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Abstract 26 

Gut microbiome diversity and functions are jointly shaped by the host’s genetic background 27 

and environmental conditions, but the consequences of this interaction are still unclear. 28 

Unravelling the effect of the interaction between evolution and environment on the gut 29 

microbiome is particularly relevant considering the unprecedented level of human-driven 30 

disruption on the ecological and evolutionary trajectories of species. Here, we aimed to 31 

evaluate whether size-selective mortality influences the gut microbiome of medaka (Oryzias 32 

latipes), how environment conditions modulate the effect of the genetic background of medaka 33 

on their microbiota, and the association between microbiome diversity and medaka fitness. To 34 

do so, we studied two lineages of medaka that were raised under antagonistic size-selective 35 

regimes for 10 generations (i.e. the largest or the smallest breeders were removed to mimic 36 

fishing-like or natural mortality). In pond mesocosms, the two lineages were subjected to 37 

contrasting population density and light intensity (i.e. used as a proxy of primary production, 38 

hence resource availability). We observed significant differences in the gut microbiome 39 

composition and richness between the two lines, and this effect was mediated by light intensity. 40 

Indeed, the bacterial richness of fishing-like medaka (small-breeder line) was reduced by 34% 41 

under low-light conditions compared to high-light conditions, while it remained unchanged in 42 

natural mortality-selected medaka (large-breeder line). However, the observed changes in 43 

bacterial richness did not correlate with changes in growth rate or body condition, possibly due 44 

to functional redundancy among the microbial taxa residing in the gut. Given the growing 45 

evidence about the gut microbiomes importance to host health, more in-depth studies are 46 

required to fully understand the role of the microbiome in size-selected organisms and the 47 

possible ecosystem-level consequences. 48 

 49 
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 52 

Introduction 53 

Over the past decade, the expansion of scientific literature investigating the gut microbiome 54 

has been largely motivated by increasing evidence of the microbiome’s role in health 55 

maintenance. Studies have highlighted the variety of pathways through which the gut 56 

microbiome can play this role – from influencing nutrient uptake and metabolism to regulating 57 

immune responses and pathogen susceptibility (Hanning and Diaz-Sanchez 2015, Moran et al. 58 

2019). Gut-associated microbiomes can also incur the consequences of anthropogenic factors 59 

such as climate warming (Sepulveda and Moeller 2020), urbanisation (Teyssier et al. 2018, 60 

Trosvik et al. 2018, Sonnenburg and Sonnenburg 2019), and environmental pollution (Fouladi 61 

et al. 2020, Varg et al. 2021). These factors may increase the chances of imbalances in the gut 62 

microbiome (dysbiosis) with potential implications for individual host fitness. A notable 63 

example is the effect of increased temperature leading to reduced gut bacterial diversity in the 64 

common lizard (Zootoca vivipara), also potentially associated with a reduction in survival 65 

(Bestion et al. 2017). In teleosts (bony fish), diet composition and quality of surrounding waters 66 

have been both linked with variation in the gut microbiome composition (Talwar et al. 2018). 67 

Effects of diet composition and water quality can potentially be compounded by the impact of 68 

human activities (such as selective fisheries and habitat disruption). Understanding the changes 69 

in the gut microbiome and their potential influences on host health and survival is essential to 70 

fully understand mechanisms driving changes in impacted populations. 71 

 It is now well recognised that the gut microbial community (i.e. broadly defined here 72 

by its taxonomic composition and diversity) is driven by host’s genetic background (Spor et al. 73 

2011, Smith et al. 2015, Leopold and Busby 2020) and environmental factors such as 74 
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population density and diet (Bolnick et al. 2014, Eckert et al. 2020, Mogouong et al. 2020). 75 

This holds true in fish (Talwar et al. 2018, Kim et al. 2021). However, host’s genotypes and 76 

environmental conditions are often in interaction, making it challenging to disentangle their 77 

respective effects on the microbiome. So far, the roles of the individual genotype and the 78 

environment in shaping gut microbiome communities have been mainly studied independently 79 

(but see Navarrete et al. 2012), and we lack assessments of genotype-by-environment effects 80 

(Spor et al. 2011, Talwar et al. 2018, Piazzon et al. 2020). Yet, such knowledge may be vital 81 

for pinpointing the factors driving variation in gut microbiome assemblages.  82 

Size-selective harvesting of wild populations by humans is among the most impactful 83 

disturbance factors, resulting in very fast rates of evolutionary change (Sanderson et al. 2022). 84 

