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Abstract

Introduction

Knowledge of within-patient dynamics of resistance plasmids during outbreaks is important

for understanding the persistence and transmission of plasmid-mediated antimicrobial resis-

tance. During an outbreak of a Klebsiella pneumoniae carbapenemase-producing (KPC) K.

pneumoniae, the plasmid and chromosomal dynamics of K. pneumoniae within-patients

were investigated.

Methods

During the outbreak, all K. pneumoniae isolates of colonized or infected patients were col-

lected, regardless of their susceptibility pattern. A selection of isolates was short-read and

long-read sequenced. A hybrid assembly of the short-and long-read sequence data was

performed. Plasmid contigs were extracted from the hybrid assembly, annotated, and within

patient plasmid comparisons were performed.

Results

Fifteen K. pneumoniae isolates of six patients were short-read whole-genome sequenced.

Whole-genome multi-locus sequence typing revealed a maximum of 4 allele differences

between the sequenced isolates. Within patients 1 and 2 the resistance gene- and plasmid

replicon-content did differ between the isolates sequenced. Long-read sequencing and

hybrid assembly of 4 isolates revealed loss of the entire KPC-gene containing plasmid in the

isolates of patient 2 and a recombination event between the plasmids in the isolates of
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patient 1. This resulted in two different KPC-gene containing plasmids being simultaneously

present during the outbreak.

Conclusion

During a hospital outbreak of a KPC-producing K. pneumoniae isolate, plasmid loss of the

KPC-gene carrying plasmid and plasmid recombination was detected within the isolates

from two patients. When investigating outbreaks, one should be aware that plasmid trans-

mission can occur and the possibility of within- and between-patient plasmid variation needs

to be considered.

Introduction

Recent years have shown a rise in Klebsiella Pneumoniae carbapenemase (KPC)-producing

Klebsiella pneumoniae worldwide [1]. Infections with KPC-producing K. pneumoniae are asso-

ciated with increased mortality and an increased length of hospital stay [2,3]. Moreover, noso-

comial infections and colonization with KPC-producing K. pneumoniae are known to be an

important source for its transmission within and between health care facilities [4,5]. Prolonged

carriage of KPC-producing K. pneumoniae has been described and several risk factors associ-

ated with an increased duration of colonization have been identified [6]. The gene encoding

the KPC enzyme in K. pneumoniae (blaKPC) is generally located on large conjugative plasmids

which can undergo multiple rearrangements during long-term patient colonization [7,8].

Studies investigating the dynamics of blaKPC- plasmids in K.pneumoniae isolates during colo-

nization only include the KPC-producing (or carbapenem-resistant) isolates [8,9]. However,

when only blaKPC containing K.pneumoniae isolates (KPC-KP) are included in the analysis,

loss of the KPC enzyme encoding plasmid itself cannot be detected. Moreover, studies on

blaKPC-plasmid dynamics within-patients during an outbreak remain limited, especially in

countries with a low prevalence of blaKPC-plasmid carriage [10].

Analysing resistance plasmids encoding the KPC enzyme is typically performed using a

combination of short- and long-read whole-genome sequencing of an isolate [8,9,11]. Repeat

sequences prohibit the complete assembly of the bacterial chromosome and plasmids using

short-read sequence data only, resulting in separate contigs of which the origin, plasmid or

chromosome, is unknown. [12]. Current automated algorithms aiming to reconstruct plas-

mids from short-read sequence data are not able to correctly construct large resistance plas-

mids [12].

In 2017 an outbreak occurred of a KPC-KP in a teaching hospital in Tilburg, the Nether-

lands. During this period, in all patients colonized or infected with a KPC-producing K. pneu-

moniae, K. pneumoniae isolates were collected. To investigate the within-patient plasmid and

chromosomal dynamics during this outbreak a selection of isolates was sequenced and a plas-

mid analysis was performed using a hybrid assembly of short- and long-read sequence data.

Method

Klebsiella pneumoniae collection

From 22 October 2017 until 31 December 2017 an outbreak of a KPC-KP occurred in the

intensive care unit and surgical ward of a 796-bed teaching hospital in Tilburg, the Nether-

lands (Fig 1). The outbreak was recognized on the 22nd of October 2017, when a KPC-KP was
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detected in a urine sample of a patient (patient 2) admitted on the surgical ward. This event

followed the earlier repatriation of a patient (the index patient 1) from an Italian hospital on

the 11th of September 2017, who was found to be colonized with KPC-KP two days after

admission to the intensive care unit (Fig 1). Because carbapenem-resistant Enterobacteriaceae

have been practically absent in this hospital so far and because patient 2 was also admitted on

the intensive care unit previous to the detection of a KPC-KP in the patient’s urine sample (3–

