
Witsenhausen’s Counterexample:

A View from Optimal Transport Theory

Yihong Wu and Sergio Verdú

Abstract— We formulate Witsenhausen’s decentralized
stochastic control setup as an optimization problem involving
the quadratic Wasserstein distance and the minimum mean-
square error. Classical results are recovered as immediate
consequences of transport-theoretic properties. New results
and bounds on the optimal cost are also obtained. In particular,
we show that the optimal controller is a strictly increasing
function with a real analytic left inverse.

I. INTRODUCTION

In [1] Witsenhausen constructed a linear quadratic Gaus-

sian (LQG) team problem with non-classical information

structure and showed that the linear controller is not neces-

sarily optimal. This serves as a counterexample to the con-

jectured optimality of linear controllers in LQG problems.
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Fig. 1. Witsenhausen’s decentralized stochastic control problem.

As illustrated in Fig. 1, Witsenhausen’s counterexample is

a two-stage decentralized stochastic control problem, where

the goal is to minimize the weighted average control cost

k2E
[

U2
1

]

+ E
[

X2
2

]

over all pairs of controllers γ1 and γ2
that are Borel measurable. According to the notation in [1],

let f(x) = γ1(x) + x and g(x) = γ2(x) and denote the

weighted control cost achieved by (f, g) by

J(f, g) = k2E
[

(f(X0)−X0)
2
]

(1)

+ E
[

(f(X0)− g(f(X0) +N))2
]

, (2)

where N ∼ N (0, 1) is independent of X0, whose distribution

is fixed and arbitrary.

For a given f , the optimal g is the minimum mean-square

error (MMSE) estimator of f(X0), i.e., the conditional mean,

given the noisy observation:

g∗f (·) = E [f(X0)|f(X0) +N = ·] . (3)

Therefore

min
g

J(f, g) = k2E
[

(f(X0)−X0)
2
]

+mmse(f(X0), 1).

(4)
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where

mmse(X,σ2) , min
g

E
[

(X − g(σX +N))2
]

(5)

= E [var(X|σX +N)] . (6)

Since (6) only depends on the distribution of X , we also

denote mmse(PX , σ2) = mmse(X,σ2). The properties of

the MMSE functional as a function of the input distribution

and the signal-to-noise-ratio have been studied in [2] and [3]

respectively.

Next we define the optimal cost functional. Introduce a

scale parameter by letting X0 = σX with X distributed ac-

cording to some probability measure P . Denote the optimal

cost by

J∗(k2, σ2, P ) , inf
f,g

J(f, g) (7)

= inf
f

k2E
[

(X0 − f(X0))
2
]

+mmse(f(X0), 1) (8)

= inf
f

k2σ2
E
[

(X − f(X))2
]

+ σ2
mmse(f(X), σ2). (9)

If we restrict the choices of f and g to be affine, the infimum

in (7) is denoted by J∗
a (k

2, σ2, P ), which we will refer to as

optimal affine cost. Direct computation shows that (see [1,

p. 141])

J∗
a (k

2, σ2, P ) = min
λ≥0

k2σ2(1− λ)2 varP +
λ2σ2

varP

1 + λ2σ2 varP
.

(10)

When the input is standard Gaussian, we simplify

J∗(k2, σ2) , J∗(k2, σ2,N (0, 1)). (11)

The same convention also applies to J∗
a (k

2, σ2).
The optimization in (9) the conventional formulation of

the Witsenhausen’s problem. In [1], it is shown that optimal

controller that attains the infimum in (9) exists for arbitrary

input distribution and is a non-decreasing function. More-

over, for Gaussian input distribution, Witsenhausen showed

that

J∗(k2, σ2) < J∗
a (k

2, σ2) (12)

at least in the regime of k = 1
σ

and sufficiently large

σ. The proof involves showing that a two-point quantizer

f(x) = sgn(x) yields strictly smaller cost than the best affine

controller. This construction has been further improved: [4]

lowered the cost by letting f(x) =
√

2
π
sgn(x), while [5]

using successively finer quantizers showed that the ratio

between the optimal cost and the optimal affine cost can

be arbitrarily large:

lim
σ→∞

J∗
a (σ

−2, σ2)

J∗(σ−2, σ2)
= ∞. (13)
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Determining the optimal controller remains an open problem.

