LETTER TO THE EDITOR

Withania somnifera and its emerging anti-neoplastic effects

Shailendra Kapoor

Received: 29 September 2012/Accepted: 29 November 2012/Published online: 8 December 2012 © Springer Basel 2012

To the Editor,

I read with great interest the recent article by Minhas et al. (2012). Withania may exert a number of anti-proliferative effects besides its protective role in SLE.

Withaferin A and withanolide are both extracted from Withinia. Of these, withaferin A is the most potent though withanolide also exhibits growth inhibiting activity (Choudhary et al. 2010). These anti-proliferative effects are clearly seen in NCI-H460 lung cancer cell lines (Yadav et al. 2010). Similarly, when applied to lung cancer cell lines, Withania augments the anti-neoplastic effects of chemotherapeutic agents such as paclitaxel (Senthilnathan et al. 2006). Withania extracts appear to have an immunomodulatory effect and enhance paclitaxel-induced inhibition of cell proliferation. Witharin also appears to be a radio sensitizer as it increases radio sensitivity of tumors and thereby enhances the apoptotic effects of radiotherapy (Muralikrishnan et al. 2010).

Withania extracts appear to inhibit proliferation in HCT-15 colon cancer cell lines. For instance, it attenuates azoxymethane-induced colon cancer by modulating the levels of immunoglobulins G, A, and M and by exerting direct anti-proliferative effects (Mathur et al. 2004).

1-oxo-5beta, 6beta-epoxy-witha-2-enolide derived from Withania root has shown efficacy in the management of ultraviolet-B-induced dermatological carcinomas (Devi et al. 1996). Withania also appears to play a role in

chemoprevention of skin malignancies. For instance, extracts from Withania roots have been shown to prevent the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancers (Prakash et al. 2002).

The above examples clearly illustrate the anti-proliferative effects of Withania and the need for further studies in this regard.

Conflict of interest No conflicts of interest.

References

Choudhary MI, Hussain S, Yousuf S, Dar A, Mudassar, Atta-ur-Rahman (2010) Chlorinated and diepoxy withanolides from *Withania somnifera* and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71:2205–2209

Devi PU, Akagi K, Ostapenko V, Tanaka Y, Sugahara T (1996) Withaferin A: a new radiosensitizer from the Indian medicinal plant *Withania somnifera*. Int J Radiat Biol 69:193–197

Mathur S, Kaur P, Sharma M et al (2004) The treatment of skin carcinoma, induced by UV B radiation, using 1-oxo-5beta, 6beta-epoxy-witha-2-enolide, isolated from the roots of *Withania somnifera*, in a rat model. Phytomedicine 11:452–460

Minhas U, Minz R, Das P, Bhatnagar A (2012) Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology 20:195–205

Muralikrishnan G, Dinda AK, Shakeel F (2010) Immunomodulatory effects of Withania somnifera on azoxymethane induced experimental colon cancer in mice. Immunol Invest 39:688–698

Prakash J, Gupta SK, Dinda AK (2002) Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr Cancer 42:91–97

Senthilnathan P, Padmavathi R, Banu SM, Sakthisekaran D (2006) Enhancement of antitumor effect of paclitaxel in combination with immunomodulatory *Withania somnifera* on benzo(a)pyrene induced experimental lung cancer. Chem Biol Interact 159:180–185

Yadav B, Bajaj A, Saxena M, Saxena AK (2010) In vitro anticancer activity of the root, stem and leaves of *Withania somnifera* against various human cancer cell lines. Indian J Pharm Sci 72:659–663

S. Kapoor (⋈) Mechanicsville, VA, USA

e-mail: shailendrakapoor@yahoo.com

S. Kapoor

74 Crossing Place, Mechanicsville, VA, USA

