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Abstract: Chemotherapy is one of the prime treatment options for cancer. However, the key issues
with traditional chemotherapy are recurrence of cancer, development of resistance to chemother-
apeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility.
Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple
gene products with minimal adverse reactions. Natural phytochemicals originating from plants
constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed
the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodula-
tory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the
progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon,
skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness
against drug resistance in cancer. However, stability, bioavailability, and target specificity are major
obstacles in combination therapy and have limited their application. The novel nanotechnology
approaches enable solubility, stability, absorption, protection from premature degradation in the
body, and increased circulation time and invariably results in a high differential uptake efficiency
in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS
source, chemistry, and the molecular pathways involved in tumor regression, as well as developments
achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates
WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its
potential use in cancer treatment.

Keywords: ashwagandha; Withania somnifera; withanolides; Withanolide D; nanoformulation

1. Introduction

Cancer is only second to heart disease as the leading cause of mortality globally.
In 2022, the American Cancer Society reported about 1,918,030 new cases of cancer and
609,360 cancer-related mortalities in the United States alone [1]. Over the past three decades,
significant progress in the detection and treatment of cancers has altered early diagnosis,
prevention, and therapeutic strategies resulting in a decline in the mortality rate. The
cancer mortality rate reduced by 27% between 2001 and 2020. Male cancer death rates
decreased by 30% and female death rates decreased by 25%, although male cancer death
rates remained higher (170.3 deaths per 100,000 people) than female death rates (124.5 deaths
per 100,000 people) [2]. Chemotherapy, radiation therapy, surgery, immunotherapy, and
targeted therapy are being used to treat cancer. However, many chemotherapeutic methods
are linked with severe side effects and resistance within a few months of therapy. Com-
mercially available Food and Drug Administration (FDA)-approved drugs mostly target a
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single gene or pathway [3–6]. As a result, there is a growing need to find new anticancer
molecules/medicines that could target multiple targets in cancer while having minimal
adverse effects. Recently, many plant-based agents such as alkaloids, have demonstrated
pronounced anti-cancer activity, either as a single agent or as a combination regimen with
standard anti-cancer agents [7]. The majority of characterized phytochemicals have ex-
hibited chemo- and radio-sensitizing activity in chemo and radio-resistant tumor cells [7].
About 40% of the FDA-approved drugs in the market are based on plant products, 74% of
which are anticancer drugs [7–9]. Moreover, the majority of these phytochemicals actively
target tumor cells specifically and pose minimal toxicity to healthy cells.

Withania somnifera (WS) is a woody, evergreen shrub, roughly 0.5 to 2.0 m tall, and in
English it is called “Winter cherry” or “Indian Ginseng”, in Sanskrit “Ashwagandha”, in
Hindi “Asgandh”, and in Urdu “Asgand” [10,11]. The name “Ashwagandha” originates
from the plant’s roots, which have the distinctive smell of a wet horse (“ashwa” means
horse and “gandha” means smell). For more than 5000 years, the complete plant or various
portions of WS have been employed in India’s Ayurvedic and Unani medical systems for
medicinal and therapeutic purposes, and the plant was reported as an official drug in the
Indian Pharmacopoeia-1985 [10].

WS is cytotoxic to a variety of tumor cells but has minimal effect on healthy human
cells, indicating its specific effects on cancer cells [12]. WS has been demonstrated to have
anxiolytic, antiangiogenic, antidepressive, anti-metastatic, anti-tumoral, cytotoxic, geno-
toxic, antibacterial, antifungal, and antidiabetic properties in several in vitro and in vivo
experiments [13–15]. WS modulates cytotoxicity in cancer cells by accumulating intracellu-
lar reactive oxygen species (ROS) [16–18]. WS inhibits several aberrant pathways implicated
in inflammation and proliferation (e.g., IL-6, TNF-α, and cycloxygenase-2 (COX-2)), angio-
genesis and metastasis (e.g., VEGF, MMP9, TWIST, NF-κB, and STAT), cell survival (e.g.,
Bcl-2, Bcl-xL, survivin, and cIAP1/2), and regulation of the cell cycle (e.g., cyclin A, cyclin
D1, Cdks, p21, and p53) [12–14,19–28]. Furthermore, WS is an adaptogenic Ayurvedic
plant, which is often used to counteract and relieve stress, ultimately improving overall
well-being, and numerous studies have shown the use of WS for stress resistance [29–31].
A high-concentration full-spectrum WS root extract enhances an individual’s resistance to
stress and, as a result, their self-assessed quality of life [31,32]. In this review, we discuss the
chemical properties, pharmacokinetics, anticancer potential, toxicity, and pharmacological
significance of WS. We also highlight the molecular pathways of WS contributing towards
anticancer activity, combinatorial therapy, and the chemo/radio-sensitizing effects. The
phytochemical properties of WS would yield novel insights and establish the basics for
clinical investigations to develop WS as an anti-cancer medication.

2. Biological and Chemical Properties of Withania somnifera
2.1. Sources and Chemical Properties of Withania somnifera

The 23 known Withania species are widely distributed in the arid regions of India,
Baluchistan, Afghanistan, Sri Lanka, Congo, South Africa, Egypt, Morocco, and Jordan [33].
WS plant organs such as the root, leaf, fruit, and seed possess adequate bio-active chemicals
that have been implicated in pronounced anticancer, anti-microbial, cardioprotective, and
neuroprotective mechanisms [33–42].

The presence of withanolides, a group of steroidal lactones, is thought to be responsi-
ble for the pharmacological activity of WS roots [43]. WS has demonstrated non-medicinal
properties, such as enhanced memory and cognition, mood elevation, and rejuvenation [29].
WS also serves as an energy-boosting tonic called Medharasayana, meaning “enhanced
memory and learning.” Laboratory studies have shown that the roots of WS contain about
35 phytoconstituents [44]. The main physiologically active chemical molecules present
are alkaloids (isopellertierine and anferine), steroidal lactones (withanolides, withaferins
saponins with additional acyl group (sitoindoside VII and VIII), and withanoloides with
C-27 linked to glucose (sitonidoside XI and X). A chemo assessment of Ashwagandha
revealed that its primary ingredients are alkaloids and steroidal lactones. Withanine is the
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most abundant out of all the numerous alkaloids. Others include somniferine, pseudo-
withanine, tropine, pseudo-tropine, 3-a-gloyloxytropine, choline, anaferine, anahydrine,
etc. Withanolides present in leaf possess a C28 steroidal nucleus, a C9 side chain, and a
hexagonal lactone ring. WS has been investigated for its twelve alkaloids, 35 withanolides,
and seven sitoindosides. The majority of Ashwagandha’s pharmacological action has been
ascribed to two major withanolides, Withaferin A and Withanolide D [45,46]. The fresh
plant of WS is rich in fatty acids, fatty alcohols, volatile oils, and hydrocarbons, including
myristic acid, palmitate, linoleic acid, and the straight chain hydrocarbon hexatriacon-
tane [47]. The roots of ashwagandha include alkaloids (wide variation of 0.13–0.31%),
starch, reducing carbohydrates, hentriacontane, glycosides, dulcitol, withaniol acid, and
a neutral molecule. In addition, the leaves contain free amino acids including aspartic
acid, glycine, tyrosine, alanine, proline, tryptophan, glutamic acid, and cystine. Fruits of
Ashwagandha harbor a milk-coagulating enzyme, two esterases, free amino acids, fatty oil,
essential oils, and alkaloids. The bioactive chemicals extracted from WS is listed in Figure 1
and their anticancer functions are presented in Table 1.

Figure 1. Various phytochemicals present in Withania somnifera.
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2.2. Toxicity of Withania somnifera

Due to low cost and abundance, medicinal plants have been of considerable pharmaco-
logical interest, particularly in cancer prevention. Various studies have shown that natural
bioactive drugs with minimal toxicity possess immense therapeutic potential. However,
safety issues have often been highlighted and must be addressed before they are utilized
as immunomodulatory and anticancer agents. Traditional chemotherapies pose several
side effects, including those that impair the functioning of numerous organs, such as the
heart, liver, and kidneys. Research reports have emphasized the preventative activity of
Withaferin A against bromobenzene-induced liver and kidney breakdown in mice [48]. This
was evident from the reduced levels of liver and kidney biomarkers, lipid peroxidation,
and cytokines (TNF-α and IL-1), after a 10 mg/kg pre-treatment dose of Withaferin A
administered in mice. In the Withaferin A pre-treatment mice group, there were low levels
of cytokines with reduced oxidative stress; mitochondrial impairment was prevented and
the equilibrium between Bax/Bcl-2 was restored [48].

