains 58,127 restaurant records that are also

1 .
cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz

2https://www.yelp.com/academicidataset
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Name Address Category

Carl’s Junior 2132 E Hayward. Fast Food American

Peking Star 102 Bayshore Dr-..

SimiarityJoin ON Yelp, Yelp
thresh=0.8

Peking Star 102 Bayshore Dr...  Chinese

WITH Jaccard,
Flag Cafe

192 CourtyardW.  Coffee Shop

Yelp
dataset

Regex

e (wid)+

Figure 3: The dashboard contains both a visual interface and a
text box to specify data cleaning operations. When the user is
satisfied, she can run the plan and see the results on the right.

Figure 4: The operator view lists the parameters of an operator.
Users can view recommended changes and modify parameters
on the fly.

tagged with a category. The third dataset consists of 3,049,914
records of liquor sales from the state of Iowa®, including the store
where the purchase occurred and the items and cost of the purchase.
In all three datasets, categorical columns are inconsistent across
records (e.g. cuisine tags for “Chinese” vs. “Chinese Cuisine”),
records are duplicated, and formatting errors abound. We will use
Wisteria to resolve these errors using Extraction and Entity Reso-
lution, then run aggregate queries over the cleaned datasets.

4.2 Demo Walkthrough

Below, we detail the steps of the proposed demonstration. A
screenshot of the dashboard interface is illustrated in Figure 3.

Step 1: Participants will select a dataset (e.g., the Zagat dataset),
and load a pre-populated data cleaning plan and target query for it.
Participants must first extract the columns of the dataset into the
proper schema using a regex-based Extraction. Then, participants
will be able to manually tune the Enity Resolution by choosing
between Similarity Join implementations, adjusting the thresholds
for the Similarity Join, and adding a crowdsourced filtering step.

Step 2: At all times, the interface will display a representative
sample of the cleaning plan’s input and output and the results of
the target query so that the participant can see how cleaning affects
the data. If a plan modification adds crowdsourcing, participants
can complete crowd tasks in Wisteria’s crowd interface.

Step 3: Participants re-evaluate and adjust their plan by clicking
on an operator (Figure 4). This view will show the system’s recom-
mended changes to the operator and allow the participant to make
those changes easily. For example, Figure 4 shows a recommenda-
tion to change the similarity metric from Jaccard to Edit Distance
since the attribute in question does not have many tokens.

Step 4: Participants can then switch datasets. Switching between
restaurant datasets (Zagat and Yelp) demonstrates reuse of the same
plan on novel data, while switching to the alcohol dataset demon-
strates that Wisteria is effective across data domains.

3data4 iowa.gov/Economy/Iowa-Liquor-Sales/m3tr—-ghgy
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S. CONCLUSION

The prevalence of dirty data is a fundamental obstacle to mod-
ern data-driven applications. We introduced Wisteria, a system
that supports the iterative development of data cleaning workflows.
Wisteria allows the user to construct, adapt, and optimize clean-
ing plans with automated parameter recommendations, separating
logical data cleaning operators from their physical implementations
(e.g., rules, learning, or crowdsourced). In our demo, we illustrate
how Wisteria can be used to clean three real datasets, Zagat, Yelp,
and Iowa Liquor Sales, with different physical implementations of
the same logical Extraction and Entity Resolution workflow. The
physical implementations, while the same at a logical level, have
different cleaning accuracies and our system aids the user in select-
ing the best options. We have released an initial version of the code
containing the core mechanisms for specifying cleaning plans, the
operator API, and implementations of several physical operators.
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