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Abstract 
The paper presents the results from a study aiming to map the dynamic of biophysical 

variables of winter wheat crops in different phenological growth stages (PGSs) using multispectral 

camera data acquired by Unmanned Aerial Vehicle (UAV). The studied biophysical variables are Leaf 

Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and fraction of 

vegetation cover (fCover). During agricultural year 2016/2017, 4 field campaigns (FCs) were carried 

out in 6 farmer-managed fields sown with two winter wheat varieties. During the FCs, 8 UAV flight 

missions were accomplished. Linear and exponential regression models were designed and evaluated 

to derive predictive equations for the biophysical variables of the crops based on a set of vegetation 

indices (VIs). The best predictor for all biophysical variables was OSAVI (RMSE was 0.90 m2/ m2, 

0.07 and 0.08 for LAI, fAPAR, and fCover respectively).  The chosen models were used to compose 

maps of LAI, fAPAR, and fCover of the studied fields. The maps correspond well with the spatial 

distribution of the values of the respective biophysical variables measured during the respective field 

campaign. 

 

 
Introduction 
 

Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active 

Radiation (fAPAR), and fraction of vegetation Cover (fCover) are biophysical 

variables of the vegetation cover which are among the major indicators of its status. 

To evaluate their spatial change, the products LAI, fAPAR, and fCover are formed, 

using multispectral aerial and satellite data [1 –3]. These products are validated by 

ground-based measurements of the same parameters on test fields located in various 

parts of the world. On the territory of Bulgaria, the LAI and FAPAR products from 

the MERIS satellite sensor were tested on winter wheat fields located in north-east 

Bulgaria [4]. The new satellite mission Sentinel 2 of the European Space Agency 

features good spectral, spatial, and temporal resolution [5]. The data from it are 

already used in precision agriculture, but there are still some limitations related 

mostly with the days with cloud cover during the image-taking. For this reason, 
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sometimes the farmers cannot obtain information about their fields for weeks on end. 

Quite often, when a certain problem arises, the farmers would wish to obtain 

immediately information about its progress, so as to be able to take informed 

decision.  

The technologies for remote determination of the crops’ status using 

unmanned aerial vehicle (UАV) are increasingly used in precision agriculture [6]. 

Scientists develop and evaluate different models for timely deriving of information 

about the dynamics of the agronomic parameters of agricultural crops during major 

phenological phases from images obtained by UAV cameras [7 –12]. The studies 

were carried out on one or several adjacent experimental fields of similar small size 

which are not managed by farmers. 

This study was carried out on fields of various sizes, managed by farmers 

carrying out their agrotechnical activities. Its main objective is within-field mapping 

of the change of LAI, fAPAR, and fCover of winter wheat crops during different 

phenological growth stages using data from UAV-borne multispectral camera.  
 
Study area and materials  

Study fields 
 

This study was carried out on 6 farmer-managed fields or Units (Us) sown 

with winter wheat (Triticum aestivum L.). They are located on the territory of Zlatia 

test site, Municipality of Knezha, Pleven region, Bulgaria, Fig. 1, which is part of 

the north-west planning district of Bulgaria. The Units were spatially grouped in two 

areas and were managed by two different farmers – U1, U2, and U3 were located on 

the land of the town of Knezha, and U4, U5, and U6 – on the land of the village of 

Enitsa. The units feature different area: U1 – 150 ha, U2 – 86 ha, U3 – 10 ha, U4 – 

48 ha, U5 – 78 ha, and U6 – 7 ha. Units 1 to 3 were sown with Anapurna variety 

while units 4 to 6 were sown with Enola variety. The altitude varies between 80 and 

190 m a.s.l. The winter wheat crops were grown on three types of soils [13].  

Epicalcic Chernozems Siltic, Endocalcic Chernozem Pachic Siltic (Units 1, 2, and 

3), and Haplic Cambisol Eutric Siltic (Units 4, 5, and 6). These are among the most 

widespread soils in north-west Bulgaria and they are suitable for growing of winter 

wheat. 

