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WLD: A Robust Local Image Descriptor 
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Abstract—Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, called the 

Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends not only on the change of a 

stimulus (such as sound, lighting) but also on the original intensity of the stimulus. Specifically, WLD consists of two 

components: differential excitation and orientation. The differential excitation component is a function of the ratio between two 

terms: one is the relative intensity differences of a current pixel against its neighbors; the other is the intensity of the current 

pixel. The orientation component is the gradient orientation of the current pixel. For a given image, we use the two components 

to construct a concatenated WLD histogram. Experimental results on the Brodatz and KTH-TIPS2-a texture databases show 

that WLD impressively outperforms the other widely used descriptors (e.g., Gabor and SIFT). In addition, experimental results 

on human face detection also show a promising performance comparable to the best known results on the MIT+CMU frontal 

face test set, the AR face dataset and the CMU profile test set. 

Index Terms—Pattern Recognition, Weber Law, Local Descriptor, Texture, Face detection  

——————————      —————————— 

1 INTRODUCTION

ECENTLY there has been much interest in object and 
view matching using local invariant features [27], 
classification of textured regions using micro textons 

[34] and in face detection using local features [47]. There 
are several studies to evaluate the performance of these 
methods, such as [30, 31, 33, 38]. These methods can be 
divided into two classes: one is a sparse descriptor, which 
first detects the interest points in a given image, and then 
samples a local patch and describes its invariant features 
[30, 31]; the other is a dense descriptor, which extracts 
local features pixel by pixel over the input image [33, 38].  

For the sparse descriptors, a typical one is the scale-
invariant feature transform (SIFT), introduced by Lowe 
[27]. It performs best in the context of matching and rec-
ognition due to its invariance to scaling and rotations [31]. 
Several attempts to improve the SIFT descriptor have 
been reported in the literature. Ke and Sukthankar devel-
oped the PCA-SIFT descriptor which represents local ap-
pearance by principal components of the normalized gra-
dient field [23]. Mikolajczyk and Schmid modified the 
SIFT descriptor by changing the gradient location orienta-

tion grid, as well as the quantization parameters of the 
histograms [31]. Dalal and Triggs proposed a “histogram 
of oriented gradients” (HOG) [12]. Lazebnik et al. pro-
posed a rotation invariant descriptor called the Rotation 
Invariant Feature Transform (RIFT) [24]. Bay et al. pro-
posed an efficient implementation of SIFT by applying 
the integral image to compute image derivatives, and 
quantifying the gradient orientations in a small number 
of histogram bins [4]. Winder and Brown learned an op-
timal parameter setting on a large training set to maxim-
ize the matching performance [48]. Mikolajczyk and Ma-
tas developed the optimal linear projection to improve 
the matching quality and speed of SIFT [32]. Likewise, in 
order to improve the efficiency of the local descriptor, 
Tola et al. replaced the weighted sum rule used in SIFT by 
sum of convolutions [44]. In addition, Cheng et al. pro-
posed the use of multiple support regions of different 
sizes surrounding a point of interest [11]. 

Among the most popular dense descriptors are the 
Gabor wavelet [28] and local binary pattern (LBP) [34]. 
The Gabor representation has been shown to be optimal 
in the sense of minimizing the joint two-dimensional un-
certainty in space and frequency [28]. The Gabor filters 
can be considered as orientation and scale tunable edge 
and line (bar) detectors, and the statistics of these micro-
features in a given region are often used to characterize 
the underlying texture information. The Gabor wavelet 
has been widely used in image analysis applications, in-
cluding texture classification and segmentation, image 
registration, motion tracking [28] and face recognition 
[53]. Another important dense local descriptor is LBP, 
which has gained increasing attention due to its simplici-
ty and excellent performance in various texture and face 
image analysis tasks [34]. Many variants of LBP have 
been recently proposed and have achieved considerable 
success in various tasks. Ahonen et al. exploited the LBP 
for face recognition [2]. Rodriguez and Marcel proposed 
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adapted LBP histograms for face authentication [40]. Tan 
and Triggs changed the thresholding means for face rec-
ognition under difficult lighting conditions [43]. Zhao and 
Pietikäinen proposed the local binary pattern on three 
orthogonal planes, and used it for dynamic texture recog-
nition [52]. Zhang et al. proposed the local Gabor binary 
pattern for face representation and recognition [53]. In 
addition, some researchers use these descriptors in a cross 
way. For example, Fei-Fei and Persona used SIFT in a 
dense sampling way [14] and Heikkilä et al. exploit LBP 
in a sparse way [18]. 

