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L'(7, X) WITH ORDER CONVOLUTION

R. K. DHAR AND H. L. VASUDEVA

Abstract. It is shown that the maximal ideal space of /.'(/, X) is (0, 1] X ?M(X),

where %Jl(X) denotes the maximal ideal space of the Banach algebra X. The

Gelfand topology on the Carrier space (0, 1] x 3Jl(X) coincides with the topology

which is the product of the interval topology in (0, 1] and the Gelfand topology on

SDi(A'). Moreover, the Gelfand transform has the form of an indefinite integral.

Let 7 denote the interval [0, 1] of real numbers. 7 is a totally ordered set with the

semigroup structure obtained by defining xy = max{x, v}. When 7 is provided

with the usual interval topology, 7 is a compact topological semigroup. Let C(7)

denote the linear space of all complex-valued continuous functions on 7. We give

C(7) the usual norm

||/|| = max|/(x)|

for/in C(7). Let C(7)* denote the conjugate space of C(7), that is, the linear space

of all continuous complex-valued linear functionals 7 on C(7). It is well known

that each 7 G C(7)* has a unique representation as an integral with respect to a

complex-valued, countably additive, regular measure X defined on all Borel subsets

of 7 [10, p. 364]. That is,

L{f) = {fix) dX(x)
Ji

forall/inC(7).

Let X be a commutative Banach algebra with identity e, \\e\\ = 1. Denote by

M(I, X) the set of all countably additive, regular vector-valued measures defined

on the 0-algebra *3à (7) of Borel sets in 7 with values in X, which have finite total

variation [3]. With the total variation as norm, ||m|| = |w|(7), m G M(I, X),

M(I, X) is a Banach space ([6, p. 161] or [8, p. 103]).

Following [3, p. 379] a linear operation U: C(I) -» X is said to be dominated if

there exists a regular positive Borel measure p such that

\\U(f)\\< [\f\dp
J i

for every/ G C(7); one says that U is dominated by p or that p dominates U. Then

there exists a least positive regular Borel measure dominating U, denoted by fiy.

Put

II I'll = sup| 2 U(f,)\\    and     m U ||| = sup £ || U(f)\\

where the supremum is taken over all finite families {/} of C(7) with 2 ||/|| < 1.
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We shall make use of the following result proved in [3, p. 380].

Theorem 1. There exists an isomorphism U*-* m between the set of the dominated

linear operations U: C(I) —» X and the set of the regular Borel measures m:

% (I) -* X with finite variation ft, given by the equality

U(f) = if dm   for every f G C(7).
Ji

Moreover, if U and m are in correspondence, we have

»V-ft    |ü|"W0   and   ll|i/|||=M(7) = ft(7).

Recall that ||«i||(7) is the semivariation of m on I, that is,

||m||(7) = sup|2:^(£,)||

where the supremum is taken over all finite families {7s,} of disjoint sets of 'S) (I) with

U, Ej = 7 and for all the finite families {a¡} of complex numbers such that \a¡\ < 1

for each i.

Duchon [4] has introduced the convolution algebra A7(7, X) as follows: Let /be

in C(7). Then the function of two variables fixy) is continuous in 7 X 7. Let m, n

be in M(I, X). Let m 0 n be a regular Borel vector-valued measure with finite

variation on % (I X I) that is an extended product of m and « (see [5, p. 1469]).

Then m * « is the measure determined by the dominated operation W: C(I) -» X

given by the equality

W{f)-(     f(xy)d(m®n)(x,y)

(!) '*'

= /y{//(^) My) j dn(x) = fjd(m * n)

for every/in C(7). Moreover,

||/n * «|| <||«i|| ||«||,       m, n G A7(7, X).

With this product, A7(7, A') is a Banach algebra, which is commutative if X is. The

structure of measure algebras M(G, X), where G is a totally ordered compact

topological semigroup with multiplication in G defined by xy = max{x, v}, is

discussed in [5]. If 3R(X) denotes the space (in the usual weak topology) of regular

maximal ideals in X and FM represents the canonical homomorphism from X onto

the complex numbers C associated with an M G 3Jl(X), then for every homomor-

phism m of M(I, X) onto C, there exist a b G I and M G 2Tî(Ar) such that

tr(m) = FMm([0, b]) for all m G M(I, X) or there exist a b G (0, 1] and M G

ïïl(X) such that tr(m) = FMm([0, b)) for all m G A7(7, X). Conversely, if a G [0, 1]

(a G (0, 1]), M G Tl(X), then the mapping m -> FMm([0, a]) (m -> T^mflO, a))) is

a homomorphism of M(I, X) onto C.

In what follows we show that 7'(7, X) is a subalgebra of M(I, X) and study the

structure of this algebra. The maximal ideal space of LX(I, X) corresponds to

(0, 1] X 3R(X). The Gelfand topology coincides with the topology which is the
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product of the interval topology on (0, 1] and the weak topology on 3R(X) and the

Gelfand transform has the form of the indefinite integral.

