
With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988

Mark W. Eichin and Jon A. Rochlis

Massachusetts Institute of Technology, 77 Massachusetts Avenue, E40-311, Cambridge, MA 02139

Abstract In early November 1988 the Internet, a collection virus program itself in Appendix A, including a diagram of
the information flow through the routines which comprise theof networks consisting of 60,000 host computers implementing

the TCP/IP protocol suite, was attacked by a virus, a program “cracking engine”. Appendix B contains a list of the words
included in the built-in dictionary carried by the virus.which broke into computers on the network and which spread

from one machine to another. This paper is a detailed analysis
of the virus program. We describe the lessons that this incident
has taught the Internet community and topics for future consid- 1.2 A Rose by Any Other Name
eration and resolution. A detailed routine by routine description
of the virus program including the contents of its built in diction- The question of how to classify the program which infected
ary is provided. the Internet has received a fair amount of attention. Was it a

“virus” or “worm”; or was it something else?
There is confusion about the term “virus.” To a biologist a

1 INTRODUCTION virus is an agent of infection which can only grow and reproduce
within a host cell. A lytic virus enters a cell and uses the

The Internet[1,2], a collection of interconnected networks link- cell’s own metabolic machinery to replicate. The newly created
ing approximately 60,000 computers, was attacked by a virus viruses (more appropriately called “virons”) break out of the
program on 2 November 1988. The Internet community is infected cell, destroying it, and then seek out new cells to
comprised of academic, corporate, and government research infect. A lysogenetic virus, on the other hand, alters the genetic
users, all seeking to exchange information to enhance their material of its host cells. When the host cell reproduces it
research efforts. unwittingly reproduces the viral genes. At some point in the

The virus broke into Berkeley Standard Distribution (BSD) future, the viral genes are activated and many virons are pro-
UNIX1 and derivative systems. Once resident in a computer, duced by the cell. These proceed to break out of the cell and
it attempted to break into other machines on the network. This seek out other cells to infect [3]. Some single strand DNA
paper is an analysis of that virus program and of the reaction viruses do not kill the host cell; they use the machinery of the
of the Internet community to the attack. host cell to reproduce (perhaps slowing normal cellular growth

by diverting resources) and exit the cells in a non-destructive
manner [4].1.1 Organization

A “worm” is an organism with an elongated segmented body.
Because of the shape of their bodies worms can snake aroundIn Section 1 we discuss the categorization of the program which
obstacles and work their way into unexpected places. Someattacked the Internet, the goals of the teams working on isolating
worms, for example the tapeworm, are parasites. They livethe virus and the methods they employed, and summarize what
inside of a host organism, feeding directly from nutrientsthe virus did and did not actually do. In Section 2 we discuss
intended for host cells. These worms reproduce by sheddingin more detail the strategies it employed, the specific attacks
one of their segments which contains many eggs. They haveit used, and the effective and ineffective defenses proposed
difficulty in reaching new hosts, since they usually leave anby the community. Once the crisis had passed, the Internet
infected host through its excretory system and may not readilycommunity had time not only to explore the vulnerabilities
come into contact with another host [5].which had allowed the attack to succeed, but also to consider

In deciding which term fits the program which infected thehow future attacks could be prevented. Section 3 presents our
Internet, we must decide which part of the system is analogousviews on the lessons learned and problems to be faced in the
to the “host”. Possibilities include the network, host computers,future. In Section 4 we acknowledge the people on our team
programs, and processes. We must also consider the actions ofand the people at other sites who aided us in the effort to
the program and its structure.understand the virus.

Viewing the network layer as the “host” is not fruitful; theWe present a subroutine by subroutine description of the
network was not attacked, specific hosts on the network were.
The infection never spread beyond the Internet even though1 UNIX is a trademark of AT&T.DEC, VAX, and Ultrix are trademarks of
there were gateways to other types of networks. One couldDigitial Equipment Corporation. Sun, SunOS, and NFS are trademarks of Sun

Microsystems, Inc. IBM is a trademark of International Business Machines, Inc. view the infection as a worm, which “wiggled” throughout the

1



2 EICHIN AND ROCHLIS

network. But as Beckman points out [6] the program didn’t have • “decompiling” the virus, into a form that could be shown
to reduce to the executable of the real thing, so that theconnected “segments” in any sense. Thus it can’t be a worm.

A model showing the computers as the “host” is more promis- higher level version could be interpreted.
• analyzing the strategies used by the virus, and the elementsing. The infection of 2 November entered the hosts, reproduced,

and exited in search of new hosts to infect. Some people might of its design, in order to find weaknesses and methods of
defeating it.argue that since the host was not destroyed in this process, that

the infecting program was more like a worm than a virus. But,
The first two steps were completed by the morning of 4 Novem-

as mentioned earlier, not all viruses destroy their host cells.
ber 1988. Enough of the third was complete to determine that

Denning [7] defines a computer worm as a program which
the virus was harmless, but there were no clues to the higher

enters a workstation and disables it. In that sense the infection
level issues, such as the reason for the virus’ rapid spread.

could be considered a worm, but we reject this definition. The
Once the decompiled code existed, and the threat of the virus

infected computers were affected but not all were “disabled”.
known to be minimal, it was clear to the MIT team and those

There is also no analog to the segments of a biological worm.
at Berkeley that the code should be protected. We understood

Denning has described how many personal computer pro-
that the knowledge required to write such a program could not

grams have been infected by viral programs [7]. These are
be kept secret, but felt that if the code were publicly available,

frequently analogous to lysogenetic viruses because they mod-
someone could too easily modify it and release a damaging

ify the actual program code as stored in the computer’s second-
mutated strain. If this occurred before many hosts had removed

ary storage. As the infected programs are copied from computer
the bugs which allowed the penetration in the first place, much

to computer through normal software distribution, the viral
damage would be done.

code is also copied. At some point the viral code may activate
There was also a clear need to explain to the community

and perform some action such as deleting files or displaying a
what the virus was and how it worked. This information, in

message. Applying this definition of a virus while viewing
the form of this report, can actually be more useful to interested

programs as “hosts” does not work for the Internet infection,
people than the source code could be, since it includes discus-

since the virus neither attacked nor modified programs in
sion of the side effects and results of the code, as well as flaws

any way.
in it, rather than merely listing the code line by line. Conversely,

If, however, processes are view as “hosts”, then the Internet
there are people interested in the intricate detail of how and

infection can clearly be considered a viral infection. The virus
why certain routines were used; there should be enough detail

entered hosts through a daemon process, tricking that process
here to satisfy them as well. Readers will also find Seely [8]

into creating a viral process, which would then attempt to
and Spafford’s [9] papers interesting.

reproduce. In only one case, the finger attack, was the daemon
process actually changed; but as we noted above only lysogene-
tic viruses actually change their host’s genetic material. 1.4 Major Points

Denning defines a bacterium as a program which replicates
itself and feeds off the host’s computational resources. While This section provides an outline of the how the virus attacked
this seems to describe the program which infected the Internet, and who it attacked. It also lists several things the virus did
it is an awkward and vague description which doesn’t seem to not do, but which many people seem to have attributed to the
convey the nature of the infection at all. virus. All of the following points are described in more detail

Thus we have chosen to call the program which infected the in Section 2.
Internet a virus. We feel it is accurate and descriptive.

