
WITH VAULTED VOICE VERIFICATION MY VOICE IS MY KEY

R.C. Johnson and Terrance E. Boult

Univ. of Colorado Colorado Springs and Securics, Inc.
Colorado Springs, CO, USA

ABSTRACT

Those who handle sensitive information from time to time
need a device that can communicate securely. They also need
the ability to verify the recipient of the information. For such
secure communication to take place, they must securely ex-
change a key, often with someone they do not already know.

Biometrics have been gaining widespread adoption in an
effort to verify the end users identity. We extend this to key
exchange. Vaulted Voice Verification, a recently introduced
voice-based biometric protocol, has been shown to securely
and remotely verify a user while also maintaining the privacy
of the user. However Vaulted Voice Verification as originally
proposed was not well suited for the exchange of larger keys.
We present an index-based Vaulted Voice Verification which
significantly reduces communication overhead and allows the
transmission of keys that are suitable for biometrically authen-
ticated secure communication.

Index Terms— Vaulted Voice Verification, biometrics,
security, privacy, speaker verification

1. INTRODUCTION AND RELATED WORK
Smart phones have gained widespread adoption, from friends
surfing while calling each other socially, to first responders in
the field communicating with headquarters. Integrated multi-
purpose devices are replacing dedicated phone, camera, web
and gaming devices. While most of the communication that
occurs via smart phones is benign, some of it is sensitive
and needs to be securely transmitted. For those who handle
sensitive information, there also exists a need for a device
that can communicate securely. For such people, using their
existing smart phone to make secure communication calls can
be very appealing.

For a mobile device to conduct secure communications,
that device must first have a secure key. If two people are
to communicate, how can they both securely exchange a key
and be sure of the identity of the person with whom they are
communicating? The answer: by incorporating biometrics
into the process of key exchange. This leads to the question:
how can biometrics be incorporated in a way that maintains
security and trust while preserving privacy?

Over the years, much research has gone into the use of
biometrics in generating or storing keys, [1, 2, 3, 4, 5, 6, 7, 8],
with a few works on biometric verified key exchange [2, 3, 6].

One of the biggest hurdles found with using biometrics for
secure key generation is that biometrics are inherently noisy.
In general, these and other works attempt to create a biometric
template of one form or another to solve this problem.

Some work of note includes fuzzy extractors and fuzzy
commitment schemes [5, 9, 10, 11]. The general idea behind
these schemes is to hide real data among lots of chaff data
during enrollment; “locking” the data in a “vault.” During
verification in these types of schemes, if the biometrics of
the verifying user can match enough of the real data points,
the key is “released” from the “vault.” While such schemes
seemingly solve the problem of creating exact keys from noisy
data, they are susceptible to attacks [12] and they cannot solve
the problem of remote key exchange.

Other work involves generating protected templates, which
can be seen as a type of key [13, 14, 1]. While such schemes
can seemingly solve the problem of using biometrics to gen-
erate a key, they do not solve the problem of remote key ex-
change that also preserves privacy. Also, because they can not
do any sort of challenge response, the two parties exchang-
ing keys can not explicitly trust each other without violating
privacy. In these systems, either the keys are generated or
released. However, the keys they manage are too small to be
useful for RSA public keys.

To solve the problem of using biometric security to re-
motely verify identification and also preserve privacy, we look
to Vaulted Voice Verification. However, Vaulted Voice Ver-
ification, as originally proposed, was not well suited for the
exchange of keys large enough for secure communication. This
is because, similar to other biometric key exchange schemes,
each interaction with the user generated only a small number
of bits. Hundreds of bits are needed to generate keys that are se-
cure enough for practical use. The originally proposed Vaulted
Voice Verification would require far too many user interactions
to be practical. To overcome this, this paper shows how to
create an index-based Vaulted Voice Verification capable of
generating keys large enough for RSA public keys.