Evolutionary changes driven by size-selective harvesting (van Wijk et al. 2012, Uusi-Heikkilä 85 

et al. 2017) have, in turn, the potential to reshuffle trophic interactions within food webs, with 86 

individuals from heavily harvested populations tending to display narrower diets (Hočevar and 87 

Kuparienen 2021). Simultaneously, reduced population density due to harvesting also increases 88 

resource availability, hence the quality of environmental conditions. Thus, size-selective 89 

harvesting provides an ideal context to explore genotype-by-environment interactions on the 90 

gut microbiome, and deserves more extensive research, especially in the context of fisheries.  91 

Here, we used a replicated pond mesocosm experiment to test at what extent changes 92 

in the composition and diversity of the gut microbiota of medaka (Oryzias latipes) are driven 93 

by the interaction between evolutionary responses to size-selective harvesting and 94 

environmental conditions. Native to East Asian countries, the medaka is a small cyprinodont 95 

fish (adult length = 32 mm) that has a short generation time and is easily reared in the 96 

laboratory, making it an ideal species for selection experiments (Ruzzante and Doyle 1993, 97 

Renneville et al. 2020, Bouffet-Halle et al. 2021). The species is omnivorous with an animal-98 

based diet preference, but can also feed on diatoms and filamentous algae (Edeline et al. 2016). 99 
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We used two lines of medaka originating from a ten-generation size selection experiment, 100 

carried out under controlled laboratory conditions. The selection procedure consisted of 101 

mimicking either fishing mortality where only small-bodied individuals were allowed to 102 

reproduce (small-breeder SB line), or a more natural mortality regime rather favoring the 103 

reproduction of large-bodied individuals (large-breeder LB line) (Reneville et al. 2020, Le 104 

Rouzic et al. 2020). As we have previously reported, the LB and SB lines evolved opposite 105 

life-history traits and behaviors: small-breeder medaka grew slower, matured earlier and were 106 

less efficient foragers than the large-breeder medaka (Diaz Pauli et al. 2019, Evangelista et al. 107 

2021).  108 

We assessed how the genetic background of the two medaka lines interacted with light 109 

intensity and medaka population density to shape medaka’s gut microbiome composition and 110 

diversity. Based on life-history and foraging traits divergence between the two lines (Diaz Pauli 111 

et al. 2019, Evangelista et al. 2020, Evangelista et al. 2021), and that these traits are key drivers 112 

of gut microbiome variations in teleost fish (Talwar et al. 2018), we hypothesized that the gut 113 

microbial community would diverge between SB and LB medaka. We further hypothesized 114 

that gut microbiome differences between the two lines would be more pronounced under 115 

suboptimal conditions, i.e. when access to food resources is limited (Reese and Dunn 2018, 116 

Varg et al. 2021). Finally, because microbiome diversity could be important for host fitness, 117 

we evaluated whether fitness proxies (i.e. body growth rate and body condition) were 118 

associated with variations in microbiome diversity (Bolnick et al. 2014). 119 

 120 

Methods 121 

Size-dependent selection and fish rearing 122 

The two medaka lines were size-selected over 10 generations under identical laboratory 123 

conditions to ensure that differences between lines were genetically-induced. Specifically, 124 
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medaka were kept in 3-L tank at similar density (14 – 17 fish per tank), and at the same 125 

temperature (26°C) and photoperiod (14 h Light / 10 h Dark). They were fed ad libitum with a 126 

mixed diet of dry food and living brine shrimp Artemia salina and/or Turbatrix aceti. These 127 

standardized environmental conditions ensured that phenotypic differences among the selected 128 

lines reflected a genetically-based, evolutionary divergence in response to size-selective 129 

harvesting alone (Le Rouzic et al. 2020, Renneville et al. 2020). 130 

The selection procedure consisted in removing the largest or the smallest breeders, thus 131 

producing two lines with distinct life-history strategies: the small-breeder line where only 132 

small-bodied individuals were allowed to reproduce (resulting in slower growth rate and earlier 133 

maturation), and the large-breeder lines (resulting in faster growth and delayed maturation). 134 

Specifically, size selection was both family- and individual-based. At 60 day-post-hatching 135 

(dph), families with the largest (large-breeder line) or smallest (small-breeder line) average 136 

standard body length (SL) were kept. Within these families, at 75 dph, the largest-bodied 137 

