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Abstract
This paper extends the within-class covariance normalization
(WCCN) technique described in [1, 2] for training generalized
linear kernels. We describe a practical procedure for applying
WCCN to an SVM-based speaker recognition system where the
input feature vectors reside in a high-dimensional space. Our ap-
proach involves using principal component analysis (PCA) to split
the original feature space into two subspaces: a low-dimensional
“PCA space” and a high-dimensional “PCA-complement space.”
After performing WCCN in the PCA space, we concatenate the
resulting feature vectors with a weighted version of their PCA-
complements. When applied to a state-of-the-art MLLR-SVM
speaker recognition system, this approach achieves improvements
of up to 22% in EER and 28% in minimum decision cost function
(DCF) over our previous baseline. We also achieve substantial im-
provements over an MLLR-SVM system that performs WCCN in
the PCA space but discards the PCA-complement.
Index Terms: kernel machines, support vector machines, feature
normalization, generalized linear kernels, speaker recognition.

1. Introduction
In recent years, support vector machines (SVMs) have becomeone
of the most important and widely-used classification techniques
within the field of speaker recognition. Most top-performing
speaker recognition systems use output “scores” obtained from
SVM-based speaker models to arrive at a final decision for a
given speaker trial. As with every SVM-based classifier, these
speaker models are trained using some predefined kernel functionk. Proper selection of the kernel function can be critical to the
success of an SVM-based system, particularly in cases wherethe
amount of available training data for either the impostor class or
the target speaker class is very limited (e.g. the 1-conversation
training condition in speaker recognition).

With some exceptions (e.g. the rank normalization technique
described in [3, 4]), most of the existing work on kernel selec-
tion for speaker recognition has focused ongeneralized linear ker-
nels—that is, kernels of the form,k(x1;x2) = xT1Rx2, whereR
is a positive semidefinite parameter matrix. Approaches fortrain-
ingR include the technique described in [5], which essentially in-
volves settingR equal toC�1, whereC is the covariance matrix
of the training data. A diagonal parameterization forR is derived
in [6] for count-based features (e.g. phone n-grams). Theseparam-
eterizations have both yielded substantial improvements over other
kernels on a variety of speaker recognition tasks and feature sets.
Nonetheless, both parameterizations are somewhat limitedby the
fact that they areunsupervised—that is, they do not take speaker

labels into account when trainingR. This limitation is addressed,
at least partially, by Solomonoff et al. in [7] and in [8], where the
authors use speaker labels to identify orthonormal vectorsor “di-
rections” in feature space that maximize task-relevant information
while minimizing noise. Solomonoff’s approach has been shown
to be quite useful for filtering out channel noise and for perform-
ing feature reduction. However, the approach in [7, 8] does not
prescribe any scheme for weighting the directions in feature space
that are retained. Thus, this approach does not fully answerthe
question of how to trainR for a generalized linear kernel.

In this paper, we expand on thewithin-class covariance nor-
malization(WCCN) technique for training generalized linear ker-
nels that was recently introduced in [1, 2]. The WCCN tech-
nique prescribes settingR equal toW�1, whereW is the ex-
pected within-class covariance matrix over all classes (i.e. speak-
ers) in the training data. WCCN uses information about classla-
bels from the training data to identify orthonormal directions in
feature space that maximize task-relevant information. However,
unlike other techniques in the literature, WCCN optimally weights
each of these directions to minimize a particular upper bound on
error rate [1, 2]. Thus, the WCCN approach can, in principle,har-
ness whatever task-relevant information is contained in each of the
“directions” of the underlying feature space—even directions that
are largely dominated by noise.

We describe a set of experiments where we combine WCCN
with a version of the principal component analysis (PCA) tech-
nique described in [9]. Our algorithm provides a practical ap-
proach for applying WCCN to large feature sets, where inverting
or simply estimatingW is impractical for computational reasons.
In experiments on SRI’s latest MLLR-SVM speaker recognition
system (i.e. feature set), our combined WCCN approach achieves
relative improvements of up to 22% in equal-error rate (EER)and
28% in minimum DCF below SRI’s previous baseline.

The paper is organized as follows: In section 2, we summarize
the WCCN approach and discuss practical considerations forhow
to apply WCCN to large feature sets. In section 3, we describethe
approach used in [9] for breaking feature vectors down into PCA
and PCA-complement components. This is followed by section4,
where we describe the experimental procedure that we use to per-
form feature normalization and to train SVM-based speaker mod-
els. Finally, in sections 5 and 6, we describe a set of experiments,
provide results, and end with a set of conclusions.