Vaulted Voice Verification, introduced in [15], is a voice-
based extension of a technique called Vaulted Verification,
which was developed for privacy and security enhanced bio-
metric identification [2, 16]. Vaulted Voice Verification is an
extension of the Vaulted Verification concept, combining it
with with technology for speaker identification and with recog-

tboult
© 2013 IEEE. Pre-print of article that will appear in IEEE BTAS 2013
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

nition techniques from the voice community [17, 18, 19, 20].
The result is a secure protocol that is able to remotely identify
a user via their voice while also maintaining their privacy.

As with other protocols, Vaulted Voice Verification utilizes
both an enrollment and a verification stage. In general, the
enrollment and verification stages of Vaulted Voice Verifica-
tion are easy to communicate. During the enrollment stage,
the user is presented with questions to answer or phrases to
repeat. The user submits answers/responses in the form of
voice samples which are then turned into models and stored
for later comparison. During the verification stage, the user
is asked a subset of the same questions and their responses
must correspond to the correct answer as stored during enroll-
ment. The remainder of this section will include a high level
overview of the originally proposed Vaulted Voice Verification
protocol. For a more in-depth explanation, refer to [15].
1.1. Enrollment
First, the user enters their information into their device, which
then generates keys for the user. The device then prompts
the user with questions to answer or words to repeat. The
user responds to each prompt as requested. For each of these
prompts, a real model and chaff models are created so that the
chaff models are similar to the real. The device then encrypts
the models using the public key of the user. The public key
of the user is used here so that only the user can decrypt the
models with their private key.

Then the models are sent to the server for hashing. The
server stores the hashes and discards the model information.
Because of this, the encrypted models can remain on the client
device until a verification is requested.

The server then sends a response notification to the client
device to let it know that the enrollment is complete. The
client device notifies the user of a successful enrollment.
1.2. Verification
The user first inputs their information into their device, and the
device uses that information to send a verification request to
the server. The server decrypts the template, verifies the hash
and generates an i.i.d. binary string. The server then selects a
subset of the models and shuffles them according to the string.
Then the server sends the shuffled models to the client.

After receiving the shuffled models, the client device de-
crypts them. The client device then prompts the user with
the questions or words to repeat for each model group. The
user responds to each prompt, generating a new model each
time. The client device then makes a comparison between the
models sent from the server and the newly generated mod-
els. This comparison allows the client device to guess real
models from the chaff ones and unscramble the challenge. As
the client device unscrambles the challenge, it generates a
response string. The completed response string is sent to the
server for verification.

Upon receiving the response string from the client device,
the server compares it against the string it generated for the
challenge. If the strings match within some tolerance, the

server responds with an accept. If, however, the strings do not,
the server rejects the verification attempt.

2. INDEX-BASED SECURE KEY EXCHANGE
The originally proposed Vaulted Voice Verification protocol is
able to securely and remotely verify an individual using voice
as a biometric identifier. In this work, we look to use the basic
ideas from Vaulted Voice Verification to create a protocol that
is able to securely and remotely identify an individual while
exchanging keys that are suitable for secure communication,
all while radically reducing communication overhead.

As with Vaulted Voice Verification, our index-based pro-
tocol for secure key exchange has both an enrollment and a
verification stage. What makes this protocol truly novel is its
use of indexed tables instead of sending models between the
server and the client. We will examine the construction of the
five different types of tables that must be created before we
detail how the protocol is used for secure key exchange. The
tables are as follows: model table, client table, server table,
server challenge table, matching table and user table. During
matching, the biometrics are combined with these tables to
generate a set of results for the matching challenge. The five
tables with sample data are shown in Fig. 1.

2.1. Index-based Enrollment
The enrollment process for our new index-based version of
Vaulted Voice Verification is similar to the enrollment of the
originally proposed Vaulted Voice Verification. As shown in
Fig. 2, the enrollment process occurs in steps. In step 1, the
user enters their ID and password. One option is for the user to
supply both of them; another option is to base their generation
on the client device (i.e. phone number and hardware ID),
making the enrollment device specific.