In this paper, we propose a simple, yet very powerful 
and robust local descriptor. This descriptor consists of 
two components: differential excitation and orientation. It 
is inspired by Weber's Law, which is a psychological law 
[21]. It states that the change of a stimulus (such as sound, 
lighting) that will be just noticeable is a constant ratio of 
the original stimulus. When the change is smaller than 
this constant ratio of the original stimulus, a human being 
would recognize it as a background noise rather than a 
valid signal. Motivated by this point, for a given pixel, the 
differential excitation component of the proposed Weber 
Local Descriptor (WLD) is computed based on the ratio 
between the two terms: one is the relative intensity differ-
ences of a current pixel against its neighbors (e.g., 3×3 
square region); the other is the intensity of the current 
pixel. With the differential excitation component, we at-
tempt to extract the local salient patterns in the input im-
age. In addition, we also compute the gradient orientation 
of the current pixel. That is, for each pixel of the input 
image, we compute two components of the WLD feature 
(i.e., differential excitation and gradient orientation). By 
combining the WLD feature per pixel, we represent an 
input image (or image region) with a histogram, which 
we call a WLD histogram hereinafter. In our case, the 
WLD feature is computed pixelwise. Thus, WLD is a 
dense descriptor. 

The proposed WLD descriptor employs the advantag-
es of SIFT in computing the histogram using the gradient 
and its orientation, and those of LBP in computational 
efficiency and smaller support regions. But WLD differs 
from SIFT and LBP distinctly. As mentioned above, the 
SIFT descriptor is a 3D histogram of gradient locations 
and orientations, in which two dimensions correspond to 
image spatial coordinates and the additional dimension 
to the image gradient orientation. As a sparse descriptor, 
SIFT computes only for the regions of interest (located 
around detected interest points) that have usually already 
been normalized with respect to scale and rotation. Tex-
ture classification with SIFT is performed using informa-
tion in these sparsely located interest regions, as in [13]. 
WLD, on the contrary, is a dense descriptor computed for 
every pixel, and depends on both the local intensity varia-
tion and the magnitude of the center pixel's intensity. 
Texture classification with WLD is carried out using 2D 
WLD histograms. Since WLD is computed around a rela-
tively small square region (e.g., 3×3), while SIFT is com-
puted around a relatively large region (e.g., 16×16) [27, 
11], the description granularity of WLD is much smaller 
than that of SIFT. That is to say, WLD is computed in a 

finer granularity than SIFT. The smaller size of the sup-
port regions for WLD makes it capture more local salient 
patterns. Furthermore, WLD can be easily extended to 
extract the multi-granularity features by multi-scale anal-
ysis techniques, as presented in Section 2.4.  

With regard to the LBP descriptor, it represents an in-
put image by building statistics on the local micro-pattern 
variations. These local patterns might correspond to 
bright/dark spots, edges and flat areas etc. In contrast, 
WLD first computes the salient micro-patterns (i.e., diffe-
rential excitation), and then builds statistics on these sa-
lient patterns along with the gradient orientation of the 
current point. 

Several researchers have used Weber’s Law in com-
puter vision, but not, as in this study, as a descriptor. 
Bruni and Vitulano used this law for scratch detection on 
digital film materials [8]. Phiasai et al. employed a Weber 
ratio to control the strength of a watermark [37].  

This paper is an extension of our previous work [10]. 
In this current paper, we further extend the original WLD 
to a multi-scale version in order to extract multi-
granularity features. We also provide a more in-depth 
theoretical analysis, and more extensive evaluations on 
WLD. The rest of this paper is organized as follows: in 
Section 2, we present the details of the proposed local 
descriptor WLD, and compare it with other existing me-
thods. In Sections 3 and 4, we carry out the experiments 
dealing with the applications of WLD in texture classifica-
tion and face detection. In Section 5, we discuss some is-
sues about the proposed descriptor. Section 6 concludes 
the paper. 

2 WLD FOR IMAGE REPRESENTATION 

In this section, we review Weber's Law and then detail 
the proposed WLD. Subsequently, we develop its multi-
scale analysis. In addition, we compare WLD with some 
existing descriptors. 