2. Within-Class Covariance Normalization
The concept ofwithin-class covariance normalization(WCCN)
for SVM training was recently introduced in [1] and then extended



in [2]. To derive the WCCN approach, the authors first construct a
set of upper bounds on the rates of false positives and false nega-
tives in a linear classifier (i.e. a binary classifier that uses a linear or
affine decision boundary). Under various conditions, the problem
of minimizing these upper bounds with respect to the parameters
of the linear classifier leads to a modified formulation of thehard-
margin support vector machine(SVM) [10, 11]. Given a general-
ized linear kernel of the form,k(x1;x2) = xT1Rx2, whereR is
a positive semidefinite parameter matrix, this modified SVM for-
mulation implicitly prescribes the parameterization,R = W�1,
whereW is the expected within-class covariance matrix over all
classes. We can representW mathematically asW , MXi=1 p(i) �Ci;Ci , E (xi � �xi)(xi � �xi)T 8i:
Here,xi represents a random draw from classi, M represents the
total number of classes, and�xi represents the expected value ofxi. We useCi andp(i) to represent the covariance matrix and
the prior probability of classi. (Note that in this paper, the term,
“class” is synonymous with “speaker.”) GivenW, whereW is
full-rank, we can implement a generalized linear kernel withR =W�1 by using the following feature transformation,�:�(x) ,ATx: (1)

Here,A is defined as the Cholesky factorization ofW�1:AAT ,W�1:
In practice, empirical estimates ofW are typically quite noisy;

thus, a certain amount of smoothing is usually required to make
the WCCN approach work. In this paper, we use the following
smoothing model:Ŵs , (1� �) � Ŵ+ � � I; � 2 [0; 1℄: (2)

Here,Ŵs represents a smoothed version of the empirical expected
within-class covariance matrix,̂W, andI represents anN � N
identity matrix whereN is the dimensionality of the feature space.
The � parameter represents a tunable smoothing weight whose
value is between 0 and 1. It’s straightforward to show that inthe
above model, the eigenvectors of̂Ws are constant with respect to�. Thus, we can compute the WCCN feature transformation,�, in
(1) for any value of� without having to recompute the eigenvec-
tors ofŴs.
2.1. WCCN for Large Feature Sets

In this paper, we examine the problem of how to apply WCCN to
large feature sets, where inverting or simply estimatingŴ is im-
practical for computational reasons. For large feature sets, we can
use kernel principal component analysis (KPCA) to first reduce
the dimensionality of the feature space to a more manageablesize
before performing WCCN. One potential problem with this ap-
proach, however, is that by filtering out various orthogonalvectors
or “directions” in feature space (i.e. by performing feature reduc-
tion), we lose a significant amount of the information contained in
the original feature set. To avoid this problem, we use the PCA
decomposition described in [9], where the feature space is divided
into two sets: a set that represents the topN features obtained

from performing PCA, whereN is the number of training vectors
(i.e. thePCA set) and aPCA-complementset, which represents all
of the information contained in the original features but not in the
PCA set. Since all of the covariance information in the training
data is confined to the PCA set (the PCA-complement is0 for all
feature vectors in the training data but generally non-zerofor fea-
ture vectors outside of the training data), we can perform WCCN
on the PCA set, which has reduced dimensionality, and then con-
catenate the resulting feature set with the PCA-complement. This
procedure is described in the following sections.

3. Kernel PCA and the PCA-Complement
This section provides an overview of kernel PCA and also de-
scribes the PCA-complement approach used in [9]. We begin
by definingX to be a column matrix containing scaled, mean-
centered versions of the feature vectors in the training set:X ,r 1N � [(x1 � �x); : : : ; (xN � �x)℄:
Herexi represents theith training vector, and�x represents the
average over allN training vectors. Given the above definition,
we can represent̂C (i.e. the empirical covariance matrix of the
data) as follows: Ĉ = XXT ;,U�2UT : (3)

In the second line of the above equation, we defineU�2UT to be
the eigendecomposition of̂C. We can represent the corresponding
eigendecomposition forXTX as follows:XTX ,V�2VT : (4)

Here, we defineV to be a column matrix containing the eigen-
vectors ofXTX and�2 to be a diagional matrix containing the
corresponding eigenvalues. IfXTX is full-rank, then we can com-
bine (3) with (4) to arrive at the following expression forU, the
eigenvector matrix of̂C:U = XV��1: (5)

The columns ofU represent the set of all eigenvectors ofĈwhose
corresponding eigenvalue is non-zero. Thus, we can performPCA
by projecting the input feature vectors onto the column vectors ofU. This leads to the following feature transformation,�PCA:�PCA(x) ,UTx;= ��1VTXTx: (6)

This transformation reduces the dimensionality of the underlying
feature space down toN features, whereN is the size of the train-
ing set. Since the input feature vectors appear in the form ofinner
products, which can be replaced with kernel functions, thisfeature
transformation is referred to askernel PCA[12].