Numerical algorithms that provide upper bounds on the

optimal cost have been proposed using neural networks [6],

hierarchical search [7], learning approach [8], etc. Based on

information-theoretical ideas, [9], [10] developed upper and

lower bounds that are within a constant factor using lattice

quantization and a joint-source-channel coding converse re-

spectively. For a review of other results see [11], [12].

Based on optimal transport theory, we take a new ap-

proach, which results in a concise formulation of Witsen-

hausen’s stochastic control problem in terms of the quadratic

Wasserstein distance and the MMSE functional. Capitalizing

on properties of the optimal transport mapping, Witsen-

hausen’s classical results can be recovered and extended with

much simpler proofs. In addition to various properties and

bounds on the optimal cost, we show that

1) For Gaussian input, the optimal controller is a strictly

increasing function with a real analytic left inverse.

Based on the numerical evidence in [6], it was believed

that a piecewise affine controller is optimal (see for ex-

ample [7, p. 384] and the conjecture in [10]). However,

our result shows that this is not the case.

2) For Gaussian input, (12) holds for any k < 0.564 and

sufficiently large σ. This improves the result in [1]

which only applies to the regime of k = 1
σ

.

3) For any input distribution, the best affine controller is

asymptotically optimal in the weak-signal regime (σ →
0).

II. OPTIMAL TRANSPORT THEORY

Optimal transport theory deals with the most economic

way of distributing supply to meet the demand. Consider the

following illustrative example [13, Chapter 3]: two bakeries

are located at x1 and x2, producing three and four units of

bread each day respectively. Three cafés, located at y1, y2
and y3, consume two, four and one units of bread daily

respectively. Assuming the transport cost is proportional to

the distance and the amount of bread, the question is how to

transport the bread from bakeries to cafés so as to minimize

the total cost. One feasible transport plan is illustrated in

Fig. 2, whose total cost is 2‖x1−y1‖+‖x1−y3‖+4‖x2−y2‖.

2

y1

1

y2

y3x1

x2
4

Fig. 2. Example of a transport plan.

Monge-Kantorovich’s probabilistic formulation of the op-

timal transportation problem is as follows: Given probability

measures P and Q and a cost function c : R2 × R
2 → R,

define

inf
PXY

{E [c(X,Y )] : PX = P, PY = Q} (14)

where the infimum is over all joint distributions (couplings)

of (X,Y ) with prescribed marginals P and Q. To see the

relationship between (14) and the optimal transport problem,

note that the example in Fig. 2 corresponds to

PX =
3

7
δx1

+
4

7
δx2

, PY =
2

7
δy1

+
4

7
δy2

+
1

7
δy3

(15)

PY |X=x1
=
2

3
δy1

+
1

3
δy3

, PY |X=x2
= δy2

, (16)

where δx is the Dirac measure (point mass) at x. The

transportation cost normalized by the total amount of bread

is exactly E [c(X,Y )] with c(x, y) = |x− y|.
Henceforth we limit the scope of the discussion to cost

function c : R2 → R. With c(x, y) = (x− y)2, the quadratic

Wasserstein distance is defined as follows:

Definition 1 ([13, Chapter 6]). The quadratic Wasserstein

space on R is defined as the collection of all Borel probabil-

ity measures with finite second moments, denoted by P2(R).
The quadratic Wasserstein distance is a metric on P2(R),
defined for P,Q ∈ P2(R) as

W2(P,Q) = inf
PXY

{‖X − Y ‖2 : PX = P, PY = Q} , (17)

where ‖X − Y ‖2 ,
√

E [(X − Y )2].

The W2 distance metrizes convergence in distribution and

of second-order moments, i.e., W2(PXk
, PX) → 0 if and

only if Xk
D−→X and E[X2

k ] → E[X2].
Let FP and F

−1
P denote the cumulative distribution func-

tion (CDF) and quantile function (functional inverse of the

CDF [14, Exercise II.1.18]) of P respectively. The infimum

in (17) is attained by a unique coupling P ∗
XY , which can be

represented by X = F
−1
P (U) and Y = F

−1
Q (U), for some

U uniformly distributed on [0,1]. The distribution function

of P ∗
XY is given by F ∗(x, y) = min{FP (x),FQ(y)} [15,

Section 3.1]. Therefore, the W2 distance is simply the L2

distance between the respective quantiles [16]:

W2(P,Q) =
∥

∥F
−1
P − F

−1
Q

∥

∥

2
. (18)

If P is atomless, the optimal coupling P ∗
Y |X is deterministic,

i.e., Y = f(X) with

f = F
−1
Q ◦ FP . (19)

The following properties of the Wasserstein distance (see

[17], [18] for proofs) are relevant to our analysis:

Lemma 1.