(large-breeder line) or the smallest-bodied (small-breeder line) individuals were used as 138 

breeders for the next generation (further details available in Renneville et al. 2020). On average, 139 

at 75 dph, SL was 20.7 mm in small breeders and 22.0 mm in large breeders (a 5.7 % 140 

difference), and the probability of being mature was 91.7% in small breeders and 77 % in large 141 

breeders (a 18.0 % difference) (Renneville et al. 2020). 142 

 In June 2017, experimental populations were created using fish from the eleventh 143 

generation. Specifically, for each line, 180 mature fish (initial standard body length: mean ± 144 

SD; SLi in small-breeder = 18.9 mm ± 1.4; SLi in large-breeder = 19.4 mm ± 1.4; ANOVA: F1, 145 

358 = 13.70, P < 0.001) from distinct families were selected to generate 24 experimental 146 

populations with limited inbreeding (mean kinship coefficient = 0.23 ± 0.1 and 0.17 ± 0.1 SE 147 

in LB and SB lines, respectively; further details available in Le Rouzic et al. 2020). Selected 148 

fish were anaesthetized with MS-222 and marked using visible implant elastomer (VIE; 149 
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Northwest Marine Technology, Shaw Island, WA, USA) to render each fish individually 150 

identifiable and to allow the calculation of fitness-related traits. Fish from the same 151 

experimental population were pooled in a 3 L tank and maintained at the laboratory until the 152 

beginning of the experiment when they were released into an outdoor mesocosm. 153 

 154 

Outdoor mesocosm experiment 155 

The outdoor experiment was conducted at the CEREEP-Ecotron Ile de France (Saint-Pierre-156 

les-Nemours, France; cereep.bio.ens.psl.eu) using 48 mesocosms (500 L, 0.8 m deep, 1.0 m 157 

diameter) arranged in 5 blocks. All mesocosms were filled simultaneously from 4 to 6 April 158 

2017 with a mix of dechlorinated tap water (100 L) and oligotrophic water from a local pond 159 

(300 L). The pond water was pre-filtered through 150 μm mesh to remove large benthic 160 

invertebrates, zooplankton and debris. The mesocosms were supplied with 2 L of mature 161 

sediment mixture including benthic invertebrates (mainly Ephemeroptera and Chironomidae 162 

larvae, Planorbidae, Hydrachnidia, Nematoda and Ostracoda) and 2 L of homogenized mixture 163 

of zooplankton (Copepoda and Cladocera) collected from local ponds. In each mesocosm, two 164 

floating shelters made of wool threads (30 cm length) provided spawning substrate and two 165 

floating brushes made of plastic threads provided protection for larvae. Each mesocosm was 166 

then covered with a shading net (see details below) and given 3 months to mature before fish 167 

were introduced. On 12 June, all mesocosms were enriched with 2 mL of a liquid mixture of 168 

0.32 μg P L-1 as KH2PO4 and 6.32 μg N L-1 as NaNO3 to favor primary production. 169 

 On 4 July 2017, large- and small-breeder fish were released into the outdoor mesocosms 170 

under contrasting environmental conditions. Specifically, we applied two densities (high 171 

density, HD: 12 fish per mesocosm or 3.2 mg fish L−1 ± 0.3 SD; low density, LD: 3 fish per 172 

mesocosm or 0.9 mg fish L−1 ± 0.1 SD; female-biased sex ratio of 2:1) and two light intensities 173 

using shade nets with different mesh size that allowed the passage of 92% (high light, HL) and 174 
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70% of ambient light (low light, LL). Light supply was used to modulate primary production 175 

while avoiding too high growth of filamentous algae. This factorial design resulted in a total 176 

of 8 treatment combinations (Fig. 1), each with 6 replicates.  177 

 178 

 179 

Figure 1 (a) Design of the mesocosm experiment used to test the effects of Line × Density and 180 
Line × Light intensity on fish gut microbiome. Fish from the Large-breeder (LB) line are in 181 
orange and fish from the Small-breeder (SB) line are in blue. (b) Pictures of the outdoor 182 
mesocosms (upper picture) and shade nets used to manipulate light intensity (lower pictures). 183 
 184 