In step 2, the client device generates the RSA key pair,
Kpriv,Kpub for the user. In step 3, the client device selects
questions from a larger list, asks the user the questions, and
the user responds. In step 4 the client generates models based
on the user’s responses, one model per response.

Once the models are generated, the process moves to step 5,
in which the client device generates the model table described
in Fig. 1. It takes the private key Kpriv from step 2 and a set
of generated random pad R and generates a xored version of
the key K̂ = Kpriv � R. It breaks K̂ into smaller segment,
e.g. 32 bit segments, and stores the components in the client
table as Ni associated with hash value h2,i associated with
correct model i and associating a random Ni with chaff pairs.
It encrypts the model and client table with the user-device
password. It takes the associated segment of the pad Ri, and
adds the pair (h2,i, Ri) into a temporary server table. It also
stores the question string for each pair – note the client table
does NOT contain the question strings. Then the temporary
server table is encrypted using the server’s public key before
sending it to the server. The server then receives the table,
decrypts it, and generates a hash based on the content. In step
6, the server stores the generated hash as the data hash for

Fig. 1. Index-based Vaulted Voice Verification Tables. The Model Table (upper-middle) consists of model files and their
associated hashes; it contains no information linking models to challenges/questions. The Client Table (upper-left) consists of a
triple of (hash of a model, an index value, a nonce N1), and a hash of the triple (h2). The Server Table is not shown, but is
used to generate the Server Table - Challenge (middle-left) which contains a question, a user ID, a challenge nonce, and a set of
doubles, four in this example. The doubles contain a hash created from h2 hashed with the challenge nonce, and a different nonce
N2. The Matching Challenge (upper-right) is not saved; it is a visual representation indicating the matching and non-matching
models for this challenge.The System Users table (middle-right) contains an ID, a data hash of the complete template, a public
key, a challenge nonce, and a challenge string. The private key (bottom) results from applying an XOR to N2 and N1 across all
questions.The proper response to the challenge results from encrypting h2’s in correct order for a question with the number of
shifts and the challenge nonce, for each question, with the private key P .

the user in the system users table. Then the server adds an
enrollment date/time/ID, encrypts the resultant “server table”
with it’s public key, sends it to the user in step 7 and may then
delete its local copy of the server table. The data is encrypted
with the public key of the server so the client is not able to
access the content, but gives a copy to the client so the server
does not retain any information other than the hash and user
ID, reducing any risk from insiders trying to decrypt the data.
In steps 8 and 9, the client stores the server table, deletes the
temporary server table and notifies the user that the enrollment
is complete.

2.2. Index-based Verification
The verification process for our new index-based version of
Vaulted Voice Verification is a variant of the one originally
proposed. Unlike the original, however, this manages only
indices and extracts a private key.

In step 1, the ID and password are obtained: either the
user enters them or the device generates them. Next, the client
device uses the password to attempt to decrypt the tables and
model files. If successful, the ID of the user and the encrypted
server table are sent to the server to begin the verification
process.

The server receives the request, and, in step 3, decrypts
the table and hashes it to compare the request against the pre-
viously stored hash of the table that was sent to the given
user. Then the server selects a subset and permutation of the
questions from the server table. The server then generates
a string of random numbers for which each number is less

than the total number of available answers for a given ques-
tion. The length of the string equals the number of selected
questions. Then the server cyclically shifts the rows of the
selected questions from the server table according to the bit
string. It generates a challenge nonce and appends it to the
first elements of row pairs, hashing the results. The resulting
shifted/rehashed subset of entries plus the challenge nonce
form the server challenge table. Once the challenge table is
complete, the server sends the table to the client, shown in step
4.

Using the client table, the first value from the double in
the challenge table and the nonce from the challenge table, the
client searches the challenge table for matching entries, then
produces a triple with the hash Hm, index i, and potential key
fragment Ni �RI). Using the triples and the model table, the
client device locates the associated model files, step 5. In step
6, the client device uses the questions from the challenge table
to prompt the user, to which the user responds. The client
device generates models for the questions from the answer
given by the user. Similar to Vaulted Voice Verification as
originally proposed, in step 8, the client device then compares
the models against the possible models. This allows for the
identification of the correct triples.