1.4.1 How it entered
1.3 Goals and Targets

• sendmail (needed debug mode, as in SunOS binary
releases)The program that attacked many Internet hosts was itself

• finger [10] (only VAX hosts were victims)attacked by teams of programmers around the country. The
• remote execution system, usinggoal of these teams was to find out all the inner workings of

• rexecthe virus. This included not just understanding how to stop
• rshfurther attacks, but also understanding whether any permanent

damage had been done, including destruction or alteration of
data during the actual infection, or possible “time bombs” left

1.4.2 Who it attackedfor later execution.
There were several steps in achieving these goals: including

• accounts with obvious passwords, such as
• none at all• isolating a specimen of the virus in a form which could

be analyzed. • the user name



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 3

• the user name appended to itself it that the author included this feature to allow him to circumvent
security on a machine he was using for testing. It certainly• the “nickname”

• the last name exceeds the intended design of the Simple Mail Transfer Proto-
col (SMTP) [12].• the last name spelled backwards

Specification of a program to execute when mail is received
• accounts with passwords in a 432 word dictionary (see

is normally allowed in the sendmail aliases file or users’
Appendix B)

.forward files directly, for vacation2, mail archive pro-
• accounts with passwords in /usr/dict/words

grams, and personal mail sorters. It is not normally allowed
• accounts which trusted other machines via the .rhosts

for incoming connections. In the virus, the “recipient” was a
mechanism

command to strip off the mail headers and pass the remainder
of the message to a command interpreter. The body was a
script that created a C program, the “grappling hook,” which1.4.3 What it Attacked
transfered the rest of the modules from the originating host,
and the commands to link and execute them. Both VAX and• SUNs and VAXes only
Sun binaries were transfered and both would be tried in turn,• machines in /etc/hosts.equiv
no attempt to determine the machine type was made. On other• machines in /.rhosts
architectures the programs would not run, but would use• machines in cracked accounts’ .forward files
resources in the linking process. All other attacks used the same• machines in cracked accounts’ .rhosts files
“grappling hook” mechanism, but used other flaws to inject• machines listed as network gateways in routing tables
the “grappling hook” into the target machine.• machines at the far end of point-to-point interfaces

The fact that debug was enabled by default was reported to• possibly machines at randomly guessed addresses on net-
Berkeley by several sources during the 4.2BSD release. Theworks of first hop gateways
4.3BSD release as well as Sun releases still had this option
enabled by default [13]. The then current release of Ultrix did

1.4.4 What it did NOT do not have debug mode enabled, but the beta test version of the
newest release did have debug enabled (it was disabled before

• gain privileged access (it almost never broke in as root) finally being shipped). MIT’s Project Athena was among a
• destroy or attempt to destroy any data number of sites which went out of its way to disable debug
• leave time bombs behind mode; however, it is unlikely that many binary-only sites were
• differentiate among networks (such as MILNET, able to be as diligent.

ARPANET)
• use UUCP at all

2.1.2 Finger Daemon Bug• attack specific well-known or privileged accounts such
as root The virus hit the finger daemon (fingerd) by overflowing a

buffer which was allocated on the stack. The overflow was
possible because fingerd used a library function which did2 STRATEGIES
not do range checking. Since the buffer was on the stack, the
overflow allowed a fake stack frame to be created, which caused2.1 Attacks
a small piece of code to be executed when the procedure
returned3. The library function in question turns out to be aThis virus attacked several things, directly and indirectly. It
backward-compatibility routine, which should not have beenpicked out some deliberate targets, such as specific network
needed after 1979 [14].daemons through which to infect the remote host. There were

Only 4.3BSD VAX machines were attacked this way. Thealso less direct targets, such as mail service and the flow of
virus did not attempt a Sun specific attack on finger and itsinformation about the virus.
VAX attack failed when invoked on a Sun target. Ultrix was
not vulnerable to this since production releases did not include

2.1.1 Sendmail Debug Mode a fingerd.

2 A program which accepts incoming mail and sends back mail to the originalThe virus exploited the “debug” function of sendmail, which
sender, usually saying something like “I am on vacation, and will not readenables debugging mode for the duration of the current connec-
your mail until I return.”tion. Debugging mode has many features, including the ability

3 MIT’s Project Athena has a “write” daemon which has a similar piece of
to send a mail message with a program as the recipient (i.e. code with the same flaw but it explicitly exits rather than returning, and thus
the program would run, with all of its input coming from the never uses the (damaged) return stack. A comment in the code notes that it is

mostly copied from the finger daemon.body of the message). This is inappropriate and rumor [11] has



4 EICHIN AND ROCHLIS

2.1.3 Rexec and Passwords off the information needed to fix the problem. Mailer programs
on major forwarding nodes, such as relay.cs.net, were shut

The virus attacked using the Berkeley remote execution proto- down delaying some critical messages by as long as twenty
col, which required the user name and plaintext password to hours. Since the virus had alternate infection channels (rexec
be passed over the net. The program only used pairs of user and finger), this made the isolated machine a safe haven for
names and passwords which it had already tested and found to the virus, as well as cutting off information from machines
be correct on the local host. A common, world readable file further “downstream” (thus placing them in greater danger)
(/etc/passwd) that contains the user names and encrypted since no information about the virus could reach them by mail4.
passwords for every user on the system facilitated this Thus, by attacking sendmail, the virus indirectly attacked
search. Specifically: the flow of information that was the only real defense against

its spread.• this file was an easy-to-obtain list of user names to attack,
• the dictionary attack was a method of verifying password

guesses which would not be noted in security logs. 2.2 Self Protection
The principle of “least privilege” [15] is violated by the exis-

The virus used a number of techniques to evade detection. Ittence of this password file. Typical programs have no need for
attempted both to cover it tracks and to blend into the normala list of user names and password strings, so this privileged
UNIX environment using camouflage. These techniques hadinformation should not be available to them. For example,
had varying degrees of effectiveness.Project Athena’s network authentication system, Kerberos [16],

keeps passwords on a central server which logs authentication
requests, thus hiding the list of valid user names. However, once

2.2.1 Covering Tracksa name is found, the authentication “ticket” is still vulnerable to
dictionary attack. The program did a number of things to cover its trail. It erased

its argument list, once it had finished processing the arguments,
so that the process status command would not show how it2.1.4 Rsh and Trust
was invoked.

It also deleted the executing binary, which would leave theThe virus attempted to use the Berkeley remote shell program
data intact but unnamed, and only referenced by the execution(called rsh) to attack other machines without using passwords.
of the program. If the machine were rebooted while the virusThe remote shell utility is similar in function to the remote
was actually running, the file system salvager would recoverexecution system, although it is “friendlier” since the remote
the file after the reboot. Otherwise the program would vanishend of the connection is a command interpreter, instead of the
after exiting.exec function. For convenience, a file /etc/hosts.equiv

The program also used resource limit functions to prevent acan contain a list of hosts trusted by this host. The .rhosts
core dump. Thus, it prevented any bugs in the program fromfile provides similar functionality on a per-user basis. The
leaving tell-tale traces behind.remote host can pass the user name from a trusted port (one

which can only be opened by root) and the local host will
trust that as proof that the connection is being made for the

2.2.2 Camouflagenamed user.
This system has an important design flaw, which is that the

It was compiled under the name sh, the same name used bylocal host only knows the remote host by its network address,
the Bourne Shell, a command interpreter which is often usedwhich can often be forged. It also trusts the machine, rather
in shell scripts and automatic commands. Even a diligent systemthan any property of the user, leaving the account open to attack
manager would probably not notice a large number of shellsat all times rather than when the user is present [16]. The virus
running for short periods of time.took advantage of the latter flaw to propagate between accounts

The virus forked, splitting into a parent and child, approxi-on trusted machines. Least privilege would also indicate that
mately every three minutes. The parent would then exit, leavingthe lists of trusted machines be only accessible to the daemons
the child to continue from the exact same place. This had thewho need to decide to whether or not to grant access.
effect of “refreshing” the process, since the new fork started
off with no resources used, such as CPU time or memory usage.
It also kept each run of the virus short, making the virus a2.1.5 Information Flow
more difficult to seize, even when it had been noticed.

