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Abstract

Mendelian randomization (MR) is increasingly used to make causal inferences in a wide range of fields, from drug
development to etiologic studies. Causal inference in MR is possible because of the process of genetic inheritance from
parents to offspring. Specifically, at gamete formation and conception, meiosis ensures random allocation to the offspring
of one allele from each parent at each locus, and these are unrelated to most of the other inherited genetic variants. To date,
most MR studies have used data from unrelated individuals. These studies assume that genotypes are independent of the
environment across a sample of unrelated individuals, conditional on covariates. Here we describe potential sources of bias,
such as transmission ratio distortion, selection bias, population stratification, dynastic effects and assortative mating that
can induce spurious or biased SNP–phenotype associations. We explain how studies of related individuals such as sibling
pairs or parent–offspring trios can be used to overcome some of these sources of bias, to provide potentially more reliable
evidence regarding causal processes. The increasing availability of data from related individuals in large cohort studies
presents an opportunity to both overcome some of these biases and also to evaluate familial environmental effects.

Mendelian randomization (MR) is an approach that exploits
the natural experiment occurring at conception—the random
inheritance of germline genetic variation from parents to their
offspring (1). MR has transformed our ability to evaluate the
causal effects of a wide array of exposures in biomedical
research, drug development and social science (2,3).MR is a form
of observational study, albeit one which exploits causal genetic
anchors (4). Historically, the vast majority of MR studies have

used samples of unrelated individuals, with little information
on parents or family members. These studies have assumed
that what is true at the within-family level—the random
inheritance of genetic variants from parents to offspring—
is reflected at a population-level in samples of unrelated
individuals: i.e. that genetic variants are unlikely to be related
to potential confounding factors. In general, at the population
level, genetic variants are much less associated with many
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potential confounders than directly measured exposures of
interest (5). However, the random inheritance of genetic variants
from parents to offspring does not guarantee that genetic
variants and confounders will be independent in samples of
unrelated individuals. The initial elaboration of MR stated
that it depended on the random allocation of alleles from
parent to offspring and that this familial design was closely
analogous to a randomized controlled trial (1). However, in 2003
no adequately powered family-based studies were available (or,
indeed, imaginable) and thus most applications of MR to date
have used population-based association studies of unrelated
individuals. This downgraded the robustness of the design, and
meant that ‘the Mendelian randomization in genetic association
studies is approximate, rather than absolute’ (1). Here we revisit
the situation in light of now available data, review potential
sources of bias in MR using unrelated individuals, describe
potential sources of bias and current solutions and conclude
with suggestions for future research.

Mendel’s laws

Causal inference in MR depends on additional assumptions
added to what have become known as Mendel’s first and sec-
ond laws of genetic inheritance: the Law of Segregation and
the Law of Independent Assortment (6). The Law of Segrega-
tion implies that at every point in the genome offspring ran-
domly inherit one of their mother’s two alleles and one of
their father’s two alleles (with the obvious exception of non-
pseudoautosomal X loci where the father only has one allele per
locus, which is non-randomly transmitted to his offspring). The
Law of Independent Assortment states that alleles will segregate
to gametes independently of each other, outside of regions of the
genome genetically linked in the post-meiotic DNA within the
gametes.

As alluded to above, the vast majority of MR studies con-
ducted to date have used samples of unrelated individuals.
Indeed, genome-wide association studies (GWAS) of putatively
unrelated individuals often remove cryptically related individu-
als from the analyses. Familial effects canmean that GWAS SNP–
phenotype associations from unrelated individuals can differ
from the associations of the SNP with the phenotype that would
be seen within sibships.Within a population that shares similar
family formations this will not influence the average degree
of prediction provided by genetic variation. However, between
populations and as family formations change over time, these
family effects may change, leading to SNP–phenotype associa-
tions being unstable. Below we will outline sources of bias and
then discuss the implications of these and how they can be
overcome using data from related individuals.