Gut microbiome sampling and fitness trait measurements 185 

On 22 September 2017, marked fish were recaptured with hand nets (survival rate = 92%). A 186 

total of 126 marked fish were randomly and homogeneously sub-sampled among the 187 

mesocosms (number of fish per treatment: mean ± SD = 15.8 ± 0.9, min = 14, max = 17; 188 

number of fish per mesocosm: mean ± SD = 2.6 ± 0.6, min = 1, max = 4). After 24 hours 189 

fasting, each selected fish was measured for final standard length (SLf ± 1 mm), weighed (Wf 190 

± 1 mg), euthanized using MS-222 and dissected using disposable laboratory-grade razor 191 

blades. The whole intestine (including potential remaining content because of small size) was 192 

sampled and flash-frozen in liquid nitrogen for up to 5 hours, then stored in a -80℃ freezer 193 
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until DNA extraction. To limit contaminations during dissection, working environment and 194 

dissection tools were sterilised between each individual. 195 

Body condition of each selected individual was calculated using the residuals of the 196 

relationship between log10Wf and log10 SLf. The somatic growth rate (mm month-1) of each 197 

selected fish was calculated as follows: 198 

𝐺𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒 = (𝑆𝐿𝑓 − 𝑆𝐿𝑖) 𝑡⁄  199 

where SLf and SLi are the final and initial standard length, and t is the duration of the 200 

experiment (3 months). 201 

 202 

DNA extraction and sequencing 203 

After defrosting at room temperature, bacterial DNA from medaka gut samples was extracted 204 

using the DNeasy PowerSoil kit (Qiagen, Germany) according to the manufacturer’s 205 

instructions. The quantity and quality of purified DNA was checked using a NanoDrop 206 

spectrophotometer (Thermo Fisher Scientific, USA). Library preparation for Illumina 207 

sequencing was carried out according to the dual indexing protocol described by Fadrosh et al. 208 

(2014). This protocol uses the 319F and 806R primer set to amplify the V3-V4 region of the 209 

16S rRNA gene. DNA sequencing was done on an Illumina MiSeq apparatus in 300 bp PE 210 

mode. The DNA sequencing was carried out at the Norwegian Sequencing Centre (NSC), and 211 

sequence demultiplexing was done using the custom NSC “demultiplexer” software 212 

(https://github.com/nsc-norway/triple_index-demultiplexing/tree/master/src), which also 213 

removes barcode sequences and heterogeneity spacers. Among the 126 samples, seven 214 

displayed amplification failure, and one was removed from the dataset due to mislabelling. 215 

 216 

Bioinformatics analysis 217 
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Further sequence data processing was performed using the Divisive Amplicon Denoising 218 

Algorithm as implemented in the dada2 v1.16 R-package (Callahan et al. 2016). Taxonomic 219 

classification of amplicon sequence variants (ASVs) was carried out using the Ribosomal 220 

Database Project v16 training set (Wang et al. 2007). Using the R package phyloseq (v.1.40.0, 221 

McMurdie and Holmes 2013), we further filtered the data in order to remove any contaminant 222 

or artefactual sequences. First, ASVs with a Phylum-level assignment probability < 0.80 and 223 

those classified as chloroplast DNA were discarded from the dataset. Second, we excluded all 224 

ASVs with a total abundance lower than 0.005% of the dataset’s total abundance as they are 225 

most likely sequencing errors (Bokulich et al. 2013). Finally, samples with a total sequence 226 

reads abundance of < 5000 reads were removed from the dataset (n = 15). The final dataset 227 

consisted of 103 samples, comprising 627 ASVs for a total of 3,591,039 sequence reads. 228 

Sequencing depth ranged from a minimum of 5588 to 85470 reads per sample, with a mean of 229 

34864 reads per sample. Between-sample differences in library sequencing depth were 230 

standardized to the median sequencing depth (Appendix 1). 231 

 232 

Statistical analyses 233 

All statistical analyses were run with R v.4.2.1 (R Development Core Team, 2022) and with 234 

the Family level as taxonomic resolution because it was the best taxonomic level for 235 

discriminating (Appendix 2). Using phyloseq, we visualised gut microbiome composition 236 

using non-metric multidimensional scaling (NMDS) plots with Bray-Curtis distances. We used 237 

a PERMANOVA to test for differences in community composition according to Line × Density 238 

and Line × Light intensity. This was carried out using the adonis function in the vegan package 239 