When it became clear that the virus was propagating via send-
mail, the first reaction of many sites was to cut off mail 4 USENET news [17] was an effective side-channel of information spread,

although a number of sites disabled that as well.service. This turned out to be a serious mistake, since it cut



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 5

All the constant strings used by the program were obscured • trying to attack all of the “obvious” permutation passwords
(see Section A.4.3)by XOR’ing each character with the constant 8116. This meant

that one could not simply look at the binary to determine what • trying ten words selected at random from the internal dic-
tionary (see Appendix B) against all of the user namesconstants the virus refered to (e.g. what files it opened). But

it was a weak method of hiding the strings; it delayed efforts Since the virus was careful to clean up temporary files, its
to understand the virus, but not for very long. presence alone didn’t interfere with reinfection.

Also, a multiply infected machine would spread the virus
faster, perhaps proportionally to the number of infections it

2.3 Flaws was harboring, since

• the program scrambles the lists of hosts and users it attacks;The virus also had a number of flaws, ranging from the subtle
since the random number generator is seeded with theto the clumsy. One of the later messages from Berkeley posted
current time, the separate instances are likely to hit sepa-fixes for some of the more obvious ones, as a humorous gesture.
rate targets.

• the program tries to spend a large amount of time sleeping
and listening for other infection attempts (which never2.3.1 Reinfection Prevention
report themselves) so that the processes would share the
resources of the machine fairly well.The code for preventing reinfection of an actively infected

machine harbored some major flaws. These flaws turned out Thus, the virus spread much more quickly than the perpetrator
to be critical to the ultimate “failure” of the virus, as reinfection expected, and was noticed for that very reason. The MIT Media
drove up the load of many machines, causing it to be noticed Lab, for example, cut themselves completely off from the net-
and thus counterattacked. work because the computer resources absorbed by the virus

The code had several timing flaws which made it unlikely were detracting from work in progress, while the lack of net-
to work. While written in a “paranoid” manner, using weak work service was a minor problem.
authentication (exchanging “magic” numbers) to determine
whether the other end of the connection is indeed a copy of

2.3.2 Heuristicsthe virus, these routines would often exit with errors (and thus
not attempt to quit) if: One attempt to make the program not waste time on non-UNIX

systems was to sometimes try to open a telnet or rsh connection• several viruses infected a clean machine at once, in which
to a host before trying to attack it and skipping that host if itcase all of them would look for listeners; none of them
refused the connection. If the host refused telnet or rsh connec-would find any; all of them would attempt to become
tions, it was likely to refuse other attacks as well. There werelisteners; one would succeed; the others would fail, give
several problems with this heuristic:up, and thus be invulnerable to future checking attempts.

• several viruses starting at once, in the presence of a running • A number of machines exist which provide mail service
virus. If the first one “wins the coin toss” with the listening (for example) but that do not provide telnet or rsh service,
virus, other new-starting ones will have contacted the los- and although vulnerable, would be ignored under this
ing one and have the connection closed upon them, permit- attack. The MIT Project Athena mailhub, athena.mit.edu,
ting them to continue. is but one example.

• a machine is slow or heavily loaded, which could cause • The telnet “probing” code immediately closed the connec-
the virus to exceed the timeouts imposed on the exchange of tion upon finding that it had opened it. By the time the
numbers, especially if the compiler was running (possibly “inet daemon”, the “switching station” which handles most
multiple times) due to a new infection; note that this is incoming network services, identified the connection and
exacerbated by a busy machine (which slows down further) started a telnet daemon, the connection was already closed,
on a moderately sized network. causing the telnet daemon to indicate an error condition

of high enough priority to be logged on most systems.Note that “at once” means “within a 5–20 second window” in
Thus the times of the earliest attacks were noted, if notmost cases, and is sometimes looser.
the machines they came from.A critical weakness in the interlocking code is that even

when it does decide to quit, all it does is set the variable
pleasequit. This variable does not have an effect until the 2.3.3 Vulnerabilities not used
virus has gone through

The virus did not exploit a number of obvious opportunities.
• collecting the entire list of host names to attack
• collecting the entire list of user names to attack • When looking for lists of hosts to attack, it could have done



6 EICHIN AND ROCHLIS

“zone transfers” from the Internet domain name servers to After the virus was analyzed, a tool which duplicated the pass-
word attack (including the virus’ internal dictionary) was postedfind names of valid hosts [18]. Many of these records also

include host type, so the search could have limited itself to the network. This tool allowed system administrators to
analyze the passwords in use on their system. The spread ofto the appropriate processor and operating system types.

• It did not attack both machine types consistently. If the this virus should be effective in raising the awareness of users
(and administrators) to the importance of choosing “difficult”VAX finger attack failed, it could have tried a Sun attack,

but that hadn’t been implemented. passwords. Lawrence Livermore National Laboratories went
as far as requiring all passwords be changed, and modifying• It did not try to find privileged users on the local host

(such as root). the password changing program to test new passwords against
the lists that include the passwords attacked by the virus [6].

3 LESSONS AND OPEN ISSUES2.4 Defenses

The virus incident taught many important lessons. It also
There were many attempts to stop the virus. They varied in brought up many more difficult issues which need to be
inconvenience to the end users of the vulnerable systems, in addressed in the future:
the amount of skill required to implement them, and in their

• Least Privilege. This basic security principle is frequentlyeffectiveness.
ignored and this can result in disaster.

• Full isolation from network was frequently inconvenient, • “We have met the enemy and he is us.” The alleged author
but was very effective in stopping the virus, and was simple of the virus has made contributions to the computer security
to implement. field and was by any definition an insider; the attack did

• Turning off mail service was inconvenient both to local not come from an outside source who obtained sensitive
users and to “downstream” sites, was ineffective at stopping information, and restricting information such as source
the virus, but was simple to implement. code would not have helped prevent this incident.