2.1 Weber's Law 

Ernst Weber, an experimental psychologist in the 19th 
century, observed that the ratio of the increment thre-
shold to the background intensity is a constant [21]. This 
relationship, known since as Weber's Law, can be ex-
pressed as: 

,
I

k
I

Δ
=  (1) 

where ∆I represents the increment threshold (just notice-
able difference for discrimination); I represents the initial 
stimulus intensity and k signifies that the proportion on 
the left side of the equation remains constant despite var-
iations in the I term. The fraction ∆I/I is known as the 
Weber fraction. 

Weber's Law, more simply stated, says that the size of 
a just noticeable difference (i.e., ∆I) is a constant proportion 
of the original stimulus value. So, for example, in a noisy 
environment one must shout to be heard while a whisper 
works in a quiet room. 
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2.2 WLD 

In this part, we describe the two components of WLD: 
differential excitation (ξ) and orientation (θ). After that we 
present how to compute a WLD histogram for an input 
image (or image region). 
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Fig. 1. Illustration of the computation of the WLD descriptor 

2.2.1 Differential Excitation 

We use the intensity differences between its neighbors 
and a current pixel as the changes of the current pixel. By 
this means, we hope to find the salient variations within 
an image to simulate the pattern perception of human 
beings. Specifically, a differential excitation ξ(xc) of a cur-
rent pixel xc is computed as illustrated in Fig. 1. We first 
calculate the differences between its neighbors and the 
center point using the filter f00:  

( ) ( )
1 1

00

0 0

,
p p

s i i c

i i

v x x x
− −

= =

= Δ = −∑ ∑  (2) 

where xi (i=0,1,…p-1) denotes the i-th neighbors of xc and 
p is the number of neighbors. Following hints in Weber’s 
Law, we then compute the ratio of the differences to the 
intensity of the current point by combining the outputs of 
the two filters f00 and f01 (whose output 01

sv  is the original 
image in fact): 
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01 .s

s

v
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G x =  (3) 

We then employ the arctangent function on Gratio(٠):  

( ) ( )arctan =arctan .ratio c ratio cG G x G x⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (4) 

Combining (2), (3) and (4), we have: 
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So, the differential excitation of the current pixel ξ(xc) is 
computed as: 
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Note that ξ(x) may take a minus value if the neighbor 
intensities are smaller than that of the current pixel. By 
this means, we attempt to preserve more discriminating 
information in comparison to using the absolute value of 
ξ(x). Intuitively, if ξ(x) is positive, it simulates the case 
that the surroundings are lighter than the current pixel. In 
contrast, if ξ(x) is negative, it simulates the case that the 
surroundings are darker than the current pixel. 
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Fig. 2. Comparison of the arctangent function and some sigmoid 
functions. Note that the output of arctan(·) is in radian measure. 

Differential excitation  
Fig. 3 The average histogram of the differential excitations on 2,000 
texture images. 

Discussion on Using Arctangent Function 
As shown in (4), we use the arctangent function       

Garctan(٠) to compute ξ(xc). We plot the curve of this func-
tion in Fig. 2. Here, we use this function since it can limit 
the output to prevent it from increasing or decreasing too 
quickly when the input becomes larger or smaller.  

One optional filter is a logarithm function, which 
matches well a human being’s perception. However, it 
cannot be used here since many outputs of (2) are nega-
tive. Another optional filter is a sigmoid function:  

1
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−
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+
 (7) 

 where β>0. It is a typical neuronal non-linear transfer  
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Fig. 4. An illustration of a WLD histogram for a given image, (a) H is concatenated by M sub-histograms {Hm}(m=0, 1, …, M-1). Each Hm is 
concatenated by T sub-histogram segments Hm,t (t=0, 1, …, T-1). Meanwhile, for each column of the histogram matrix, all of the M segments 
Hm,t (m=0, 1, …, M-1) have the same dominant orientation Фt. In contrast, for each row of the histogram matrix, the differential excitations ξj of 
each sub-histogram segment Hm,t (t=0, 1, …, T-1) belong to the same interval lm. (b) A sub-histogram segment Hm,t. Note that if t is fixed, for 
any m or s, the dominant orientation of a bin hm,t,s is fixed (i.e., Фt). 

function, and is widely used in artificial neural networks 
[3]. Both arctangent and sigmoid functions have similar 
curves, as shown in Fig 2, especially when β=2. In our 
case, we use the former for simplicity. 