Transmission ratio distortion

Transmission ratio distortion (TRD) refers to situations where
the transmission of the parents’ two alleles to their offspring
deviates from the expected 50:50 probability (7). There is an
opportunity to empirically evaluate this phenomenon due to
the increasing availability of genome-wide data from parent–
offspring trios, although statistical power remains an issue even
in this era of increasing sample sizes (8). TRD has two broad
classes: (1) segregation distortion, in which processes occurring
during meiosis (‘meiotic drive’) or fertilization (‘gametic compe-
tition’), among others, favor one parental allele over another; (2)
viability selection, in which the viability of gametes and zygotes,
through to live birth, depends on offspring genotype (7,9). In

Figure 1. The impact of transmission distortion. If a genotype affects the

likelihood of embryo failure, then genotype may no longer be independent of

environment. The blue dashed line indicates the induced association.

itself, TRD is not problematic for MR, but it becomes an issue
if the environmental factors influence any of the processes.
Environmental factors that affect TRD will become associated
with genotype and could lead to bias in MR studies. For example,
maternal folate status may relate to both meiotic drive and
embryo selection (Fig. 1) (10,11). If true, these effects would result
in genetic variants becoming associated with folate level, which
could bias MR estimates using these variants. Furthermore, if a
particular combination of genotype and environment influences
survival from birth until study entry, then this can similarly lead
to genotypes becoming associated with environmental factors
and therefore to biased MR estimates. Thus, MR analyses must
assume that the segregation of alleles at germ cell production,
their equal representation at zygote formation, the survival of
conceptuses carrying different alleles to live birth and then to
entry into a study are all independent of the environment. It
may be possible to detect such TRD using Hardy–Weinberg tests
if the effects are large, although individual SNPs with evidence
of violations of Hardy–Weinberg equilibrium expectations are
routinely excluded from both GWAS and MR studies (12).

Selection/collider bias

The bias introduced by forms of non-random segregation and
selection through to study entry is a form of selection/collider
bias (Fig. 2) (13). If participants are non-randomly selected into
studies for any reason, then genotypes associated with selection
may become associated with other factors related to selection
in ascertained samples even if the genotype is independent of
the environment in the wider population (14). For example, stud-
ies that oversample healthier people may induce associations
between SNPs associated with being healthier (e.g. low values
of a coronary heart disease polygenic score), and other factors
that affect selection into a study (e.g. socioeconomic position
or education). Another example is case-only studies of disease
progression, where genotypes associated with the incidence
of disease may associate with the progression of the disease,
even in the absence of a true causal effect on progression (15)
Selection of cases may induce associations between a genetic
variant that influences disease onset and any other (phenotypic
or genotypic) factors associated with incidence of disease. If any
of these factors that become associated with the genetic variant
themselves influence disease progression, then it will appear
that the genetic variant also has such an influence (8). Given
certain assumptions, it is possible to perform analyses that are
robust to selection bias (16). For example, methodlogists have
also proposedmethods that maymitigate this bias using inverse
probability weights of sampling (14).
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Figure 2. Selection/collider bias can induce associations between genotype and factors related to selection. In a case-only study of disease progression, factors

influencing the likelihood of case status may associate with progression of the disease because of collider bias. Figure adapted from Paternoster et al. (2017) (15).

Figure 3. Confounding by population structure can induce associations between genotype and phenotype (dashed blue line). For example, alleles associated with

lactase persistence are more common in northern regions of the United Kingdom. On average, these regions also have poorer health; this does not imply that lactase

persistence affects health outcomes. (18) Figure adapted from Brumpton et al. (2019) (61).

Population stratification

The diverse ancestral origins of many human populations
can lead to systematic allele frequency differences across
study populations (Fig. 3). Such population structure can
result in otherwise unrelated phenotypic differences across
the population becoming spuriously associated with genetic
variation. For example, genetic variants associated with lactase
persistence (the ability to process dairy products after infancy)
are stratified across Europe and are more common in northern
European populations (17,18). GWAS typically account for these
differences using methods that utilize genome-wide SNP data,
including principal components, (19) or linearmixedmodels (20).
However, the sample sizes used initially to assess the ability
of these methods to control for stratification were relatively
limited, (21) and larger biobank scale studies have provided
evidence that these commonly used methods to account for
population stratification are unlikely to eliminate all residual
differences within populations, (22) or differences due to rare
variation (23). Within family estimates of SNP–phenotype
associations (members of the same sibship having the same
ancestry) can correct for this bias (24).