We use�PCA to represent the feature transformation for the
PCA-complement, which is defined as follows:�PCA(x) , (I�UUT )x: (7)

The PCA-complement represents the portion of the original fea-
ture space that is orthogonal to the training set. Thus,�PCA(x) =0 (i.e. a null vector) for allx in the training set.



4. Experimental Procedure
The experiments in this paper compare two different featurenor-
malizations: WCCN and standardcovariance normalization(CN),
whereR = Ĉ�1s . (Here,Ĉs represents a smoothed version ofĈ, the empirical covariance matrix of the training data.) Since�(x)PCA = 0 for all x in the training set, we have no way of
coming up with a meaningful estimate of the covariance matrix
for the PCA-complement (any empirical covariance estimatewill
simply be0). Thus, WCCN and standard CN are only applied to
the PCA feature set. The normalized PCA features are then con-
catenated with a weighted version of the PCA-complement to form
the final feature representation.

Our experimental procedure is summarized below:

1. Perform per-feature within-classvariancenormalization on
all of the input features (i.e. scale all features to have an av-
erage within-class variance of one on the training data). The
resulting features provide us with a first-cut approximation
of what we would obtain by performing full WCCN on the
original feature set. This is simply a preprocessing step for
performing KPCA, which is not invariant to scaling opera-
tions on the input features. Note that the smoothing model
of (2) is also not invariant to scaling operations.

2. Compute�PCA(x) for every feature vectorx in the train-
ing and test sets. This gives us the PCA feature set.

3. Compute�PCA(x) for every feature vectorx in the train-
ing and test sets. This gives us the PCA-complement fea-
ture set.

4. Perform either within-class covariance normalization
(WCCN) or standard covariance normalization (CN) on the
PCA feature set. Both normalizations can be represented in
the form of a matrix multiplication. We use the smoothing
model shown in equation (2) for both WCCN and standard
CN. The smoothing parameter� is tuned on a set of held-
out cross-validation data.

5. Concatenate a scaled version of the normalized PCA feature
set with a scaled version of the PCA-complement feature
set to arrive at our final feature representation,�:�(x) , � (1� �) �AT�PCA(x)� � �PCA(x) � ; � 2 [0; 1℄: (8)

Here,AT represents the transformation matrix derived in
step 4 to perform either WCCN or standard CN on the PCA
feature set. Thus,AT�PCA(x) represents the normalized
PCA component of feature vectorx. We use the parameter� to control the relative weight applied to the two feature
sets (i.e. the PCA set and the PCA-complement set). This
parameter is tuned on a held-out cross-validation set.

6. Use the final feature representation to train and test SVM-
based speaker models.

Given a standard linear kernel,k(x1;x2) = xT1 x2, it’s fairly
straightforward to show that when� = 0:5 andA = I (i.e. A
is the idenitity matrix), then the following equality holdsfor any
pair of input feature vectors,x1 andx2:k(x1;x2) = 4 � k(�(x1);�(x2)): (9)

The equality in (9) follows directly from the definitions for�,�PCA, and�PCA in equations (8), (6), and (7). Equation (9)

shows that when� = 0:5 andA = I, then applying the feature
transformation,�, to the input feature vectors does not affect the
kernel functionk beyond a scaling factor. Thus, by concatenating
the PCA set with the PCA-complement set, we preserve all of the
information contained in the original feature set, at leastfor the
purpose of computing linear kernels.

5. Experiments and Results

In this section, we describe the tasks, datasets, and features used
in our experiments. The results of these experiments are discussed
in section 5.4.

5.1. MLLR-SVM System

We used an MLLR-SVM system similar to the one described in [4]
to compute feature vectors for our experiments. The MLLR-SVM
system uses speaker adaptation transforms from SRI’s DECIPHER
speech recognition system as features for speaker recognition. A
total of 8 affine transforms are used to map the Gaussian mean vec-
tors from speaker-independent to speaker-dependent speech mod-
els. The transforms are estimated using maximum-likelihood lin-
ear regression (MLLR), and can be viewed as a text-independent
encapsulation of the speaker’s acoustic properties. For every con-
versation side, we compute a total of 24960 transform coefficients,
which are used as features. Note that this system uses twice as
many features as the original MLLR-SVM system described in
[3, 1]. The input feature vectors are identical to those usedin [4].
However, besides applying the feature transformation� to the in-
put feature vectors, our system differs from the MLLR-SVM sys-
tem used in [4] in the following ways: 1) our system does not ap-
ply rank normalization [3] to the input feature vectors and 2) our
system does not apply TNORM [13] to the output SVM scores.
We have yet to experiment with applying these normalizations to
a system that uses WCCN.