• Patching out the debug command in sendmail was only • Diversity is good. Though the virus picked on the most
effective in conjunction with other fixes, did not interfere widespread operating system used on the Internet and on
with normal users, and simple instructions for implement- the two most popular machine types, most of the machines
ing the change were available. on the network were never in danger. A wider variety of

• Shutting down the finger daemon was also effective only implementations is probably good, not bad. There is a
if the other holes were plugged as well, was annoying to direct analogy with biological genetic diversity to be made.
users if not actually inconvenient, and was simple to • “The cure shouldn’t be worse than the disease.” Chuck
perform. Cole made this point and Cliff Stoll also argued that it

• Fixing the finger daemon required source code, but was may be more expensive to prevent such attacks than it is
as effective as shutting it down, without annoying the users to clean up after them. Backups are good. It may be cheaper
at all. to restore from backups than to try to figure out what

• mkdir /usr/tmp/sh was convenient, simple, and damage an attacker has done [6].
effective in preventing the virus from propagating5 (See • Defenses must be at the host level, not the network level.
Section A.8.2.) Mike Muuss and Cliff Stoll have made this point quite

• Defining pleasequit in the system libraries was conve- eloquently [6]. The network performed its function per-
nient, simple, and did almost nothing to stop the virus (See fectly and should not be faulted; the tragic flaws were in
Section A.3.2.) several application programs. Attempts to fix the network

• Renaming the UNIX C compiler and linker (cc and ld) are misguided. An analogy with the highway system can
was drastic, and somewhat inconvenient to users (though be made: anybody can drive up to your house and probably
much less so than cutting off the network, since different break into your home, but that does not mean we should
names were available) but effective in stopping the virus. close down the roads or put armed guards on the exit ramps.

• Requiring new passwords for all users (or at least all users • Logging information is important. The inetd and tel-
who had passwords which the virus could guess) was diffi- netd interaction logging the source of virus attacks turned
cult, but it only inconvenienced those users with weak out to be a lucky break, but even so many sites did not
passwords to begin with, and was effective in conjunction have enough logging information available to identify the
with the other fixes (See Section A.4.3 and Appendix B.) source or times of infection. This greatly hindered the

responses, since people frequently had to install new pro-
grams which logged more information. On the other hand,5 However, both sets of binaries were still compiled, consuming processor

time on an attacked machine. logging information tends to accumulate quickly and is



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 7

rarely referenced. Thus it is frequently automatically were members of the SIPB, and the SIPB office was the focus
for early efforts at virus catching until people gathered in thepurged. If we log helpful information, but find it is quickly

purged, we have not improved the situation much at all. Project Athena offices.
Mark W. Eichin (Athena and SIPB) and Stanley R. ZanarottiMike Muuss-points out that frequently one can retrieve

such information from backups [6], but this is not (LCS and SIPB) led the team disassembling the virus code.
The team included Bill Sommerfeld (Athena/Apollo Computeralways true.

• Denial of service attacks are easy. The Internet is amazingly and SIPB), Ted Y. Ts’o (Athena and SIPB), Jon Rochlis (Tele-
communications Network Group and SIPB), Ken Raeburnvulnerable to such attacks. These attacks are quite difficult

to prevent, but we could be much better prepared to identify (Athena and SIPB), Hal Birkeland (Media Laboratory), and
John T. Kohl (Athena/DEC and SIPB).their sources than we are today. For example, currently it

is not hard to imagine writing a program or set of programs Jeffrey I. Schiller (Campus Network Manager, Athena Opera-
tions Manager, and SIPB) did a lot of work in trapping thewhich crash two-thirds of the existing Sun Workstations

or other machines implementing Sun’s Network Filesystem virus, setting up an isolated test suite, and dealing with the
media. Pascal Chesnais (Media Laboratory) was one of the first(NFS). This is serious since such machines are the most

common computers connected to the Internet. Also, the at MIT to spot the virus. Ron Hoffmann (Network Group) was
one of the first to notice an MIT machine attacked by finger.total lack of authentication and authorization for network

level routing makes it possible for an ordinary user to Tim Shepard (LCS) provided information about the propaga-
tion of the virus, as well as large amounts of “netwatch” datadisrupt communications for a large portion of the Internet.

Both tasks could be easily done in a manner which makes and other technical help.
James D. Bruce (EECS Professor and Vice President fortracking down the initiator extremely difficult, if not

impossible. Information Systems) and the MIT News Office did an admira-
ble job of keeping the media manageable and letting us get our• A central security fix repository may be a good idea. Ven-

dors must participate. End users, who likely only want to work done.
get their work done, must be educated about the importance
of installing security fixes.

4.2 The Berkeley Team• Knee-jerk reactions should be avoided. Openness and free
flow of information is the whole point of networking, and

We communicated and exchanged code with Berkeley exten-
funding agencies should not be encouraged to do anything

sively throughout the morning of 4 November 1988. The team
damaging to this without very careful consideration. Net-

there included Keith Bostic (Computer Systems Research
work connectivity proved its worth as an aid to collabora-

Group, University of California, Berkeley), Mike Karels (Com-
tion by playing an invaluable role in the defense and

puter Systems Research Group, University of California, Berke-
analysis efforts during the crisis, despite the sites which

ley), Phil Lapsley (Experimental Computing Facility,
isolated themselves.

University of California, Berkeley), Dave Pare (FX Develop-
ment, Inc.), Donn Seeley (University of Utah), Chris Torek
(University of Maryland), and Peter Yee (Experimental Com-

4 ACKNOWLEDGMENTS puting Facility, University of California, Berkeley).

Many people contributed to our effort to take apart the virus.
4.3 OthersWe would like to thank them all for their help and insights

both during the immediate crisis and afterwards.
Numerous others across the country deserve thanks; many of
them worked directly or indirectly on the virus, and helped
coordinate the spread of information. Special thanks should go4.1 The MIT Team
to Gene Spafford (Purdue) for serving as a central information
point and providing key insight into the workings of the virus.The MIT group effort encompassed many organizations within

the Institute. It included people from Project Athena, the Tele- Don Becker (Harris Corporation) has provided the most read-
able decompilation of the virus which we have seen to date. Itcommunications Network Group, the Student Information Pro-

cessing Board (SIPB), the Laboratory for Computer Science, was most helpful.
People who offered particularly valuable advice includedand the Media Laboratory.

The SIPB’s role is quite interesting. It is a volunteer student Judith Provost, Jennifer Steiner, Mary Vogt, Stan Zanarotti, Jon
Kamens, Marc Horowitz, Jenifer Tidwell, James Bruce, Jerryorganization that represents students on issues of the MIT com-

puting environment, does software development, provides con- Saltzer, Steve Dyer, Ron Hoffmann and many unnamed people
from the SIPB Office. Any remaining flaws in this paper aresulting to the community, and other miscellaneous tasks. Almost

all the members of the MIT team which took apart the virus our fault, not theirs.



8 EICHIN AND ROCHLIS

Special thanks to Bill Sommerfeld for providing the descrip- process id of the parent which spawned it. It uses this number
later to kill that process, probably to “close the door” behind it.tion of the finger attack.

The rest of the command line arguments are “object names”.
These are names of files it tries to load into its address space.
If it can’t load one of them, it quits. If the -p argument isA THE PROGRAM
given, it also deletes the object files, and later tries to remove

This Appendix describes the virus program subroutine by sub- the disk image of running virus, as well as the file /tmp/
routine. For reference, the flow of information among the sub- .dumb. (This file is not referenced anywhere else in the virus,
routines is shown in Figure 1. so it is unclear why it is deleted.)

The program then tried a few further steps, exiting (“bailing
out”) if any of them failed:

A.1 Names
• It checked that it had been given at least one object on the

command line.The core of the virus is a pair of binary modules, one for the
• It checked to see if it had successfully loaded in theVAX architecture and the other for the Sun architecture. These

object 11.c.are linkable modules, and thus have name lists for their internal
procedures. Many of the original names are included here with If the “-p” argument was given, the program closes all file
the descriptions of the functions the routines performed. descriptors, in case there are any connections open to the parent.