For terms pertaining to vector measures and Bochner integral, the general

reference is [2]. We list the following definition:

Definition 2. Let (fí, 2, ft) be a finite measure space. A Banach space X has the

Radon-Nikodym property with respect to (ñ, 2, ft) if for each ft-continuous vector

measure m: 2 —» X of bounded variation there exists g in Lx(p.,X) such that

m(E) = jE g d[i for all E G 2.

Throughout the discussion we shall assume that the Banach algebra X has the

Radon-Nikodym property with respect to the Lebesgue measure on [0, 1].

1. 7'(7, X) as a subalgebra of M(I, X). Every function/ G 7'(7, X) determines a

measure pf G A/(7, X) where

fx^Ts) = f fix) dx.
JE

The measure fy is absolutely continuous with respect to Lebesgue measure and, in

view of the Radon-Nikodym property of X with respect to Lebesgue measure,

every measure which is absolutely continuous with respect to Lebesgue measure is

of this form. Since functions in 7'(7, A') which are equal almost everywhere are

identified, different functions determine different measures. Moreover, we have

II ÍVll = 11/111- We can thus view 7'(7, X) as a linear subspace of M(I, X). Our first

result is that this linear subspace is in fact a subalgebra.

We shall need a notation for certain subsets of 7. We put Ax = {x, y G 7:

x < y) and A2 = {x, y G 7: x >y).

Theorem 3. Iff g G 7'(7, X), thenf* g G LX(I, X) and

(2) (f*g)(x)=Ax)rg(y)dy+g(x)Cf(y)dy   a.e.

Proof. We will show that the function defined on the right side of (2) belongs to

7'(7, X). We have

( \\f(x) f g(y) dy + g(x) f fiy) dy dx
Jo II       Jo Jo

< rx,||/wi1 h*0011^ *dx+r Jo'||gw|1 |i/oo||x<> * *

= /' fll/WH \\g{y)\\^dydx + f f\\j%x)\\ flgOOllx,,*«**•'O -'0 •'O •'O

= ff\\Ax)\\U(y)\\(.XA,+ )(*)& dx

Jo Jo
■

Thus

f(x)fXg(y) dy + g(x)ffiy) dy G LX(I, X).
0 0

•
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To determine the convolution product of / and g, let « be an arbitrary function in

C(7). Then according to (1),

fh(z) d(^* ftg)(z) = f ' Ch(xy)f(x)g(y) dx dy
Jj J B JQ     J0

= [' f [Xi.AOO + XAMxMxMy) dx dy
Jo Jo

= Çh(y)g(y)\ CxAj{x)dx\ dy + Ch(x)f(x)\ f'x^OO^l àx
Jq L-'o J •'o L-'o J

(using Fubini's theorem [3, Theorem 4, p. 1469])

= flh(y)\ g(y) ("fix) dx]dy+ Çh(y)\f(y) C g(x) dx
Jo L        •'o J •'o L        •'o

- ff>(y)[ g(y)£f(x) «* + /tjOjTsto dx] dy.

dy

Thus, in view of Theorem 1, the measure fy * l*g agrees with the measure de-

termined by the function/(*)/„ g(y) dy + g(x)}%f(y) dy.

From the above theorem we have that 7'(7, A") is a subalgebra of M(I, X) and,

from the results of [4], M (I, X) is semisimple if and only if X is semisimple. Thus

we have the following result:

Corollary 4. LX(I, X) with order convolution is a commutative semisimple

Banach algebra iff X is semisimple.

Remark. 7'(7, X) is not an ideal in M(I, X). In fact, the function exlc¿), where c

and d are distinct interior points of I, when convolved with the mass e at d gives

the mass (d — c)e at the point d. Of course the set of discrete measures in M(I, X),

7,(7, X), is a subalgebra of M(I, X). It is easy to check that /,(7, A") 0 7'(7, X),

that is those measures in M(I, X) of the form y¡.d + fy where nd is discrete with

values in X and/ G L'(7, A"), is also a subalgebra of M(I, X).

2. The Gelfand representation. The Gelfand theory for commutative Banach

algebras provides a representation of these algebras as algebras of continuous

functions on a locally compact space. We show that this representation for

7'(7, A") with order convolution is given by the indefinite integral.

Since 7'(7, X) is a subalgebra of M(I, X) each homomorphism of M(I, X) into

the complex numbers will be a homomorphism of 7'(7, X) into the complex

numbers. Thus for each b G 7 (b G (0, 1]) and M G ÜT^A") the mappings

/-> FMjxio,b](x)f(x) dx   and   /-» FMjx[o.b)(x)fix) dx

are homomorphisms of L X(I, X) into the complex numbers. However, since X[oj>] =

Xto.b) almost everywhere, they define the same homomorphism of L'(7, X) into C.