According to a recent study, Withaferin A increased the capacity of H9c2 cells to sur-
vive against simulated ischemia/reperfusion (SI/R) or hydrogen peroxide (H2O2)-induced
cell death in myocardial ischemia reperfusion (MI/R) damage, as well as inhibiting the in-
creased oxidative stress caused by SI/R [49]. In addition, Withaferin A effectively inhibited
H2O2-induced overexpression of SOD2, SOD3, and Prdx-1, which improved cardiomy-
ocyte caspase-3 activity in an Akt-dependent way [49]. Furthermore, Withaferin A reduced
cerulein-induced acute pancreatitis due to oxidative stress and inflammation [50]. Increased
tissue malondialdehyde (MDA), NO, and myeloperoxidase and nitrotyrosine expression
in the parameters assessed contribute to the notion that oxidative stress and inflamma-
tion play a role in acute pancreatitis [50]. Furthermore, Withaferin A also decreased the
acetaminophen-mediated liver damage in mice in an Nrf2-dependent manner, typical of
a stress-responsive transcription factor and a well-established chemoprevention target.
Withaferin A increased nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling in
a non-canonical Keap-independent, Pten/PI3k/Akt-dependent way in this research [51].
Studies indicate that Withaferin A performs an antifibrotic action in scleroderma by in-
hibiting pro-inflammatory fibrosis involving Transforming growth factor-b1(TGF-β)/Smad
signaling and substantially reducing fibroblast conversion to myofibroblasts. Also, the
FoxO3a-Akt-dependent nuclear factor-kappa B (NF-кB)/IKK-regulated inflammatory cas-
cade, which is a key signaling mechanism in fibrogenesis, is modulated by Withaferin
A [52]. In a recent research study, tumor-targeting silver nanoparticles (Ag NP) were used
to produce NP-related macrophage toxicity. When nanoparticles (NPs) were given in
combination with WS root extract (35 mg/kg), the toxic effects in rats were significantly
reduced [53]. Despite these fundamental and mechanistic investigations, the potential of
WS extracts as dietary supplements has only been explored in one study, which included
100 breast cancer patients undergoing chemotherapies (used as complementary). It was
shown that the tiredness associated with treatment reduced and the overall quality of life
improved after supplementation with WS extracts [54].
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Table 1. Different bioactive molecules of Withania somnifera and their anticancer activities.

Bioactive Molecules Part Used Type of Cancer Medicinal Value of the Bioactive
Molecules Ref.

Withaferin A Leaves Breast cancer cell lines
MDA-MB-231 and MCF-7

In vitro, WA inhibited the expression
of ER, RET, and HSF1 while increasing
the expression of phospho-p38 MAPK,

p53, and p21 in MCF-7 breast
cancer cells

[19]

Breast cancer cells and
mice model

Inhibit cell proliferation, reduced
tumor growth and induce FOXO3a-

and Bim-dependent apoptosis
[20]

Ovarian cancer cells

Inhibits cell growth, inducing
apoptosis, and cell cycle arrest and

targeting Notch1 and Notch3
down regulates

[55]

Breast cancer cell lines, 4T1
(mouse breast), Nu/nu mice,

Balb/c mice, SCID mice

Chemoprevention and reduced
tumor growth [56]

Leukemia U937 cells
Induces apoptosis by activating

caspase 3, JNK, and Akt
signaling pathways

[57]

Human renal cancer cells
(Caki cells)

Increased radiation-induced apoptosis
by ROS generation, inhibits the

expression of Bcl-2 and
dephosphorylation of Akt

[21]

Human cancer cell lines Balb/c
nude mice

Increased expression of p53
transcription factor, suppression of

tumour growth and apoptosis
[58]

Osteogenic sarcoma (U2OS) and
fibrosarcoma (HT1080) cells In vitro and in vivo anticancer activity [59]

Root Balb/C mice

WA reduced macrophage production
of pro-inflammatory cytokines, tumor
weight, granulocytic MDSC number,

and MDSC potential to inhibit
antigen-driven activation of CD4+ and

CD8+ T cells

[22]

Prostate PC-3 xenografts in
nude mice

Inhibition of the proteasomal
chymotrypsin-like activity and

tumor growth
[60]

DRO81-(medullary thyroid) and
nu/nu mice

Reduced tumor growth and inhibited
total and phospho-RET levels at the

protein level
[61]

Malignant pleural mesothelioma
(MPM), MPM (H2373, H2452,
H2461, H226 and AB12) cells

and BALB/c mice

Inhibits the proteasome activity in
mesothelioma in vitro and in vivo and

reduces tumor growth
[62]

Pancreatic cancer cell lines
Panc-1, MiaPaCa2 and BxPc3
and Panc-1 xenografts mice

Showed potent cytotoxicity against
pancreatic cancer cells in vitro, reduced
tumor growth and targeted heat shock

protein 90

[63]

7,12-dimethylbenz[a]anthracene
(DMBA) induced oral

carcinogenesis in Syrian
golden hamsters

Exhibit anti-lipid peroxidative and
antioxidant activity [64]

Breast cancer cell lines MCF-7
and SUM159

Exhibit antiproliferative activity and
Induce apoptosis [65]
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Table 1. Cont.

Bioactive Molecules Part Used Type of Cancer Medicinal Value of the Bioactive
Molecules Ref.

Root Sarcoma 180, Animal model Reduced tumor growth [66]

NR
Cervical cancer cells CaSki,

HeLa, SiHa, C33a and athymic
nu/nu mice

WA significantly reduced tumor
growth inhibit expression of HPV

E6/E7 oncogenes and restores the p53
and induces apoptosis

[67]

Breast cancer cell lines and
MMTV-neu mice

Inhibit the expression of aldehyde
dehydrogenase (ALDH1), CD44

(high)/CD24 (low)/epithelial-specific
antigen-positive (ESA+) along with

Oct4, SOX-2, Nanog mRNA and
inhibition of cancer stem cell growth

[23]

Colon cancer cell lines
C57BL/6-APCMin/+

Inhibit the expression of interleukin-6,
COX-2, TNF-α, pAKT, Notch1, NF-кB

and Ki67
[24]

Colorectal cancer cells HCT-116
and RKO

Exhibit cell cycle arrest and
ROS-dependent mitochondrial

dysfunction-mediated apoptosis
[68]

Root Gliobastoma multiforme,
nu/nu mice

GBM neurosphere collapsed at
nM concentrations [69]

NR
Panc-1, SW1990, MIAPaCa-2,

AsPC-1 and BxPc-3 and
xenografts mouse model

Reduced tumor growth, activation of
proteasome inhibition, and

enhancement of ubiquitinated protein
accumulation, resulting in ER

stress-mediated apoptosis

[70]

Leaves Lymphoid and myeloid
leukemia cells

Induces mitochondrial apoptosis by
activating the p38 MAPK cascade [71]

Myeloid leukemia HL-60 cells Early ROS generation and
mitochondrial dysfunction [72]

NR Prostate cancer cells and
PC-3 xenografts Par-4-Dependent Apoptosis [73]

Fruit Liver cancer cells HepG2
Remarkable changes in the chromatin

structure (fragmentation, uniform
condensation)

[74]

Root HUVEC cells

Inhibition of NF-κB by interference
with the ubiquitin-mediated

proteasome pathway by increasing
levels of poly-ubiquitinated proteins

[75]

Leaves HepG2 (hepatocellular
carcinoma)

Increased the expression of Caspase-3;
caspase-8, caspase-9, upregulated
antioxidant activity and decreased

TNF-α level

[76]

Telomerase plus, telomerase
negative, ALT (JFCF-1 l and

JFCF-4D)

Exhibit cytotoxicity, cause DNA
damage, and promote telomere

dysfunction
[77]
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Table 1. Cont.

Bioactive Molecules Part Used Type of Cancer Medicinal Value of the Bioactive
Molecules Ref.

NR Melanoma cells (Lu1205, M14,
Mel501 and SK28)

Inhibit cell proliferation, induces
apoptosis; downregulated ROS

productions and Bcl-2 expression
[78]

NSCLC cancer cell lines A549,
CL141, H441, CL97, H1975,

CL152, and H1299 and
NOD/SCID mice

Reduced lung CSC growth and
spheroid formation capacity,

mTOR/STAT3 signaling
downregulation, and EGFR inhibition

[24,79]

B cell lymphoma cell line
(Lymphatic systems) and

Balb/c mice

Decreased cell survival, heat shock
protein (Hsp) 90, key kinases and cell

cycle regulators
[80]

Human A549 and U937 cells
Inhibited cell adhesion and reduces the

expression of ICAM-1 and VCAM-1
TNF-α and NF-κB

[25]

Prostate cancer cell lines (PC-3;
DU-145 LNCaP)

Promoted cell death and inhibited the
expression of c-Fos and heat-shock

proteins (HSPs)
[81]

Leaves Colorectal cancer cell lines
(SW480 and HCT116)

Inhibited cell proliferation, induce
apoptosis, cell cycle G2/M arrest and

associated with proteasomal
degradation of Mad2 and Cdc20

[82]

Withaferin A and withanone NR U2OS (osteosarcoma) and TIG
(normal skin fibroblast) cells

Reduced cell viability and induces
p53 expression [83]

Withaferin A and CAPE NR

Human ovarian cancer (SKOV3
and OKV-18 and SKGII, SKGIIIb,

ME180) and cervical (HeLa)
cancer cells

Exhibited antiproliferative activity and
induced apoptosis, increased p53, and

downregulated mortalin
[84]

Withaferin A and withanone NR Hepatocarcinoma HUH-6 and
HUH-7 cells

Reduced cell viability and induces
apoptosis [85]

27-acetoxy-4b,6a-dihydroxy-5b-chloro-
1-oxowitha-2,24-dienolide.

