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Abstract labels into account when trainir®®. This limitation is addressed,
at least partially, by Solomonoff et al. in [7] and in [8], whehe
authors use speaker labels to identify orthonormal vecotdi-
rections” in feature space that maximize task-relevamrmation
while minimizing noise. Solomonoff’s approach has beenwsho
to be quite useful for filtering out channel noise and for perf-
ing feature reduction. However, the approach in [7, 8] daas n
prescribe any scheme for weighting the directions in feaspace
that are retained. Thus, this approach does not fully anseer
guestion of how to trailR for a generalized linear kernel.

In this paper, we expand on théthin-class covariance nor-
malization(WCCN) technique for training generalized linear ker-
nels that was recently introduced in [1, 2]. The WCCN tech-
nique prescribes settinB. equal toW ', whereW is the ex-
pected within-class covariance matrix over all classes Gpeak-
ers) in the training data. WCCN uses information about dass
bels from the training data to identify orthonormal direat in
feature space that maximize task-relevant informationwéier,
unlike other techniques in the literature, WCCN optimallgights
each of these directions to minimize a particular upper doam
. error rate [1, 2]. Thus, the WCCN approach can, in principée;
1. Introduction ness whatever task-relevant information is contained¢h eéthe

of the most important and widely-used classification teghes ~ are largely dominated by noise.

within the field of speaker recognition. Most top-performin We describe a set of experiments where we combine WCCN

speaker recognition systems use output “scores” obtaired f  With a version of the principal component analysis (PCAhtec

SVM-based speaker models to arrive at a final decision for a nique described in [9]. Our algorithm provides a practical a

given speaker trial. As with every SVM-based classifiersehe  proach for applying WCCN to large feature sets, where imvgrt

speaker models are trained using some predefined kerngidnc ~ or simply estimatingW is impractical for computational reasons.

k. Proper selection of the kernel function can be criticalte t  In experiments on SRI's latest MLLR-SVM speaker recognitio

success of an SVM-based system, particularly in cases vihere ~ system (i.e. feature set), our combined WCCN approach zesie

amount of available training data for either the impostasslor ~ relative improvements of up to 22% in equal-error rate (E&R)

the target speaker class is very limited (e.g. the 1-comtiers  28% in minimum DCF below SRI's previous baseline.

training condition in speaker recognition). The paper is organized as follows: In section 2, we summarize
With some exceptions (e.g. the rank normalization techmiqu the WCCN approach and discuss practical consideratiortsofor

described in [3, 4]), most of the existing work on kernel sele  to apply WCCN to large feature sets. In section 3, we desthibe

tion for speaker recognition has focusedgameralized linear ker- approach used in [9] for breaking feature vectors down ir@é\P

nels—that is, kernels of the fornk(x;, x2) = x{ Rxs, whereR and PCA-complement components. This is followed by section

is a positive semidefinite parameter matrix. Approachesrén- where we describe the experimental procedure that we usrto p

ing R include the technique described in [5], which essentially i  form feature normalization and to train SVM-based speaked-m

volves settingR. equal toC ™', whereC is the covariance matrix  els. Finally, in sections 5 and 6, we describe a set of exgaris)

of the training data. A diagonal parameterizationRois derived provide results, and end with a set of conclusions.

in [6] for count-based features (e.g. phone n-grams). Tpasem-

This paper extends the within-class covariance normaizat
(WCCN) technique described in [1, 2] for training generadiz
linear kernels. We describe a practical procedure for apgly
WCCN to an SVM-based speaker recognition system where the
input feature vectors reside in a high-dimensional spaag. ap-
proach involves using principal component analysis (P©/Aytit

the original feature space into two subspaces: a low-dirorak
“PCA space” and a high-dimensional “PCA-complement space.
After performing WCCN in the PCA space, we concatenate the
resulting feature vectors with a weighted version of theAP
complements. When applied to a state-of-the-art MLLR-SVM
speaker recognition system, this approach achieves iraprents

of up to 22% in EER and 28% in minimum decision cost function
(DCF) over our previous baseline. We also achieve subatamti
provements over an MLLR-SVM system that performs WCCN in
the PCA space but discards the PCA-complement.