There is the possibility too that there are homomorphisms on L'(7, A") which are

not of this form. The following theorem combined with the above remarks gives a

complete characterisation of nonzero homomorphisms of LX(I, X) into complex

numbers.
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Theorem 5. Every homomorphism <p of LX(I, X) onto the complex numbers is of

the form

(3) <H/) = FMf fix) dx
Jo

for some 0 < a < 1 and FM, where FM represents the canonical homomorphism from

X onto C associated with an M El aW(A').

Proof. Since simple functions are dense in LX(I, X) and <f> is not a zero

homomorphism of LX(I, X), there exists Xe x such that MXe0x) 9* 0. Define

h(fe) = <b(fe * Xe^Mxex),       f G LX(I).

If x^v is such that iAx¡y) # 0, then

<»(/« * Xe0x)MXeox) = «f>(/e * XeJO/XXeV)-

One need only cross multiply and observe that <b is multiplicative and the algebra is

commutative. Moreover, A is a homomorphism. In fact,

( v      <K/e * gg * Xe„*) _ <p(/e * gg « x^x)   <p(Xe0*)

_ «p(/e » ge * Xe0x * Xe0x) _ <j>(fe * Xebx)   <t>(ge * Xe0x) _

<KXe0x)<KXe0x) <KXe0x) <KXe0x) '  KS€)'

Since Lx(I)e is isometrically isomorphic to LX(I), it follows, in view of [12], that

there exists a, 0 < a < 1, such that h(fe) = föfix) dx. Define

k(y) = <t>(xE0xy)MxEx),     y ex.

It may be easily checked that k is well defined and is a multiplicative linear

homomorphism of X. So there exists M G Tt(X) such that k(y) = FM(y) for all

VGA".

Hxe/* xEox)  <P(xEoxy)
h(xEe)k(y) =

HXe0x) <KXex)

Thus

<{XEy * Xe0x * Xe0x)

«Xe.* * Xex)
= «Kxev)-

«pÎXêV) = FM(y)¡\E{t) dt = F^fJyxEU) dt).

Suppose now/ is an arbitrary function in 7'(7, A"). There exists a sequence of

simple functions {/,} such that Limn||/„ —/|| =0 and Lin^/oH/, —/|| dx = 0.

Moreover, <p(fn) = FMf% f„(t) dt. By the dominated convergence theorem and the

continuity of FM, we have

<Kf) = FM[afit)dt.

We can thus identify the Carrier space of 7'(7, A") with (0, 1] X 3W(Ar), and the

Gelfand transform of / in 7'(7, A") is the indefinite integral. The following theorem
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shows that the Gelfand topology in the Carrier space (0, 1] X Tl(X) of LX(I, X) is

the product of the interval topology on (0, 1] and the weak topology on Wl(X).

Theorem 6. The Gelfand topology, t, on (0, 1] x MR(X) coincides with the topology

t', which is the product of the interval topology on (0, 1] and the weak topology on

Wl(X).

Proof. The Gelfand topology, t, is the weakest topology for which the functions

fia, M) = [ FM(fix)) dx

are continuous. Since these functions are continuous with respect to t', t is weaker

than t'. The functions fia, M) clearly separate the points of (0, 1] X %Jl(X), vanish

at infinity, and do not all vanish at a particular point in (0, 1] X iVi(X). Thus the

weak topology t induced on (0, 1] X \M(X) by these functions coincides with t' [13,

p. 12].
Remark. The result about the Carrier space of 7*(7, A") can also be obtained by

using a theorem of Grothendieck [9, Chapter 1, p. 58] and a theorem of Gelbaum

[7]. However, our method is very simple and straightforward.

It follows from the above results that 7'(7, A") has no identity. It is clear that the

adjunction of an identity to 71 is equivalent to the adjunction of the mass e at the

point 0 to the algebra LX(I, X). However, there are approximate identities in

L\I, X).

Theorem 7. Given f G 7'(7, X) and e > 0 there exists i G 7 such that if p(x) =

u(x)e, where u(x) is any nonnegative function in LX(I) which vanishes to the right of

t, and /¿ p(x) dx = e, then \\f — p */||, < e.

Proof. Choose t > 0 such that /óll/(x)|| dx < e/3. If p satisfies the conditions of

the theorem, then for x > t, (p */)(x) =f(x). Thus

II" •/ - 7l| = f'\Ux) fXf(y) dy + fix) C p(y) dy - fix)   dx
Jo II        A) •'o

< /J"(*).(V(>0|| dy +||/(x)||jfVv) dy +||/(x)||] dx

/'«(*)[ / VOOH dy] dx + f'\\fix)\\ dx + f'\\f(x)\\ dx•'O L ■'0 J •'O •'0
<

X'!*) 6 £
dx + — + — < e.

3      3

Remarks, (i) If X = C, the field of complex numbers, then L1(7, X) is the

algebra studied in [12].

(ii) If X = LX(I), then it can be shown, using an argument similar to the one

given in [11], that 7'(7, 7'(7)) is isometrically isomorphic to the algebra L'(7 x 7)

studied in [1].
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