 
Data acquisition and processing 
 

In the study, we used data from field measurements and observations and 

imagery obtained from Parrot Sequoia UAV multispectral camera, as well as data 

from the two farmers managing the fields. The data were obtained as a result of the 

implementation of the TS2AgroBG Project. 
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Fig. 1. Location of the Units (U1, U2, U3, U4, U5 and U6) on which the study was carried 

out in the Zlatia test site, Bulgaria. (Base map source: http://web.uni-plovdiv.bg/vedrin) 

 

Field data 
 

During agricultural year 2016/2017, 4 field campaigns (FCs) were carried 

out, aiming to collect data about the studied units. They were carried out during 4 

major phenological growth stages (PGSs) of the crops, as follows: Tiller production 

before wintering – FC 1 (07–11.11.2016), Tiller production after wintering – FC 2 

(20–24.03.2017), Stem elongation – FC 3 (24–28.04.2017), and Anthesis – FC 4 

(15–19.05.2017). To determine the PGS, Zadoks decimal code [14] was used. 

The predecessors on the observed Units were sunflower (U1, U2, U3) and 

maize (U4, U5, U6) which are suitable for growing of winter wheat. On all Units, 

pre-sowing preparation was carried out and, during sowing, the soil was fertilized 

with Diammonia phosphate (DAP) – 250 kg/ha in U1, U2, and U3 and 260 kg/ha in 

U4, U5, and U6. The winter wheat was sown on 03.10.2016 and 09.10.2016, within 

the optimal terms for its growth in this region of Bulgaria, but for U6 where it was 

sown later, on 25.10.2016. Units 1, 2, and 3 were sown with 500 seeds per m2, Units 

4 and 5 – with 550 seeds per m2, and U6 – with 580 seeds per m2. 
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During the restoration of winter wheat vegetation after wintering 

(05.03.2017 and 26.02.2017), spring fertilization with Urea was carried out with 180 

kg/ha (U1, U2, U3) and 250 kg/ha (U4, U5, U6). There was significant difference in 

the type of spring fertilization of wheat crops carried out on 25.03.2017. The crops 

in Units 1, 2, 3 were fertilized with Ammonium nitrate (150 kg/ha). On the wheat in 

Units 4, 5 and 6, foliar fertilization was applied during PGS Tiller production.   

On the territory of the studied Units, a total of 30 (Fig, 1) elementary 

sampling units (ESUs) sized 20×20 m were outlined. Three elementary sub-sampling 

units sized 1 m2 were determined within each ESU to perform phenological 

observations and measurements using the instrument AccuPAR PAR/LAI 

Ceptometer LP-80. The data from these measurements were averaged for each ESU 

and were used to determine LAI (m2 m-2), fAPAR and fCover [15]. The obtained 

data are summarized on Table 1 at Unit level for the units sown with Anapurna and 

Enola variety. The distribution of the values of the ground-measured biophysical 

crop variables for Unit 6 is provided separately because of the differences in the 

phenological development due to its later sowing, as compared to Units 4 and 5. 

 
Table 1. Descriptive statistics for the ground-measured biophysical crop variables 

recorded during the 4 carried out field campaigns 
  

Range, 

Mean 

and Std. 

dev. 

Code Unit 

Phenological 

growth 

stages 

LAI fAPAR fCover 

Range 

U1, U2, U3 Z20 0.08-0.41 0.13-0.34 0.03-0.13 

U4, U5 Z20 0.04-0.22 0.12-0.24 0.02-0.07 

U6 Z00 0 0 0 

Mean 

U1, U2, U3 Z20 0.19 0.20 0.06 

U4, U5 Z20 0.09 0.15 0.04 

U6  Z00 0  0 0  

Std. dev. 