5b,6b,14a,15a-diepoxy 4b,27-
dihydroxy-1- oxowitha-2,24-dienolide

& Withaferin A

Fresh aerial
parts Lung cancer cell line NCI-H460 Anti-cancer efficacy against human

lung cancer cells and growth inhibition [86]

L-asparaginase Fruits Human leukemia cells Exhibited inhibitory effect against
lymphoblastic leukemia [87]

Withaferin A and Withanolide D Root B16F-10 melanoma cells in
C57BL/6 mice Exhibited significant antitumor activity [88]

Withanolide A Root Balb/C mice
Upregulated the Th1 response, CD4
and CD8 numbers, and enhances the

activity of natural killer (NK) cells
[89]

Withanolide A, Withanoside IV, and
Withanoside VI Root Human neuroblastoma SH-SY5Y

cell line
Activate neurite outgrowth in the

SH-SY5Y cell line [90]

Triethylene glycol Leaves
Different human cancer cells and

CD1-ICR mice and Balb/c
nude mice

ASH-WEX and TEG are selectively
cytotoxic to cancer cells and activate
the tumor suppressor proteins p53

and pRB

[91]

27-desoxy-24,25-dihydrowithaferin A Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Reduced viability and inhibited
cell proliferation [92]
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Table 1. Cont.

Bioactive Molecules Part Used Type of Cancer Medicinal Value of the Bioactive
Molecules Ref.

27-Oglucopyranosylviscosalactone B Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Reduced viability and inhibited
cell proliferation [92]

3-azido withaferin A NR
Human cervical (HeLa and

prostate (PC-3) cancer cells and
C57/BL6J mice

By modulating extracellular Par-4,
it prevents cancer cell invasion

and angiogenesis
[93]

4,16-dihydroxy-5h,6h-
epoxyphysagulin D Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Reduced viability and inhibited
cell proliferation [92]

4β-Hydroxywithanolide E
Aerial parts
(stems and

leaves)

Human breast cancer cells
(MDA-MB-231 and MCF-7) Inhibition of NF-κB activation [94]

4β-hydroxywithanolide E,
Withaferin A NR Triple-negative breast cancer

(TNBC) MDA-MB-231 cells
Inhibit cell viability, cell cycle arrest

and apoptosis/necrosis [95]

Combination of cucurbitacin B and
withanone CucWi-N NR A549; TIG-3 and athymic balb/c

nude mice

Reduced tumor growth, induces
cellular senescence and decreases the
expression of Cyclin E, Lamin A/C,

CDK2, Cyclin D, CDK4,
phosphorylated RB, mortalin and an

increase in p53

[26]

Diacetylwithaferin A Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Inhibition of cell proliferation and
decrease the expression of COX-2 [92]

Physagulin D (1→ 6)-h-
Dglucopyranosyl-(1→4)-h-

Dglucopyranoside
Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Inhibition of cell proliferation reduces
viability and decrease the expression

of COX-2
[92]

Viscosalactone B Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Inhibition of cell proliferation reduces
viability and decreases the expression

of COX-2
[92]

27-desoxy-24,25-dihydrowithaferin A Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast
(MCF-7) tumor cell lines

Inhibition of cell proliferation and
reduced viability [92]

Withanolide analogue NR Breast cancer cells (SK-Br-3 and
MCF7/BUS)

Inhibition of cell proliferation and
upregulation the expression of

β-tubulin
[96]

Withanolide D Leaves Myeloid (K562) and lymphoid
(MOLT-4) cells

Induced apoptosis and cell killing
through JNK and p38MAPK activation [97]

Withanolide D Root Multiple myeloma CSCs and
RPMI 8226 cell

Inhibition of cell proliferation and cell
death induces apoptosis [98]

Withanone and withaferin A (20:1) NR
Metastatic cancer cells A172,

IMR32, YKG1, MCF7, HT1080,
U20S and Nude mice

Inhibition of cell proliferation and
downregulation the expression of

hnRNP-K, VEGF, and metalloproteases

Withanoside IV Leaves

Lung (NCI-H460), colon
(HCT-116), central nervous
system (SF-268) and breast

(MCF-7) human tumor cell lines

Inhibition of cell proliferation and
decrease the expression of COX-2 [92]

Withania somnifera leaf extract Leaves Human glioma cell line (YKG1,
U118MG and A172)

Inhibition of cell proliferation and
increased the expression of NCAM

and mortalin
[99]
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Table 1. Cont.

Bioactive Molecules Part Used Type of Cancer Medicinal Value of the Bioactive
Molecules Ref.

Withania somnifera leaf extract
and withaferin Root

Human normal fibroblasts
(TIG-3), breast carcinoma
(MCF7), colon carcinoma

(HCT116)

Increased DNA damage, oxidative
stress, and downregulation of TPX2,

TFAP2A, LHX3, and ING1
[100]

Withania somnifera root extract Root Human prostate cancer cells
(LNCaP and 22Rv1)

Inhibition of cell proliferation, fatty
acid synthesis and downregulation of

the expression of c-Myc and
p-Akt (S473)

[101]

Withania somnifera root extract Root Prostate cancer cells (PC3)

Inhibition of cell proliferation, cell
cycle arrest in G2/M phase and

downregulation of the expression of
IL-8 and COX-2

[102]

Withania somnifera roots extract
and cisplatin Root Breast (MDA-MB-231) and colon

(HT-29) cancer cells

Inhibition of cell proliferation,
increased mitochondrial dysfunction,

and ROS
[103]

NR: (Not reported) extractions sources or purchased from company.

2.3. Pharmacokinetic Studies and Bioavailability of Withania somnifera

The major drawbacks of biological agents are rapid metabolism, quick excretion, and
poor bioavailability, which reduce their potential as anticancer agents [104]. It is critical to
know a drug’s bioavailability before recommending it to treat a disease. WS bioavailability
has been shown in preclinical tests to be acceptable [105,106]. In a recent assessment, the
ideal oral pharmacokinetics of Withaferin A was determined in male rats and the in vitro
screening of absorption factors by liquid chromatography–mass spectrometry (LC–MS/MS)
and quadrupole trap mass spectrometry (Q-TRAP) analysis [105]. Male rats were given
Withaferin A intravenously (5 mg/kg) and orally (10 mg/kg), and the oral bioavailability
was found to be 32.4 ± 4.8%. Furthermore, in vitro findings revealed that Withaferin A was
readily transported through Caco-2 cells and Withaferin A did not seem to be a substrate for
P-glycoprotein.

The stability of Withaferin A in male rat or human intestinal microflora was assessed
as drugs given orally always interact with a significant population of intestinal microflora in
the digestive tract and Withaferin A is susceptible to bacterial degradation. There were no
significant differences in the stability of Withaferin A in male rats and humans when tested
in formulated gastric fluid (stable), in intestinal microflora solution (gradual reduction), and
in liver microsomes (swift expenditure with a half-life of 5.6 min). As a result, the initial
metabolism of Withaferin A was confirmed using rat intestine-liver in situ perfusion, which
showed that Withaferin A quickly dropped and remained at 27.1% in the first hour, while the
level of the three key metabolites (M1, M4, and M5) detected by Q-TRAP analysis increased.

Patil et al. [106] identified Withaferin A and Withanolide A in mouse plasma using
high-performance liquid chromatography-tandem mass spectrometry. In this study, plasma
samples were pretreated with tert-butyl methyl ether and the simple liquid–liquid extrac-
tion method was performed. Here, a Hypurity C18 column using methanol and ammonium
acetate (95:5, v/v) is used as a mobile phase to partition the analytes and identified by
electrospray ionization in the multiple reaction monitoring mode. The mass transition
ion-pair was m/z 437.2 →292.2 for tianeptine (IS); m/z 471.3 → 281.2 for Withaferin A;
and m/z 315→ 9270 for clonazepam (IS) and m/z 488.3→ 263.1 for Withanolide A. Fur-
thermore, this technique demonstrated good linearity (r2 > 0.997) across the concentration
dosage of 0.476–116.050 ng/mL for Withanolide A and of 0.484–117.880 ng/mL for With-
aferin A. The lower bounds of quantification (LLOQs) for Withanolide A and Withaferin
A were determined to be 0.476 ng/mL and 0.484 ng/mL, respectively, which is less than
the Cmax/20 ratio, indicating that the technique has sufficient sensitivity to detect these
withanolides in plasma samples. The optimum precision (% CV) and accuracy (% bias)
were recorded between 3.7–14.3% and −14.4–4.0%, respectively. This proven technique
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was effectively used in pharmacokinetic research to estimate Withaferin A and Withanolide
A in mice plasma after oral dosage of WS root aqueous extract.