It is surprising that the names are included, and astonishing The program then erases the text of the argument array, to
that they are meaningful. Some simple techniques, such as further obscure how it was started (perhaps to hide anything if
randomizing the procedure names, would have removed a num- one were to get a core image of the running virus.)
ber of clues to the function of the virus. It scans all of the network interfaces on the machine, gets

the flags and addresses of each interface. It tries to get the
point-to-point address of the interface, skipping the loop-back

A.2 main address. It also stores the netmask for that network [19].
Finally, it kills off the process id given with the “-p” option.

The main module, the starting point of any C language program, It also changes the current process group, so that it doesn’t die
does some initialization, processes its command line, and then when the parent exits. Once this is cleaned up, it falls into the
goes off into the loop which organizes all of the real work. doit routine which performs the rest of the work.

A.3 doit routineA.2.1 Initialization

This routine is where the program spends most of its time.The program first takes some steps to hide itself. It changes
the “zeroth” argument, which is the process name, to sh. Thus,
no matter how the program was invoked, it would show up in A.3.1 Initialization
the process table with the same name as the Bourne Shell, a

Like the main routine, it seeds the random number generatorprogram which often runs legitimately.
with the clock, and stores the clock value to later measure howThe program also sets the maximum core dump size to zero
long the virus has been running on this system.blocks. If the program crashed6 it would not leave a core dump

It then tries hg. If that fails, it tries hl. If that fails, it tries ha.behind to help investigators. It also turns off handling of write
It then tries to check if there is already a copy of the viruserrors on pipes, which normally cause the program to exit.

running on this machine. Errors in this code contributed to theThe next step is to read the clock, store the current time
large amounts of computer time taken up by the virus.in a local variable, and use that value to seed the random
Specifically:number generator.

• On a one-in-seven chance, it won’t even try to test for
another virus.

A.2.2 Command Line Argument Processing • The first copy of the virus to run is the only one which
listens for others; if multiple infections occur “simultane-

The virus program itself takes an optional argument -p which ously” they will not “hear” each other, and all but one will
must be followed by a decimal number, which seems to be a fail to listen (see section A.12).

The remainder of the initialization routine seems designed to6 For example, the virus was originally compiled using 4.3BSD declaration
send a single byte to address 128.32.137.13, which is ernie.ber-files. Under 4.2BSD, the alias name list did not exist, and code such as the

virus which assumes aliases are there can crash and dump core. keley.edu, on port 11357. This never happens, since the author



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 9

Figure 1: The structure of the attacking engine.



10 EICHIN AND ROCHLIS

used the sendto function on a TCP stream connection, instead A.4.2 Phase 0
of a UDP datagram socket.7 We have no explanation for this;

The first phase of the cracksome routines reads through theit only tries to send this packet with a one in fifteen random
/etc/hosts.equiv file to find machine names that wouldchance.
be likely targets. While this file indicates what hosts the current
machine trusts, it is fairly common to find systems where all

A.3.2 Main loop machines in a cluster trust each other, and at the very least it
is likely that people with accounts on this machine will have

An infinite loop comprises the main active component of the accounts on the other machines mentioned in /etc/
virus. It calls the cracksome routine8 which tries to find some hosts.equiv.
hosts that it can break in to. Then it waits 30 seconds, listening It also reads the /.rhosts file, which lists the set of
for other virus programs attempting to break in, and tries to machines that this machine trusts root access from. Note that
break into another batch of machines. it does not take advantage of the trust itself [21] but merely

After this round of attacks, it forks, creating two copies of uses the names as a list of additional machines to attack. Often,
the virus; the original (parent) dies, leaving the fresh copy. The system managers will deny read access to this file to any user
child copy has all of the information the parent had, while not other than root itself, to avoid providing any easy list of second-
having the accumulated CPU usage of the parent. It also has ary targets that could be used to subvert the machine; this
a new process id, making it hard to find. practice would have prevented the virus from discovering

Next, the hg, hl, and ha routines search for machines to those names, although /.rhosts is very often a subset of
infect (see Appendix A.5). The program sleeps for 2 minutes, /etc/hosts.equiv.
and then checks to see if it has been running for more than 12 The program then reads the entire local password file,
hours, cleaning up some of the entries in the host list if it has. /etc/passwd. It uses this to find personal .forward files,

Finally, before repeating, it checks the global variable and reads them in search of names of other machines it can
pleasequit. If it is set, and if it has tried more than 10 attack. It also records the user name, encrypted password, and
words from its own dictionary against existing passwords, it GECOS information string, all of which are stored in the
quits. Thus forcing pleasequit to be set in the system librar- /etc/passwd file. Once the program scanned the entire file,
ies will do very little to stem the progress of this virus9. it advanced to Phase 1.

A.4 Cracking routines A.4.3 Phase 1

This collection of routines is the “brain” of the virus. cracksome, This phase of the cracking code attacked passwords on the
the main switch, chooses which of four strategies to execute. local machine. It chose several likely passwords for each user,
It is would be the central point for adding new strategies if the which were then encrypted and compared against the encrypti-
virus were to be further extended. The virus works each strategy ons obtained in Phase 0 from /etc/passwd:
through completely, then switches to the next one. Each pass

• No password at all.through the cracking routines only performs a small amount of
• The user name itself.work, but enough state is remembered in each pass to continue
• The user name appended to itself.the next time around.
• The second of the comma separated GECOS information

fields, which is commonly a nickname.
A.4.1 cracksome • The remainder of the full name after the first name in the

GECOS fields, i.e. probably the last name, with the first
The cracksome routine is the central switching routine of the letter converted to lower case.
cracking code. It decides which of the cracking strategies is

• This “last name” reversed.
actually exercised next. Again, note that this routine was named

All of these attacks are applied to fifty passwords at a timein the global symbol table. It could have been given a confusing
from those collected in Phase 0. Once it had tried to guess theor random name, but it was actually clearly labelled, which
passwords for all local accounts, it advanced to Phase 2.lends some credence to the idea that the virus was released

prematurely.

A.4.4 Phase 2
7 If the author had been as careful with error checking here as he tried to

be elsewhere, he would have noted the error “socket not connected” every
Phase 2 takes the internal word list distributed as part of thetime this routine is invoked.
virus (see Appendix B) and shuffles it. Then it takes the words8 This name was actually in the symbol table of the distributed binary!