5.2. Task and Data

Experiments were performed on the 1-conversation trainingcon-
dition of two NIST-defined tasks: SRE-2004 and a subset of SRE-
2003. Note that these tasks and datasets are the same as those
described in previous reports (see [4, 1]). The SRE-2003 subset
was divided into two splits of disjoint speaker sets, both com-
prised of�3600 conversation sides and�300 speakers. Each split
comprises�580 speaker models and�9800 speaker trials. These
splits were alternately used for training (i.e. computing covariance
estimates and feature transformations) and for testing. Weused
SRE-2004 to tune� and� for testing on SRE-2003, and vice-
versa. To simplify the tuning process,� was optimized for the
case where� = 0. The resulting� parameter was then held fixed
while tuning�. Further details on the tasks and datasets can be
found in [4].

5.3. SVM Training

We used SVMlight [14] to train SVM-based speaker models for
each task. Each speaker model was trained with a linear kernel
using the default value of the SVM hyperparameterC. A held-
out dataset composed of 425 conversation sides taken from the
Switchboard-2 corpus and 1128 conversation sides taken from the
Fisher corpus was used as negative examples for the SVM training.



5.4. Results

Table 1 shows results on the MLLR-SVM system for various fea-
ture representations. Here, the labels “WCCN” and “CN” de-
note within-class covariance normalization and standard covari-
ance normalization, where� is tuned on the cross-validation set.
The� parameter is optimized on the cross-validation set for sys-
tems that are labeled “PCA.” For systems that arenot labeled
“PCA,” � is set equal to zero (i.e. the PCA-complement is omitted
from the final feature representation). The “baseline” label repre-
sents the MLLR-SVM system without any feature normalization.

As shown in table 1, the WCCN approach provides improve-
ments that are quite substantial, at least in most cases, over stan-
dard CN (see the “improvement over PCA+CN+PCA” results).
It’s worth noting that the improvements obtained over the baseline
are significantly larger on SRE-2003 than on SRE-2004. However,
this is to be expected, since the feature transformations and nor-
malizations used in these experiments were trained only on held-
out SRE-2003 data, which represents a different set of channel and
recording conditions than SRE-2004.

We note that the “PCA,” “PCA+CN,” and “PCA+WCCN” re-
sults are all obtained from PCA feature sets whose dimensional-
ity is reduced to�3600 (i.e. the number of training examples
in each split of the SRE-2003 subset). In spite of this reduced
dimensionality, the “PCA+WCCN” system significantly outper-
forms the “baseline” system, where each feature vector is com-
posed of 24960 features.

Table 1 also shows that adding the PCA-complement to the
PCA feature set leads to significant relative reductions in error rate
(see the “improvement over PCA+WCCN” results). To the best of
our knowledge, the results for the “PCA+WCCN+PCA” system
are the best recorded so far in the literature for an MLLR-SVM
system. Even without using rank normalization or TNORM—two
techniques used in [4] which should presumably lead to reduc-
tions in error rate (we have not yet integrated these normaliza-
tions into our system)—our system outperforms the MLLR-SVM
system in [4] by at least15% on the SRE-2003 subset and by a
smaller, but still significant margin on SRE-2004. These experi-
ments point to the utility of using WCCN in conjunction with the
PCA-complement when training SVM-based speaker models.

6. Conclusions

We describe a practical procedure for applying within-class covari-
ance normalization (WCCN) to an MLLR-SVM speaker recogni-
tion system where the feature vectors reside in a high-dimensional
space. When applied to a state-of-the-art MLLR-SVM speaker
recognition system, this approach achieves improvements of up
to 22% in EER and 28% in minimum decision cost function
(DCF) over our previous baseline. We also achieve substantial
improvements over an MLLR-SVM system that performs WCCN
on the PCA set but discards the PCA-complement. These results
point to the utility of using WCCN in conjunction with the PCA-
complement when training SVM-based speaker models.
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SRE-03 subset SRE-04� EER% DCF EER% DCF

baseline 2.91 0.117 5.97 0.282
PCA 3.89 0.158 7.35 0.318

PCA+CN 2.92 0.123 6.43 0.289
PCA+WCCN 2.30 0.108 5.52 0.260

PCA+PCA 2.91 0.117 5.97 0.282
PCA+CN+PCA 2.33 0.092 5.87 0.266

PCA+WCCN
+PCA 2.08 0.091 5.27 0.247

improvement over
baseline 28:5% 22:2% 11:7% 12:4%

improvement over
PCA+WCCN 9:6% 15:7% 4:5% 5:0%

improvement over
PCA+CN+PCA 10:7% 1:1% 10:2% 7:1%

Table 1: EERs and minimum DCFs for various feature transforma-

tions/normalizations on the MLLR-SVM system. Here, “baseline” represents the

raw MLLR-SVM system without any feature normalization. Thelabels “WCCN”

and “CN” denote within-class covariance normalization andstandard covariance nor-

malization, and “PCA” denotes a system that uses the PCA-complement with� op-

timized on the cross-validation set. The “improvement” entries represent the relative

improvement of PCA+WCCN+PCA over the given system.
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