Dynastic effects

Dynastic effects are any indirect effects of the parent’s genotype
on their offspring that are mediated via the parents’ phenotype,
i.e. effects that are not mediated via direct inheritance of DNA.
As we will discuss later, dynastic effects can be seen most
clearly in studies in which the non-transmitted parental alleles
at each locus—i.e. the alleles which are not inherited by the
offspring—can be shown to relate to offspring phenotype. The
intergenerational transmission of education is potentially an
example of a dynastic effect. Dynastic effects would induce
associations between parents’ non-transmitted education-

associated alleles and offspring educational attainment (EA)
or other outcomes. A more educationally stimulating family
environment or higher income of parents carrying such alleles
could mediate these effects (24). For transmitted alleles, the
offspring-level association will be a combination of the parental
(dynastic) effect and the within-individual effect (Fig. 4). Thus in
the case of the 1271 SNP–EA associations reported in a GWAS
of unrelated individuals (25), these SNPs may associate with
offspring EA via a direct effect of the SNP in the offspring
(e.g. offspring SNP ->offspring EA), or via a dynastic effect of
parental SNPs on parents’ phenotypes, which in turn influence
offspring EA (e.g. parental SNP ->parental EA ->offspring EA).
Therefore the SNP–EA association reflects a combination of
the parental effects (genetic nurture effects) and effects of the
SNPs in the offspring (24,26). Kong et al. estimated the size of
dynastic effects using non-transmitted alleles for EA, age at first
child, HDL cholesterol, BMI, fasting glucose, height, cigarettes
per day and a composite health measure, finding evidence of
associations between non-transmitted parental variants and
offspring phenotypes of varying magnitude, with the largest
effects being for education and age at first child, which may be
considered to be the traits with the strongest social component.
These findings suggest that SNP–phenotype associations in
unrelated individuals may capture broader factors beyond the
causal effect of the SNP in the offspring. Dynastic effects that
are shared across siblings or that are independent of genotype
within families will not bias within-family or within-sibship
estimates of the SNP–phenotype association (24).

Assortative mating

Assortative mating has both genotypic and phenotypic conse-
quences for populations (27). Humans do not mate at random;
parental pairs are more alike than would be expected for two
individuals randomly drawn from the population formany traits,
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Figure 4. Dynastic effects can induce SNP–phenotype associations that are not due to the effects of the SNP in the individual. For example, suppose parents’ smoking

affects their offspring’s likelihood of developing a wheeze, this would induce associations between SNPs associated with smoking initiation in the offspring and

wheezing in the offspring (dashed blue line) even if the offspring’s smoking behavior could not cause them to wheeze (i.e. if the offspring were children and had not

started to smoke). Figure adapted from Brumpton et al. (2019) (61).

including height, education and adiposity (28,29). Assortative
mating on a phenotype can be direct (i.e. partners selecting
a mate on a specific phenotype), or indirect, such as being a
consequence of social homogamy (i.e. partners from a similar
background or ancestry being more likely to pair) (30). A further
complication is that couples may also influence one another’s
phenotypes (but not genotype), and become more similar over
time after pairing (31).Assortativemating can be on a single trait,
e.g. more educated individuals selecting partners who are also
more educated, or cross-trait, e.g. more educated people prefer-
ring taller partners. Single trait assortative mating can inflate
SNP–phenotype associations, (32) but this association remains a
valid test of the null hypothesis that the SNP does not affect the
phenotype. Single trait assortative mating means that the SNP–
exposure associations are likely to overestimate the causal effect
of each SNP on the exposure.This overestimation occurs because
single trait assortative mating induces associations between
SNPs used as instruments and other SNPs that cause the expo-
sure that were not included in the analysis. However, single
trait assortative mating on the exposure alone is insufficient
to cause bias in MR studies. This is because any change in the
magnitude of the SNP–exposure association caused by variants
in LD (i.e. induced by assortative mating) will also be reflected
by a proportional change in the magnitude of the association
between the variant and the outcome. In offspring, cross-trait
assortativemating can induce associations between SNPs affect-
ing one phenotype and SNPs affecting another phenotype (32).
As a result, cross-trait assortative mating can cause bias in MR
estimates and invalidate tests of the null hypothesis (Fig. 5) (32).
For example, assortative mating on EA and height will induce
associations between SNPs affecting education and measured
height, and similarly, it will induce associations between SNPs
affecting height and measured EA. The bias caused by assor-
tative mating can be amplified across generations if the same
patterns of assortment occur in each generation. The pres-
ence of assortative mating can be evaluated by estimating the
phenotypic association between spouses, or by estimating the
correlation in genetic scores between mates, or from polygenic
scores constructed from individual chromosomes within the
same individual (30). Genetic variants inherited by offspring are
still random within a family. Therefore, studies estimating SNP–
phenotype associations within families will be robust to bias
from assortative mating.

