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WITT CLASSES OF INTEGRAL REPRESENTATIONS

OF AN ABELIAN 2-GROUP

DAVID E. GIBBS1

Abstract. In this paper the Witt groups of integral representations of an

abelian 2-group it, Wq(tt; Z) and W2(ir, Z) are calculated. Invariants are

listed which completely determine W^Z4; Z) and W2(Z4; Z) and can be

extended to the case -n = Z2*. If w is an elementary abelian 2-group, it is

shown that W2(ir; Z) = 0 and W0(ir; Z[{]) is ring isomorphic to the group

nniW(Z[{])(Hom(^Z2)).

In [1], Alexander, Conner, Hamrick and Vick studied the Witt classes of

integral representations of an abelian p-group; however, their results focused

on the case where p is an odd prime. In this paper, we study the case where

p = 2.
Our interest in this algebra stems from an interest in the bordism of

manifolds with a differentiable action of an abelian 2-group, say w, and the

Atiyah-Bott homomorphism ab: 0 „(tt) -^ Wn(m; Z) (cf. [3]) provides a very

convenient bordism invariant. The algebra which we will develop here pro-

vides the really essential information for a study along the lines of [3]. For

reasons of length, bordism related results will appear in a subsequent publi-

cation.

The groups Wn(Z2k; Z) are computed in §1, and we show that W0 has rank

2k~x + 1 and torsion subgroup isomorphic to Z2 while W2 is a free abelian

group of rank 2k~x - 1. Complete invariants for W+(Z4; Z) are exhibited in

§2; these will be applied to equivariant bordism theory elsewhere. In §3, we

show that for an arbitrary finite abelian 2-group m, the rank of Wk(ir; Z) is

equal to

i[Order(7T)(l - 1/2L) + (l + (~l)k/2) Order(Hom(77, Z2))],

where L = log2(Order(?r)) - dim HomfV, Z2). Furthermore the torsion

subgroup is isomorphic to the group ring Z2(Hom(7T, Zj)) if k = 0 and is

trivial if k = 2. In the case that m is an elementary abelian 2-group, we

establish the fact that Wk(ir; Z[\\) is ring isomorphic to the group ring

W(Z\\])(Hom(77, Z2)) if k = 0 and is trivial if k = 2.

Although the rank of Wk(m; Z) is in general quite large, the decomposition
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104 D. E. GIBBS

techniques of this paper together with the multisignature combine to comp-

letely determine its free part. The torsion subgroup is substantially more

tractable than one might fear in that it lies in the image of Wk(e(tt); Z),

where e(it) is the elementary abelian 2-group with the same number of

summands as it, under the monomorphism given by iterating the action of

each generator of e(ir) the necessary number of times to get an action of nt.

Finally, I would like to express my gratitude to my colleague Neal Stoltzfus

for patiently and most helpfully showing me the application of his work [9] to

my own and thereby simplifying this paper substantially.

1. In our calculation of Wm(ir, Z), the following lemma is essential.

Lemma 1.1 [1]. For any p-group it, W2(tt, Z) = W2(ir; Z[l/p]) and there is

a split short exact sequence

0-> W0(k; Z)^W0{tr; Z[l/p]) -> W{Zp) ->0.

We first want to calculate W0(Z2k; Z). To do so, let [V, T] represent a

given class in W0(Z2k; Z[\-]) and set 2j**-i = {x E V\T2 (x) = x) and

2f2*-i = {x G V\T2"'(x) = - x). Using the fact that T2"'' acts as an

isometry, we get an isomorphism

W0(Z2,-,Z[\])^W0(Z2,-,;Z[{])®W0-(Z2t-,Z[\]),

where the second summand consists of those inner product spaces with

Z2*-action of the form (2f2*->, T). We see immediately that our calculation

will submit to an inductive procedure once we have calculated

WQ~(Z2k\ Z[\]) and that is our next goal. To do this, we observe that, in the

usual way, an inner product space over Z\\\ with isometry T such that

T2k~\x) = - x is a module over Z[X2\X]/X2"~x + 1 = D, which is a Z[x2]

order in the algebraic number field of positive 2*th roots of unity Q [A] since

the 2*th cyclotomic polynomial is <b2k(X) = X2 +1. In fact, it is the

maximal Z\\\ order in Q[X]. We note that D is invariant under the natural

involution induced by complex conjugation on Q [X] and we may consider the

Witt group of Z)-valued Hermitian forms on finitely generated projective

Z)-modules, H(D). Conveniently, we then have the following theorem.