The withanolides are rapidly absorbed after oral administration and withaferin A is
relatively nearly twice as bioavailable as Withanolide A [106]. WS has been documented to
have efficient pharmacological activities, including anticancer activity in vitro and in vivo.
The WS can selectively target and kill cancer cells by activating various apoptosis-related
molecular and cellular pathways. Various findings on the antitumor potential of WS
revealed its regulatory impact on various erratic signaling pathways implicated in can-
cer establishment and progression, such as NF-κB, COX-2 and phosphatidylinositol 3-
kinase/protein kinase B (PI3K/Akt) Figure 2. The in vitro cytotoxicity and targeted and
regulatory aberrant mechanisms of WS are summarized in Table 2.

Figure 2. Various molecular targets of Withania somnifera in cancer cells. WS influence the apoptosis,
cell cycle, ER stress, and paraptosis while involving reducing metastasis, EMT, stemness, autophagy,
and inflammation.

3. Role of Withania somnifera in Cancer
3.1. Lung Cancer

Lung cancer is the predominant cause of cancer-associated mortalities globally [1]. A
combination therapy of paclitaxel and WS (400 mg/kg body weight) extracts in treating
benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice shielded the mice from
reactive ROS-induced damage through antioxidant activity, restored immune activity, and
decreased cell viability [107,108]. It has also been shown that Withaferin A suppressed
the binding of U937 monocytic cells with A549 cells stimulated by tumor necrosis factor-α
(TNF-α) via deregulation of vascular cell adhesion molecule 1 and intracellular adhesion
molecule 1 expression, blockade of Akt phosphorylation, and shunted nuclear factor kappa
B (NF-κB) activity [25]. Additionally, Withaferin A has demonstrated potent activity against
TNF-α-induced epithelial–mesenchymal transition (EMT) and TGF-β in A549 and H1299
non-small cell lung cancer (NSCLC) cell lines and has also induced apoptosis and cell
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cycle arrest by inhibiting the PI3K/Akt pathway [109,110]. These findings encourage the
testing of efficacy of WS as a single agent or with other chemotherapeutic agents for lung
cancer therapy.

3.2. Breast Cancer

Breast cancer is the leading form of cancer in females [1,111]. The heterogeneity
of breast malignancies greatly influences their aggressiveness and ability to naturally
metastasize [112]. Fluorescence microscopy studies on breast cancer cell lines demonstrated
the efficacy of Withaferin A in initiating mitotic arrest in MDA-MB-231 and MCF-7 cell
lines as well as the Ser10 residue-targeted phosphorylation of H3 histone [113]. Five-week
intraperitoneal supplementation of 4 mg WA/kg body weight in female nude mice injected
with MDA-MB-231 cells exhibited significantly reduced tumor growth while there was Bim-
dependent and FOXO3a-induced apoptosis in the same cells in in vitro [20]. Furthermore,
a recent study has evinced a novel apoptosis induction mechanism using Withaferin A,
in which levels of survivin proteins, the cellular inhibitor of apoptosis-2 (cIAP-2), and the
X-linked inhibitor of apoptosis (XIAP) all decreased after about 6 h of WA treatment; in
in vivo, only survivin proteins were inhibited by Withaferin A [114]. Withaferin A has
been shown to inhibit oxidative phosphorylation in breast tumors and induce the apoptotic
death of cells through ROS [115].

Thaiparambil et al. [56] demonstrated the ability of Withaferin A to elevate phospho-
rylation of vimentin at its Ser56 residue, which indicates disassembly of vimentin, and
thereby enhanced anti-metastatic and anti-invasive phenotypes in in vitro and in vivo.
Withaferin A can potentially augment the distinct Cys328 vimentin residue in Human
Umbilical Vein Endothelial Cells (HUVECs) covalently, resulting in vimentin denigration
in in vivo and inhibition of neovascularization [116]. Furthermore, Withania root extracts
have been shown to influence the EMT in breast cancer in in vitro and in xenograft mouse
models supplemented with MDA-MB-231 cells [117,118]. The immunohistochemistry
studies demonstrated that methylnitrosurea-induced mammary malignancies in female
Sprague-Dawley rats caused a reduction in the proliferating cell nuclear antigen marker
and Ki67 expression after Withaferin A root extract treatment [119]. Interestingly, transfec-
tion of MDA-MB-231 cells with ER-α inhibited Withaferin A-induced apoptosis but failed
to obstruct the Withaferin A-induced cell cycle arrest at the G2/M phase. Withaferin A
demonstrated anti-estrogenic tendencies by halting the growth of the estrogen receptor
(ER)-positive T47D and MCF7 cells [120].

There have also been reports of anti-proliferative propensities of Withaferin A under
various experimental settings [121]. For instance, Withaferin A suppressed the phosphory-
lation of Jak2 and signal transducer and activator of transcription-3 (STAT-3) [122]; inhibited
NF-κB [123]; activated Notch-2 and Notch-4 upregulated [124]; and induced the overex-
pression of Elk-1-mediated Death Receptor five [125]. Research on the epigenetic properties
of Withaferin A elucidated the potential of Withaferin A to methylate or demethylate
numerous genes implicated in Triple-Negative Breast Cancer and inhibit their specific
features of mildly aggressive luminal breast cancer with enhanced therapeutic sensitivity
and response [126]. In conclusion, these studies highlight the exceptional therapeutic
potential of active constituents of WS against breast cancer through anti-proliferative and
anti-invasive molecular modes of action.

3.3. Prostate Cancer

Prostate cancer is the second most frequent cancer in men globally and accounts for
3.8% of cancer-related mortalities in men worldwide [1,111]. The anticancer activity of
WS constituents has been fairly documented, such as the induction of prostate apoptosis
response-4 (Par-4) dependent apoptosis in prostate cancer cell lines and regression of PC-3
xenografts in nude mice after a combination treatment of Withaferin A and other anti-
androgens [73]. Furthermore, Withaferin A resulted in a dose-dependent inhibition of cell
viability and led to the accumulation of Weal in the G2/M phase of the cell cycle [127]
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and facilitated vimentin denigration, which has been previously documented in breast
malignancies, stimulated ROS generation, and decreased c-FLIP levels [56,81].

A 3-azido derivative of WA (3-azidoWA) restricted the cell invasion, mediated by ex-
tracellular Par-4-dependent inhibition of matrix metalloproteinase-2 (MMP-2) in PC-3 and
HeLa cells [93]. Additionally, in vivo studies demonstrated a decreased expression of p-ERK
and p-Akt and inhibited angiogenesis in mice [93]. 3-azidoWA also exhibited anticancer po-
tential against prostate cancer by stimulating ER stress and improved chemosensitivity by
influencing the shift from autophagy to apoptotic death in prostate cancer cells. Recent re-
ports have shown the ability of WS root extracts to suppress lipogenesis in 22Rv1 cells, most
likely by decreasing the expression levels of p-Akt and c-Myc, and this possibly indicates
the mechanism of fatty acid metabolism in malignant cells and a novel strategy of inducing
antitumor activity in prostate cancer [101].Kunimasa et al. [128] found that Withaferin A
combined with glucose metabolism focused therapy might be an effective treatment for can-
cer cells resistant to tyrosine kinase inhibitors (TKI). Drug tolerance per sisters (DTPs) were
formed in EGFR mutant lung cancer cell lines were treated with gefitinib and characterized
by increased senescence (CD133 low) and stemness (marked by CD133 high population).
Senescent cells exhibit the SASP (senescence-associated secretory phenotype) phenotype
and may connect with other cells through secreted substances that have been SASP treated
with gefitinib conditioned medium enhanced CD133 high in CSCs. The researchers recom-
mended combining glucose metabolism targeting treatment with Withaferin A to target
CSCs (as senescent CD133 low cells have enhanced glucose metabolism).