U1, U2, U3 Z20 0.09 0.06 0.03 

U4, U5 Z20 0.06 0.04 0.02 

U6 Z00 0 0 0 

Range 

U1, U2, U3 Z21 to 26 0.57-1.54 0.38-0.63 0.23-0.47 

U4, U5 Z21 to 26 1.04-2.62 0.49-0.79 0.35-0.65 

U6 Z20 to 24 0.14-0.35 0.16-0.25 0.06-0.14 

Mean 

U1, U2, U3 Z21 to 26 0,94 0,48 0,33 

U4, U5 Z21 to 26 1,86 0.68 0.53 

U6 Z20 to 24 0.25 0.21 0.10 
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Std. dev.  

U1, U2, U3 Z21 to 26 0.29 0.07 0.07 

U4, U5 Z21 to 26 0.43 0.09 0.08 

U6 Z20 to 24 0.10 0.04 0.04 

Range 

U1, U2, U3 Z31 to Z33 2.27-5.30 0.70-0.92 0.64-0.91 

U4, U5 Z31 to Z34 3.36-7.88 0.77-0.95 0.74-0.97 

U6 Z31 to Z33 2.21-2.81 0.68-0.72 0.59-0.66 

Mean 

U1, U2, U3 Z31 to Z33 3,45 0,83 0,78 

U4, U5 Z31 to Z34 6,19 0.91 0.93 

U6 Z31 to Z33 2,46 0.70 0.62 

Std. dev.  

U1, U2, U3 Z31 to Z33 0.81 0.06 0.08 

U4, U5 Z31 to Z34 1,23 0.05 0.07 

U6 Z31 to Z33 0.31 0.02 0.04 

Range 

U1, U2, U3 Z65 2.43-5.86 0.72-0.92 0.65-0.94 

U4, U5 Z65 to 69 3.65-7.09 0.85-0.94 0.81-0.95 

U6 Z65 to 69 3.45-3.73 0.83-0.88 0.80-0.87 

Mean 

U1, U2, U3 Z65 3,81 0,84 0,82 

U4, U5 Z65 to 69 5,03 0.91 0.92 

U6 Z65 to 69 3,59 0.86 0.84 

Std. dev.  

U1, U2, U3 Z65 0.99 0.06 0.09 

U4, U5 Z65 to 69 1,11 0.02 0.04 

U6 Z65 to 69 0.14 0.03 0.03 

 

UAV System and Flight Missions 
 

Here During each field campaign, 2 UAV missions were carried out, 

Table 2, using the Specialized Unmanned Aerial Vehicle (SUAV) senseFly eBee Ag 

including drone, Parrot Sequoia multispectral camera, Table 3, plus a sunshine 

(light) sensor [16], navigation, and image processing software. Before each UAV 

mission, a flight plan was drawn and simulation of the flight was carried out. The 

products from the imaging were georeferenced using data from the on-board GPS in 

UTM coordinate system, zone 35, datum World Geodetic System (WGS) 1984. The 

ultimate generated product was orthophoto mosaic for the studied Units. To 

georeference the photomosaic with maximal precision, the coordinates of 13 

geographical control points (GCPs) were used which were measured by GNSS Leica 

GS08. The GCPs were determined before the carrying out of the two UAV missions, 

being marked by fixed clearly discernible white markers sized 25x25 cm2.   
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All UAV missions were accomplished at flight altitude of 265 m on clear 

sunny days, during the period between 11:00 a.m. and 02:00 p.m. local time, at wind 

velocity below 5 m/s. 