(v.2.6.4, Oksanen et al. 2020), by implementing Bray-Curtis dissimilarities based on Hellinger 240 

transformed data and 999 permutations. Statistical tests indicated that there was no deviation 241 

from multivariate dispersion (P > 0.302; betadisper function from vegan). Based on these 242 
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community composition analyses, we agglomerated the data to family level and visualized the 243 

relative abundance of normalized data according to the Line treatment. Significant effects of 244 

Line or Line × Environment on gut microbiome community composition were further 245 

investigated using differential abundance analysis based on the linear discriminant analysis 246 

(LDA) on effect size (LEfSe) method. LEfSe was implemented in the microeco package 247 

(v.0.12.1, Liu et al. 2021) using a non-parametric Kruskal-Wallis test to detect differences in 248 

Family abundance (bootstrap test number = 100, significance threshold = 0.01). 249 

Gut microbiome diversity was estimated using the first three Hill numbers (q D; Chiu 250 

and Chao 2014, Alberdi and Gilbert 2019a) calculated using the R package hilldiv (v.1.5.1, 251 

Alberdi and Gilbert 2019b): q = 0 (species richness), q = 1 (the exponential of Shannon’s 252 

entropy index) and q = 2 (the inverse of the Simpson’s diversity index). Linear models were 253 

used to test the effect of Line × Density and Line × Light intensity on each Hill number. When 254 

significant, the interactions were further investigated using post hoc Tukey’s pairwise 255 

comparison using the emmeans package (v.1.8.1.1, Lenth 2021). Finally, Spearman 256 

correlations (adjusted for multiple testing using false discovery rate (fdr) correction) were used 257 

to test for associations between bacterial richness and diversity (i.e. the first three Hill numbers) 258 

and medaka fitness traits (i.e. body condition and somatic growth rate) using the corr.test 259 

function from the psych package (v.2.2.9, Revelle 2021). 260 

 261 

Results 262 

Genotype-driven variation in gut microbiome 263 

The two medaka lines had a distinct gut microbial community (PERMANOVA: F = 2.25, P = 264 

0.010, R2 = 0.021; Fig. 2a). Overall, 5 families (i.e. Aeromonadaceae, Neisseriaceae, 265 

Family_II, Rhodobacteraceae and unspecified Cyanobacteria) dominated the gut microbiome 266 

of all samples, comprising together 62% and 59% of the total bacterial abundance of LB and 267 
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SB medaka lines, respectively (Fig. 2c). Of these families, only Aeromonadaceae was 268 

significantly more abundant in LB than in SB medaka (LEfSe; P < 0.001; Fig. 2d), while the 269 

abundance of the four other families did not significantly differ between the two line. 270 

Differential abundance analyses also showed that Oxalobacteraceae, Verrucomicrobiales 271 

(unspecified Family) and Desulfovibrionaceae were significantly more abundant in the gut of 272 

LB than SB medaka (P = 0.006, P = 0.004, P = 0.008, respectively). In contrast, the gut 273 

microbiome of SB medaka had more Microbacteriaceae than that of LB ones (P = 0.009; Fig. 274 

2d). 275 

Table 1 Analysis-of-variance table derived from the linear models used to assess the effect of 276 
size-selected line, fish density and light intensity on gut microbiome diversity (q = 0 D, q =1 D and 277 
q =2 D). Significant P values are highlighted in bold. 278 
 279 
Responses Predictors Sum of Sq. Fdf P 

q = 0 D Intercept 338340 111.041 < 0.001 

 Line 21006 6.891 0.010 

 Density 1187 0.391 0.534 

 Light intensity 148 0.051 0.826 

 Line × Density 11306 3.711 0.057 

 Line × Light intensity 22238 7.301 0.008 

 Residuals 295573 —97 — 

q =1 D Line 1424 3.661 0.059 

 Density 196 0.501 0.479 

 Light intensity 173 0.451 0.506 

 Line × Density 531 1.371 0.245 

 Line × Light intensity 126 0.321 0.570 

 Residuals 37732 —97 — 

q =2 D Line 408.2 3.401 0.068 

 Density 5.7 0.051 0.828 

 Light intensity 1.4 0.011 0.915 

 Line × Density 105.4 0.881 0.351 

 Line × Light intensity 0.0 0.001 0.995 

 Residuals 116642.1 —97 — 

 280 

 281 

Gene-environment interaction-driven variation in gut microbiome  282 
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The interactions between medaka line and the environment (i.e. Line × Density and Line × 283 

Light intensity) had no significant effect on gut microbiome composition (PERMANOVA: F 284 