3.4. Colon Cancer

Colon cancer ranks third globally incidence wise and ranks second in mortality cases
among the various cancers [1,111]. In Swiss albino mice, it was observed that ethanolic
extracts of WS evinced immunoregulatory tendencies in azoxymethane-induced colon
cancer [129]. Withaferin A has also demonstrated anticancer activity against colon cancer
by targeting and downregulating Notch-1 signaling via targets such as Hey-1 and Hes-1 and
concurrently suppressing crosstalk between Notch-1 and Akt/mTOR pathways. This makes
the Notch-Akt-mTOR axis an attractive therapeutic target in colon cancer therapy [130].
Furthermore, there was observed dose-dependent apoptotic induction in three colon cancer
cell lines as seen by the upregulated expression of apoptotic markers such as Poly ADP
ribose polymerase (PARP) and caspase-3, as well as upregulated phosphorylation of c-Jun
and JNK [130]. Moreover, Withaferin A caused cell cycle arrest at the G2/M phase of the
cell cycle as a result of spindle assembly checkpoint blockade that invariably results in
mitotic disruption, and proteasomal denigration of Mad2 and Cdc20, which ultimately
results in chromosomal instability [82].

Other reports indicate that Withaferin A is capable of inhibiting migration and the
IL-6 mediated the stimulation of STAT-3 in HCT116 cells [131]. Additionally, Withaferin A
treatment of HCT116 xenograft tumors in Balb/c nude mice showed a pronounced decrease
in tumor weight and volume [131]. A drastic reduction in tumor progression, volume,
polyp size, and adenomas in Withaferin A-treated mice relative to controls highlights the
need for active investigation into clinical application of Withaferin A [24]. A recent report
indicates a combination regimen of 5-fluorouracil with Withaferin A inhibited colorectal
cancer cell viability and stimulated the ER-stress-mediated induction of apoptotic cell death
and autophagy, while causing cell cycle arrest at the G2/M phase [132]. Additionally, the
induction of apoptosis was mediated by the PERK axis of ER stress and was non-toxic to
healthy colon cancer cells [132].

3.5. Leukemia

Withaferin A has demonstrated potent anticancer activity against solid tumors. In this
section, its efficiency in inhibiting hematological malignancies would be discussed. Initial
research reports demonstrated that Withaferin A-mediated inhibition of cell proliferation in
several malignant lymphoid and myeloid cells, cell cycle arrest at the sub-G0 phase, and apop-
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totic induction via the p38/MAPK signaling pathway [71]. Furthermore, L-Asparaginase
isolated and purified from WS fruit demonstrated anti-proliferative tendencies in acute
lymphoblastic leukemia cells obtained from leukemia patients [87]. Conclusive studies on
leukemia cell lines such as U937 and others directly correlated Withaferin A with improved
ionizing radiation-mediated cell death via ROS stimulation, cell cycle disruption at the G2/M
phase and simultaneous upregulation of JNK signaling, and deregulated Akt phosphoryla-
tion [57,133,134]. Moreover, WS has demonstrated various anti-leukemic tendencies such
as the ability of WS root extracts to improve ROS generation, induce cell cycle arrest, pump
intracellular calcium, and denigrate DNA structure of T-lymphoblastoid cell lines [135].

3.6. Other Cancers

The anticancer activity of WS has been fairly documented in other carcinomas. In
melanoma, it was observed that Withaferin A augured ROS production that resulted in
mitochondrial-mediated cell death in melanoma cells with a range of IC50 values between
1.8 to 6.1 mM and caused DNA damage. In Swiss albino mice models, WS root extracts
therapy caused pronounced weight gain and decreased skin lesions [136]. Also, in human
osteosarcoma cells and gastric and oral cancer cells, WA led to the G2/M phase cell cycle
arrest [137–139]. However, there is a paucity of comprehensive research of antitumor effects
of Withaferin A in such cancers, though in oral cancer, studies have identified selective
degradation of oral cancer cells as a result of oxidative stress and depolarized mitochondrial
membrane potential as well as DNA fragmentation [137].

In pancreatic cancer (PanCa), a combination regimen of Withaferin A and oxaliplatin
resulted in the intracellular accumulation of ROS, which correlated with downregulation of
Akt and apoptotic cell death. This provided the strongest evidence yet of effective antitumor
activity of a combination therapy of Withaferin A and oxaliplatin in PanCa therapy [140].
Similar evidence was seen in a combination therapy of doxorubicin and Withaferin A in ovar-
ian cancer which led to improved ROS generation and stimulated autophagy [141]. In vivo
studies in mice showed a 70–80% reduction in tumor mass upon combination treatment of
Withaferin A and doxorubicin relative to the control or single drug treatments [141].

Another study demonstrated therapeutic efficacy of Withaferin A alone or Withaferin
A plus cisplatin in downregulating Notch-1 signaling and repressing metastasis in nude
mice [142]. Immunohistochemistry (IHC) and proteomic analysis showed pronounced
decrease in cancer stem cell biomarkers (CCD117, CD34, Oct-4, CD44, and CD-24) and
metastatic biomarkers such as Notch-1. Interestingly, the administration of cisplatin alone
in xenograft mice had the opposite effect, highlighting the efficacy of the Withaferin A-
cisplatin combination treatment regimen in drug-resistant ovarian cancer [142]. Withaferin
A-treatment of SKOV3 and CaOV3 cells attenuated cell viability and clonogenicity, initiated
apoptosis, and caused cell cycle arrest at the G2/M phase [55].

Withaferin A demonstrated potent anti-proliferative effects in cervical cancer cells as
documented by Munagala et al. [67]. These studies showed that Withaferin A suppressed
most tumor characteristics including CaSki cell viability (IC50 = 0.45 mM), deregulated HPV
E6/E7 oncoproteins, decreased STAT-3 phosphorylation, and upregulated p21 and p53
proteins [143]. In vivo studies in athymic nude mice also yielded a pronounced decrease
in tumor mass [67]. A dose-dependent inhibition of TGF-β induced Akt phosphorylation
and decreased MMP2 and MMP9 expression in Withaferin A-treated CaSki and SK-Hep1
cells, indicating anti-invasiveness of WA [143]. Withaferin A has demonstrated potency
against renal carcinoma as well. Withaferin A induced apoptosis in CaSki cells, suppressed
JAK-2 activation, IL-6-mediated STAT-3, Akt, and Bcl-2 phosphorylation, and upregu-
lated the expression of glucose-regulated protein (GRP)-78 and CAAT/enhancer-binding
protein-homologous protein as well as the stimulation of ROS-dependent expression of
the endoplasmic reticulum (ER) stress markers such as the phosphorylation of eukaryotic
initiation factor-2α and X-box binding protein 1 (XBP1) splicing [21,144,145]. Interaction
between Withaferin A and the Cys179 residue found in the catalytic site of IKKβ also
suppressed NF-κB activity in HEK293T cells [146].
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3.7. Chemosensitization and Synergistic Actions of Withania somnifera

The development of resistance to standard chemotherapy indicates that single drugs
may not be enough for cancer treatment. Combination therapy has received attention
in recent years as a novel cancer treatment approach [147]. Traditional chemotherapeu-
tics combined with therapy with phytochemicals like WS may enhance the therapeutic
effectiveness in cancer treatment. WS has a chemo-sensitizing impact on many cancer
types by altering numerous signaling pathways, such as MAPK/ERK, PI3K/AKT, and
NF-κB. Interestingly, many in vitro and in vivo investigations have shown the therapeutic
potential of WS as a combinatorial anticancer medicine. In this section, we discuss the
synergistic effects of co-treatment with chemotherapeutic agents and WS in inhibiting
various carcinogenic pathways. Chemo-sensitization and synergistic effects of WS are
thought to enhance intracellular concentrations of chemotherapeutic drug(s) in cancer cells
as well as at the tumor site.

Kyakulaga et al. [148] have shown synergistic effects of paclitaxel and Withaferin A
against human NSCLC. In H1299 and A549 cells, paclitaxel, and WA co-treatment reduced
cell proliferation, colony formation, migration, invasion, and enhanced apoptosis. Contrary
to expectations, the synergy of paclitaxel and Withaferin A was increased when cells were
pretreated with Withaferin A, suggesting an anti-chemosensitivity effect. On the other
hand, Withaferin A inhibited both paclitaxel-susceptible (TS-A549) and paclitaxel-resistant
(TR-A549) cells in in vitro and in vivo. Withaferin A suppresses NSCLC cell growth via
oxidizing thiols. In doxorubicin-sensitive K562 and doxorubicin-resistant K562/Adr cells,
Withaferin A alone can negate attenuated caspase activation and apoptosis, while quercetin-
mediated caspase regulation and apoptosis is just delayed. However, only Withaferin A
lowers intracellular protein levels of Bcl2, Bim, and p-Bad, while increasing PARP cleavage,
caspase 3 activation, and apoptosis, perhaps through thiol oxidation [149]. Withanolide D
(C4β-C5β,C6β-epoxy-1-oxo-,20β, dihydroxy-20S,22R-witha-2,24-dienolide; Withanolide
D) is isolated from WS initiates leukemic apoptosis by the upregulating activation of
neutral sphingomyelinase-ceramide cascade, facilitated by synergistic activation of c-Jun
N-terminal kinase and p38 mitogen-activated protein kinase [97]. This study shows that
Withanolide D may raise ceramide levels in myeloid (K562) and lymphoid (MOLT-4)
cells and enhance JNK and p38MAPK phosphorylation downstream of ceramide. In
addition, N-SMase 2 is a major mediator of Withanolide D-induced apoptosis, and N-
SMase 2 siRNA and N-SMase inhibitor (GW4869) reduced Withanolide D-induced ceramide
production and MKK4 and MKK3/6 phosphorylation but not MKK7 in leukemic cells.
The inhibitor GW4869 also protected these cells against Withanolide D-mediated mortality
and reduced apoptosis, while Fumonisin B1, a ceramide synthase inhibitor, had no impact.
Also, Withanolide D efficiently triggered apoptosis in newly separated lymphoblasts from
patients, through JNK and p38MAPK activation [97].