As shown in Fig. 3, we plot an average histogram of 
the differential excitations on 2,000 texture images. One 
can find that there are more frequencies at the two sides 
of the average histogram (e.g., [-π/2, -π/3] and [π/3, 
π/2]). It results from the two factors: one is the delimita-
tion effect of the arctangent function, as shown in Fig. 2; 
the other is the approach used in computing the differen-
tial excitation ξ of a pixel (i.e., a sum of the difference ra-
tios of p neighbors against a central pixel), as shown in 
(6). However, it is valuable for a classification task. For 
more details, please refer to Section 2.2.4, Sections 3 and 4. 

2.2.2 Orientation 

As shown in Fig. 1, the orientation component of WLD is 
the gradient orientation as in [27], which is computed as: 
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where 10

sv and 11

sv  are the outputs of the filters f10 and f11: 
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For simplicity, θ is further quantized into T dominant 
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where θ∈ [-π/2, π/2] and θ ′ ∈ [0, 2π]. This mapping con-
siders the value of θ, computed using (8), and the sign of 

10

sv and 11

sv . The quantization function is then as follows:  

Фt=fq(θ ′ )=
2t

T
π , and 

1
mod , .

2 / 2
t T

T

θ
π
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 (11) 

For example, as shown in Fig. 1, if T=8, these T domi-
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nant orientations are Фt=(tπ)/4, (t=0,1,…,T-1). In other 
words, those orientations located within the interval [Фt-
π/T, Фt +π/T] are quantized to Фt. 

2.2.3 WLD Histogram 

The idea of representing an image by histogram of gra-
dient and orientations has been used in biologically 
plausible vision systems, and in object detection and rec-
ognition [1, 5, 10, 32]. Motivated by this idea, as shown in 
Fig. 1, we first compute each pixel’s differential excitation 
(ξj) using (6), and orientation (Фt) using (11). As shown in 
Fig. 2, we then compute the 2D histogram {WLD(ξj, Фt)}, 
(j=0,1,…N-1, t=0,1,…,T-1, N is the dimensionality of an 
image and T is the number of the dominant orientations, 
as mentioned in Section 2.2.2. Note that the size of this 2D 
histogram is T×C, where C is the number of cells in each 
orientation (for more details of this parameters, please 
refer to the following part of this section). In other words, 
in this 2D histogram, each column corresponds to a do-
minant orientation Фt, and each row corresponds to a 
differential excitation histogram with C bins. Thus, the 
intensity of each cell corresponds to the frequencies of a 
certain differential excitation interval on a dominant 
orientation. 

To obtain a more discriminative descriptor, the 2D his-
togram {WLD(ξj, Фt)} is further encoded into a 1D histo-
gram H. Specifically, given the 2D histogram {WLD(ξj, 
Фt)} of an image, as shown in Fig. 4 (a), we project each 
column of the 2D histogram to form a 1D histogram H(t) 
(t=0, 1,…,T-1). That is, we regroup the differential excita-
tions ξj into T sub-histograms H(t), each sub-histogram 
H(t) corresponding to a dominant orientation (i.e., Фt). 
Subsequently, each sub-histogram H(t) is evenly divided 
into M segments, i.e., Hm,t, (m=0,1,...,M-1, and in our im-
plementation we set M=6). All of these sub-histogram 
segments Hm,t form a histogram matrix. Each column cor-
responds to a dominant orientation, and each row corres-
ponds to a differential excitation segment (i.e., having 
similar differential excitation values). The histogram ma-
trix is then reorganized as a 1D histogram H. Specifically, 
each row of the histogram matrix is concatenated as a 
sub-histogram Hm (i.e., Hm={Hm,t}, t=0,1,…,T-1). Concate-
nating the resulting M sub-histograms, we have the 1D 
histogram: H={Hm}, m=0,1,...,M-1. 

Note that after each sub-histogram H(t) is evenly di-
vided into M segments, the range of differential excita-
tions ξj (i.e., l=[-π/2, π/2]) is also evenly divided into M 
intervals lm (m=0,1,...,M-1). Thus, for each interval lm, we 
have lm=[ηm,l, ηm,u]. Here, the lower bound ηm,l=(m/M-1/2)π 
and the upper bound ηm,u =[(m+1)/M-1/2]π. For example, 
l0=[-π/2, -π/3]. 