(a) (P,Q) 7→ W2(P,Q) is weakly lower semi-continuous.

(b) For any fixed P , Q 7→ W 2
2 (P,Q) is convex.

(c) W2(PaX , PaY ) = |a|W2(PX , PY ).
(d) W 2

2 (PX+x, PY+y) =
W 2

2 (PX , PY ) + (x− y)2 + 2(E [X]− E [Y ])(x− y).
(e)

∣

∣

√
varX −

√
varY

∣

∣

2 ≤ W 2
2 (PX , PY )− (E [X]− E [Y ])2

(20)

≤ varX + varY. (21)
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(f) For any strictly increasing function f : R → R,

W2(PX , Pf(X)) = ‖X − f(X)‖2. In particular, for all

a > 0, W2(PX , PaX) = |a− 1| ‖X‖2.

(g) Let mi(P ) denote the ith moment of P . Then

min
Q: varQ≤σ2

W2(P,Q) =
∣

∣

√
varP − σ

∣

∣, (22)

attained by the affine coupling f(x) = m1(P ) +
σ√
varX

(x−m1(P )).

(h) W2(P ∗Q,P ′ ∗Q) ≤ W2(P, P
′).

(i) W 2
2 (PX , δx) = varX + (E [X]− x)2.

In view of Lemma 1(d) and (f), the W2 distance between

Gaussian distributions is given by

W 2
2 (N (µ1, σ

2
1),N (µ2, σ

2
2)) = (µ1−µ2)

2+(σ1−σ2)
2, (23)

attained by an affine coupling: Y = µ2 +
σ2

σ1

(X − µ1).

III. TRANSPORT-THEORETIC FORMULATION OF

WITSENHAUSEN’S PROBLEM

We reformulate Witsenhausen’s counterexample in terms

of the Wasserstein distance by allowing randomized con-

trollers, i.e., relaxing the controller from a deterministic

function f to a random transformation (transition probability

kernel) PY |X .1 In fact, a concavity argument shows that such

relaxation incurs no loss of generality. Indeed, for a fixed g,

the weighted cost J(PY |X , g) is affine in PY |X . Therefore

the pointwise infimum infg J(PY |X , g) is concave in PY |X ,

whose minimum occurs on extremal points, i.e., deterministic

controllers. The fact that randomized policies do not help is

standard in stochastic decision problems (e.g., [19, Section

8.5] or [20, Theorem 4.1]).

Based on the above reasoning and (9), we obtain a new

formulation of Witsenhausen’s problem as:

J∗(k2, σ2, P ) = σ2 inf
PY |X

k2E
[

(X − Y )2
]

+mmse(Y, σ2)

(24)

= σ2 inf
Q

{

k2W 2
2 (P,Q) +mmse(Q, σ2)

}

,

(25)

which involves minimizing the MMSE incurred by a hypo-

thetical distribution Q penalized by its W2 distance to the

true distribution P .

Related problems to (25) have been studied in the partial

differential equations community. For example, maximizing

the differential entropy is considered in [21], [22]:

inf
Q

{

k2W 2
2 (P,Q)−h(Q)

}

, (26)

where h(Q) = −
∫

log q dQ denotes the differential entropy

of probability measure Q with density q. Solving (26) gives

a variational scheme to compute a discretized approximation

to the solution of Fokker-Planck equation [21]. Note that for

Gaussian P , the infimum in (26) is attained by a Gaussian Q
[22, p. 821]. This is because for a given variance, a Gaussian

1This is in the same spirit as Kantorovich’s generalization of Monge’s
original optimal transport problem, which allows only deterministic cou-
plings in (14).

Q minimizes W 2
2 (P,Q) and maximizes h(Q) simultane-

ously. Another problem involving energy minimization is

studied in [23]:

inf
Q

{

k2W 2
2 (P,Q) +

∫

ΨdQ

}

. (27)

Note that (26) and (27) are both convex optimization prob-

lems, because −h(Q) and
∫

ΨdQ are convex and affine in Q
respectively. Comparing (26) and (27) with (25), we see that

the difficulty in Witsenhausen’s problem lies in the concavity

of Q 7→ mmse(Q, σ2) [2, Theorem 2], which results in the

non-convexity of the optimization problem.