7 October), the finding was considered suspect for nosocomial transmission (Fig 1). An out-

break management team was formed and in both the surgical ward and intensive care unit

patient contacts were screened for KPC-KP carriage (Fig 1). During this outbreak, a total of 6

Fig 1. Timeline graph with the ward each patient was admitted on previous to and during the outbreak period and the day of the first cultured KPC-KP of each
patient detected in the outbreak.

https://doi.org/10.1371/journal.pone.0233313.g001
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patients were colonized (n = 4) or infected (n = 2) with a KPC-KP. In all patients, for every

specimen wherein a K. pneumoniae isolate was obtained, an isolate, regardless of the suscepti-

bility pattern, was collected and stored at -80C˚ using MicrobankTM. Species identification was

performed using the Bruker MALDI BiotyperTM (BD Diagnostics, MD, USA), and antimicro-

bial susceptibility testing was performed using the PhoenixTM platform (BD Diagnostics, MD,

USA) and EUCAST breakpoints v.9.0. [13]. Every specimen, from which a K. pneumoniae iso-

late was obtained that was measured susceptible to meropenem and/or imipenem, was addi-

tionally inoculated on a CHROMagarTM KPC plate (CHROMagar, Paris, France).

Short-read whole-genome sequencing

A selection of K. pneumoniae isolates was sequenced on an Illumina MiSeq using Nextera XT

chemistry (Illumina, San Diego, United States) and assembled with SPAdes v. 3.9.1 [14]. The

selection was made in a way that: at least each K. pneumoniae isolate with a distinct susceptibil-

ity pattern and at least one K. pneumoniae isolate per patient per specimen type was sequenced.

A distinct susceptibility pattern was defined as a four-fold difference in minimal inhibitory

concentration (MIC) in any of the following antibiotics: amoxicillin-clavulanic acid, ceftriax-

one, ceftazidime, meropenem, ciprofloxacin, and gentamicin. Before sequencing isolates were

regrown and plated on a CHROMagarTM KPC plate (CHROMagar, Paris, France) when mea-

sured resistant to meropenem and on sheep blood agar when measured susceptible to merope-

nem. Plates were incubated for 18 to 24 hours at 35 to 37C˚. The DNA isolation and

sequencing protocol are described in the S1 Data. The following quality control criteria for

acceptable assemblies were used: coverage:�20; number of scaffolds:�1000; N50:�15.000

bases and maximum scaffold length:�50.000 bases.

Short-read whole genome analysis

Whole-genome MLST (wgMLST) (core and accessory genome) was performed for all

sequenced isolates using Ridom SeqSphere+, version 4.1.9 (Ridom, Münster, Germany). Spe-

cies-specific typing schemes were used as described by Kluytmans-van den Bergh et al. [15].

The all-to-all pairwise genetic difference was calculated between the isolates by counting the

total number of allele differences in the wgMLST typing scheme and by dividing the total

number of allele differences in the wgMLST typing scheme by the total number of shared

alleles in the wgMLST typing scheme, ignoring pairwise missing values. The phylogenetic tree

was visualized using iTOL v5.5.1 [16]. The genomes of the sequenced isolates were uploaded

to the online bioinformatic tools ResFinder v.3.1 and PlasmidFinder v.2.0 (Center for Geno-

mic Epidemiology, Technical University of Denmark, Lingby, Denmark) [17,18]. Acquired

resistance genes were called when at least 60% of the length of the best matching gene in the

ResFinder database was covered with a sequence identity of at least 90%. Plasmid replicon

genes were called when at least 60% of the sequence length of the replicon gene in the Plasmid-

Finder database was covered with a sequence identity of at least 80%.

Long-read whole genome sequencing

A selection of the isolates was long-read sequenced on a MinION sequencer using the FLO-

MIN106D flow cell and the Rapid Barcoding Sequencing Kit SQK RBK004 according to the

standard protocol provided by the manufacturer (Oxford Nanopore Technologies, Oxford,

United Kingdom). The selection was made in a way that in each patient in which more than

one isolate was short-read sequenced all isolates with a unique plasmid replicon content were

long-read sequenced. Short-and long-read sequencing was performed from extracted DNA of

the same regrown culture.
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Hybrid short- and long-read plasmid analysis

A hybrid assembly of long-read and short-read sequence data was performed using Unicycler

v.0.8.4 [19]. The genomes created using the hybrid assembly were uploaded to the online bio-

informatic tools ResFinder v.3.1 and PlasmidFinder v.2.0 (Center for Genomic Epidemiology,

Technical University of Denmark, Lingby, Denmark) [17,18]. Contigs created by the hybrid

assembly that were smaller than 1000kb and that contained plasmid replicons were extracted

from the assembly graph using BANDAGE v.0.8.1 [20]. All extracted plasmid contigs were

annotated using Prokka v. 1.13.3 [21]. A pan-genome was constructed and pairwise compari-

sons were performed of plasmids between isolates of the same patient using BLAST+ v.2.6.0.