Impact of these biases for causal inference in
genetics

Each of these sources of bias can result in SNP–phenotype asso-
ciations capturing more than the causal effect of varying the
SNP on a phenotype in a single individual. The consequences
of this potential misestimation or bias are dependent on the
specific research question. If a study is interested in predict-
ing a phenotype within a given population, then predictions
using SNP–phenotype associations from unrelated individuals
may be valid, as long as family formations are similar in the
source GWAS populations.However,misestimationmay bemore
problematic for research questions that involve causal interpre-
tation of results such as MR. Historically, GWAS studies have
corrected for population structure by restricting to populations
with relatively homogenous ancestry and employing previously
described techniques to account for population structure (19).
A disadvantage of limiting studies to homogenous populations
is that it may reduce the genomic variation and external valid-
ity of estimates. Additionally, large biobank studies have sug-
gested that methods generally used to correct for population
stratification are unlikely to control for all differences within
populations fully (22,33). These results are in contrast to early
genetic epidemiological studies on relatively small samples (e.g.
theWellcome Trust Case Control Consortium),which found little
evidence of residual confounding after adjusting for PCs (34). The
much larger size of recent biobanks increases the ability to detect
smaller, but real, biases. Family-based study designs are poten-
tially robust tomany of these sources of bias because the random
inheritance of DNA from parents to offspring will ensure that
conditional on parental genotype, offspring genotype is inde-
pendent of population structure, dynastic effects and assortative
mating. Within family approaches have been widely described
and used in genetics, but to date less frequently used in MR
studies (35–37). In the following sections, we describe methods
for using data from family studies within genetic epidemiology,
with a particular focus on MR.

Family-based studies

Siblings

A wide range of genetic epidemiological study designs can
use data from siblings. For example, Lionel Penrose used the
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Figure 5. Cross-trait assortative mating can induce associations between SNPs and phenotypes. Figure adapted from Brumpton et al. (2019). Cross-trait assortment,

for example, if more educated individuals assort with taller people induces associations between genetic variants associated with height and offspring education. The

dashed blue line indicates the induced association. Controlling for parental genotype, either directly using genotyped parent–offspring trios or implicitly using siblings

(not shown), controls for this bias.

phenotype of siblings of index cases with a range of intellectual
disabilities to demonstrate a shift from what would now be
called cases with a highly polygenic basis to more severe
cases in which there was a single major cause (38). More
recent studies have applied this design to similar problems
(39). Linkage-based gene mapping studies using affected sib-
pair and discordant sib-pair designs have been used to map
genetic loci (40,41), and studies using maternal versus paternal
half-sib comparisons have investigated both differences in the
transmission of effects from mothers and from fathers and
shared household effects, given that paternal half-sibs often
reside separately (42).Within-sibship analyses can avoid some of
the biases above that can arise from dynastic effects, assortative
mating and population stratification because each of themeiosis
and conception events that determined the sibling’s DNA is an
independent event conditional on the parental genotypes. The
genotypic differences between siblings are random, and these
genotypic differences should be independent of environmental
confounders (unless TRD related to an environmental factor, as
discussed above, is active), and we can obtain estimates that are
robust to the biases above. Data from non-identical (dizygotic,
DZ) twins can be used in such within-family analyses, but not
identical (monozygotic, MZ) twins for obvious reasons. However,
if a study also sampled the non-identical siblings of MZ twins,
then both the MZ twins and their sibling can be included in
within-family analyses. At any given locus the genotype of two
siblings may be identical. If this is the case, then at this locus the
siblings will not contribute any data to the estimate (which thus
reduces statistical power). Analyses using family data should
use standard errors that allow for clustering by family.