In prostate cancer cells, PAWR-regulated the suppression of Bcl-2 influences shift from
3-azido Withaferin A induced autophagy to apoptosis [150]. As a result, many MAP1LC3B
and EGFP-LC3B puncta accumulated, and SQSTM1 gradually degraded. Higher toxic
doses of 3-azido Withaferin A increased CaP cell ER stress, resulting in the activation of
apoptosis by increasing PAWR expression, which inhibited Bcl2 and BECN1l expression,
both of which are involved in autophagy. Overexpressed PAWR inhibits BECN1 in CaP
cells, causing the Bcl2-BECN1 connection to be disrupted. Furthermore, with the lethal
concentrations of 3-azido Withaferin, pawr-KO MEFs showed extensive autophagy signals,
demonstrating the importance of PAWR in the transition from autophagy to apoptosis.
Finally, overexpression of EGFP-LC3B and DS-Red-BECN1 in CaP cells resulted in a delay
in the apoptotic turnover at greater 3-AWA concentrations. Another benefit was that it
increased chemosensitivity by making prostate cancer cells more susceptible to apoptosis,
which is why it has therapeutic promise [150].

Furthermore, sub-toxic concentrations of 3-azido Withaferin A suppressed cancer cell
motility and invasion in wound healing and the Boyden chamber invasion by inhibiting
MMP-2 activity in gelatin zymography, which is a significant barrier in chemo-sensitivity.
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An external activation of the tumor suppressor candidate Par-4 protein by 3-azido With-
aferin A generated a new mechanism, and an immunoblot analysis revealed an associated
significant decrease in pAkt/pERK signaling. This study also found that 3-azido Withaferin
A inhibited MMP-2 through secretory Par-4, which is consistent with our zymography
findings. MMP-2 gelatinase activity was not restored by 3-azido Withaferin A apoptotic
suppression. In addition, 3-azido Withaferin A inhibited neovascularization in mice using
the Matrigel plug test when administered in a dose-dependent manner [93].

Table 2. In vitro cytotoxic activity and targeted molecular mechanisms of Withania somnifera in
different cancer types.

Cancer Cell Line Targeted Molecular Mechanisms Ref.

Lung cancer

A549 Cell cycle arrest ↑; PI3K/Akt pathway↓ [109]

H1299 and A549 TGF-β and TNF-α induced EMT ↓; nuclear translocation of Smad 2/3
and NF-κB ↓ [110]

H1299, CL141, CL149, and A549 ROS, autophagy, and apoptosis ↑; mTOR/STAT3 signaling ↓ [79]

Breast cancer

MCF7 and MDA-MB-231 G2/M phase cell cycle arrest ↑; ROS generation and apoptosis ↑; ER-a,
XIAP, cIAP-2 and survivin ↓ [19,20]

MCF7 and MDA-MB-231 Cell migration, EMT and invasion ↓; IL6 induced STAT3 activation ↓;
Notch2 and Notch4 ↑; mitochondrial membrane potential ↓ [100,122,125]

SUM-159 and MCF-7 Mammosphere formation ↓, ALDH1 activity ↓, bCSCs↓; [23]

Glioblastomas GL26, U251, and U87 Cell proliferation ↓; G2/M phase cell cycle arrest ↑; ROS generation ↑;
Akt/mTOR and MAPK pathway ↓ [151,152]

Microglial BV2 Nrf-2 and HO-1 ↑; filopodia formation ↓ [153]

Neuroblastomas IMR-32, U87-MG, C6, GBM39,
and GBM2

Cell proliferation ↓; G0/G1 cell cycle arrest ↑; Cyclin D1 ↓; p-Akt,
PSA-NCAM, Bcl-xL, MMP-2, MMP-9 ↓ [69,154,155]

Oral CAL27 and Ca9-22 Cell proliferation ↓; G1 phase cell cycle arrest ↑; ROS generation,
DNA damage and mitochondrial membrane depolarization ↑ [137]

Osteosarcoma U2OS and MG-63 Cell proliferation ↓; G2/M phase cell cycle arrest ↑; cyclin B1, cyclin A
↓; p-Chk1, p-Chk2 ↑ [138]

Leukemia THP-1, HL-60, MDS-L, and
Ramos Apoptosis↑; G2/M phase cell cycle arrest ↑; ROS ↑ [134,135]

Prostate DU 145 and PC3, Cell proliferation ↓; G2/M Phase cell cycle arrest ↑; ROS and
autophagy ↑ [81,127]

Ovarian cancer CaOV3, SKOV3, and A2780 Cell proliferation ↓; apoptosis ↑; ROS ↑; G2/M cell cycle arrest↑;
Notch1, Notch2, otch3, Bcl-2, Akt ↓ [141,142]

Melanoma Lu1205, M14, Mel501, and SK28 Cell viability ↓; apoptosis ↑; ROS↑; DNA fragmentation and
mitochondrial membrane depolarization ↑ [78]

Gastric cancer AGS Cell viability ↓; Apoptosis ↑; G2/M cell cycle arrest ↑; ROS ↑; Cell
migration and invasion ↓ [139]

Gastrointestinal UP-LN1 Apoptosis ↑; CXCR4/CXCL12 and STAT3/IL-6 axis ↓ [156]

Thyroid cancers SW1736 and BCPAP BRAF, Raf-1 and, ERK ↓; cell cycle arrest at G2/M phase ↑ [157]

Symbols: ↑, increased or up-regulated; ↓, decreased or down-regulated.

3.8. Clinical Trials

WS actively inhibits a variety of oncogenic signaling molecules and warrants further
clinical investigations. There is, however, a dearth of studies in this field that is centered on
cancer, with only three clinical cancer-related investigations out of 11 total studies on WS.
There are about 29 clinical trial studies reported on clinicaltrials.gov (https://clinicaltrials.
gov/ct2/results?cond=&term=Withania+somniera&cntry=&state=&city=&dist= accessed
on 3 March 2022). In an open-access nonrandomized comparative study on 100 patients
with breast cancer; WS root extract was given to patients in the study group at a dose of 2 g
every 8 h throughout the duration of chemotherapeutic treatment. It was observed that WS
root extract exhibited therapeutic potential against cancer-related fatigue and improved
the quality of life [54]. In another study, 24 participants were recruited to assess the efficacy

https://clinicaltrials.gov/ct2/results?cond=&term=Withania+somniera&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=Withania+somniera&cntry=&state=&city=&dist=
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of curcumin formulation and Ashwagandha extracts on advanced osteosarcoma. The
conclusion of this study, however, has not been properly stated [158].

A prospective, randomized double-blind, placebo-controlled study conducted by
Chandrasekhar et al. [32] evaluated the pharmacological profile of a highly concentrated
full spectrum isolate of Ashwagandha roots in decreasing stress-induced anxiety and
ameliorating the health of stressed participants. The extract was found to be safe, tolerable,
and effective at decreasing stress and anxiety. However, another study reported the WS-
mediated improvement of NK cell activity after the consumption of tea infused with WS-
active herbal drugs [159]. Zwickey et al. [160] also investigated the effects of Ashwagandha
on stress, inflammation, and immune cell activation in 25 participants. The root extract
may be utilized as an adjuvant treatment in cancer patients to alleviate stress and anxiety.
Table 3 outlines Withaferin A clinical studies on different disorders. Further studies are
required to examine Withaferin A’s therapeutic potential in cancer. A randomized, double-
blind, placebo-controlled study by Chengappa et al. [161] demonstrated the benefits of WS,
including its safety in patients with recent schizophrenic inflammation.

Table 3. Clinical trials involving Withania somnifera) in Interventional Studies.

Conditions Used Alone or in
Combination

ClinicalTrials.gov
Identifier

No. of Enrolled
Patients Outcome Ref.