Obtaining the correct triples allows for the identification
of the shift of the rows of the challenge. The client device
accomplishes this by examining the index variable of each
triple. If, for example, the triple contains an index of 3, yet
it is in position 1 of the matching challenge table, then the

Fig. 2. Index-based Vaulted Voice Verification: Enrollment. 1.
Input user ID and password. 2. Generate User’s RSA keys. 3.
Ask user questions/phrases. 4. Respond to questions/phrases.
5. Generate and encrypt models. Generate Client, Model
and Temp. Server Tables. Encrypt Temp. Server Table with
Server’s public key. Send ID and Temp. Server Table. 6.
Receive ID and Server Table. Decrypt, hash, and encrypt Table
with private key. Store ID and hashes for new user. 7. Send
encrypted Server Table. 8. Delete temporary Server Table.
Store encrypted Server Table. 9. Inform user of successful
enrollment.

server applied a shift of 2. Client device does this for each
row, generating a string of presumed shifts. The client device
can also take the potential partial key fragments and combine
them to obtain the private key. This could be simple reordering
and concatenation, xoring, or, ideally, it can be accomplished
using an error correcting polynomial.

From here the client device computes its response. The
response from the client device to the server comprises in-
formation only available after generating the presumed shifts.
The client device responds to each challenge from the server
with a message encrypted with the recovered private key Kpriv.
The client device then encrypts a series of hashes (h3) gen-
erated from each question. Each h3 results from hashing the
correctly ordered hashes from the Client Table, the applied
shift for the question, and the challenge nonce. The client
device then sends this encrypted message to the server for
verification.

The server receives the response, as shown in step 9. The
server then verifies that the responses are correct by decrypt-
ing the message using the associated public key Kpub that was
stored at enrollment. The server recreates the expected hashes
and compares them with the decrypted response. If correct,
the server sends a response message encrypted with server’s
private key then the users public key Kpub. The response may
include a session encryption key for secure streaming commu-
nication, or the two can use the now verified public/private
key for exchanges. Thus, a key that depends on the users
biometric and password is recreated and exchanged such that
the biometric and password never leave the device, providing
increased security and no loss in privacy.

Fig. 3. Index-based Vaulted Voice Verification: Verification. 1.
Input user ID and password. 2. Use password to decrypt Saved
Tables and Model files. Send ID and encrypted Server Table
to request verification. 3. Decrypt and hash Server Table and
verify against stored hash. Chose questions from within Server
Table. Generate random string S. Shift rows of Server Table
according to S, creating Challenge Table. Generate Challenge
nonce N and hash entries with nonce. 4. Send Challenge Table
to Client. 5. Use Client Table to turn Challenge Table entries
into (Model, Index, Nonce). Locate models associated with
each question. 6. Ask user questions. 7. Respond to ques-
tions. 8. Identify correct models via Responses. Unscramble
Challenge using correct models. Compute Responses. Send a
message using the generated Response as the Key. 9. Verify
response.

3. EXPERIMENTAL ANALYSIS
The focus of this research is the exchange of keys that are
biometrically authenticated and a reduction of communica-
tion overhead. We require a design where the biometrics are
required both to release the key and to properly respond to
the remote server/users challenge. Because of this, we dis-
cuss results in terms of suitablity of key exchange and the
amount of communication overhead required for the construc-
tion/exchange of such keys using our new scheme vs. Vaulted
Voice Verification as originally proposed.

Both the originally proposed Vaulted Voice Verification
and our new index-based protocol depend on generated models
and hashes. Both versions of the protocol also require some
amount of storage on both the client device and the server. The
primary bottleneck for Vaulted Voice Verification as originally
proposed is the communication overhead of transferring model
files between the server and the client device. The bottleneck,
in terms of key generation, is the amount of questions required
to generate enough bits for a suitable key and the fact that
the server would have enough information to impersonate (via
questions) the user. These are all addressed by the novel design
described in this paper.