= 1.41, P = 0.131, R2 = 0.013 and F = 1.29, P = 0.166, R2 = 0.012, respectively). In contrast, 285 

gut microbial richness was modulated by the interaction between the medaka line and the 286 

environment (Table 1). Specifically, SB medaka had a higher bacterial richness (when q = 0) 287 

in the high-light intensity compared to the low-light treatment (Line × Light: Tukey post hoc: 288 

q = 0 DSB-HL vs. q = 0 DSB-LL: t97 = 3.59, P < 0.001; mean q = 0 D ± SE: 169 ± 11 and 114 ± 8, 289 

respectively), while bacterial richness of LB medaka did not change with light variation (Fig. 290 

1b; q = 0 DLB-HL = 141 ± 14, q = 0 DLB-LL = 145 ± 10). Additionally, LB medaka seemed to have a 291 

higher bacterial species richness than SB medaka, but only in the low-light treatment (Line × 292 

Light: Tukey post hoc: q = 0 DLB-LL vs. q = 0 DSB-LL: t97 = 1.97, P = 0.052). Other metrics of gut 293 

microbiome diversity (when q = 1 or 2) were not influenced by the interaction between Line 294 

and environmental conditions (Table 1). 295 

 296 
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Figure 2 (a) NMDS ordination (NMDS stress = 0.16) of variation in bacterial community 297 
composition of fish from the Large-breeder (LB; orange dots) and Small-breeder (SB; blue dots) 298 
lines. Data represents ordination based on Bray-Curtis distances among the 103 fish individuals. 299 
(b) Raincloud plot showing the light-intensity effect of Line on bacterial richness (q = 0 D). Dots 300 
represent the fish (n = 103), boxplots and half violin plots illustrate the probability density of the 301 
data. (c) Gut microbial taxonomic composition (Family level) of fish according to its selective 302 
background (Large-breeder line, LB; Small-breeder line SB). (d) Linear discriminant analysis 303 
(LDA) effect sizes representing the five ASVs (family level “f”) that significantly differ in 304 
abundance between the Large-breeder (orange) and Small-breeder (blue) lines. Significance 305 
differences (P < 0.01) between the two lines are depicted with asterisks (*** P < 0.001, ** P < 306 
0.01). 307 

 308 
Lack of correlation between microbiome and host fitness proxies 309 

No significant correlation was observed between gut microbiome diversity (estimated using 310 

the first three Hill numbers) and both medaka’s body condition and somatic growth (Spearman 311 

correlations: adjusted P > 0.374 for all; Appendix 3). 312 

 313 

Discussion 314 

Due to its pivotal role for host fitness and health, there has been a growing research interest in 315 

the factors driving gut microbiome variation in animal species. Yet, studies focusing on the 316 

genotype-by-environment effects on the gut microbiome remain, to our knowledge, very 317 

limited (Piazzon et al. 2020). Using size-selected medaka lines (large-breeder LB and small-318 

breeder SB) in a pond mesocosm experiment, we found that the gut microbial community 319 

composition differed between the two lines. In addition, the microbiome richness of SB medaka 320 

was influenced by light intensity, while that of LB remained unchanged regardless of the 321 

environmental conditions. Together, this is consistent with our prediction that evolutionary 322 

changes due to size-selective harvesting have the potential to shape the gut microbiome 323 

assemblage within harvested populations. Our results also suggest that the interaction between 324 

the genetic background of medaka (i.e. the selected line) and the environmental conditions is 325 

important. However, contrary to our prediction, variation in microbiome diversity was not 326 

associated with any of the measured fitness-related traits. 327 
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Our findings confirm observations from literature showing that genotype could drive 328 

gut microbiome composition among fish groups (Sevellec et al. 2018, Small et al. 2019, Smith 329 

et al. 2015). In our case, the largest difference in relative reads abundance was found for the 330 

Aeromonadaceae family which was almost 3 times more abundant in LB than in SB medaka 331 