Furthermore, as shown in Fig. 4 (b), each sub-
histogram segment Hm,t is composed of S bins, i.e., 
Hm,t={hm,t,s}, s=0,1,…,S-1. Herein, hm,t,s is computed as:  
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where the subscripts m, t of , ,m t sh  are computed as fol-

lows: m is determined according to the interval to which 

the value of jξ belongs, i.e., j mlξ ∈ ; t is the index of quan-

tized orientation, i.e., ( )t q jf θ ′Φ = , and t is computed as in 

(11); and δ(٠) is the Kronecker delta function defined as 
follows: 

1 is true
( ) .

0 otherwise

X
Xδ

⎧
= ⎨
⎩

 (13) 

Intuitively, hm,t,s means the number of the pixels whose 
differential excitations ξj belong to the same interval lm, 

and orientations jθ ′  are quantized to the same dominant 

orientation Фt and that the computed index Sj is equal to 

s. Meanwhile, , ,( ) /m u m l Sη η−  is the width of each bin, and 

,

, ,

1
( )

( ) /
j m l

m u m l S
ξ η

η η
−

−
 is linear mapping, used to map 

the differential excitation to its corresponding bin since 
the values of Sj are of real. Note that, as shown in Fig. 4 
(a), for the number of the cells in each column of the 2D 
histogram {WLD(ξj, Фt)}, we have C=M×S. 

We segment the range of ξ into several intervals due to 
the fact that different intervals correspond to the different 
variances in a given image. For example, given two pixels 
Pi and Pj, if their differential excitations ξi∈ l0 and ξj∈ l2, 
we say that the intensity variance around Pi is larger than 
that of Pj. That is, flat regions of an image produce smaller 
values of ξ while non-flat regions produce larger values. 
However, besides the flat regions of an image, there are 
two kinds of intensity variations around a central pixel 
which might lead to smaller differential excitations. One 
is the clutter noise around a central point; the other is the 
“uniform” patterns as shown in [34]. Meanwhile, the lat-
ter provides a majority of variations in comparison to the 
former, and the latter can be discriminated by the orienta-
tions. 

Here, we let M=6 for the reason that we attempt to use 
these intervals to approximately simulate the variances of 
high, middle or low frequency in a given image. That is, 
for a pixel Pi, if its differential excitation ξi∈ l0 or l5, we say 
that the variance near Pi is of high frequency; if ξi∈ l1 or l4, 
or ξi ∈ l2 or l3, we say that the variance near Pi is of middle 
frequency or low frequency, respectively. 

2.2.4. Weight for a WLD Histogram 

Intuitively, one often pays more attention to the regions 
of high variances in a given image compared with the flat 
regions. So, the different frequency segments Hm should 
play different roles in a classification task. Thus, we can 
assign different weights to different segments Hm for a 
better classification performance. 

Table 1 Weights for a WLD histogram 

 H0 H1 H2 H3 H4 H5 

Frequency percent 0.2519 0.1179 0.1186 0.0965 0.0875 0.3276 

Weights ( mω ) 0.2688 0.0852 0.0955 0.1000 0.1018 0.3487 

 
For weight selection, a heuristic approach is to take in-

to account the different contributions of the different 
segments Hm (m=0,1,…,M-1). First, by computing the rec-
ognition rate on a collected texture dataset from the In-
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ternet for each sub-histogram Hm separately, we obtain M 

rates R={rm}; then, we set each weight /m m ii
r rω = ∑ , as 

shown in Table 1. Simultaneously, in this table, we also 
collect statistics on the percentage of frequencies of each 
sub-histogram. From this table, one can find that these 
two groups of values (i.e., frequency percentage and 
weights) are similar. In addition, a high frequency seg-
ment H0 or H5 includes more frequencies (cf. Fig. 3 for 
more details) than the middle or low frequency segments. 