For our tests, we used Gaussian Mixture Models (GMMs).
For each model there exists two files: a file containing the
means and a file containing the variances. The combined file
size for each model, including both files, is 205 kilobytes (K).
For generating the hashes we used SHA-512, each taking up 64

bytes. All nonces used are also 512 bit random strings – much
bigger than needed but this allowed more consistent coding. In
our testing, we consider a challenge-response pair to consist of
a question, containing four possible models for the answer, and
a response, containing one model for comparison. We assume
that the size of the username and questions themselves are
negligible and are therefore not mentioned in this discussion.
We further assume that the RSA encryption applied during
communication has a constant effect on the amount of the data
transmitted, and can therefore be left out of the discussion.

In the remainder of this section, we will discuss the differ-
ence in the communication overhead between the two versions
of the protocol; the difference in required storage space on the
the server and client device; and the abilities of each version
of the protocol to generate/protect keys and the security.

3.1. Communication Overhead
The term communication overhead encompasses many differ-
ent things. In this work, we define it as the amount of data
transmitted between the client device and the server during an
enrollment and a verification of a single challenge-response
pair. We examine the difference in communication overhead
between Vaulted Voice Verification as originally proposed and
our new index-based version of the protocol.

During enrollment in the original protocol, four models
are generated and sent to the server, for a total of 820K of
data transmission. During verification, the four models are
sent twice; once from the client device to the server so the
server can scramble their order, and then back to the client
device from the server in the form of a challenge. This process
creates another 1,640K of data transmission per question. So,
for enrollment and verification of one challenge-response pair
in Vaulted Voice Verification as originally proposed, it takes
roughly 2,460K of data transmission.

During enrollment of our new index-based protocol, a
temporary server table containing eight hashes is sent to the
server from the client device and an encrypted server table
containing eight hashes and a nonce is returned. That is 17
values of 64 bytes each; totaling 1,088 bytes, or roughly 1K.
During verification, an encrypted server table is first sent to
the server from the client device (eight hashes and a nonce),
then a challenge table is sent back (eight hashes and a nonce),
and then an encrypted response comprising of four hashes, a
single number and a nonce is finally sent to the server. That
is 20 hashes, 3 nonces and a single number; totaling 1,476
bytes, roughly 1.5K. So, for enrollment and verification of one
challenge-response pair for our new index-based protocol, it
takes roughly 2,564 bytes, 2.5K.

Our new index-based protocol transmits 0.1% of the data
that the original Vaulted Voice Verification does, i.e. it reduces
communication overhead by 1000x. From this, it can be seen
that the communication overhead in Vaulted Voice Verification
as originally proposed is orders of magnitude larger than that
of our new index-based protocol.

3.2. Storage Requirements
Similar to communication overhead, the storage requirements
of both protocols must be defined. In this work, we define
the storage requirements by the size of the data being stored.
We only pay attention to final storage and not temporary or
intermediate storage requirements.

When enrollment is complete in the original protocol, the
client device contains four models and the server contains a
hash of the template. This generates 820K of required stor-
age on the client device and 64 bytes on the server. During
verification, no extra data is stored. The total rounded stor-
age requirement for the originally proposed Vaulted Voice
Verification protocol is 821K.

When enrollment is complete in our new index-based ver-
sion of the protocol, there exists a model table, a client table
and an encrypted server table on the client device, and a user
table on the server. The model table contains 4 models and
4 hashes, 820K + 256 bytes, for a rounded total of 821K.
The client table contains 4 hashes and 4 triples, 256 bytes +
4 ⇤ (64 + 4 + 64), for a rounded total of 784 bytes; 0.7K. The
encrypted server table contains 8 hashes and a nonce, 512 + 64,
for a rounded total of 576 bytes; 0.5K This gives an enrollment
storage for the client device with our index-based version of
822K. The server contains a table for the user. This user table
contains a hash of the data, 64 bytes, a public key, 64 bytes, a
challenge nonce, 64 bytes, and a challenge string, 1 number,
for a rounded total of 196 bytes. This gives an overall enroll-
ment storage for our index-based version of 823K. No extra
data is generated for storage at the completion of verification
for our index-based version of the protocol. Thus, the number
remains 823K.