(identity cut-off 95%) and Gview v.1.7. via the Gview webserver (https://server.gview.ca/)

[22,23].

Accession numbers

Generated raw reads were submitted to the European Nucleotide Archive (ENA) of the Euro-

pean Bioinformatics Institute (EBI) under the study accession number: PRJEB35018 (link to

data: https://www.ebi.ac.uk/ena/data/view/PRJEB35018).

Results

Klebsiella pneumoniae collection

During the outbreak period, a total of 35 K. pneumoniae isolates (patient 1: n = 15, patient 2:

n = 13, patient 3: n = 4 and patient 4–6: n = 1) with two distinct susceptibility patterns were

collected(Fig 2; S1 Table). The two distinct susceptibility patterns were detected in isolates cul-

tured from patient 2 only and were based on differences in MIC for amoxicillin-clavulanic

acid, ceftriaxone, ceftazidime, and meropenem (Table 1). In the specimens containing a K.

pneumoniae isolate susceptible to meropenem, no growth was detected on the CHROMagarTM

KPC plate. Fifteen isolates were selected to be sequenced: patient 1: n = 4, patient 2: n = 7,

patient 3–6: n = 1 (Fig 2; Table 1).

Short-read whole genome analysis

Short-read WGS was performed on 15 K. pneumoniae isolates of 6 patients (Fig 2). Despite

MIC testing revealing two distinct susceptibility patterns, using wgMLST the maximum num-

ber of allele differences detected between the various isolates was 4 (0.09%)(S1 Fig; S2 Table).

Moreover, in none of the pairwise comparisons of the sequenced isolates did the number of

allele differences exceed the limit of clonal relatedness (smaller or equal to 0.45%) as defined

by Kluytmans-van den Bergh et al. (S1 Fig) [15]. The acquired resistance gene content did dif-

fer most notably with four isolates not containing a blaKPC gene in the Whole Genome

Assembly (WGA) (Table 2), explaining the difference in antimicrobial susceptibility profile

seen between the isolates. Moreover, 2 isolates contained a tet(A) gene not detected in any of

the other genomes (Table 2). Plasmid replicon content also differed between the isolates: three

isolates contained one plasmid replicon gene, three isolates contained two plasmid replicon

genes and nine isolates contained three plasmid replicon genes. The difference in plasmid rep-

licon- and acquired resistance gene-content was shown between isolates collected from the

same patient (both in isolates from patient 1 and patient 2) (Tables 1 and 2).

Hybrid short- and long-read plasmid analysis

Four isolates were selected, based on within-patient plasmid replicon content differences, to

be long-read sequenced: KP1 and KP3 of patient 1 and KP5 and KP9 of patient 2 (Fig 2).
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Fig 2. Timeline graphic containing the collected isolates per patient during the study period.

https://doi.org/10.1371/journal.pone.0233313.g002
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Hybrid assembly of short- and long-read sequences revealed 10 contigs of which, based on

size, 6 were assumed to be of plasmid origin (Table 3). Despite the fact that only one IncFII(k)

replicon was detected in the short-read whole-genome assembly of isolate KP1, the hybrid

assembly revealed that the IncFII(K) plasmid replicon was actually present in two separate

plasmids in the KP1 isolate: an IncFII(K) and IncFIB(K) replicon plasmid and an IncFII(K)

and IncFIB(pQil) replicon plasmid. Within patient 1, GView BLAST analysis revealed the 3.1

plasmid to be a recombinant plasmid resulting from a recombination event between 18 CDS

of plasmid 1.1 (containing the blaKPC gene), 50 CDS present in plasmid 1.1 and plasmid 1.2,

56 CDS of plasmid 1.2 only combined with an introduction of a tet(A) gene containing trans-

poson (Fig 3A). Moreover, it revealed a loss of major parts of the plasmid content between iso-

lates KP1 and KP3 without affecting the isolates susceptibility pattern. In patient 2, the loss of

the entire 5.1 blaKPC gene-containing plasmid was observed between isolates KP5 and KP9

(Table 3). Additionally, a 26.786 bp deletion occurred in plasmid 5.2 when compared to plas-

mid 9.1 resulting in loss of 34 coding sequences among which were the antibiotic resistance

genes aac(6’)Ib-cr, blaOXA-1, and a catB3-like gene (Fig 3B; Table 3).