(28.9% and 10.1%, respectively). Bacteria from the Aeromonas genus have been shown to be 332 

pathogenic for numerous fish species (Tomás 2012, Wang et al. 2018). Our previous findings 333 

from the same pond experiment did not indicate any difference in survival probability and 334 

somatic growth rate among introduced adults of the LB and SB lines (although LB medaka 335 

produced more offspring that grew faster), but suggested that adult and juvenile LB medaka 336 

foraged more overall (Evangelista et al. 2021). They were especially foraging more on benthic 337 

prey hidden in the sediments than the SB medaka (Evangelista et al. 2021). Although further 338 

investigation is required to back-up this hypothesis, increased abundance of Aeromonadaceae 339 

in LB might reflect distinct foraging strategies between the two lines, rather than changes in 340 

health conditions as Aeromonadaceae are known to be facultative aerobes and are mainly found 341 

in anoxic sediments (Tomás 2012, Laviad and Halpern 2016). Additionally, some Aeromonas 342 

display cellulolytic activity, which can be useful for the digestion of plant-based diet (Li et al. 343 

2016). One could hypothesize that a higher proportion of Aeromonadaceae in LB medaka 344 

could be associated with a more omnivorous feeding habit compared to SB medaka (Liu et al. 345 

2016). In addition, Verrucomocrobia found in greater quantities in LB would have a potential 346 

role as polysaccharide degraders in fresh water (Fuerst 2019). Altogether, our results suggest 347 

that even if the gut microbiome composition between the two lines differs, the mere description 348 

of microbiome diversity and composition is not sufficient. In fact, more targeted diet 349 

manipulation experiments between lines would be required in order to clearly identify whether 350 

adaptation to size selection could directly affect the gut microbiome, or indirectly through 351 

changes in diet. 352 
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Under low-light intensity, the gut microbiome of SB medaka showed a 34% decrease 353 

of bacterial richness compared to the high-light intensity treatment, and also presented a 354 

somewhat lower richness than in LB medaka, though this difference was not significant (P = 355 

0.052). This suggests that the gut microbiome diversity of fish selected for earlier maturation 356 

and slower growth rate (as is often the case with size-selective harvesting) is reduced when 357 

environmental conditions are not optimal. The underlying mechanisms of such genotype-by-358 

environment effects are hard to pinpoint and could arise from changes in the SB medaka 359 

themselves (e.g. light-induced changes in medaka behaviour or physiology that ultimately alter 360 

the gut microbiome), or environmental changes such as light-induced changes in diet or in the 361 

bacterial composition of water). But as we did not sequence the microbiome from the water 362 

used in the experimental ponds, we are not able to assess the extent to which potential co-363 

amplification of bacterial taxa from the environment (Talwar et al. 2018) could interfere with 364 

the composition of the gut communities, and thus bias our results. On the other hand, 365 

acquisition of gut bacteria through the water in fish must be common, suggesting that the 366 

magnitude of such bias should be rather small. It is also worth noting that studies suggest that 367 

there is no association between the gut microbiome of fish and that of the surrounding waters 368 

(Schmidt et al. 2015, Wang et al. 2018).  369 

Whether high microbial diversity matters for the host remains a central question in 370 

microbiome studies. For instance, Bolnick et al. (2014) found a positive effect of the gut 371 

microbial diversity on the body condition of laboratory-reared stickleback (Gasterosteus 372 

aculeatus), but no association between variation in microbial diversity and condition of wild 373 

stickleback. In our experiment, gut microbiome diversity was not associated with fitness-374 

related traits of medaka, perhaps because low diversity does not entail the loss of essential 375 

microbiome-mediated functions. Therefore, the lack of associations could simply reflect our 376 

yet limited understanding about the taxonomic identity and functional role of gut bacteria in 377 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.17.528956doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528956
http://creativecommons.org/licenses/by-nc-nd/4.0/


non-model organisms. Thus, changes in bacterial diversity might be associated with either 378 

positive or negative impact for the host according to the degree of decoupling between 379 

taxonomic identity, functional role and the environmental context (Bolnick et al. 2014). 380 

Overall, our results highlight the fact that our perception about gut microbiome benefits is also 381 

probably biased by data based on a very limited range of species (Hammer et al. 2019). 382 

Nonetheless, variation in the microbiome can impact the digestive capacity and body condition, 383 

and this diversity may act as an underlying mechanism for phenomic plasticity of the host 384 

(Alberdi et al. 2016). How changes in bacterial diversity translate into functional changes will 385 

require further investigation.  386 

Our study reveals that the gut microbiome of fish can be influenced by interactions 387 

between their genetic background and the environment. Studying genotype-by-environment 388 

effects on the gut microbiome may bring new perspectives into the role of microbiomes in eco-389 

evolutionary dynamics, as changes in gut microbial communities could translate into changes 390 

in ecosystem functioning and services (Graham et al. 2016, Dutton et al. 2021), including 391 

fisheries productivity (Gallo et al. 2020, Diwan et al. 2021). As the demand for fish for human 392 

consumption is increasing, we also claim that more research is needed to enhance our 393 

understanding of the possible effects of fisheries-induced evolution on the gut microbiome. 394 