 
Table 2. Dates of the carried out UAV flight missions and PGSs of the winter wheat crops in 

the studied Units 
 

Flight mission/ID Flight date 

UAV 

Unit (U) Phenological Growth Stage 

Mission 1/M1 07.11.2016 U1 and U3 Tiller production, (Z20) 

 11.11.2016 U2 

Mission 2/M2 10.11.2016 U4, U5 and U6 U4, U5 – Tiller production, 

(Z 20), U6 – Unspr \outed 

Z00 

Mission 3/M3 21.03.2017 U1, U2 and U3 Tiller production: Zadoks 21 

to 26 

Mission 4/M4 22.03.2017 U4, U5 and U6 Tiller production: U4, U5 – 

Z21 to  Z26, U6 – Z20 to 24 

Mission 5/M5 25.04.2017 U1, U2 and U3 Stem elongation: Z31 to Z33 

Mission 6/M6 26.04.2017 U4, U5 and U6 Stem elongation: U4, U5 -  

Z31 to Z34, U6 – Z31 to Z32 

Mission 7/M7 15.05.2017 U4, U5 and U6 Anthesis: U4 – Z65, U5 – 

Z69, U6 – Z65 to 69 

Mission 8/M8 18.05.2017 U1, U2 and U3 Anthesis (flowering): Z65 

 
Table 3.  Spectral bands for the Parrot Sequoia UAV camera used in the study  
 

Channel name Green 

(Bg) 

Red  

(Br) 

Red edge 

(Bre) 

Near IR 

(Bnir) 

Central wavelength (nm) 550 660 735 790 

Bandwidth (nm) 40 40 10 40 

Spatial resolution (m/pixel) 0.20 0.20 0.20 0.20 

 
Methodology 
 

The maps of the crops’ biophysical variables in the studied Units were 

composed in 2 stages. During the first one, regression models for LAI, fAPAR and 

fCOVER were designed, and during the second one, the relevant maps were 

composed. 
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Designing of regression models for LAI, fAPAR, and fCOVER 

Methods 
 

We used regression analysis in order to find predictive equations for the 

biophysical variables based on a set of vegetation indices (VIs), Table 4, and the four 

spectral bands. Linear and exponential models were developed using one predictor 

at a time and thus all VIs/bands were evaluated for their predictive capability. The 

2016-2017 growing season data were used for model calibration and leave-one out 

cross validation. ESUs with significant weed coverage were omitted from the 

dataset. 

 
Table 4. List of spectral vegetation indices used in this study and formulas for their 

calculation 

Vegetation Index Formulae Reference 

Chlorophyll Index green (CIg) (NIR / Green) – 1  [17, 18] 

Chlorophyll Index red edge 

(CIre) 
(NIR / Red edge) - 1 [17, 18] 

Difference Vegetation Index 

(DVI) 
NIR - Red [19] 

Green Infrared Percentage 

Vegetation Index (GIPVI) 
NIR/(NIR + Green)  

Green Normalized Difference 

Vegetation Index (gNDVI) 
(NIR – Green) / (NIR + Green) [20] 

Green Normalized Difference 

Vegetation Index 1 (gNDVI 1) 
(Red edge – Green) / (Red edge + Green)  

Modified Triangular Vegetation 

Index 2 (MTVI2) 

    

    0.5Red5NIR*61NIR*2

GreenRed*2.5GreenNIR*1.2*1.5

2



 [7] 

Normalized Difference 

Vegetation Index (NDVI) 
(NIR –  Red) / (NIR + Red) [21] 

Normalized Difference 

Vegetation Index 1 (NDVI 1) 
(Red edge – Red) / (Red edge + Red)  

Optimized Soil-Adjusted 

Vegetation Index (OSAVI) 
(1+0.16)*(NIR - Red) / (NIR + Red + 0.16) [22] 

Red edge Normalized Difference 

Vegetation Index (reNDVI) 
(NIR –Red-edge) / (NIR + Red-edge) [23] 

Simple Ratio (SR) NIR / Red [19] 

Simple Ratio 1 (SR 1) Red-edge / Red  

Simple Ratio 3 (SR 3) NIR / Red-edge [23] 

Vegetation Index green (VIg) (Green – Red) / (Green + Red) [24] 

Wide Dynamic Range Vegetation 

Index (WDRVI) 
(0.3 * NIR – red) / (0.3 * NIR + Red) [25] 
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The performance of the models was evaluated based on the Root Mean 

Square Error (RMSE):  

1) 
 

n

ŷy
RMSE i

2
ii 

 , 

 

where: yi is the measured value for the i-th observation and ŷi is the predicted value 

for i derived from a model calibrated with all observations except i. Relative RMSE 

(RMSEr) was calculated as percentage of the mean of the measured values.  