Discussion

The plasmid replicon content of the first sequenced blaKPC containing isolate of each patient

during the hospital outbreak was similar between the different patients. However, during the

outbreak within both patient 1 and patient 2 the plasmid replicon contents highly varied. This

variation in plasmid replicon content was partially the result of plasmid loss observed in both

patients, leading to a distinct susceptibility pattern in the isolates of one of these patients. A

previous study also described plasmid loss during long time colonization in K. pneumoniae

[9]. However, the present study also includes isolates with all distinct resistance patterns

Table 1. K. pneumoniae isolates used for short-read whole-genome sequencing.

Patient Isolate Susceptibility profile Sequence type¥ Specimen Date culture+ MIC (mg/L)�

amcl cftz cftr mero cipr gent

1 KP1 1 307 Sputum 2 >32 >16 >4 >8 >1 >4

1 KP2 1 307 Cerebrospinal fluid 20 >32 >16 >4 >8 >1 >4

1 KP3 1 307 Sputum 59 >32 >16 >4 >8 >1 >4

1 KP4 1 307 Rectal swab 68 >32 >16 >4 >8 >1 >4

2 KP5 1 307 Urine 1 >32 >16 >4 >8 >1 >4

2 KP6 1 307 Rectal swab 11 >32 >16 >4 >8 >1 >4

2 KP7 1 307 Skin swab 58 >32 >16 >4 >8 >1 >4

2 KP8 1 307 Rectal swab 58 >32 >16 >4 >8 >1 >4

2 KP9 2 307 Blood 68 4 < = 0,5 < = 0,5 < = 0,25 >1 >4

2 KP10 2 307 Urine 68 4 < = 0,5 < = 0,5 < = 0,25 >1 >4

2 KP11 2 307 i.v. catheter 68 4 < = 0,5 < = 0,5 < = 0,25 >1 >4

3 KP12 1 307 Rectal swab 5 >32 >16 >4 >8 >1 >4

4 KP13 1 307 Rectal swab 24 >32 >16 >4 >8 >1 >4

5 KP14 1 307 Rectal swab 31 >32 >16 >4 >8 >1 >4

6 KP15 1 307 Rectal swab 46 >32 >16 >4 >8 >1 >4

�MIC testing was performed using the BD Phoenix™. Amcl: amoxicillin-clavulanic acid; cftr: ceftriaxone; cftz: ceftazidime;mero: meropenem; cipr: ciprofloxacin; gent:

gentamicin.
+ Day culture from study start at 22–10 (day 1).
¥ Based on multi-locus sequence typing scheme of Institut Pasteur, France.

https://doi.org/10.1371/journal.pone.0233313.t001
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revealing the loss of a blaKPC containing plasmid within an outbreak setting. The similar rep-

licon content of the plasmids 1.1, 1.2 and 5.1 would suggest that incompatibility between these

plasmids [24,25] was the cause of the plasmid loss observed in the isolates of patient 1 and 2.

Besides plasmid loss, within-patient 1 acquisition of a tet(A) containing transposon was

detected in the plasmid content of the KP3 isolate when compared to the plasmid content of

isolate KP1. Thus not only gene loss was revealed but also the acquisition of genetic elements

in the plasmid content of the isolates collected during this outbreak. The plasticity of the plas-

mid content in bacterial isolates observed in this study has been described before both in vitro

as in vivo [7,9,26]. However, recent reports also describe plasmids which remain highly stable

[27,28]. This suggests that in vivo plasmid stability is likely the result of an interplay between

host factors, plasmid content and the different plasmids composing the plasmid content of a

bacterial isolate, possibly resulting in either a highly stable or unstable plasmid content.

The hybrid assembly revealed that the 3.1 plasmid was the result of a recombination event

between the 1.1 and the 1.2 plasmid occurring in the KP3 isolate only (and possibly the KP4

isolate) and not in the KP5 isolate. These recombination events between different plasmids in

the same isolates have also been described in other studies [9,26]. However, this is to the best

of our knowledge the first study to describe within patient blaKPC gene-containing plasmid

recombination and loss during an hospital outbreak. This recombination event led to two

Table 2. Acquired resistance gene- and plasmid replicon-content of whole-genome assembly of the sequenced K.
pneumoniae isolates.