Note that a high frequency segment H0 or H5 taking a 
larger weight is consistent with the intuition that a good 
classification feature should pay more attention to the 
salient variations of an object. Here, besides the large 
changes at the edges or occlusion boundaries within an 
image, the approach of computing differential excitation 
of a pixel (i.e., a sum of the differences of p neighbors 
against a central pixel) further contributes to a larger 
weight of H0 or H5. However, a side effect of the weight-
ing approach might enlarge the influence of noise. One 
can avoid this disadvantage by removing a few bins at 
the end of high frequency segments, that is, the left end of 
H0,t and the right end of HM-1,t (t=0,1,…T-1). 

Although the weights shown in Table 1 are computed 
from the texture classification, our experiments show that 
they are also useful for face detection, since faces can be 
seen as a composition of micro-patterns which are well 
described by a local operator [2]. 

2.3 Characteristics of WLD 

The proposed descriptor, WLD, is based on Weber’s Law. 
It has several advantages, such as detecting edges ele-
gantly, robustness to noise and illumination change, and 
its powerful representation ability. 

WLD is based on a physiological law. It extracts fea-
tures from an image by simulating a human sensing 
his/her surroundings. Specifically, as shown in Fig 1, a 
WLD uses the ratio of the intensity differences 00

sv  to 01

sv , 
motivated by Weber’s Law. As expected, WLD gains po-
werful representation ability for textures. 

 

 
Fig. 5. The upper row contains original images, and the bottom row 
shows the filtered images by the proposed WLD. The value of the 
intensity in the filtered image is the differential excitation scaled to [0, 
255] for visualization purpose. 

The detected edges match the subjective criterion ele-
gantly since WLD depends on the perceived luminance 
difference. For example, as shown in (2), WLD preserves 
the differences ( 00

sv ) between its neighbors and a center 

pixel. Sometimes 00

sv  may be quite large. But if 00

sv / 01

sv  is 
smaller than a noticeable threshold, there is not a noticea-
ble edge. In contrast, 00

sv  may be quite small. But if 
00

sv / 01

sv  is larger than a noticeable threshold, there is a 
noticeable edge. In Fig. 5, we show some filtered images 
produced by WLD, from which one could conclude that a 
WLD extracts the edges of images perfectly even with 
heavy noise (Fig. 5, middle column). Furthermore, the 
results of texture analysis show that much of the discri-
minative texture information is contained in high spatial 
frequencies such as edges [34]. Thus, the WLD works well 
to obtain a powerful feature for textures. 

WLD is robust to noise appearing in a given image. 
Specifically, a WLD reduces the influence of noise, as it is 
similar to the smoothing in image processing. As shown 
in Fig. 1, a differential excitation is computed by a sum of 
its p-neighbor differences to a current pixel. Thus, it re-
duces the influence of noisy pixels. Moreover, the sum of 
its p-neighbor differences is further divided by the inten-
sity of the current pixel, which also decreases the influ-
ence of noise in an image. For more details, please refer to 
Section 5.5. 

WLD has been developed to reduce the effects of illu-
mination change. On the one hand, it computes the dif-
ferences 00

sv  between its neighbors and a current pixel. 
Thus, a brightness change in which a constant is added to 
each image pixel will not affect the differences values. On 
the other hand, WLD performs the division between the 
differences 00

sv  and 01

sv . Thus, a change in image contrast 
in which each pixel value is multiplied by a constant will 
multiply differences by the same constant, and this con-
trast change will be canceled by the division. Therefore, 
the descriptor is robust to changes in illumination.  

Furthermore, regrouping the differential excitation and 
orientation into a 2D histogram and then weighting the 
different frequency segments can improve further the 
performance of the WLD descriptor. 

 
(P=8, R=1) (P=16, R=2) (P=24, R=3) 

Fig. 6. Squared symmetric neighborhood for different (P, R).  

2.4 Multi-scale Analysis 

WLD features described above are extracted from the 3×3 
neighborhood, which implies a single and fixed granular-
ity. Motivated by the idea of [34], we also develop the 
multi-scale WLD for characterizing local salient patterns 
in different granularities. It is computed using a square 
symmetric neighbor set of P pixels placed on a square 
whose sides have the length (2R+1), as shown in Fig. 6. 
Parameter P denotes the number of the neighbors, whe-
reas R determines the spatial resolution of the operator. 