Index Terms: kernel machines, support vector machines, feature
normalization, generalized linear kernels, speaker neitiog.

eterizations have both yielded substantial improvemergs ather 2. Within-Class Covariance Normalization
kernels on a variety of speaker recognition tasks and feateis. )
Nonetheless, both parameterizations are somewhat lirbitebe The concept ofwithin-class covariance normalizatiofWCCN)

fact that they ar@insupervised-that is, they do not take speaker for SVM training was recently introduced in [1] and then exded



in [2]. To derive the WCCN approach, the authors first cors$tau
set of upper bounds on the rates of false positives and falga-n
tivesin a linear classifier (i.e. a binary classifier thatsesénear or
affine decision boundary). Under various conditions, thadbjam
of minimizing these upper bounds with respect to the pararset
of the linear classifier leads to a modified formulation of tiaed-
margin support vector machif&VM) [10, 11]. Given a general-
ized linear kernel of the formk(x;, x2) = x] Rx2, whereR is

a positive semidefinite parameter matrix, this modified S\dv f
mulation implicitly prescribes the parameterizatid,= W ™!,
whereW is the expected within-class covariance matrix over all
classes. We can repres& mathematically as

M
W £ p(i)- C,
i=1

Ci é E (X,‘ - f{,‘)(Xi - i,‘)T Vi.

Here,x; represents a random draw from clasa/ represents the
total number of classes, and represents the expected value of
x;. We useC,; andp(i) to represent the covariance matrix and
the prior probability of class. (Note that in this paper, the term,
“class” is synonymous with “speaker.”) GivéW, whereW is
full-rank, we can implement a generalized linear kernehvit =

W ! by using the following feature transformatio®,

B(x) 2 ATx. 1)

Here, A is defined as the Cholesky factorization\df '
AAT AW !

In practice, empirical estimates W are typically quite noisy;
thus, a certain amount of smoothing is usually required t&ema
the WCCN approach work. In this paper, we use the following
smoothing model:

W2 (1-a) WHa-1, aclol1] )

from performing PCA, wheréV is the number of training vectors
(i.e. thePCA se} and aPCA-complemerget, which represents all
of the information contained in the original features but inche
PCA set. Since all of the covariance information in the fragn
data is confined to the PCA set (the PCA-complementfisr all
feature vectors in the training data but generally non-ferdea-
ture vectors outside of the training data), we can performGMC
on the PCA set, which has reduced dimensionality, and then co
catenate the resulting feature set with the PCA-compleniris
procedure is described in the following sections.

3. Kernel PCA and the PCA-Complement

This section provides an overview of kernel PCA and also de-
scribes the PCA-complement approach used in [9]. We begin
by definingX to be a column matrix containing scaled, mean-

centered versions of the feature vectors in the training set

1

N

Xé '[(Xl_i)a"'a(xN_i)]'

Here x; represents théth training vector, anck represents the
average over allN training vectors. Given the above definition,
we can represent (i.e. the empirical covariance matrix of the
data) as follows:

¢ =xx",

2 yx?u”. ©)
In the second line of the above equation, we detiie’U” to be
the eigendecomposition @f. We can represent the corresponding
eigendecomposition faX” X as follows:
XX 2ve*v’T (4)
Here, we definéV to be a column matrix containing the eigen-
vectors of X" X and X? to be a diagional matrix containing the
corresponding eigenvalues Xf” X is full-rank, then we can com-
bine (3) with (4) to arrive at the following expression fu, the

Here, W, represents a smoothed version of the empirical expected €igenvector matrix oC:

within-class covariance matriAV, andI represents aiv x N
identity matrix whereV is the dimensionality of the feature space.

U=XVy . (5)

The o parameter represents a tunable smoothing weight whoseThe columns olU represent the set of all eigenvectorbfvhose

value is between 0 and 1. It's straightforward to show thaha
above model, the eigenvectorsf, are constant with respect to
a. Thus, we can compute the WCCN feature transformatioin

(1) for any value ok without having to recompute the eigenvec-
tors of W,.

2.1. WCCN for Large Feature Sets

In this paper, we examine the problem of how to apply WCCN to
large feature sets, where inverting or simply estima®igs im-
practical for computational reasons. For large featurg, et can
use kernel principal component analysis (KPCA) to first oedu
the dimensionality of the feature space to a more managsige
before performing WCCN. One potential problem with this ap-
proach, however, is that by filtering out various orthogoreaitors

or “directions” in feature space (i.e. by performing featoeduc-
tion), we lose a significant amount of the information coméi in
the original feature set. To avoid this problem, we use th& PC
decomposition described in [9], where the feature spaciwiidadl
into two sets: a set that represents the féfeatures obtained

corresponding eigenvalue is non-zero. Thus, we can perfRTi
by projecting the input feature vectors onto the column oescof
U. This leads to the following feature transformati@nzc a:

Ppoa(x) 2 yTx,
= 'vTxTx. (6)

This transformation reduces the dimensionality of the dyde
feature space down t¥ features, wheréV is the size of the train-
ing set. Since the input feature vectors appear in the forimrafr
products, which can be replaced with kernel functions,féasure
transformation is referred to &ernel PCA12].

We use®55 to represent the feature transformation for the
PCA-complement, which is defined as follows:

Ppox(x) £ (I-UU x. 7

The PCA-complement represents the portion of the origieat f
ture space that is orthogonal to the training set. THgs;7(x) =
0 (i.e. a null vector) for alk in the training set.