9 Although it was suggested very early [20]. one at a time and decodes them (the high bit is set on all of the



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 11

characters to obscure them) and tries them against all collected A.5.5 hn
passwords. It maintains a global variable next w as an index

The hn routine (our name) followed hi takes a network numberinto this table. The main loop uses this to preventpleasequit
as an argument. Surprisingly it returns if the network numberfrom causing the virus to exit until at least ten of the words have
supplied is the same as the network number of any of thebeen checked against all of the encryptions in the collected list.
interfaces on the local machine. For Class A addresses it usesAgain, when the word list is exhausted the virus advances
the Arpanet IMP convention to create possible addresses toto Phase 3.
attack (net.[1–8].0.[1–255]). For all other networks it guesses
hosts number one through 255 on that network. It randomizes

A.4.5 Phase 3 the order of this list of possible hosts and tries to attack up to
twenty of them using rsh, finger, and SMTP. If a host

Phase 3 looks at the local /usr/dict/words file, a 24474 does not accept connections on TCP port 514, the rsh port,
word list distributed with 4.3BSD (and other UNIX systems) hn will not try to attack it. If a host is successfully attacked
as a spelling dictionary. The words are stored in this file one hn returns.
word per line. One word at a time is tried against all encrypted
passwords. If the word begins with an upper case letter, the

A.5.6 Usageletter is converted to lower case and the word is tried again.
When the dictionary runs out, the phase counter is again The “h routines” are called in groups in the main loop; if the first

advanced to 4 (thus no more password cracking is attempted). routine succeedes in finding a vulnerable host the remaining
routines are not called in the current pass. Each routine returns
after it finds one vulnerable host. The hg routine is alwaysA.5 H routines
called first, which indicates the virus really wanted to infect

The “h routines” are a collection of routines with short names, gateway machines. Next comes hi which tried to infect normal
such as hg, ha, hi, and hl, which search for other hosts to attack. hosts found via cracksome. If hi fails, ha is called, which seemed

to try breaking into hosts with randomly guessed addresses on
the far side of gateways. This assumes that all the addressesA.5.1 hg
for gateways had been obtained (which is not trivial to verify
from the convoluted code in rt init), and implies that the virusThe hg routine calls rt init (if it has not already been called)
would prefer to infect a gateway and from there reach out toto scan the routing table, and records all gateways except the
the gateway’s connected networks, rather than trying to hoploopback address in a special list. It then tries a generic attack
the gateway directly. If hg, hi, and ha all failed to infect a host,routine to attack via rsh, finger, and SMTP. It returns after
then hl is called which is similar to ha but uses for localthe first successful attack.
interfaces for a source of networks.

It is not clear that ha and hl worked. Because hn returns if
A.5.2 ha the address is local, hl appears to have no chance of succeeding.

If alternate addresses for gateways are indeed obtained by other
The ha routine goes through the gateway list and connects to parts of the virus then ha could work. But if only the addresses
TCP port 23, the telnet port, looking for gateways which are in the routing table were used it could not work, since by
running telnet listeners. It randomizes the order of such gate- definition these addresses must be on a directly connected
ways and calls hn (our name) with the network number of each network. Also, in our monitoring we never detected an attack
gateway. The ha returns after hn reports that it has succeeded on a randomly generated address. These routines do not seem
broken into a host. to have been functional.

A.5.3 hl A.6 Attack routines

The hl routine iterates through all the addresses for the local There are a collection of attack routines, all of which try to
machine calling hn with the network number for each one. It obtain a Bourne Shell running on the targeted machine. See
returns if hn indicates success in breaking into a host. Appendix A.7 for a description of the 11.c program, used by

all the attack routines.

A.5.4 hi
A.6.1 hu1

The hi routine goes through the internal host list (see section
A.4.2) and tries to attack each host via rsh, finger, and SMTP. The hu1 routine is called by the Phase 1 and Phase 3 cracksome

subroutines. Once a password for user name guessed correctly,It returns if when one host is infected.



12 EICHIN AND ROCHLIS

this routine is called with a host name read from either the output going to, the network connection. The virus then sends
over the 11.c bootstrap program.user’s .forward or .rhosts files. In order to assume the

user’s id it then tries to connect to the local machine’s rexec
server using the guessed name and password. If successful it

A.6.4 Hit rshruns an rsh to the target machine, trying to execute a Bourne
Shell, which it uses to send over and compile the 11.c infec-

This unlabeled routine tries rsh to the target host (assumingtion program.
it can get in as the current user). It tries three different names
for the rsh binary,

A.6.2 Hit SMTP
• /usr/ucb/rsh
• /usr/bin/rshThis routine make a connection to TCP port 25, the SMTP
• /bin/rshport, of a remote machine and used it to take advantage of the

sendmail bug. It attempts to use the debug option to make If one of them succeeds, it tries to resynchronize (see Appendix
sendmail run a command (the “recipient” of the message), A.8.1) the connection; if that doesn’t succeed within thirty
which transfers the 11.c program included in the body of seconds it kills off the child process. If successful the connection
the message. can then be used to launch the 11.c “grappling hook” program

at the victim.
Note that this infection method doesn’t specify a user nameA.6.3 Hit finger

to attack; if it gets into the remote account, it is because the
user that the virus is running as also has an account on theThe “hit finger” routine tries to make a connection to TCP port
other machine which trusts the originating machine.79, the finger port, of the remote machine. Then it creates a

“magic packet” which consists of

• A 400 byte “runway” of VAX “nop” instructions, which A.6.5 Hit rexec
can be executed harmlessly.

The hit rexec routine uses the remote execution system which• A small piece of code which executes a Bourne Shell.
is similar to rsh, but designed for use by programs. It con-• A stack frame, with a return address which would hopefully
nects and sends the user name, the password, and /bin/shpoint into the code.
as the command to execute.

Note that the piece of code is VAX code, and the stack frame
is a VAX frame, in the wrong order for the Sun. Thus, although
the Sun finger daemon has the same bug as the VAX one, this A.6.6 makemagic
piece of code cannot exploit it.

The attack on the finger daemon is clearly a lysogenetic This routine tries to make a telnet connection to each of the
“viral” attack (see Section 1.2), since although a worm doesn’t available addresses for the current victim. It broke the connec-
modify the host machine at all, the finger attack does modify tions immediately, often producing error reports from the telnet
the running finger daemon process. The “injected DNA” com- daemon, which were recorded, and provide some of the earliest
ponent of the virus contained the VAX instructions shown in reports of attack attempts.10

Figure 2. If it succeedes in reaching the host, it creates a TCP listener
The execve system call causes the current process to be

replaced with an invocation of the named program; /bin/sh 10 On fast machines, such as the DEC VAX 3200, there may be no record
is the Bourne Shell, a UNIX command interpreter. In this case, of these attacks, since the connection is handed off fast enough to satisfy

the daemon.the shell winds up running with its input coming from, and its

Figure 2: VAX instructions for the finger attack.



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 13

on a random port number which the infected machine would (which had been previously sent to that victim as a command
line argument to the 11 program) and gives up after ten seconds.eventually connect back to.