With the neighborhood definition in Fig.6, multi-scale 
analysis of WLD can be accomplished by combining the 
information provided by multiple operators of varying 
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(P; R). We denote the operator as WLDP,R. Although we 
derive the operator for a general case based on a squared 
symmetric neighbor set of P members on a square with 
side length (2R+1), one can also generalize them to a cir-
cular one. In addition, a straightforward approach for 
multi-scale analysis is to concatenate the histograms from 
multiple operators realized with different (P, R). In gen-
eral, it can improve the discrimination of a single resolu-
tion of (P, R) (cf. Section 3.4).  

2.5. Comparison with Existing Descriptors 

Using the filtering, labeling and statistics (FLS) frame-
work described in [17], we can easily compare our de-
scriptor with the existing ones, as shown in Table 2. Note 
that, in the FLS framework, the step filtering depicts the 
inter-pixel relationship in a local image region; the step 
labeling (which includes quantization and mapping) de-
scribes the intensity variations which cause psychology 
redundancies; the step statistics capture the attribute 
which is not in adjacent regions [17]. 

Table 2. Comparison of WLD with other descriptors  
according to the FLS framework. 

 filtering labeling statistics 

LBP 
Intensity  

difference 

Thresholding  

at zero 

Histogram over  

the binary strings 

SIFT 
Intensity  

difference 

Orientation  

quantization 

Histogram over the 

weighted gradient on 

dominant orientation 

WLD Weber ratio 
Orientation  

quantization 

Histogram over the  

differential excitation  

on dominant orientation 

 

For LBP, it computes the intensity differences between 
the center pixel xc and its neighbors in the first stage, and 
the responses of each neighbor are thresholded at zero 
and are then concatenated to a binary string in the second 
stage. Each binary string corresponding to each pixel is 
then used to compute a histogram feature in the last stage. 
For SIFT, it computes the gradient magnitude and orien-
tation at each image sample point in a region around the 
keypoint location in the first stage. The orientations are 
quantized to 8 dominant ones in the second stage. For the 
third stage, the gradient magnitudes are weighted by a 
Gaussian window, and then accumulated into orientation 
histograms by summarizing the contents over denoted 
sub-regions. 

Although WLD also computes the difference between 
the center pixel xc and its neighbors like LBP in the first 
stage, these differences are added together and then di-
vided by the center pixel xc to obtain the differential exci-
tation like the Weber fraction. Different from LBP, WLD 
uses the gradient orientations to describe the direction of 
edges. The gradient orientations are then quantized to 8 
dominant orientations in the second stage. Different from 
SIFT, we use the differential excitation but not the 
weighted gradient to compute the histogram. Moreover, 
differential excitations are not accumulated over denoted 
sub-regions around the keypoint location. In contrast, we 

compute the frequency of the occurrence of differential 
excitations for each bin of the histogram. Although we 
weight the WLD histogram as shown in Table 1, the 
weighted object is the frequency of each bin, and the 
weights are computed according to the recognition per-
formance based on the statistics, not weighting the values 
of gradients in terms of the distances between the neigh-
bors and the keypoint, as does SIFT [27]. 

Furthermore, we also compare the time complexity of 
WLD with LBP and SIFT theoretically. Given an image in 
m×n, the time complexity for WLD is very low. It is as 
follows:  

OWLD = C1mn, (14) 

where C1 is a constant. We use C1 for the computation of 
each pixel in WLD through several additions, divisions 
and filtering with an arctangent function. 

Likewise, the time complexity for LBP is also very 
simple:  

OLBP = C2mn, (15) 

where C2 is also a constant. We use C2 for the computa-
tion of each pixel in LBP through several additions. 

However, the time complexity for SIFT is a little com-
plicated: 

OSIFT = C31(αβ)(pq)(mn)+ C32k1+ C33k2st+ C34k2st. (16) 

Here, the four terms correspond to the four steps: detec-
tion of scale-space extrema, accurate keypoint localiza-
tion, orientation assignment, and building the local image 
descriptor. Meanwhile, C3i (i=1,...,4) are four constants. 
For the first term, it represents the convolution of a varia-
ble-scale Gaussian with the given image. Here, the size of 
the convolution template is p×q; α, β represent the levels 
of octave and scales of each octave, respectively. For the 
second term, k1 represents the number of the keypoint 
candidates. For the third and fourth terms, k2 represents 
the number of the keypoints and s, t represent the size of 
the support regions for each keypoint (e.g., s, t=16). So we 
have: 

OSIFT ≈ C31(αβ)(pq)(mn). (17) 

Comparing (14) and (15) with (17), one can find that both 
LBP and WLD are more efficient than SIFT. For the quan-
titative comparison of time consumptions of these three 
descriptors, please refer to Section 3.4 and Table 3.  