Breast Cancer Root extract NA 100 Improvement of quality of life and
chemotherapy induced fatigue [54]

Advanced Osteosarcoma CUR formulation and
Ashwagandha Extract NCT00689195 24 Detailed is not available [158]

Stress and Anxiety Root extract NA 64
Reduced stress and Anxiety

improve self-assessed quality
of life

[32]

NK Cell Activity Polyherbal formulation NA 32 Enhancement of NK cell activity [159]

Stress, Inflammation, and
Immune Cell Activation

3 mL of Ashwagandha
for 5 days. NCT00817752 25 Detailed is not available [160]

Schizophrenia WS extract NCT01793935 68 Significant benefit for people with
schizophrenia exacerbation [161]

3.9. Immunomodulatory Activity and Hematopoiesis Actions of Withania somnifera

Withania somnifera is an immunostimulant herbal remedy that is used to boost general
health and prevent illness in the elderly [15,162–164]. Toll-like receptors, transcription
factors, and inflammasomes all have a role in regulating inflammatory cytokines and
chemokines [165]. NF-κB is the most researched transcription factor for modulating in-
flammatory cytokines in a variety of cell types [166]. Constitutive NF-κB activation has
been demonstrated to increase the expression of NF-κB-related genes such as inflammatory
cytokines/chemokines like CCL20/MIP-3 and granulocyte-macrophage colony stimulating
factor (GM-CSF) [167]. WA’s ability to suppress NF-κB has been investigated in a variety of
cell types and with a variety of triggering events [168]. A recent study by Kaileh et al. [169]
showed that WA suppressed NF-κB activation by directly inhibiting IKKβ activity through
thioalkylation, which are steroid lactones produced from WS, such as Withanolide A and
12-deoxywithastramonolide, are significantly less potent. The administration of a methano-
lic extract of the WS plant roots (1–256 g/mL) to mice macrophages resulted in an increase
in nitric oxide generation due to nitric oxide synthase activation.

A recent study shows that WS has significant cytotoxic and cytostatic potential and
induced immunogenic cell death (ICD) in human T leukemia cells [135]. In in vitro, WA
inhibited mitogen-induced T-cell and B-cell growth without causing cell death. The upreg-
ulations of activation markers on T-cells (CD25), B-cells (CD80, CD86, and MHC-II), and
the generation of Th1 and Th2 cytokines were also inhibited by WA. In microglial cells,
WA reduced LPS-induced COX-2 and prostaglandin E-2 (PGE2) synthesis, while inhibiting
TNF-α and IL-1β production in mononuclear cells [170,171]. The immunomodulatory
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effects of an alcoholic extract of the plant roots were studied in mice using cyclophos-
phamide, azathioprine, or prednisolone myelosuppression models. The extract enhanced
the quantity of blood cells, the cellularity of bone marrow, and the number of α-esterase
positive cells [172–174]. A study reports that Withaferin A suppressed iNOS expression
and nitric oxide generation by Akt activations and downregulated LPS-induced NF-κB
in RAW264.7 cells [175]. Dubey et al. show that Withaferin A treatment of THP-1 cells
prevents NF-kB from translocating to the nucleus, resulting in lower levels of cytokine
release [27]. Withaferin A inhibits caspase-1 activation by altering the nigericin-induced
co-localization of NLRP3 and ASC proteins [27].

4. Nanotechnology-Based Strategies for the Delivery of WS

Multiple in vitro and in vivo studies have shown that WS exhibits anticancer proper-
ties. However, due to its poor water solubility, poor biodistribution, and multi-targeting
capability, it may cause inevitable systemic toxicity. Nanotechnology approaches may help
to reduce such uninvited adverse effects and improve clinical translation. Nanotechnology
has gained a lot of attention in recent times because of its improved payload delivery to
specific therapeutic locations, as well as its potential to alter cellular permeability, absorp-
tion, and pharmacokinetic profiles [176–179]. In recent years, the bioinspired production
of NPs employing various biological systems, such as microbes and plants, has gained
prominence [180–183]. Plant-based NPs production has attracted attention because of plant
availability, tolerance, and eco-friendly NPs synthesis [180–183]. The phytoconstituents in
the extract reduce and stabilize the generation of non-toxic NPs [180–183]. Among the many
nanoparticle carriers (iron oxide, silicone material, and quantum dots), AuNPs are preferred
owing to their high biocompatibility, quenching efficiency, ease of production, numerous
functions, and adjustable optical nature [184–186]. According to Grand View Research, Inc.,
the nanomedicine industry is expected to be valued at USD 350.8 billion by 2025 [187].

Nanomedicines are divided into two categories (Figure 3): organic nanoparticles (such
as polymeric, liposomes, etc.) and micelles and inorganic nanoparticles (such as gold, silica,
and iron oxide, etc.).

Figure 3. Different type of Withania somnifera nanoparticles. (A) inorganic nanoparticles and (B) or-
ganic nanoparticles. Red stars represent Withania somnifera.
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Inorganic nanoparticles have been utilized in several applications, including lymph
node imaging, hyperthermia, and anemia therapy, and a section of them have been success-
ful in preclinical research and clinical studies. Organic-based nanoparticles, like lipid and
polymer nanoparticles, have successfully entered the clinical phase and are now available
on the market for a variety of applications such as immunization, microbial infection,
and cancer.

4.1. Inorganic Nanoparticles

Various inorganic nanomaterials utilized in bioimaging and therapeutics include met-
als, metal oxides, semiconductors, and lanthanide-laced NPs [188–194]. In bioimaging,
inorganic NPs have been used as imaging probes that improve imaging methods like
as computed tomography, magnetic resonance imaging, and optical imaging owing to
their magnetic, X-ray attenuation, and optical characteristics [195–197]. Inorganic NPs
have demonstrated immense potential in cancer disease therapy as whole drugs or drug
delivery systems [198–201]. Furthermore, smart inorganic nanotherapeutics, which are
stimuli responsive and target specific, have been generated to yield precise cancer treat-
ment [202–204]. Some inorganic NPs that have gained clinical approval for disease therapy
include the iron oxide NPs, Dexferrum, Feraheme, Infed, Feridex, Ferrlecit, Venofer, and
Nano-therm [205]. Metallic NPs have been synthesized using aqueous extracts of various
plant parts such as seeds, roots, leaves, stems, and fruits.

4.1.1. Gold Nanoparticles (AuNPs)

AuNPs offer unique qualities such as a huge surface area, the capacity to bind with
different molecules, high stability, outstanding biocompatibility, and minimal toxicity, as
well as the ability to control drug release [206,207]. AuNPs can easily be tagged with
ligands for selective targeting because they can make bonds with amine and thiol groups.
Because of their nano conjugation capacity, phytochemicals have been employed to develop
Au nanocarrier-based conjugation for active-targeting drug delivery. AuNPs have been
assessed for clinical applications as a result of their unique physicochemical properties.
Tabassam et al. [208] recently assessed the anti-cancer potential of Withanolide-A with
20 nm AuNPs conjugates against SKBR3 breast cancer cell lines. The AuNPs can be
generated by several in vitro and in situ methods, but only limited techniques can yield
uniformly spherical particles.

A chemical synthesis method was utilized in the preparation of spherical AuNPs as well
as conjugation of 10 µg/mL of Withanolide-A (1) with spherical AuNP solution, based on
the same principle [96], and the phytochemical gold nanoconjugates was assessed through
various analytical techniques, UV-visible spectroscopy, dynamic light scattering (DLS), and
transmission electron microscopy (TEM). The absorption peak of AuNPs was λmax at
523.5 nm, similar to results from previous findings. DLS data showed that the presence
of a slightly positively charged single hydrogen atom on an Au surface changed the zeta
potential value from −44.3 ± 0.86 mV before conjugation to −20 ±0.1 mV after conjugation.
A slight variation of the PDI from 0.285 ± 0.02 to 0.3 ± 0.009, which was less than 0.3,
indicates non-uniformity in aggregation and size of the particles. The hydrodynamic size
increased from 25.35± 0.61 nm to 29.73± 0.65 nm, which indicates the attachment of a single
molecule on Au surface [209]. TEM analysis of the size and distribution of synthesized
AuNPs recorded an average size of 20 nm on micrograph before and after conjugation.
Moreover, Au nanoconjugates with Withanolide-A efficiently inhibited the growth of SKBR3
cells at half maximal concentration in contrast to pure Withanolide-A [208].

4.1.2. Titanium Oxide Nanoparticles (TiO2 NPs)

The phytomediated synthesis of TiO2 NPs has a lot of potential for killing bacteria,
viruses, fungus, and cancer cells, and it can also be used to treat malignant tumors as a
catalyzer [210,211]. Due to its extreme hydrophilicity, low toxicity, strong thermal conduc-
tivity, good optical absorption, and chemical and thermal durability in in vivo, TiO2 NPs
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could be a promising candidate for biomedical applications as agents in converting photon
energy into heat in the PTT method [212,213]. The biomediated production of TiO2 NPs
has been employed in disease therapy, surgical product manufacturing, photocatalysis,
agriculture and tissue engineering [214,215].