As shown here, the difference in necessary storage require-
ments is negligible between the two versions of the protocol.
While our new index-based version does contain additional
tables compared to the original version, the size of the tables
is negligible.
3.3. Key Management and challenge strength
The last area of focus in our experiments is key management
and challenge strength. For this, we look at the tradeoff be-
tween system usability and the ability to generate/manage keys
and challenges of a given size for both protocols. That is, we
examine how many user interactions are required to generate
a key, release a key, and how much security does that key or
challenge actually provide. We define a user interaction as
the user being asked and then responding to a single question.
We consider each question and its associated responses to be
independent. We consider generating keys suitable for RSA.
Because we use SHA-512 in combination with RSA to gener-
ate the keys [21], 512 is the minimum number of bits required
and the minimum size RSA keys generated is 1,024. For this
discussions, we define usability as 20 or fewer interactions
during enrollment/verification.

With Vaulted Voice Verification as originally proposed,
every user interaction produced two bits, considering four

possible choices. With this, to generate 512 bits would require
256 user interactions. This is clearly not acceptable. Even if
the number of choices per question increased to 8, the resulting
64 interactions required renders the system nearly useless.
While increasing the amount of choices per question seems a
plausible solution, it is bounded by the discriminability of the
models and therefore can not be relied upon as a valid solution.

4. CONCLUSION
With our new index-based Vaulted Voice Verification, each
interaction generates far more bits than in the original Vaulted
Voice Verificationprotocol, using the added fields in the index
tables. This results occurs because responses are created from
hashes and indexes rather than binary (or 4-choice) decisions.
Our index-based protocol generates an RSA private key for the
final response, with a wide range of usbility/security choices.
One could, in theory, have a 512 bit key even with just a single
challenge question. Remember, the key is already protected
by the users password; our challenge is about added security
beyond the standard password protection of the private key. In
addition, the challenge is about how difficult is it for someone
with knowledge of the password and the private key to still
impersonate the user or the owner to “share” the key. Having
multiple questions allows us to split the private key into set of
scrambled components Kpriv which must be properly ordered
and combined with the appropriate data from the challenge
Ri. Ri is not stored locally, so, even when it comes in from
the server, the association is unknown. Recovering the key
and returning the correct response, given all passwords and
the server’s encryption keys, is still O(2(2q)), where q is the
number of challenge questions. If we assume there are also k
bits of user password security, and s bit of server key security,
then the new index system protection is k + s+ 2q overall, of
which 2q bits of “biometric identity” security.

As shown, our new index-based version of the Vaulted
Voice Verification protocol is able to manage keys suitable for
biometrically authenticated secure communication and public-
key operations. This results from decoupling the models from
the stored question and replacing that link with a novel, table-
based index scheme.

Our index-based version of the Vaulted Voice Verification
protocol supports keys of sufficient size for use in RSA keys,
while allowing variable levels of biometric identity security in
the challenge. This new form allows standard PKI/public-key
operations to be tied to biometric verification. Importantly,
the novel design also overcomes the problem in the original
Vaulted Voice Verification protocol wherein the sever chal-
lenge was the only “key,” hence someone with sufficient access
to the server might impersonate the user. In our new design,
the use of private-key signed return values means, even with
full access to the server and every communication, one cannot
impersonate the user. Thus, when a key is shared by this ap-
proach, both parties have strong assurance the correct user is in
possession of the remote device and is not being impersonated.

5. REFERENCES
[1] K. Inthavisas and D. Lopresti, “Secure speech biometric tem-

plates for user authentication,” The institution of Engineering
and Technology Biometrics, February 2012.