Patient isolate Plasmid replicon and acquired resistance gene content whole-genome assembly

Resistance genes^ Plasmid replicons

1 KP1 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like, QnrB66-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

1 KP2 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like, QnrB66-like, tet(A)

IncFIB(pQil), IncFIB(K),
IncFII(K)

1 KP3 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaSHV-28, catB3-like, tet(A) IncFIB(K), IncFII(K)

1 KP4 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaSHV-28, catB3-like, tet(A) IncFIB(K), IncFII(K)

2 KP5 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

2 KP6 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

2 KP7 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

2 KP8 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

2 KP9 IncFIB(K)

2 KP10 IncFIB(K)

2 KP11 IncFIB(K)

3 KP12 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

4 KP13 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

5 KP14 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

6 KP15 aac(6’)Ib-cr, blaKPC-3, blaOXA-1, blaOXA-9-like, blaTEM-1A-like,
catB3-like

IncFIB(pQil), IncFIB(K),
IncFII(K)

^All isolates contained the following resistance genes: aac(3)-IIa-like, blaSHV-28, dfrA14-like, fosA-like, oqxA-like,

oqxB-like.

https://doi.org/10.1371/journal.pone.0233313.t002
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different blaKPC plasmids occurring within one patient and plasmid transmission of these

two different plasmids could have occurred during this outbreak. Several studies have already

reported blaKPC-plasmid transmission between different isolates during outbreaks [11,29].

Distinguishing outbreak related from non-outbreak related plasmids based on sequence data

is essential for using molecular data to confirm blaKPC-containing plasmid transmission in

outbreaks. Our findings suggest that when investigating plasmid transmission during out-

breaks, the possibility of within-patient plasmid variation needs to be considered. Therefore, it

could well be that transmission of blaKPC-containing IncF plasmids within hospital outbreaks

cannot be dismissed based on sequence dissimilarity between the different plasmids investi-

gated. Complicating the investigation of plasmid transmission during hospital outbreaks even

when the antibiotic susceptibility pattern is not altered.

The present study has some limitations. The first was that in a culture of a specific speci-

men, colonies of the same morphology were not routinely isolated and stored. Therefore, pos-

sible subpopulations were not detected. Despite this, in the cultures in which a K. pneumoniae

Table 3. Size, gene-, acquired antimicrobial resistance gene-and plasmid replicon-content of the plasmid contigs created with the hybrid assemblies.

isolate Plasmid Plasmid contig size
(bp)

Number of CDS� in plasmid
contig

Plasmid replicon and acquired resistance gene content plasmid construct

Resistance genes Plasmid replicons

KP1 1.1 114416 129 blaKPC-3, blaOXA-9-like, blaTEM-1A-like IncFIB(pQil), IncFII
(K)

KP1 1.2 102547 111 aac(3)-IIa-like, aac(6’)Ib-cr, blaOXA-1, catB3-like, dfrA14-like IncFIB(K), IncFII(K)

KP3 3.1 129321 138 aac(3)-IIa-like, aac(6’)Ib-cr, blaKPC-3, blaOXA-1, catB3-like,
dfrA14-like, tet(A)

IncFIB(K), IncFII(K)

KP5 5.1 114416 130 blaKPC-3, blaOXA-9-like, blaTEM-1A-like IncFIB(pQil), IncFII
(K)

KP5 5.2 68609 80 aac(3)-IIa-like, aac(6’)Ib-cr, blaOXA-1, catB3-like, dfrA14-like IncFIB(K)

KP9 9.1 41823 46 aac(3)-IIa-like, dfrA14-like IncFIB(K)

�CDS: coding sequences

https://doi.org/10.1371/journal.pone.0233313.t003

Fig 3. a) Gview BLAST plasmid comparison of all annotated plasmids in patient 1. b) Plasmid comparison of annotated plasmids 5.2 and 9.1 of patient 2. Each arrow
represents a coding sequence and not necessarily transcriptional direction; Gene names are depicted as generated by prokka.

https://doi.org/10.1371/journal.pone.0233313.g003
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was isolated that was measured susceptible to carbapenem, no growth was observed on the

CHROMagar KPCTM suggesting that no resistant subpopulations were present in these speci-

mens. Based on susceptibility pattern differences, specimen type of isolation, and plasmid rep-

licon content a selection of the isolates were sequenced therefore plasmid variations that did

not influence the susceptibility pattern, specimen type of isolation, and plasmid replicon con-

tent might go undetected. Moreover, since only 1 isolate was collected in patients 3–6 no con-

clusions can be drawn regarding longitudinal plasmid variation in these patients.

Concluding, during a hospital outbreak of a blaKPC producing K. pneumoniae isolate plas-

mid loss of the blaKPC carrying plasmid and plasmid recombination was detected in two

patients. When investigating outbreaks wherein plasmid transmission can occur, the possibil-

ity of within- and between-patient plasmid variation needs to be considered.
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