After the connection is established, all of the current
“objects” in storage in the virus are fed down the connection

A.7 Grappling Hook into the victim. Then it tries to resynchronize, and if it succeeds,
sends down commands to

A short program, named 11.c, is the common grappling hook
• set the PATH of the victim shellthat all of the attack routines use to pull over the rest of the
• try to delete sh in the current directory (/usr/tmp)virus. It is robustly written, and fairly portable. It ran on a
• if the delete fails, pick a random name to use instead11

number of machines which were neither VAX or Sun, loading
• scan the list of objects, looking for names ending in .othem down as well, but only making them peripheral victims
• link and run each of these, with the command lineof the virus.

argumentsThe first thing it does is delete the binary it was running
from. It checks that it has three arguments (exiting if there • -p $$, where $$ is the process id of the victim shell
aren’t three of them). It closes all file descriptors and then • each object name
forks, exiting if the fork fails. If it succeeds, the parent exits;

• resynchronize; if this fails, assume that the virus succeededthis leaves no connection from the child to the infection route.
(since the -p option tells the virus to kill off the parentNext, it creates a TCP connection back to the address given
shell) and set flag bit 1 of the host list entry (the host listas the first argument, and the port given as the second. Then
is detailed in section A.9).it sends over the magic number given as the third. The text of

• delete the compiled program, and go on to the next object.each argument is erased immediately after it is used. The stream
connection is then reused as the program’s standard input Thus, to add another machine type, the virus merely needs to
and output. be started with a new object binary as a command line option,

A loop reads in a length (as a network byte order 32-bit which will then be propagated to the next infected host and tried.
integer) and then a filename. The file is unlinked and opened Note that the path used here was PATH5 bin: /usr/
for write, and then the file itself is read in (using the number bin: /usr/ucb which is certainly reasonable on most sys-
of bytes read in earlier.) On any error, all of the files are tems. This protects systems with “unusual” filesystem layouts,
unlinked. If the length read in is 21, the loop exits, and a and suggests that complete consistency among systems makes
Bourne Shell is executed (replacing the11 program, and getting them more vulnerable.
its input from the same source.)

A.9 Host modules
A.8 Install Routines

These are a set of routines designed to collect names and
There are a variety of routines used to actually move the virus addresses of target hosts in a master list. Each entry contains
from one machine to the other. They deal with the “virus proto- up to six addresses, up to twelve names, and a flags field.
col” connection made by the 11.c injected program or with
the shell that it spawns.

A.9.1 Name to host

A.8.1 resynch This routine searches the host list for a given named host,
returns the list entry describing it, and optionally adds it to the

The resynch routine sends commands to a remote shell, list if it isn’t there already.
requesting that it echo back a specific randomly chosen number.
It then waits a certain amount of time for a response. This
routine is used to indicate when the various subprograms of A.9.2 Address to host
the infection procedure have compiled or executed and a Bourne
Shell prompt is available again. This routine searches the host list for a given host address,

returns the list entry describing it, and optionally adds it to the
list if it isn’t there already.

A.8.2 waithit
11 Since the delete command used (rm -f) did not remove directories,

This routine does much of the high level work. It waits (up to creating a directory /usr/tmp/sh stoped the virus [22]. However, the virus
2 minutes) for a return connection from a victim (which has would still use CPU resources attempting to link the objects, even though it

couldn’t write to the output file (since it was a directory).had 11.c injected into it.) It then tries to read a magic number



14 EICHIN AND ROCHLIS

A.9.3 Add address/name A.11.2 rt init

This routine runs netstat -r -n as a subprocess. ThisThese two routines added an address or a name to a host list
shows the routing table, with the addresses listed numerically.entry, checking to make sure that the address or name was not
It gives up after finding 500 gateways. It skips the default route,already known.
as well as the loopback entry. It checks for redundant entries,
and checks to see if this address is already an interface address.

A.9.4 Clean up table If not, it adds it to the list of gateways.
After the gateway list is collected, it shuffles it and enters

This routine cycles through the host list, and removes any hosts
the addresses in the host table.

which only have flag bits 1 and 2 set (and clears those bits.)
Bit 1 is set when a resynchronize (in waithit) fails, probably
indicating that this host “got lost”. Bit 2 is set when a named A.12 Interlock routines
host has no addresses, or when several different attack attempts

The two routines checkother and othersleep are at the heart offail. Bit 3 is set when Phase 0 of the crack routines successfully
the excessive propagation of the virus. It is clear that the authorretrieves an address for the host.
intended for the virus to detect that a machine was already
infected, and if so to skip it. The code is actually fraught with

A.9.5 Get addresses timing flaws and design errors which lead it to permit multiple
infections, probably more often than the designer intended12.

This routine takes an entry in the host table and tries to fill in An active infection uses the othersleep routine for two pur-
the gaps. It looks up an address for a name it has, or looks up poses, first to sleep so that it doesn’t use much processor time,
a name for the addresses it has. It also includes any aliases it and second to listen for requests from “incoming” viruses. The
can find. virus which is running othersleep is referred to as the “listener”

and the virus which is running checkother is referred to as
the “tester”.A.10 Object routines

These routines are what the system uses to pull all of its pieces
A.12.1 Checkotherinto memory when it starts (after the host has been infected)

and then to retrieve them to transmit to any host it infects. The tester tries to connect to port 23357 on the local machine
(using the loopback address, 127.0.0.1) to see if it can connect
to a listener. If any errors occur during this check, the virusA.10.1 Load object
assumes that no listener is present, and tries to become a lis-
tener itself.This routine opens a file, determines its length, allocating the

If the connection is successful, the checker sends a magicappropriate amount of memory, reads it in as one block, decodes
number13, and listens (for up to 300 seconds) for a magicthe block of memory (with XOR). If the object name contains
number from the listener14. If the magic number is wrong, thea comma, it moves past it and starts the name there.
checker assumes it is being spoofed and continues to run.

The checker then picks a random number, shifts it right by
A.10.2 Get object by name three (throwing away the lower three bits) and sends it to the

listener. It expects a number back within ten seconds, which it
This routine returns a pointer to the requested object. This is adds to the one sent. If this sum is even, the sender increments
used to find the pieces to download when infecting another host. pleasequit, which (as noted in section A.3.2) does very

little.
Once it has finished communicating (or failing to communi-A.11 Other initialization routines

cate) with the listener, the checker sleeps for five seconds and
tries to become a listener. It creates a TCP stream socket, setsA.11.1 if init
the socket options to indicate that it should allow multiple binds
to that address (in case the listener still hasn’t exited, perhaps?)This routine scans the array of network interfaces. It gets the

flags for each interface, and makes sure the interface is UP and
12 This behavior was noted by both looking at the code and by creating aRUNNING (specific fields of the flag structure). If the entry

testbed setup, manually running a program that performs the checking and
is a point to point type interface, the remote address is saved listening functions.
and added to the host table. It then tries to enter the router into 13 87469716, 886543110, 0416432278

14 14889816, 134568810, 051042308the list of hosts to attack.



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 15

and then binds the socket to port 23357, and listens on it beauty beethoven beloved
benz beowulf berkeley(permitting a backlog of up to ten pending connections.)
berliner beryl beverly
bicameral bob brenda

A.12.2 Othersleep brian bridget broadway
bumbling burgess campanile

The othersleep routine is run when the main body of the virus cantor cardinal carmen
wants to idle for a period of time. This was apparently intended carolina caroline cascades
to help the virus “hide” so that it wouldn’t use enough processor castle cat cayuga
time to be noticed. While the main program sleeps, the listener celtics cerulean change
code waits to see if any checkers have appeared and queried charles charming charon
for the existence of a listener, as a simple “background task” chester cigar classic
of the main virus. clusters coffee coke

The routine first checks to see if it has been set up as a collins commrades computer
listener; if not, it calls the normal sleep function to sleep for condo cookie cooper
the requested number of seconds, and returns. cornelius couscous creation

If it is set up as a listener, it listens on the checking port creosote cretin daemon
with a timeout. If it times out, it returns, otherwise it deals dancer daniel danny
with the connection and subtracts the elapsed real time from dave december defoe
the time out value. deluge desperate develop