4. Experimental Procedure

The experiments in this paper compare two different featore
malizations: WCCN and standacdvariance normalizatiofCN),
whereR = C;!. (Here, C, represents a smoothed version of
C, the empirical covariance matrix of the training data.) c8in
®(x)pex = 0 for all x in the training set, we have no way of
coming up with a meaningful estimate of the covariance matri
for the PCA-complement (any empirical covariance estimalie

simply be0). Thus, WCCN and standard CN are only applied to

shows that whem = 0.5 and A = I, then applying the feature
transformation®, to the input feature vectors does not affect the
kernel functionk beyond a scaling factor. Thus, by concatenating
the PCA set with the PCA-complement set, we preserve allef th
information contained in the original feature set, at Idastthe
purpose of computing linear kernels.

5. Experiments and Results

the PCA feature set. The normalized PCA features are then con In this section, we describe the tasks, datasets, and ésatised

catenated with a weighted version of the PCA-complemerdrto f
the final feature representation.
Our experimental procedure is summarized below:

1. Perform per-feature within-clagariancenormalization on
all of the input features (i.e. scale all features to havevan a

erage within-class variance of one on the training datag. Th

resulting features provide us with a first-cut approxinmatio
of what we would obtain by performing full WCCN on the

original feature set. This is simply a preprocessing step fo

performing KPCA, which is not invariant to scaling opera-

tions on the input features. Note that the smoothing model

of (2) is also not invariant to scaling operations.

2. Compute® pc 4 (x) for every feature vectax in the train-
ing and test sets. This gives us the PCA feature set.

3. Computeds4(x) for every feature vectox in the train-

in our experiments. The results of these experiments acesksd
in section 5.4.

51 MLLR-SVM System

We used an MLLR-SVM system similar to the one described in [4]
to compute feature vectors for our experiments. The MLLRVBV
system uses speaker adaptation transforms from SRI's DHEERP
speech recognition system as features for speaker remogni
total of 8 affine transforms are used to map the Gaussian negan v
tors from speaker-independent to speaker-dependenttspremt:
els. The transforms are estimated using maximum-liketihioo

ear regression (MLLR), and can be viewed as a text-indepgnde
encapsulation of the speaker’s acoustic properties. Fay@on-
versation side, we compute a total of 24960 transform caeffis,
which are used as features. Note that this system uses twice a

ing and test sets. This gives us the PCA-complement fea- many features as the original MLLR-SVM system described in

ture set.

4. Perform either within-class covariance normalization
(WCCN) or standard covariance normalization (CN) on the
PCA feature set. Both normalizations can be represented in

the form of a matrix multiplication. We use the smoothing

model shown in equation (2) for both WCCN and standard

CN. The smoothing parameteris tuned on a set of held-
out cross-validation data.

[3, 1]. The input feature vectors are identical to those usdd].
However, besides applying the feature transformadtdo the in-
put feature vectors, our system differs from the MLLR-SVM-sy
tem used in [4] in the following ways: 1) our system does net ap
ply rank normalization [3] to the input feature vectors anaar
system does not apply TNORM [13] to the output SVM scores.
We have yet to experiment with applying these normalizatin

a system that uses WCCN.

5. Concatenate a scaled version of the normalized PCA®atur 5> Task and Data

set with a scaled version of the PCA-complement feature

set to arrive at our final feature representatidn,

é (1—0’)~AT(I)PCA(X)
o Ppoa(x)

®(x) . o el0,1]. (8)

Here, AT represents the transformation matrix derived in

Experiments were performed on the 1-conversation trainorg

dition of two NIST-defined tasks: SRE-2004 and a subset of-SRE
2003. Note that these tasks and datasets are the same as those
described in previous reports (see [4, 1]). The SRE-2003etub
was divided into two splits of disjoint speaker sets, botimeo
prised of~3600 conversation sides arB00 speakers. Each split

step 4 to perform either WCCN or standard CN on the PCA comprises~580 speaker models aned800 speaker trials. These

feature set. ThusA” & pc 4 (x) represents the normalized
PCA component of feature vectar We use the parameter

splits were alternately used for training (i.e. computingariance
estimates and feature transformations) and for testing.u¥éel

o to cpntrol the relative weight applied to the two feature. SRE-2004 to tuner and o for testing on SRE-2003, and vice-
sets (i.e. the PCA set and the PCA-complement set). This yersa, To simplify the tuning process, was optimized for the
parameter is tuned on a held-out cross-validation set. case wherer = 0. The resultingy parameter was then held fixed

6. Use the final feature representation to train and test SVM- while tuningo. Further details on the tasks and datasets can be
based speaker models. found in [4].