 

Results 
 

Table 5 shows the error statistics of the regression equations derived by each 

predictor. For each combination of biophysical variable and predictor two models, 

i.e. linear and exponential, were developed and the one with lower error were 

selected and considered for the comparison in Table 5. For all biophysical variables 

the best predictor was OSAVI. The relationships with OSAVI were exponential, 

Fig. 2. The corresponding regression equations are shown in Table 6. 

 
Table 5. Root mean square errors (RMSE) and relative Root mean square errors (RMSEr) 

from the leave-one-out cross validation of the regression models. Model type is either linear 

(lin), or exponential (exp). For each biophysical variable the three lowest RMSE/RMSEr 

values are shown in bold.  
 

Predictor 

LAI fAPAR fCover 

Model 

type 

RMSE 

[m2/m2] 

RMSEr 

[%] 

Model 

type 

RMSE 

[-] 

RMSEr 

[%] 

Model 

type 

RMSE 

[-] 

RMSEr 

[%] 

Green 

band 
lin 2.08 68.8 lin 0.26 38.9 lin 0.31 50.4 

Red band lin 2.19 72.6 lin 0.27 39.7 lin 0.33 52.8 

Red edge 

band 
exp 1.22 40.5 lin 0.14 20.2 lin 0.17 27.3 

NIR band exp 0.96 31.7 lin 0.08 12.0 lin 0.09 14.6 

CIg lin 1.39 46.1 lin 0.13 18.9 lin 0.16 26.7 

CIre lin 1.39 46.0 lin 0.11 16.8 lin 0.13 21.2 

DVI exp 0.94 31.3 lin 0.08 11.3 lin 0.09 14.0 

GIPVI exp 1.40 46.4 exp 0.12 17.1 lin 0.17 27.1 

gNDVI exp 1.40 46.4 exp 0.12 17.1 exp 0.16 25.9 

gNDVI1 lin 1.79 59.5 lin 0.19 28.3 lin 0.24 39.7 

MTVI2 exp 0.99 32.7 exp 0.07 10.1 exp 0.09 13.8 

NDVI exp 1.47 48.7 exp 0.12 17.1 exp 0.15 25.0 

NDVI1 exp 1.75 58.2 exp 0.17 25.0 lin 0.22 36.4 

OSAVI exp 0.93 30.8 exp 0.07 10.0 exp 0.08 13.1 

reNDVI lin 1.35 44.7 lin 0.09 13.7 lin 0.11 18.2 
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SR lin 1.52 50.4 lin 0.13 19.7 lin 0.17 28.1 

SR1 lin 1.80 59.6 lin 0.19 27.4 lin 0.24 38.6 

SR3 lin 1.39 46.0 lin 0.11 16.8 lin 0.13 21.2 

VIg lin 1.91 63.2 lin 0.20 29.0 lin 0.25 40.1 

WDRVI exp 1.48 49.1 exp 0.11 16.8 exp 0.16 25.5 

 
Table 6. Regression model selected for the mapping of the biophysical variables 
 

Biophysical 

variable 
Regression equation 

LAI LAI = 0.00193 * exp(OSAVI * 9.31558) 

fAPAR fAPAR = 0.05485 * exp(OSAVI * 3.32069) 

fCover fCover = 0.01119 * exp(OSAVI * 5.20752) 

 

 

    
a) b) c) 

 

Fig. 2. Scatter plots of biophysical variables LAI (a), fAPAR (b), and fCover (c) and OSAVI 

showing the exponential regression fit 

 

Composing of maps of LAI, fAPAR, and fCOVER 
 

In the beginning of this stage, a geodatabase was composed. It included: the 

boundaries of the studied Units, soil maps, digital elevation model (DEM), the data 

from the carried out field campaigns, and the images obtained from all UAV flight 

missions; Crop Calendar containing information about the agrotechnical measures 

carried out by the farmers, and data about the initial and final dates of occurrence of 

the major phenological phases of the winter wheat crops for each individual Unit. 