Theorem 1.2 [5], [4], [9]. There is a natural isomorphism W^(Z2t\ Z[¿]) at

H(D).

Proof. We first view elements of W0~(Z2k; Z[\-]) as Witt classes of

modules over D with inner products taking their values in Z [ \ ] in the way

suggested above. Then, using the Trace Lemma and the notation in its

formulation as Lemma 2.6 of [9], we let R = L = Z[\], A = K = D and s:

AT-> L be given by s(2;Lo~la,A') = 2*_1a0. All the conditions of the Trace

Lemma are now rather easily seen to be satisfied and our proof is complete.

It will be immediately useful for us to know that the Dedekind domain D is

unramified over Z\\\. However, using a classical theorem of Euler (cf. [8])

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WITT CLASSES OF INTEGRAL REPRESENTATIONS 105

and the fact that 2 is invertible,

A-X(D/Z\ i 1) = -^— D = -l—— D = D.
y   '    I2 if     <>2*(X) 2*-1(Xf"'-1

Here,

A-'(7)/Z[i]) = [e E ß[X]|traceß[A]/ß(eZ>) Q Z[\\)

is the inverse different [9] (complementary set to the trace in Lang's Algebraic

number theory). That D is unramified over Z[\] follows from the fact that

any ramified prime must divide the inverse different. In particular, D is

unramified over the fixed ring of the involution.

Now each conjugate pair of embeddings of Q[X] in the complex numbers

which preserves the involution yields a signature homomorphism a: 77(7)) ->

77(C) ss Z. Because <b2k(X) = X2 +1 has m = 2k~2 distinct conjugate

pairs of complex roots, there are 2k~2 such embeddings and thus the same

number of signatures. Since any signature is congruent to the rank modulo 2,

the homomorphism /-,(«,, . . ., nm) = n, - w, is trivial modulo 2 on the image

of the signature homomorphism (a,): 77(7)) -> Zm.

Theorem 1.3. 77(7)) is torsion free and determined by the signature invariant.

The possible signatures are given by the exact sequence

0^77(7)) ^Z^(Z2)m"S0.

Proof [9, Theorem 4.11]. Note that A"'(7)/Z[|]) = D because there are

no primes ramified over the fixed ring of D. Now, by Proposition 4.7 of [9],

H(D) = H(A~X(D/Z[j]))= Dm Kernel dm, the intersection in the last

term being taken over all involution invariant nondyadic maximal ideals.

There is exactly one dyadic prime ideal, (1 - X), in the ring of integers

R c Q[X]. By Proposition 4.9 of [9] any even dimensional form in 77(7))

must have trivial Hilbert symbol at all inert and split primes except (1 — X).

Let J be the ideal of even forms and ¿7: H (D) —> Z2 be the discriminant at the

dyadic prime (1 - X). Then there is an exact sequence

0->J n 77(7))<0^)(2Z)m©Z2"z= {±l}-*0,

where 77 is the Hilbert reciprocity map. This exact sequence yields the fact

that 77(7)) has elements with prescribed even signatures. Since a rank one

form <X + X~'> exists (the norm from Q[X] to Q of X + X-1 is a power of 2

and hence a unit in D), the theorem follows.

We have proved that W0(Z2i,; Z[{-]) is isomorphic to WQ(Z2k-\; Z[j-]) ©

(Zf~\ Now using the fact (cf. [3]) that W0(Z2; Z[\\) s Z © Z © Z2 © Z2

and Lemma 1.1, we get the next theorem.