IV. OPTIMAL CONTROLLER

A. Existence

We give a simple proof of the existence of the optimal

controller:

Theorem 1. For any P , the infimum in (25) is attained.

Proof. In view of Lemma 1(g), Q can be restricted to

the weakly compact subset {Q : m2(Q) ≤ 4m2(P )} of

P2(R), where m2(·) denotes the second-order moment. By

Lemma 1(a), Q 7→ W2(P,Q) is weakly lower semicontinu-

ous, while Q 7→ mmse(Q, σ2) is weakly continuous for any

σ > 0 [2, Theorem 7]. The existence of the minimizer of

(25) then follows from the fact that lower semicontinuous

functions attain infimum on compact set.

The above proof is much simpler than Witsenhausen’s

original argument [1, Theorem 1], which involves proving

that an infimizing sequence of controller converges pointwise

and the limit is optimal. Note that Theorem 1 also holds for

non-Gaussian noise, as long as the noise has a continuous

and bounded density which guarantees the weak continuity

of MMSE [2, Theorem 7]. See also [2, Remark 3] for noise

distributions whose MMSE functional is discontinuous in the

input distribution.

B. Structure of the optimal controller

Any optimal controller is an optimal transport mapping

from P to the optimal Q. In view of (19), the optimal

controller is an increasing function. In case of P = N (0, 1),
the optimal controller is given by

f = F
−1
Q ◦ Φ, (28)

where Φ denotes the standard Gaussian CDF. As summarized

in Table I, various properties of the controller f can be

equivalently recast as constraints on the output distribution

Q. For example, using only affine controllers is equivalent

to restricting Q to Gaussian distributions. Observe that for

Gaussian P , there is an incentive for using non-linear control

(equivalently non-Gaussian Q). By Lemma 1(g), among all

distributions with the same variance, Gaussian Q minimizes

the W2 distance to P but maximizes the MMSE [3, Proposi-

tion 15]. Therefore it is possible that the optimal Q is non-

Gaussian.
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Output distribution Q Controller f

Gaussian affine

discrete piecewise constant

atomless strictly increasing

bounded supported bounded

symmetric odd

has smooth density smooth

TABLE I

RELATIONSHIP BETWEEN OUTPUT DISTRIBUTIONS AND CONTROLLERS.

C. Regularity of optimal controller

It is known that the optimal g as a MMSE estimator is

real analytic [1, Lemma 3]. The following result shows that

the optimal f is a strictly increasing piecewise real analytic

function with a real analytic left inverse. According to the

identity theorem of real analytic functions [24, Theorem

9.4.3, p. 208], piecewise affine functions do not have analytic

left inverses. Therefore we conclude that piecewise constant

or piecewise affine controllers cannot be optimal, disproving

a conjecture in [10, p. 21]. Nevertheless, since MMSE is

weakly continuous, the optimal cost can be approached

arbitrarily close by restricting Q to any weakly dense subset

of P2(R) (e.g., discrete distributions, Gaussian mixtures,

etc.) or restricting the controller f to any dense family of

L2(R, P ) (e.g., piecewise constant or affine functions).

Theorem 2. Let P has a real analytic strictly positive

density. Then

• Any optimal Q for (25) has a real analytic density

and unbounded support, with the same mean as P and

variance not exceeding varP + 4
k2σ2 .

• Any optimal controller f is a strictly increasing un-

bounded piecewise real analytic function with a real

analytic left inverse.

Proof. For notational convenience, assume that σ = 1. Let

Q be an minimizer of (25) and Y = f(X) is the associated

optimal coupling. Proceeding as in the proof of [21, Theorem

5.1], fix τ ∈ R and ξ ∈ C∞
c (R) arbitrarily. Perturb Y along

the direction of ξ by letting

Yτ = f(X) + τ ξ(X) (29)

and Qτ = PYτ
. Then

W 2
2 (P,Qτ )−W 2

2 (P,Q)

≤ E
[

(X − (f + τξ)(X))2
]

− E
[

(X − f(X))2
]

(30)

= 2τ E [ξ(X)(f(X)−X)] + τ2E
[

ξ2(X)
]

. (31)

It can be shown that the first-order variation on the MMSE

is

mmse(Qτ , σ
2)−mmse(Q, σ2)

= − τ E
[

(ϕ′ ∗ (η2 + 2η′)) ◦ f(X)ξ(X)
]