Input into the geodatabase were also the designed regression models for calculation 

of the crops’ biophysical variables, as well as the results from the processing and 

analysis of the multispectral UAV images. 

The maps of the crops’ biophysical variables were composed in the 

following steps. Initially, the orthophoto mosaic of the multispectral images obtained 

from each UAV flight mission was cropped along the boundaries of each Unit. Out 
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of them, the vegetation index OSAVI for each pixel was calculated and a raster 

image was obtained, on which the respective regression model for LAI, fAPAR and 

fCOVER was applied successively, Table 6. The raster layer thus calculated was 

reclassified into 5 classes with previously fixed boundaries. As a result, a raster layer 

was obtained which was used to draw a separate map for each biophysical parameter, 

Fig. 3, 4, and 5. 

 

Results and discussion 
 

The crops studied during the observed agricultural year 2016/2017 do not 

differ significantly in their phenological growth, but for those in Unit 6. In it, due to 

the later sowing, a delay in the dates of the mass occurrence of PGS Germination Z 

0-1 and Stem elongation Z 31 to 34 was observed, as compared to the other crops. 

Maps of LAI, Fig. 3, were composed, obtained by applying a regression model based 

on the OSAVI vegetation index, Table 6, on images from Parrot Sequoia UAV 

multispectral camera acquired during the carried out UAV flight missions, Table 2. 

On them, the obtained values of LAI and their distribution during PGSs 

Tiller production, Stem elongation, and Anthesis comply with the ground-measured 

ones during the carried out FCs, Fig. 3, Table 1. 

On the map of LAI, Fig.3, drawn using images from UAV missions 3 and 4, 

one can easily distinguish between Units 1, 2, 3, and 6, from one hand, which feature 

lower LAI vallues (0.15-1.5 m2/m2) and Units 4 and 5, from the other hand (LAI 

between 0.15-3.0 m2/m2). This coincides with the ground-measured values of LAI 

which are within the same limits, Table 1. The same differences are also observed 

on the maps composed for PGS Stem elongation Fig. 3 b, Table 1. The average value 

of LAI by data obtained from ground-based measurements in U1, U2, and U3 is 

3.45 m2m-2, while in U4 and U5 it is much higher – 6.19 m2/m2, being lowest again 

in U6 – 2.46 m2/m2.  

The recorded values of LAI on the maps where the crop is in PGS Anthesis, 

Fig. 3c, are identical with those on the maps for PGS Stem elongation, Fig. 3b. The 

only exceptions are U6, the southern part of U1, and the western part of U4 where 

the values are higher. This is also confirmed by the data from the ground-based 

measurements, Table 1, but for U4 and U5 where a certain decrease of the average 

values of LAI by 1.17 m2/m2 is observed. This inconsistency of the modeled LAI 

with ground measurements at PGS Anthesis may be explained with the lower 

sensitivity (saturation issues) of the exponential model at high LAI values. 

The reasons for the established differences in the values of the crops’ LAI 

in U1, U2 and U3 compared to those in U4 and U5 are complex. Probably, they are 

due not only to the fact that they have been sown with different varieties of winter 

wheat, but also because they differ in the applied spring fertilization, as described in 

Section Field data. On U4 and U5, in the end of March 2017, foliar feeding of wheat 

was also carried out. The grain yield is classified in the feed wheat category in the 
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crops of winter wheat variety Anapurna, and normal bread wheat category for 

variety Enola. 