Theorem 1.4. W0(Z2*; Z) s (zf~' + x © Z2.

En route to calculating W2(Z2k; Z), we note that there is an isomorphism
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W2(Z2k; Z[ { ]) - W2{Z2k-r, Z[x2])<$ W2  (Z2*; Z[ {- ]),

which is defined in exactly the same way as (1) above. Given (2^2*-', T) with

symplectic inner product (, ), we define a symmetric inner product

(x,y) = (x, T2   y),   where x,y E 2^2*-',

and thus a homomorphism

%:W2(Z2k;Z[x2])^W0-(Z2,;Z[x2]).

We observe that we can recover the original symplectic inner product by

simply verifying that (x,y) = <x, - 72* />, where x,y E 2ji*->. In fact, this

method of switching back and forth between symplectic and symmetric inner

product spaces gives us an isomorphism between W2(Z2k; Z[¿]) and

W0~(Z2t; Z[^]). This, together with the relatively easy observation (first

made by P. E. Conner) that W2(Z2; Z) = 0 and Lemma 1.1, yields the

following theorem.

Theorem 1.5. W2(Z2k; Z) is a free abelian group of rank 2k~x — 1.

2. This section is devoted to producing invariants which completely deter-

mine Wç(Z4; Z). As we noted in the introduction, the use of the multisigna-

ture and appropriate decompositions will take care of determining the free

abelian part of WJjt; Z) for it an abelian 2-group.

The case of W2(Z4; Z) is the easier of the two cases under consideration.

Here we simply note that the composite homomorphism

W2(Z4; Z)^W2(Z4; Z[ ± ]) - Wf (Z4; Z[\})

W0-(Z4;Z[i])1/2S-Sz (.)

is an isomorphism and sum up in the following theorem.

Theorem 2.1. W2(Z4; Z) is completely determined by the isomorphism (*).

We recall from §1 that W0(Z4; Z[j]) is isomorphic to

fV0(Z2; Z[{-]) © W0~(Z4; Z[\]) and take note of the fact (arising in part

from our calculations in §1) that W0(Z2; Z) is mapped monomorphically

onto a direct summand of WQ(Z2t; Z) by simply iterating the action of the

generator of Z2 to get an action of Z2*. Following the lead now of the above

and recalling Proposition 3 and Theorem 10 of [3], our next result follows:

Theorem 2.2. W0(Z4; Z) is completely determined by the invariants

(i)isgn: WV(Z4;Z[ i ])->Z,

(ii)sgn<x,>->|27:2,

(iii) sgn<x, 7»|2^2, and

(iv) lrs,where the invariant trs is given by taking two Reiner decompositions of

the integral form, the first with respect to T2 and the second is of FTi with

respect to T. In the second decomposition, the number of copies of Z(Z2) is

congruent to trs modulo 2.
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Before proceding, we want to indicate how the invariant trs should be

defined for W0(Z4; Z). Namely, it is the image of [2£], or equivalently [2T],

under the boundary homomorphism 3: W(Z[\~\) —» W(Z2) ss Z2. We should

further point out that Theorem 2.3 is easily extended to give invariants

completely determining If0(Z2*; Z) for any positive integer k. To do so, one

merely has to decompose rV0(Z2k; Z) in the manner performed in §1, use the

multisignature and, finally, the obvious version of trs.

3. We now employ the foregoing techniques to garner some information

about Wt(ir; Z[|]), where it is an abelian 2-group. Of course, Lemma 1.1

reassures us that we can translate this into knowledge of W„(77; Z) at will.

Theorem 3.1. Let 77 be an elementary abelian 2-group. Then W2(-n; Z) = 0

¿77^ W0(tt; Z[j-]) is ring isomorphic to the group ring W(Z[)2])(fc\om('n, Z2)).

Proof. To see that W2(tt; Z) = 0, we first view 77 as <7,> © • • • © (T„)

with T2 equal to the identity. Let [V, 77] represent an element of ^(77; Z[|]).