+ o(τ). (32)

where ϕ(x) = 1√
2π

e−
x
2

2 denotes the standard normal den-

sity, η = g′

g
is the score function of Z = Y +N and

g(z) = E [ϕ(z − Y )] (33)

is the density of Z. By the optimality of Q, we have

2k2 E [(f(X)−X)ξ(X)]

≥ lim inf
τ↓0

1

τ
k2(W 2

2 (P,Qτ )−W 2
2 (P,Q)) (34)

≥ E
[

(ϕ′ ∗ (η2 + 2η′)) ◦ f(X)ξ(X)
]

, (35)

where (34) and (35) follows from (31) and (32) respectively.

Replacing τ by −τ in (34) and by the arbitrariness of ξ, the

following variational equation holds P -a.e. (or equivalently

Lebesgue-a.e.):2

2k2(f − id) = (ϕ′ ∗ (η2 + 2η′)) ◦ f, (36)

where id(x) = x. In view of (19), f is right-continuous,

which implies that (36) actually holds everywhere.

An immediate consequence of the variational equation is

the regularity of the optimal controller. Let

h = id− 1

2k2
(ϕ′ ∗ (η2 + 2η′)). (37)

Then

h ◦ f = id, (38)

i.e., h is a left inverse of f . Therefore f is injective, hence

strictly increasing. Due to the analyticity of the Gaussian

density, ϕ′ ∗ (η2 + 2η′) is real analytic regardless of η [1,

Lemma 2]. Thus h is also real analytic. Note that f has at

most countably many discontinuities. We conclude that f is

piecewise real analytic.3 In view of the continuity of h, (38)

implies that the range of f is unbounded.

Next we show that Q is absolutely continuous with respect

to the Lebesgue measure. In view of Table I, the strict

monotonicity of f implies that Q has no atom. Let f−1 :
f(R) → R denote the inverse of f . Since f−1 = F

−1
P ◦ FQ,

(38) implies that FQ = FP ◦h holds on the entire range of f ,

whose closure is the support of Q. By assumption, FP is a

real analytic function. It follows that FQ is also real analytic,

i.e., Q has a density that is real analytic in the interior of

its support. The upper bound on varQ is a consequence of

applying Cauchy-Schwartz inequality to (36) (see [18] for

proofs).

Remark 1. The variational equation (36) has been formally

derived in [1, p. 140], where it is remarked that “this

condition is of little use”. However, combined with the

structure of optimal controller as optimal transport map,

interesting results can be deduced.

For Gaussian input, solutions to the necessary condition

(36) always exist, namely linear controllers. This has also

been observed by Witsenhausen [1, Lemma 14]. In view of

the analyticity result in Theorem 3, finding series approx-

imations to the solution of (36) is a reasonable attempt to

2Directly perturbing the distribution of Y results in the same variational
equation.

3Note that (38) alone does not imply that f is analytic. For a counterex-
ample, consider the analytic function h(x) = x3 − x. Let f be the inverse
of h restricted on |x| ≥ 1. Then (38) is satisfied but f has a discontinuity
at 0. To prove the analyticity of f is equivalent to show that Q is supported
on the entire real line.
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obtain good controllers. However, it can be shown that the

only polynomial solution to (36) is affine.

V. OPTIMAL COST

A. Properties

Theorem 3. P 7→ J∗(k2, σ2, P ) is concave, weakly upper

semi-continuous and translation-invariant. Moreover,

0 ≤ J∗(k2, σ2, P ) ≤ min{k2σ2
varP, σ2

mmse(P, σ2)} ≤ 1.
(39)

Proof. By (7), J∗(k2, σ2, ·) is the pointwise infimum of

affine functionals, hence concave. Weak semicontinuity fol-

lows from pointwise infimum of weak continuous functionals

(see the proof of [2, Theorem 6]). The middle inequality in

(39) follows from choosing Q to be either δm1(P ) or P .

The following result gives a lower bound on the optimal

cost of any symmetric distribution via the optimal cost of the

Rademacher distribution (random sign) B = 1
2 (δ1 + δ−1),

which has been explicitly determined in [1, Sec. 5] (see

Fig. 3):

J∗(k2, σ2, B) = min
b≥0

{

k2(b− σ)2 + b2 mmse(B, b2)
}

(40)

where b2 mmse(B, b2) =
√
2πa2ϕ(a)

∫ ϕ(y)
cosh(ay)dy.