Given a standard linear kernek(x,,x») = x{x, it's fairly
straightforward to show that when = 0.5 andA =1 (i.e. A
is the idenitity matrix), then the following equality holdsr any
pair of input feature vectors;; andxs:

5.3. SVM Training

We used SVNI?" [14] to train SVM-based speaker models for
each task. Each speaker model was trained with a linear lkerne
using the default value of the SVM hyperparameter A held-

out dataset composed of 425 conversation sides taken frem th
Switchboard-2 corpus and 1128 conversation sides takemtfie
Fisher corpus was used as negative examples for the SVNhgain

k(X],Xg) :4k((I)(X1),¢(X2)) (9)

The equality in (9) follows directly from the definitions fd,
®pca, and P54 in equations (8), (6), and (7). Equation (9)



5.4. Results

Table 1 shows results on the MLLR-SVM system for various fea-
ture representations. Here, the labels “WCCN” and “CN” de-
note within-class covariance normalization and standasdri-
ance normalization, where is tuned on the cross-validation set.
The o parameter is optimized on the cross-validation set for sys-
tems that are labeled®CA.” For systems that amgot labeled
“PCA," ¢ is set equal to zero (i.e. the PCA-complement is omitted
from the final feature representation). The “baseline” labpre-
sents the MLLR-SVM system without any feature normalizatio

As shown in table 1, the WCCN approach provides improve-
ments that are quite substantial, at least in most cases stare
dard CN (see the “improvement over PCA+ORBA” results).
It's worth noting that the improvements obtained over theetiae
are significantly larger on SRE-2003 than on SRE-2004. Hewev
this is to be expected, since the feature transformatiodsnan
malizations used in these experiments were trained onlyetat h
out SRE-2003 data, which represents a different set of ehamul
recording conditions than SRE-2004.

We note that the “PCA,” “PCA+CN,” and “PCA+WCCN" re-
sults are all obtained from PCA feature sets whose dimeakion
ity is reduced to~3600 (i.e. the number of training examples
in each split of the SRE-2003 subset). In spite of this reduce
dimensionality, the “PCA+WCCN” system significantly outpe
forms the “baseline” system, where each feature vector fis-co
posed of 24960 features.

Table 1 also shows that adding the PCA-complement to the [1]

PCA feature set leads to significant relative reductionsrioreate
(see the “improvement over PCA+WCCN” results). To the bést o
our knowledge, the results for the “PCA+WCCREA” system
are the best recorded so far in the literature for an MLLR-SVM
system. Even without using rank normalization or TNORM—two
techniques used in [4] which should presumably lead to reduc
tions in error rate (we have not yet integrated these nomaali
tions into our system)—our system outperforms the MLLR-SVM
system in [4] by at least5% on the SRE-2003 subset and by a
smaller, but still significant margin on SRE-2004. Theseeeixp
ments point to the utility of using WCCN in conjunction withet
PCA-complement when training SVM-based speaker models.

6. Conclusions

We describe a practical procedure for applying within€lesvari-
ance normalization (WCCN) to an MLLR-SVM speaker recogni-
tion system where the feature vectors reside in a high-diiaal
space. When applied to a state-of-the-art MLLR-SVM speaker
recognition system, this approach achieves improvements o

to 22% in EER and 28% in minimum decision cost function
(DCF) over our previous baseline. We also achieve subatanti
improvements over an MLLR-SVM system that performs WCCN
on the PCA set but discards the PCA-complement. These sesult
point to the utility of using WCCN in conjunction with the PCA
complement when training SVM-based speaker models.
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SRE-03 subset SRE-04

P EER% | DCF EER% | DCF

baseline|| 2.91 0.117 5.97 0.282

PCA 3.89 0.158 7.35 0.318

PCA+CN 2.92 0.123 6.43 0.289

PCA+WCCN 2.30 0.108 5.52 0.260

PCA+PCA 2.91 0.117 5.97 0.282

PCA+CN+PCA 2.33 0.092 5.87 0.266

PCA+WCCN

+PCA || 2.08 | 0.091 5.27 | 0.247
improvement over

baseline|| 28.5% | 22.2% || 11.7% | 12.4%
improvement ovelr|

PCA+WCCN 9.6% 15.7% 4.5% 5.0%
improvement over

PCA+CN+PCA || 10.7% | 1.1% | 10.2% | 7.1%

Table 1: EERs and minimum DCFs for various feature transforma-
tions/normalizations on the MLLR-SVM system. Here, “bas&l represents the
raw MLLR-SVM system without any feature normalization. Tlaéels “WCCN”
and “CN” denote within-class covariance normalization atahdard covariance nor-
malization, and PCA” denotes a system that uses the PCA-complementawitp-
timized on the cross-validation set. The “improvementtiestrepresent the relative
improvement of PCA+WCCNRCA over the given system.
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