Decompose V into 2^ and 2f and note that 2£ and 2f^ are invariant under

T2, . . ., T„ because 77 is abelian. Now decompose 2£ and 2f with respect to

T2 and continue to decompose the result with respect to T3, T4, . . ., T„_2

and finally Tn_x. In this way we have decomposed [ V, 77] into a direct sum of

elements of W2(Z2; Z[\\) on which T¡, 1 < i < « — 1, acts as multiplication

by ± 1. Because W2(Z2; Z[j]) = 0, each such element of W2(Z2; Z\\~\) has a

splitter (a 7n-invariant submodule which is equal to its own annihilator) and

the direct sum of all these splitters provides us with a splitter for [ V, tt]. This

concludes the proof that W2(ir; Z[\\) and, hence, W2(m; Z) equals zero. The

proof that W0(tt; Z[|]) s W(Z[ j])(Hom(77, Z2)) involves the same kind of

decomposition. The isomorphism is given, after the decomposition has been

made with respect to Tx, . . . , Tn, by taking a typical summand, H^Zf^]), of

rV0(ir; Z[^]) corresponding to a certain isotropy subgroup of 77 and associa-

ting this summand with the element of Hom(77, Z2) which maps 7) into zero if

and only if Tt is in the isotropy subgroup. It is now a straightforward exercise

to prove that this is indeed a ring isomorphism and we omit the details.

Our remaining results on abelian 2-groups are obtained by simply pushing

the techniques of § 1 and this section a bit further in a rather obvious way. So

let 77 be an abelian 2-group, which we choose to write as a direct sum of cyclic

subgroups of nonincreasing orders as read from left to right. Writing 77 a Z2*

© Z2„ © 77', we observe as before that

W0(V; Z[\])» W0- (Z2* © Zr © 77'; Z[ \ ])

©W/0(z2i-,©Z2„©77';Z[|]), (2)

where the first summand is that on which the generator T of Z2* iterated 2k~ '

times, T2 , acts as multiplication by — 1. We now concentrate on

W0~(Z2i, © Z2„ © 77'; Z[j]). Just as in §1 we were able to view

W0~(Z2i,; Z[\\) as W(D) subject to the stipulation that the inner products
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take their values in Z\\\ we can as well view W0~(Z2k © Z2» © it'; Z[\\) as

W0(Z2n © it'; D), where ZT © it' acts as a group of O-module isometries and

the inner products continue to take all their values in Z [ \ ]. The advantage of

this construction is that we now can break up the action of ZT on a given

£>-module into an orthogonal direct sum of Z)-modules on which ZT acts as

multiplication by the various 2"th roots of unity. Repeating this procedure, we

arrive at the following lemma (with the aid of Theorem 1.3).

Lemma 3.2. IV0~(Z2k © ZT © it'; Z[\]) is a free abelian group of rank

{- Order(Tr).

Rewriting the order in which the summands occur as it becomes necessary

in order to continue having cyclic subgroups with nonincreasing orders, we

now work on the right-hand summand of (2) and deduce by induction that

rV0(TT; Z[\]) is isomorphic to the direct sum of rV0(e(ir); Z[\]) and a free

abelian group of rank \ Order(ir)[l + \ + ■ • ■ + l/2i_1], where e(-Tr) is the

elementary abelian 2-group with the same number of cyclic summands as it

and L = log2[Order(7r)] - dim Homz(7r, Z^. This gives us our next

theorems.

Theorem   3.3.    W0(ir; Z[j])   is   isomorphic   to   the   direct   sum   of

W(Z[\])(riom(ir, Z2))   and   a   free   abelian   group   of   rank    \[l —

1/2L] Orderi», where L = log2[Order(w)] - dim HomZ2(7r, Z^.

Theorem 3.4. W2(tt; Z[{-]) is a free abelian group of rank {-[I —

l/2£]Order(7r), where L = log2[Order(ir)] - dim HomZ2(7r, Z2).
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