[2] Terrance E. Boult Michael J. Wilber, Walter J. Scheirer, “Privv:
Privae remote iris-authentication with vaulted verification,”
Computer Vision and Pattern Recognition (CVPR), 2012.

[3] W Scheirer, Bill Bishop, and T Boult, “Beyond pki: The
biocryptographic key infrastructure,” in IEEE Int. Wksp Infor-
mation Forensics and Security (WIFS). IEEE, 2010, pp. 1–6.

[4] A.T.B. Jin, D.N.C. Ling, and A. Goh, “Biohashing: two factor
authentication featuring fingerprint data and tokenised random
number,” Pat. Rec., vol. 37, no. 11, pp. 2245–2255, 2004.

[5] A. Juels and M. Sudan, “A fuzzy vault scheme,” Designs,
Codes and Cryptography, vol. 38, no. 2, pp. 237–257, 2006.

[6] WJ Scheirer and TE Boult, “Bio-cryptographic protocols with
bipartite biotokens,” in Biometrics Symposium, 2008. BSYM’08.
IEEE, 2008, pp. 9–16.

[7] N.K. Ratha, S. Chikkerur, J.H. Connell, and R.M. Bolle, “Gen-
erating cancelable fingerprint templates,” IEEE Trans. PAMI,
vol. 29, no. 4, pp. 561–572, 2007.

[8] Lee-Ying Chong Andrew Beng Jin Teoh, “Secure speech tem-
plate protection in speaker verification system,” Speech Com-
munication, vol. 52, no. 150-163, 2010.

[9] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors and cryp-
tography, or how to use your fingerprints,” in Proc. Eurocrypt,
2004, vol. 4.

[10] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
extractors: How to generate strong keys from biometrics and
other noisy data,” SIAM Journal on Computing, vol. 38, no. 1,
pp. 97–139, 2008.

[11] X. Boyen, “Reusable cryptographic fuzzy extractors,” in
Proc. 11th ACM conference on Computer and communications
security. ACM, 2004, pp. 82–91.

[12] W. Scherier and T. Boult, “Cracking fuzzy vaults and biomet-
ric encryption,” Proc. of the 2007 Biometrics Symposium, at
Biometrics Consortium Conf. (BCC), 2007.

[13] Eliza Yingzi Du, Kai Yang, and Zhi Zhou, “Key incorporation
scheme for cancelable biometrics,” in J. of Information Security,
October 2011, pp. 185–194.

[14] K Saraswathi, Dr R Balasubramanian, and B Jayaram, “Iris bio-
metrics based authentication and key exchange system,” IAC-
SIT Int. J. of Engineering and Technology, vol. 3, no. 1, 2011.

[15] R.C. Johnson, Walter J. Scheirer, and Terrance E. Boult, “Se-
cure voice based authentication for mobile devices: Vaulted
voice verification,” Proc. SPIE, Biometric and Surveillance
Tech. for Human and Activity Identification, vol. 8712, 2013.

[16] Michael J. Wilber and Terrance E. Boult, “Secure remote
matching with privacy: Scrambled support vector vaulted veri-
fication,” Wksp App. of Computer Vision (WACV), 2012.

[17] G. Zhang F. Zheng and Z. Song, “Comparison of different im-
plementations of mfcc,” Journal of Computer Science andTech-
nology, vol. 16, pp. 582–589, 2001.

[18] B.-H. Juang and L. R. Rabiner, Automatic speech recognition
A brief history of the technology development, Elsevier Ency-
clopedia of Language and Linguistics, second edition, 2005.

[19] HW Hon K. LEE and MY Hwang, “The sphinx speech recog-
nition system,” Acoustics, Speech, and signal Processing
(ICASSP-89), 1989.

[20] Mike Just and David Aspinall, “Personal choice and challenge
questions: A security and usability assessment,” Proc. 5th
Symposium on Usable Privacy and Security, 8, 2009.

[21] Elaine Barker, William Barker, William Burr, William Polk,
and Miles Smid, “Recommendation for key management part
1: General,” NIST special publication, vol. 800, pp. 147, 2012.