Numerous estimators can use sibling data, including family
fixed effects, difference estimators andwithin family estimators
that control for the mean levels of phenotype and genotype
within a family (35,36). Fixed effect estimators can be used to
account for all differences between families in both genotype
and phenotype. Differences between families in terms of geno-
type could include differences in allele frequency due to assorta-
tive mating, and differences in phenotype that are due to differ-
ences in the family environment, such as dynastic effects, and
ancestry differences. The fixed effect estimator can be imple-

mented by including binary indicators for each family. However,
this approach is relatively computationally inefficient and can
be prohibitively time and memory intensive for datasets with
a large number of families. An alternative equivalent analytic
approach is to use the within-family transformation, which is
equivalent to subtracting the family level means from all vari-
ables and then running a regression model on the deviations
from the family means. This estimator is more computationally
efficient (43). A third alternative is to use difference estimators.
These take the difference between pairs of siblings in genotype
and phenotype and estimate the association between the dif-
ferences. If there are data for more than one sibling in a family,
then all possible sibling pairs can be included. Thus, for the
difference estimator, the level of analysis is sibling pair, not the
individual. For the difference estimator, standard errors must
allow for clustering across all sibling pairs within a family when
using more than one pair per family. This approach is simple
and computationally efficient. In the special case where there
are exactly two siblings per family, the fixed effect,within family
and difference estimators are equivalent.

Parent–offspring trios

Studies that sample parent–offspring trios may also assist in
controlling for the aforementioned family-level biases. Similar
to the logic that applies to analyzing siblings, themeiotic process
ensures that (absent of TRD) a zygote’s genotype is random
conditional on the parents’ genotype (i.e. which of the mother
or father’s allele is passed on at any given locus is entirely
stochastic). Again, associations between the offspring genotype
and the environment induced by population stratification,
dynastic effects or assortativematingmay be controlled for after
conditioning on parental genotype. If genome-wide data for both
parents and offspring are available, it is possible to use inferred
patterns of inheritance of haplotypes to identify both the alleles
that the offspring inherited and the variants that they did not
inherit. The non-inherited variants are a potentially powerful
source of inference about the familial effects. Non-inherited
variants cannot be biologically expressed in the offspring.
Therefore, any association between non-inherited variants and
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offspring phenotypes must be via expression in the parents’
(or other ancestors’) phenotypes. However, the non-inherited
variants could associate with the offspring’s phenotypes
because of population structure, dynastic effects or assortative
mating.

There are multiple estimators for use with trio data. The
simplest approach is to adjust analyses for parental genotype.
Conditioning on parental genotype is likely to account for many
forms of familial bias for both SNP–phenotype associations esti-
mated in GWAS or single sampleMR analysis.A limitation of this
approach is that it only controls for familial effects; it does not
estimate the effects of parental phenotypes on their offspring.
The effects of parents’ phenotype on their offspring’s outcomes
can also be estimated using multivariable MR in which there
are three exposures: the offspring’s phenotype, and the mother
and father’s phenotypes. Estimation of these effects is possible
because there are three sets of genetic instruments, the off-
spring, mother and father’s genotypes, one for each phenotype.
Therefore, this analysis is exactly identified (one instrument per
exposure). However, these models may attribute other familial
effects to parents. It is not possible to distinguish whether the
source of the familial effects is population stratification, dynas-
tic effects or assortative mating using multivariable MR. It is
possible to run some of these models using data from offspring–
mother duos. However, these models do not control for familial
effects that are mediated via paternal genotype and can suffer
from collider bias in situations where there is an open path from
paternal genotype to the offspring phenotype of interest (44,45).

Family studies can be used to investigate a range of
intergenerational dynastic effects, to test whether the parents’
phenotype directly affects their offspring’s outcomes. Examples
of dynastic effects include intra-uterine effects of maternal
characteristics on their offspring, for example, the effect of
higher maternal BMI or alcohol consumption during pregnancy
on offspring outcomes. Intra-uterine effects can be estimated
using parental genetic variation. If there was little evidence that
maternal genotypes for the risk factor of interest are associated
with offspring outcomes in a well-powered study (1), then it
can be inferred that a sizable intra-uterine effect is unlikely.
Intra-uterine effects can be estimated using two-sample MR
(44,46,47). Studies using MR to assess intra-uterine effects
should ideally demonstrate that the genetic variants affect the
exposure of interest during pregnancy, and if at all possible,
explain why effects at other points in the life-course cannot
explain any associations. For example, suppose (in contrast
to Richmond et al. 2017) (48) maternal genetic variants known
to associate with BMI were found to associate with offspring
outcomes. Alone these associations would be insufficient to
prove that the mechanism was due to an intra-uterine effect.
An alternative explanation would be that maternal BMI affects
offspring outcomes later in the life course (e.g. via infant
and childhood nutrition). A study could identify the timing
of these effects if it identified genetic variants that have a
differential effect on maternal phenotypes during pregnancy
(e.g. genetic variants that influence BMI during pregnancy but
not outside of pregnancy). Such variants could be used with
multivariable MR to identify the timing of exposure. However,
these study designs are often not currently feasible given
available data. Paternal samples can be used in negative control
analyses to assess the plausibility of MR assumptions. For
example,maternal genetic variants inMTHFR that are associated
with lower folate levels also associate with a higher risk of
neural tube defects in offspring, whereas paternal genetic
variants in the same gene do not. These associations support

the hypothesis of an intrauterine effect of maternal folate
levels (1).