Poly(ethylene glycol) (PEG) could be added to the surfaces of TiO2 NPs to improve
their biocompatibility. Several plants and plant organs have been utilized in TiO2 NPs
including roots, leaves, peel, flower, seeds, and pollen [216–219]. TiO2 NPs are synthe-
sized by various methods such as chemical vapor deposition, hydrothermal and reversed
micellar methods, and the sol-gel process [220–223]. Titanium dioxide is a high-quality pho-
tocatalysts [224–226] with a wide bandgap of 3.2 eV and frequently used in optoelectronic
gadgets and dye-sensitized solar cells [227–230]. Al-Shabib et al. synthesized phytome-
diated green TiO2 NPs from Withania somnifera root extract, tested their broad-spectrum
biofilm inhibitory efficacy against bacterial and fungal pathogens, and assessed HepG2
cytotoxicity [231]. The synthesized NPs significantly reduced the viability of HepG2 in
in vitro and may be useful in the treatment of liver cancer. In another study, Maheswari and
colleagues noted the antitumor and antibacterial properties of hydrothermally synthesized
bio-modified TiO2 nanoparticles with WS on KB oral cancer cell lines [230]. Bio-modified
TiO2 nanoparticles show dose-dependent activity in KB oral cancer cell lines. When com-
pared with the modified bio-modified TiO2 nanoparticles, pure TiO2 nanoparticles had
a higher viability percentage, proving that plant dopants treated with TiO2 are effective
anticancer agents [230].

4.1.3. Silver Nanoparticles (AgNPs)

AgNPs are among the most often used nanomaterials because of their antimicrobial
characteristics, easily modified surface, controllable size and shape, strong electrical con-
ductivity, and optical features [232]. AgNPs silver nanoparticles have been employed in
a wide range of applications, including biosensors, electrical compounds, antimicrobials,
and pharmaceuticals [233]. AgNPs can be synthesized through various methods such
as physical (e.g., Turkevich), chemical (e.g., citrate or NaBH4), and biological methods
(e.g., plants, fungi, algae and other organic sources) with remarkable stability [232,234].
Biodegradable compounds and polymers can be added to the surface of AgNPs to improve
their biocompatibility. Alternatively, these nanoparticles can be integrated into hybrid
systems [235].

Tripathi et al. developed AgNPs through the reduction of silver nitrate solution using
an in vitro-produced leaf extract of Withania coagulans Dunal (WcAgNPs) and evaluated
anticancer activity with SiHa cell lines) [236]. WcAgNPs had a size of 14 nm and a spherical
form with a face-centered cubic structure. WcAgNPs have excellent in vitro cytotoxicity in
cervical cancer cells SiHa and induced apoptosis at 48 hrs. Gaurav et al., synthesized silver
nanoparticles with root extract of WS (AgNPs-REWS) and tested for anticancer activity in
in vitro [237]. A stable AgNPs made from Rhodiola imbricata root extract (RIW) and WS
(RIWS-AgNPs) have been shown to have prospective uses in biomedicine and agriculture
as phytostimulant, antioxidant, and anticancer agents [238]. Furthermore, RIWS-AgNPs
have potent cytotoxic action against the HepG2 cancer cell line in a dose-dependent manner
(cell viability: 9.51 ± 1.55%) [238].

4.1.4. Zinc Oxide Nanoparticles (ZnO NPs)

ZnO NPs are showing diverse medical applications and great promise in cancer
treatment due to their high potency and selectivity for cancer cells [239,240]. As a possible
substitute for photothermal therapy (PTT), zinc oxide (ZnO) has excellent chemical stability
and minimal toxicity, as well as optical, electrical, and anticancer characteristics [241].The
ROS and protein activity disequilibrium may be responsible for the cytotoxic action of
ZnO NPs [242]. ZnO NPs are effective nanocarriers for the administration of several
medications, such as DOX, paclitaxel, CUR, and baicalin as they have minimal toxicity and
are biodegradable [242]. Kumar et al. show the immunomodulatory and protective effect
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of WS extract and Withaferin A supplementation on zinc oxide nanoparticles mediated
the toxicity in a mouse model [243]. When ZnO NPs were delivered in vivo, a dose-
dependent decrease in phagocytosis, an increase in NO generation, and an up-regulation of
the TLR6 arginase gene were found to be significant. In the presence of WS and Withaferin
A, however, ZnO NPs toxicity was reduced, with decreased TLR6 overexpression and
restoration of phagocytic activity.

4.2. Organic Nanoparticles

Liposome-based nanomedicines employ drug encapsulation inside the phospholipid
bilayer to improve its pharmacokinetics and biodistribution. Liposomes are globular vesi-
cles surrounded by a phospholipid bilayer [244,245] and drug delivery mostly operates
by passive targeting [205,246]. The advantages of liposomal drug delivery systems are as
follows: (i) amphiphilic nature of liposomes enable them to deliver both hydrophobic and
hydrophilic drugs; (ii) liposomal nanotherapeutics demonstrate enhanced accumulation
and superior pharmacokinetics compared with non-liposomal agents at wound sites, result-
ing in decreased off-target toxicity and improved therapeutic efficacy; (iii) liposomes offer
drug protection and stability and improves circulation half-life; and (iv) the functional coat-
ing of liposomal surfaces can yield targeted drug delivery systems [244,247–251]. However,
the reticuloendothelial system (RES) and the mononuclear phagocytic network regulate
liposomal clearance [252–254]. As such, PEG has been employed in liposomal modification
to prolong the circulation half-life of liposomes [79,205,255,256].

Liposomal drug delivery systems are being assessed in clinical trials, including the
liposomal nano formulations of docetaxel, paclitaxel, irinotecan, and cisplatin [257–260].
For instance, EndoTAG-1, a cationic liposome-based formulation of paclitaxel geared at
PanCa therapy, liver metastases, and triple negative breast cancer has completed phase II
clinical trials. Similarly, liposome-based nanomedicines of WS can be used for the cancer.
Off-target toxicity and scale-up are the major obstacles in the way of the clinical translation
of liposomal nano formulations. Recent liposomal formulations seek to improve precise
disease targeting, such as ligand-functionalized liposomes, and have shown promising
preclinical outcomes [261,262]. The disadvantages of polymeric micelles include minimal
efficiency for intracellular drug release as well as possible off-target delivery. To navigate
these limitations, stimuli-responsive polymeric micelles have been generated to facilitate
sustained drug release in response to fluctuating environmental stimuli such as temperature
or pH [263,264].

It is important to note that at the current time not all types of organic nanoparticles,
such as self-assemblies, polymeric nanoparticles, dendrimers, and protein nanoparticles,
have been utilized for the delivery of WS. However, future research may include the use of
such clinically relevant carriers for efficient delivery of WS.

5. Future Perspective of WS Delivery

Phytochemicals have significant potential as anticancer agents. WS has anticancer
properties through inhibiting pro-cancer mechanisms such as angiogenesis, migration,
proliferation, invasion, and metastasis. WS promotes apoptosis through ROS generation,
DNA damage, and regulation of oncogene and tumor suppressor gene expression. So
far, there are no documented reports of toxicity of WS in humans. WS co-treatment may
re-sensitize resistant cancer cells to chemotherapeutics and radiation. Despite several
preclinical studies indicating WS cytotoxic potential against various cancers, physicians
have not yet recognized its therapeutic value in treating cancer patients. Moreover, extant
research on WS has barely evaluated its oral bioavailability, and investigation of these
aspects of a new drug is essential before initiating clinical trials. Indeed, poor water
solubility and biodistribution may restrict WS efficacy as an anticancer drug in somatic
settings, and the dearth of extensive clinical investigations into WS as an anticancer agent
may be due to these factors.
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Nano formulation of this compound may help overcome barriers associated with natural
phytochemicals like WS. Because phytochemicals constitute a varied collection of substances,
it is critical to tailor nanoparticle formulations to the desired therapeutic agents’ physical
and chemical characteristics. Fortunately, nanoparticles may be constructed from different
substances, including lipids and polymers. In animals, formulations may be rationally
planned as well as experimentally optimized. Passive targeting is quite simple to implement
and may be readily applied in clinical practice. Liposomal vincristine, liposomal paclitaxel,
and paclitaxel polymeric micelles are current examples of available nano-formulations.
Actively focused drug delivery systems can outperform passively targeted nanocarriers with
EPR effects. Smaller systems like antibody-drug conjugates (ADC) fall under this category.
The market has several ADCs and many more are in different phases of trials. Many variables
influence active targeting, including receptor expression and systemic circulation accessibility.
As a result, WS must be carefully designed and optimized in terms of formulation. Targeted
nanoparticles, we believe, will be the next step in the therapeutic evolution of WS. In
conclusion, further extensive preclinical and clinical research of WS is required to better
understand and enhance its anticancer activity. We anticipate that a new generation of
nanocarriers will significantly advance the clinical use of WS by using the rapidly developing
expertise in this sector.
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