Theorem 4. For any symmetric P ,

J∗(k2, σ2, P )

≥ sup
Q,Q′:

1

2
(Q+Q′)=P

sup
P

Y Y ′ :
PY =Q,P

Y ′=Q′

E
[

J∗(k2, σ2|Y − Y ′|2/4, B)
]

(41)

≥ sup
P

Y Y ′ :
PY =P

Y ′=P

E
[

J∗(k2, σ2|Y − Y ′|2/4, B)
]

. (42)

The proof of Theorem 4 follows from writing a symmetric

distribution as a scale mixture of the Rademacher distribu-

tion and concavity of the optimal cost. For symmetric P ,

choosing the coupling Y ′ = −Y in (42) recovers the lower

bound in [1, Theorem 3].

B. Monotonicity in signal power

Consider the following question: for a given input distribu-

tion P , does higher power necessarily require higher control

cost, i.e., for fixed k2 and P , is J∗(k2, σ2, P ) increasing in

σ2? Intuitively this should be true. However, any discrete

input with finite variance serves as an counterexample (see

Fig. 3 for binary input). To see this, by (39), J∗(k2, σ2, P ) ≤
σ2

mmse(P, σ2), which vanishes as σ → 0 or ∞.4 Therefore

J∗(k2, ·, P ) cannot be monotone for any discrete P .

Nonetheless, monotonicity in signal power holds for Gaus-

sian input, an immediate consequence of Theorem 3:

4As σ2 → ∞, σ2
mmse(P, σ2) converges to the MMSE dimension of

P , which is zero for all discrete P [26, Theorem 4].

2 4 6 8

0.1

0.2

0.3

0.4

J∗(1, σ2, B)

σ2

Fig. 3. J∗(1, σ2, B) against σ2 where B is the Rademacher distribution.

Corollary 1. (a) Noisy input costs more: For any distribu-

tion Q,

J∗(k2, σ2, P ∗Q) ≥ J∗(k2, σ2, P ) (43)

(b) For Gaussian input, σ2 7→ J∗(k2, σ2) is increasing.

Proof. Observe that P ∗ Q is a location mixture of P . In

view of the translation-invariance and concavity of J∗ in P ,

(43) follows from applying Jensen’s inequality. For (b), note

that J∗(k2, σ2) = J∗(k2, 1,N (0, σ2)). The desired mono-

tonicity then follows from (43) and the infinite divisibility

of Gaussian distribution.

From the above proof we see that, monotonicity also

holds for any stable input distribution [27] and any noise

distribution (not necessarily Gaussian).

C. Optimal cost: Gaussian input

Theorem 5. σ2 7→ J∗(k2, σ2) is increasing, subadditive and

Lipschitz continuous, with 0 ≤ ∂J∗

∂σ2 ≤ k2

k2+1 .

Proof. Since mmse(Q, ·) is decreasing,

J∗(k2, σ2)

σ2
= min

Q

{

k2W 2
2 (N (0, 1), Q) +mmse(Q, σ2)

}

(44)

is also decreasing in σ2. This implies the desired subaddi-

tivity. Another consequence is

∂J∗

∂σ2
≤ J∗

σ2
≤ ∂J∗

∂σ2

∣

∣

∣

∣

σ2=0

=
k2

k2 + 1
, (45)

where the last equality follows from (48) proved next.

D. Weak-signal regime

By the continuity of MMSE [3, Proposition 7], for all Q
with finite variance, mmse(Q, σ2) = varQ+o(1) as σ2 → 0.

By Lemma 1(g) and (25), for any P ,

lim
σ2→0

J∗(k2, σ2, P )

σ2
= min

Q

{

k2W 2
2 (P,Q) + varQ

}

(46)

= min
λ≥0

k2(
√
varP − λ)2 + λ2 (47)

=
k2

k2 + 1
varP, (48)
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attained by the affine controller f(x) = k2
√
varP

k2+1 (x −
m1(P )) +m1(P ).