 

Fig. 3. Maps of LAI of winter wheat crops in the studied Units composed by applying an 

regression model based on the OSAVI vegetation index on images from Parrot Sequoia 

UAV multispectral camera obtained from UAV flight missions: a) missions 3 and 4, FGS 

Tiller production, b) missions 5 and 6, FGS Stem elongation, and c) missions 7 and 8, FGS 

Anthesis 
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Fig. 4. Maps of fAPAR of winter wheat crops in the studied Units composed by applying an 

regression model based on the OSAVI vegetation index on images from Parrot Sequoia 

UAV multispectral camera obtained from UAV flight missions: a) missions 3 and 4, FGS 

Tiller production, b) missions 5 and 6, FGS Stem elongation, and c) missions 7 and 8, FGS 

Anthesis 
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Fig. 5. Maps of fCOVER of winter wheat crops in the studied Units composed by applying 

an regression model based on the OSAVI vegetation index on images from Parrot Sequoia 

UAV multispectral camera obtained from UAV flight missions: a) missions 3 and 4, FGS 

Tiller production, b) missions 5 and 6, FGS Stem elongation, and c) missions 7 and 8, FGS 

Anthesis 

 

On the drawn maps of the other two biophysical variables it may be seen 

that the recorded values of fAPAR and fCover on U1–U3 differ from those on U4–

U5, Fig. 4 and 5, only in PGS Tiller production: Zadoks 21 to 26, Fig. 4a and 5a. In 
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Unit 6, in PGSs Tiller production and Stem elongation, the crop features lower values 

of both variables, Fig. 4a,b and 5 a,b. 

 
Conclusions 
 

The best predictor for all studied biophysical variables, was OSAVI – 

RMSE, for LAI is 0.90 m2/ m2, for fAPAR – 0.07, and for fCover – 0.08. 

The composed maps for LAI, fAPAR and fCOVER obtained by applying 

the respective regression model, based on the vegetation index OSAVI, on images 

from Parrot Sequoia UAV multispectral camera, correspond well with the spatial 

distribution of the values of the respective parameter, measured during the given 

field campaign. 

Clearly expressed tendencies in the change of LAI values are observed. They 

increase up to PGS Stem elongation, whereas the rate of increase with the winter 

wheat crops of the Anapurna variety is smaller. The change is insignificant between 

PGSs Stem elongation and Anthesis.  
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КАРТОГРАФИРАНЕ НА БИОФИЗИЧНИ ПРОМЕНЛИВИ НА ПОСЕВИ 

ОТ ЗИМНА ПШЕНИЦА С ИЗПОЛЗВАНЕ НА МНОГОКАНАЛНИ 

ИЗОБРАЖЕНИЯ ОТ БЛА 

 
Г. Желев, П. Димитров, Е. Руменина 

 
Резюме 

В статията са представени резултати от проведено изследване с цел 

картографиране на динамиката на биофизични променливи на посеви от зимна 

пшеница в различни фенологични фази, чрез използване на данни получени от 

безпилотен летателен апарат (БЛА) с многоканална камера. Изследваните био-

физични променливи са индекс на листната повърхност (LAI), дял на абсор-

бираната фотосинтетично активна радиация (fAPAR) и дял от повърхността на 

почвата покрита с растителност (fCover). През селскостопанската година 

2016/2017 са проведени 4 полеви кампании (ПК) в 6 полета, стопанисвани от 

фермери, засети с два сорта зимна пшеница. В рамките на ПК са реализирани 

8 полетни мисии с БЛА. Съставени и оценени са линейни и експоненциални 

регресионни модели за изчисляване на биофизичните променливи на посевите 

на базата на набор от вегетационни индекси (ВИ). Като най-добър предиктор 

за всички биофизични променливи е определен OSAVI (RMSE e 0.90 m2/m2, 

0.07 и 0.08, съответно за  LAI, fAPAR, и fCover). Избраните модели са изпол-

звани за съставяне на карти на LAI, fAPAR и fCover на изследваните полета. 

Картите в значителна степен отговарят на пространственото разпределение на 

стойностите на съответната биофизична променлива измерени по време на 

дадената полева кампания. 