Familial effects can confound case-control studies of disease.
For example, genetic variants associatedwith EA positively asso-
ciate with the risk of autism in case-control studies of unre-
lated individuals (49). One potential mechanism for generating
these associations could be a direct effect of parental education
on the likelihood of diagnosis, for example, if more educated
individuals were more likely to seek a diagnosis for their off-
spring andparticipate in genetic epidemiological studies.Weiner
et al. (2017) describe a polygenic transmission disequilibrium test
that can be used to assess whether variants associated with
a given trait were more likely to be inherited by cases (50). In
practice, this means calculating the average parental polygenic
score of the trait (education) and subtracting the value of the
child’s polygenic score for this trait. In expectation, across a
sample, if there is no effect of the trait on the risk of autism,
we would expect the offspring’s score to equal the average of
their parents’ scores. If the offspring score is on average higher
than their parents, then this suggests the expression of the
trait in the offspring increases risk, whereas if it is on average
lower, then this suggests that expression of the trait in offspring
decreases risk. Weiner et al. used this method to demonstrate
that genetic variants in the offspring related to both education
and schizophrenia (in addition to genetic variants related to
autism) increased risk of an autism diagnosis (50). Therefore, the
correlation between education-associated genetic variants and
autism is unlikely to be solely attributable to familial factors.

Estimating familial effects

Genetic epidemiology can potentially provide evidence about
how individuals within a family affect each other. Below we
describe how DNA can provide evidence about specific familial
effects.

Assortative mating

MR can potentially be used to investigate the basis of assortative
mating, such as the relationship between spousal pairs’ alco-
hol consumption (51). Spousal pairs are more similar in their
level of alcohol consumption than expected by chance, but is
this due to such similarity increasing the probability of pair
formation? Genetic variants associated with alcohol consump-
tion have been used in MR studies (51), with behavior in one
spouse considered the exposure and that of the other spouse
the outcome. This study found evidence of assortative mating
on a genetic predictor of alcohol consumption, and that this
association recapitulated the similarity between spouses in their
phenotypic alcohol consumption patterns. These results imply
that assortative mating occurs by alcohol consumption, which
implicitly induces genetic similarity on genotypes related to
alcohol consumption. The results for height, another phenotype
known to display patterns of assortative mating, were similar.
However, more research is needed to understand the specific
assumptions required to identify the effects of assortative mat-
ing and between spouses.

Familial effects

Individuals within the same family may have effects on each
other, for example, dynastic effects, inwhich the parents’ pheno-
types directly affect their offspring. Other family members may
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affect outcomes via competition and cooperation effects, for
example, siblings’ phenotypes may influence each other’s out-
comes. Many studies have described the assumptions required
to identify these effects in detail in animal, twin and sibling
studies (52–56), but relatively few studies have used molecular
genetic data to estimate sibling effects in humans. Samples of
siblings and their parents can potentially be used to estimate
sibling effects. For example, consider a study estimating the
effect of a child’s BMI on their siblings’ BMI. Conditional on their
parents’ genotype, the children will have inherited a random set
of BMI increasing variants. If the children who inherited more
BMI increasing variants than expected have siblings with higher
BMI than expected from their genotype, then this would suggest
that children’s BMI affects their siblings’ BMI. Children could
also exert effects on their parents, for example, highly educated
children may increase their parents’ longevity (57). This effect
could be investigated through MR in studies with parental and
offspring genetic data.