Comparison of the gut microbiome of fish in relation to different management strategies (e.g. 395 

sustainable versus size-selective fisheries versus protected areas) may reveal important 396 

mechanisms influencing populations’ adaptability and resilience, and thus help restoring highly 397 

impacted fish stocks (Gallo et al. 2020). It is also important for future studies to reveal the 398 

functional consequence of changes in gut microbiome (Tarnecki et al. 2017), especially 399 

functions directly responsible for fish behaviour and fitness so that the target preservation of 400 

highly beneficial gut microbiomes within harvested populations could be incorporated as part 401 

of more sustainable fisheries practices. 402 
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 634 

Appendix 1: Rarefaction curves 635 

 636 

 637 

Figure S1 Rarefaction curves showing the number of ASV with increasing number of reads (Sequence sample size) (a) before and (b) after 638 

standardization to the median sequencing depth. Fish from the Large-breeder (LB) line are in orange (n = 52) and fish from the Small-breeder (SB) 639 

line are in blue (n = 51). 640 
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Appendix 2: Relative abundance of bacterial phyla in gut samples 642 

 643 

 644 

Figure S2 Gut microbial taxonomic composition (Phylum level) of fish according to its 645 

selective background (Large-breeder line, LB; Small-breeder line SB). As reported in other 646 

fish studies (Tanercki et al. 2017), dominant phylum of the medaka gut microbiome included  647 

Proteobacteria (60.5% and 59.2% of reads in LB and SB medaka, respectively), followed in a 648 

lesser percentage by Bacteroidetes (2.5 and 2.4%, respectively), Verrucomicrobia (2.0 and 3.2, 649 

respectively) and Actinobacteria (2.2 and 3.9%, respectively). Bacterial communities were also 650 

characterized by large relative abundance of Cyanobacteria (29.2% and 28.8%, respectively), 651 

while Firmicutes represented only 0.7% and 0.5% of reads, respectively. 652 
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Appendix 3: Correlations between medaka fitness trait and gut microbiome diversity 664 

 665 

 666 

Figure S3 Correlations between gut microbial diversity estimated using the first three Hill 667 

numbers (q D; species richness, exponential Shannon index and Reciprocal Simpson index) and 668 

(a-c) body condition estimated as the residuals of the relationship between log10Wf and log10 669 

SLf, and (d-f) somatic growth rate [mm month-1]) of fish from the Large-breeder (LB; orange 670 

dots, n = 52) and Small-breeder (SB; blue dots, n = 51) lines. None of the correlations were 671 

significant. 672 
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Appendix 4: Variation in gut microbiome according to the environment 686 

 687 

PERMANOVA showed a significant effect of light intensity on the gut microbial community 688 

(F = 1.80, P = 0.036, R2 = 0.017; Fig. S4.1a), but no effect of fish density (F = 1.38, P = 0.125, 689 

R2 = 0.013; Fig. S4.2a). The relative abundance of Moraxellaceae and Staphylococcaceae were 690 

more abundant in the gut of medaka living in the high-light, than in the low-light intensity 691 

treatment (LEfSe; P = 0.005 and P = 0.001, respectively). The opposite pattern was observed 692 

when considering unspecified Proteobacteria (P = 0.004), while the abundance of other 693 

families did not significantly differ between the two lines (Fig. S4.b-c).  694 

 695 

Figure S4 (a) NMDS ordination (NMDS stress = 0.16) of variation in bacterial community 696 

composition in (1) low or high light intensity (grey and yellow dots, respectively), and (2) low 697 

or high fish density (red and blue dots, respectively). Data represent ordination based on Bray-698 

Curtis distances among the 103 fish individuals. (b) Relative abundance of bacterial family 699 

according to light intensity conditions (high light, HL; low light, LL) (d) Plot of the 15 most 700 

important ASVs (family level “f”), evaluated according to the mean decrease in Gini impurity 701 

as determined by the random forest classifier. Significance differences (P > 0.01) between low 702 

(grey bar) and high (yellow bars) light intensity are depicted with asterisks (*** P < 0.001). 703 
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