E. Strong-signal regime

Fix k and let Q∗
σ be an optimizer of (25). Since J∗ ≤ 1, we

have W 2
2 (Q

∗
σ, P ) ≤ 1

k2σ2 , which implies that Q∗
σ

W2−−→ P as

σ2 → ∞. Therefore, the corresponding optimal controller

f∗
σ also converges to the identity function in L2(R, P ),

which, however, does not necessarily imply almost sure

convergence. Note that as σ → ∞, the asymptotically

optimal affine controller converges to the identity. This is

equivalent to setting Q = P . However choosing Q = P
is not necessarily asymptotically optimal, even though the

optimal output distribution Q∗
σ does converge to the input

distribution P . This is because Q∗
σ

W2−−→ P does not imply

that σ2
mmse(Q∗

σ, σ
2)−σ2

mmse(P, σ2) → 0. Indeed, it can

be shown [18] that for P = N (0, 1) and all k < 0.564,

lim
σ→∞

J∗(k2, σ2) < 1 = lim
σ→∞

J∗
a (k

2, σ2). (49)

VI. CONCLUDING REMARKS

We gave a transport-theoretic formulation of Witsen-

hausen’s decentralized stochastic control problem. The

Wasserstein metric (17) as well as the more general Monge-

Kantorovich cost functional (14) are particularly relevant to

decentralized stochastic decision problems with non-classical

information structure where the decision of the later-stage

controller only depends on the output distribution of the

controller in the earlier stage.

In addition to solving for the minimizer of (25) for

a given P , there are several interesting open problems.

Theorem 3 shows that P 7→ J∗(k2, σ2, P ) is concave, upper

semicontinuous and bounded. Therefore it makes sense to

investigate the worst-case input distribution, for instance,

by maximizing P 7→ J∗(k2, σ2, P ) under the constraint

varP ≤ 1 or supp(P ) ⊂ [−A,A]. It is not clear whether

the least favorable prior under the variance constraint is

Gaussian. Under the amplitude constraint, recall that under

bounded support constraint, the least favorable prior for the

mean-square error with Gaussian noise [28, p. 79] and the

capacity-achieving distribution of Gaussian channel [29] are

both finitely-supported. Using similar analyticity arguments,

it might be possible to show that the worst P supported on

a given compact interval is also finitely-supported.

We have shown that affine controllers are asymptotically

optimal in the weak-signal regime (σ → 0), but strictly

suboptimal in the strong-signal regime (σ → ∞) for all fixed

k < 0.564. An open question is whether affine controllers are

strictly suboptimal for all σ > 0 and k > 0. Since optimal

affine controllers satisfy the variational equation (36), they

are stationary points. Hence any proof of suboptimality based

on local perturbation will fail.
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[2] Y. Wu and S. Verdú, “Functional properties of MMSE,” in Proceedings

of 2010 IEEE International Symposium on Information Theory, Austin,
TX, June 2010.

[3] D. Guo, Y. Wu, S. Shamai (Shitz), and S. Verdú, “Estimation in
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[4] R. Bansal and T. Başar, “Stochastic teams with nonclassical informa-

tion revisited: When is an affine law optimal?” IEEE Trans. Autom.

Control, vol. 32, no. 6, pp. 554–559, Jun. 2002.
[5] S. Mitter and A. Sahai, “Information and control: Witsenhausen

revisited,” Learning, control and hybrid systems, pp. 281–293, 1999.
[6] M. Baglietto, T. Parisini, and R. Zoppoli, “Numerical solutions to

the Witsenhausen counterexample by approximating networks,” IEEE

Trans. Autom. Control, vol. 46, no. 9, pp. 1471–1477, Sep. 2002.
[7] J. Lee, E. Lau, and Y. Ho, “The Witsenhausen counterexample: A

hierarchical search approach for nonconvex optimization problems,”
IEEE Trans. Autom. Control, vol. 46, no. 3, pp. 382–397, 2002.

[8] N. Li, J. R. Marden, and J. S. Shamma, “Learning approaches to
the Witsenhausen counterexample from a view of potential games,”
in Joint 48th IEEE Conference on Decision and Control and 28th

Chinese Control Conference, Dec. 2009, pp. 157–162.
[9] P. Grover and A. Sahai, “Witsenhausen’s counterexample as Assisted

Interference Suppression,” International Journal of Systems, Control

and Communications, vol. 2, no. 1, pp. 197–237, 2010.
[10] P. Grover, S. Park, and A. Sahai, “The finite-dimensional Witsenhausen

counterexample,” Submitted to IEEE Trans. Autom. Control, 2010.
[11] Y. C. Ho, “Review of the Witsenhausen problem,” in Proceedings of

the 47th IEEE Conference on Decision and Control, Dec. 2008, pp.
1614–1619.
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