MR-Twin-Direction of Causation

MR-Twin-Direction of Causation combines the logic of MR with
classical twin models (58). This approach requires samples of
twins with molecular genetic data. The relationships between
the twins (specifically the cross-twin cross-trait covariances) can
be exploited to identify the causal effects of the exposure and
potential pleiotropic effects of the genetic variants by restricting
terms in the model. As a result, this model can potentially
use polygenic scores constructed using more liberal thresholds
that standard MR studies would exclude. A limitation of this
approach is that it requires relatively large samples of genotyped
twins and cannot use estimates from GWAS of unrelated indi-
viduals as in two-sample MR. Also, the method assumes either
the absence of unique environmental or commonenvironmental
confounding, which may not be realistic. Similar approaches
have been proposed for siblings, for example, genetic instrumen-
tal variables (59).

Pleiotropy robust within family methods

Methodologists have proposed a large number of pleiotropy
robustmethods that use summary data fromGWAS of unrelated
individuals (60). In general, these methods are not robust
to familial-level biases described above. Familial effects are
likely to induce bias in proportion to the magnitude of each
SNP’s association with the phenotype of interest. For example,
consider dynastic effects due to parental education (and thus
parental alleles that influence education). These effects are
likely to influence SNP associations with other phenotypes in
the offspring in proportion to each SNP’s effect on education.
Thus, the INSIDE assumption in MR Egger regression is also
likely to be violated and hence causal estimates biased. In
addition, widely used sensitivity analyses, such as the weighted
median and mode, are also likely to be biased, because all
SNPs, including the median and modal SNPs, will suffer from
bias.

However, if within family summary data of SNP–phenotype
associations are available (61), then they can trivially be used
with many of the proposed summary data estimators (62–
64). Coefficients and standard errors that allow for a familial
effect (e.g. a within family estimate from siblings or controlling
for parental genotype) can replace estimates from unrelated
individuals from GWAS. The precision of these estimates will

typically be lower, and hence the power of theMR analysiswill be
lower. Therefore, in many cases,within-family estimatesmay be
used as a sensitivity analysis, acknowledging the limitations of
power. If there is little evidence that the within-family estimates
differ from (more precise) estimates in unrelated individuals,
then the latter should be preferred.

Triangulation

Multiple sources of evidence about hypotheses can strengthen
causal inferences. If the inferences are consistent, then this
can increase confidence about results (65,66). Family studies
provide an alternative source of evidence about SNP–phenotype
associations. If evidence from family studies is consistent with
evidence from unrelated individuals, then this may suggest that
some of the biases described above are not having a large influ-
ence. Alternatively, if there are substantial differences between
within family estimates and those from unrelated individu-
als, then this may provide evidence about the origins of SNP–
phenotype associations (e.g. residual population stratification,
assortative mating or dynastic effects, etc.). Therefore, family
studies can provide a useful additional source of evidence about
the effects of SNPs, which are likely to be less precise, but
more robust to many sources of bias. Other sources of evidence,
including natural experiments, twin, adoption and half-sib stud-
ies, can all contribute to the triangulation of evidence in such
situations.

Future research

Family-based studies can overcome many of the limitations of
MR, such as bias due to assortative mating, dynastic effects,
population stratification and horizontal pleiotropy. A limitation
of these designs is that while they are more robust to many
sources of bias, there are far fewer samples available than for
unrelated individuals. However, there are an increasing num-
ber of studies with large samples of genetic data from related
individuals, such as the Norwegian Mother, Father and Child
Cohort Study (MoBa), The Nord-Trøndelag Health Study (HUNT)
and Millennium Cohort Study and siblings sampled as part of
UK Biobank and a large number of twin studies and registries
from around the world (67–70). The increasing availability of
data from these studies makes it possible to obtain potentially
more reliable estimates of the causal effects of phenotypes on
outcomes. However, there are relatively few large case-control
studies that have sampled relatives (either siblings or parent–
offspring trios). This limitation means it can be very challeng-
ing to estimate SNP–disease association, particularly when a
condition is rare and/or the effect sizes are small. In sibling
studies, this is because only siblings with discordant disease
status contribute to the estimates. One approach to overcome
this is to use continuous proxies of the condition, either as an
underlying causal mechanism (e.g. LDL cholesterol for coronary
heart disease), or a symptom score (depression symptoms for
depression), or potentially even a survival outcome (time to
diagnosis).

Family studies offer the possibility of more reliable causal
estimates of the effects of exposures. As a result, family stud-
ies could provide new and more robust evidence for a wide
range of fields, from social science to drug development. A
particularly cost-effective program of research may be to aug-
ment existing cohort or clinical studies by recruiting family
members.
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