The body of the listener “accepts” the connection, and sends dieter digital discovery
a magic number to the checker. It then listens (for up to 10 disney dog drought
seconds) for the checker’s magic number, and picks a random duncan eager easier
number. It shifts the random number right by three, discarding edges edinburgh edwin
the lower bits, and sends it up to the checker; it then listens edwina egghead eiderdown
(for up to 10 seconds) for a random number from the checker. eileen einstein elephant
If any of these steps fail, the connection is closed and the elizabeth ellen emerald
checker is ignored. engine engineer enterprise

Once the exchanges have occurred, the address of the incom- enzyme ersatz establish
ing connection is compared with the loopback address. If it is estate euclid evelyn
not from the loopback address, the attempt is ignored. If it is, extension fairway felicia
then if the sum of the exchanged random numbers is odd, the fender fermat fidelity
listener increments pleasequit (with little effect, as noted finite fishers flakes
in section A.3.2) and closes the listener connection. float flower flowers

foolproof football foresight
format forsythe fourier

B BUILT IN DICTIONARY fred friend frighten
fun fungible gabriel

432 words were included: gardner garfield gauss
george gertrude ginger

aaa academia aerobics glacier gnu golfer
gorgeous gorges goslingairplane albany albatross

albert alex alexander gouge graham gryphon
guest guitar gumptionalgebra aliases alphabet

ama amorphous analog guntis hacker hamlet
handily happening harmonyanchor andromache animals

answer anthropogenic anvils harold harvey hebrides
heinlein hello helpanything aria ariadne

arrow arthur athena herbert hiawatha hibernia
honey horse horusatmosphere aztecs azure

bacchus bailey banana hutchins imbroglio imperial
include ingres innabananas bandit banks

barber baritone bass innocuous irishman isis
japan jessica jesterbassoon batman beater



16 EICHIN AND ROCHLIS

strangle stratford stuttgartjixian johnny joseph
joshua judith juggle subway success summer

super superstage supportjulia kathleen kermit
kernel kirkland knight supported surfer suzanne

swearer symmetry tangerineladle lambda lamination
larkin larry lazarus tape target tarragon

taylor telephone temptationlebesgue lee leland
leroy lewis light thailand tiger toggle

tomato topography tortoiselisa louis lynne
macintosh mack maggot toyota trails trivial

trombone tubas tuttlemagic malcolm mark
markus marty marvin umesh unhappy unicom

unknown urchin utilitymaster maurice mellon
merlin mets michael vasant vertigo vicky

village virginia warrenmichelle mike minimum
minsky moguls moose water weenie whatnot

whiting whitney willmorley mozart nancy
napoleon nepenthe ness william williamsburg willie

winston wisconsin wizardnetwork newton next
noxious nutrition nyquist wombat woodwind wormwood

yacov yang yellowstoneoceanography ocelot olivetti
olivia oracle orca yosemite zap zimmerman
orwell osiris outlaw
oxford pacific painless

REFERENCESpakistan pam papers
password patricia penguin

[1] R. Hinden, J. Haverty, and A. Sheltzer, “The DARPA
peoria percolate persimmon Internet: Interconnecting Heterogeneous Computer Net-
persona pete peter works with Gateways,” IEEE Computer Magazine, vol.
philip phoenix pierre 16, num. 9, pp. 38–48, September 1983.
pizza plover plymouth [2] J. S. Quarterman and J. C. Hoskins, “Notable Computer
polynomial pondering pork Networks,” in Communications of the ACM, vol. 29, num.

10, pp. 932–971, October 1986.poster praise precious
[3] S. E. Luria, S. J. Gould, and S. Singer, A View of Lifeprelude prince princeton

Menlo Park, California: Benjamin/Cummings Publish-protect protozoa pumpkin
ing Company, Inc., 1981.puneet puppet rabbit

[4] J. Watson et al., Molecular Biology of the Gene. Menlorachmaninoff rainbow raindrop
Park, California: Benjamin/Cummings Publishing Com-raleigh random rascal
pany, Inc., 1987.

really rebecca remote [5] G. G. Simpson and W. S. Beck, Life: An Introduction to
rick ripple robotics Biology. New York, New York: Harcourt, Brace and Ward,
rochester rolex romano Inc., 1965.
ronald rosebud rosemary [6] L. Castro et al., “Post Mortem of 3 November ARPANET/
roses ruben rules MILNET Attack.” National Computer Security Center,

Ft. Meade MD, 8 November 1988.ruth sal saxon
[7] P. J. Denning, “Computer Viruses,” American Scientist,scamper scheme scott

vol. 766, pp. 236–238, May–June 1988.scotty secret sensor
[8] D. Seeley, “A Tour of the Worm,” in USENIX Associationserenity sharks sharon

Winter Conference 1989 Proceedings, pp. 287–304, Janu-sheffield sheldon shiva
ary 1989.shivers shuttle signature

[9] E. H. Spafford, “The Internet Worm Program: An Analy-
simon simple singer sis,” ACM SIGCOM, vol. 19, January 1989.
single smile smiles [10] K. Harrenstien, “NAME/FINGER Protocol Protocol,”
smooch smother snatch Request For Comments NIC/RFC 742, Network Working
snoopy soap socrates Group, USC ISI, November 1977.
sossina sparrows spit [11] J. Markoff, “Computer Snarl: A ‘Back Door’ Ajar,” New

York Times, p. B10, 7 November 1988.spring springer squires



AN ANALYSIS OF THE INTERNET VIRUS OF NOVEMBER 1988 17

[12] J. B. Postel, “Simple Mail Transfer Protocol,” Request [17] M. R. Horton, “How to Read the Network News,” UNIX
User’s Supplementary Documents, April 1986.For Comments NIC/RFC 821, Network Working Group,

USC ISI, August 1982. [18] P. Mockapetris, “Domain Names—Concepts And Facili-
ties,” Request For Comments NIC/RFC 1034, Network[13] S. Bellovin, “The worm and the debug option,” in Forum

on Risks to the Public in Computers and Related Systems, Working Group, USC ISI, November 1987.
[19] J. Mogul and J. B. Postel, “Internet Standard Subnettingvol. 7, num. 74, ACM Committee on Computers and

Public Policy, 10 November 1988. Procedure,” Request For Comments NIC/RFC 950, Net-
work Working Group, USCISI, August 1985.[14] J. Collyer, “Risks of unchecked input in C programs,” in

Forum on Risks to the Public in Computers and Related [20] G. Spafford, “A cure!!!!!,” in Forum on Risks to the Public
in Computers and Related Systems, vol. 7, num. 70, ACMSystems, vol. 7, num. 74, ACM Committee on Computers

and Public Policy, 10 November 1988. Committee on Computers and Public Policy, 3 Novem-
ber 1988.[15] J. Saltzer and M. Schroeder, “The Protection of Informa-

tion in Computer Systems,” in Proc. IEEE, vol. 63, num. [21] R. W. Baldwin, Rule Based Analysis of Computer Secu-
rity. PhD thesis, MIT EE, June 1987.9, pp. 1278–1308, IEEE, September 1975.

[16] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An [22] G. Spafford, “A worm “condom”,” in Forum on Risks to
the Public in Computers and Related Systems, vol. 7,Authentication Service for Open Network Systems,” in

USENIX Association Winter Conference 1988 Proceed- num. 70, ACM Committee on Computers and Public Pol-
icy, 3 November 1988.ings, pp. 191–202, February 1988.