3. APPLICATION TO TEXTURE CLASSIFICATION 

In this section, we use the WLD histogram feature for 
texture classification and compare both the performance 
and computational efficiency with those of the state-of-
the-art methods. 

3.1. Background 

Texture classification plays an important role in many 
applications, such as robot vision, content-based access to 
image databases, and automatic tissue recognition in 
medical images. Several approaches to the extraction of 
texture features have been proposed. On the one hand, 
there are some recent attempts using sparse descriptors 
for this task, such as [13, 25]. Dorkó and Schmid opti-
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mized the keypoint detection and then used SIFT for the 
image representation [13]. Lazebnik et al. presented a 
probabilistic part-based approach to describe the texture 
and object [25]. On the other hand, there are also several 
attempts using dense descriptors for this task, such as [22, 
28, 33, 34, 35, 45, 46]. For example, Manjunath and Ma 
used Gabor filters for texture analysis [28]. Ojala et al. 
proposed the use of signed gray-level differences and 
their multidimensional distributions for texture descrip-
tion [35]. The original LBP is its simplification, discarding 
the contrast of local image texture [33, 34]. 

3.2. Dataset and Evaluation Protocol 

Experiments are carried out on two different texture da-
tabases: Brodatz [7] and KTH-TIPS2-a [9]. Examples of the 
32 Brodatz [35] textures used in the experiments are 
shown in Fig. 7 (a). The images are 256×256 pixels in size, 
and they have 256 gray levels. Each image was divided 
into 16 disjoint samples of size 64×64 pixels, which were 
independently histogram-equalized to remove luminance 
differences between textures. To make the classification 
problem more challenging and generic, and to make a 
comparison possible, we use the same experimental se-
tups as [22, 35, 45]. Three additional samples were gener-
ated from each sample: (i) a sample rotated by 90 degrees, 
(ii) a 64×64 scaled sample obtained from the 45×45 pixels 
in the middle of the original sample, and (iii) a sample 
that was both rotated and scaled. Consequently, the entire 
data set, which we refer to as the Brodatz dataset, com-
prises 2,048 samples, with 64 samples in each of the 32 
texture categories. 

    

(a) 

   

(b) 

Fig. 7 Some examples from two texture datasets (a) Brodatz and (b) 
KTH-TIPS2-a. 

The KTH-TIPS2-a database contains 4 physical, planar 
samples of each of 11 materials under varying illumina-
tion, pose and scale. Some examples from each sample are 
shown in Fig. 7 (b). The KTH-TIPS2-a texture dataset con-
tains 11 texture classes with 4,395 images. The images are 
200×200 pixels in size (we did not include those images 
which are not of this size), and they are transformed into 
256 gray levels. The database contains images at 9 scales, 
under four different illumination directions, and three 
different poses. 

Note that we use different evaluation setups for the 
Brodatz and KTH-TIPS2-a texture databases for fair com-
parison with other typical evaluations. Specifically, for 
the Brodatz textures we use the same setup as that used 
in [22, 35, 45]. Experiments are carried out with ten-fold 

cross validation to avoid bias. For each round, we ran-
domly divide the samples in each class into two subsets 
of the same size, one for training and the other for testing. 
In this fashion, the images belonging to the training set 
and to the test set are disjoint. The results are reported as 
the average value and standard deviation over the ten 
runs. In contrast, for the KTH-TIPS2-a textures, we use 
the same evaluation setup proposed by Caputo et al. [9]. 
Specifically, in our experiment, only three samples are 
available during training, while testing is subsequently 
performed on all the images of all the remaining samples. 
Similarly, this experiment is also repeated four times by 
randomly selecting different three samples for training. 
The results are also reported as the average value over the 
four runs. 

3.3. The WLD Histogram for Classification  

To perform the texture classification, there are two essen-
tial issues: texture representation and classifier design. 
We use WLD histogram feature as a representation and 
build a system for texture classification. For texture repre-
sentation, given an image, we extract the WLD histogram 
as shown in Fig. 4. Here, we experientially set M=6, T=8, 
S=20. In addition, we also weight each sub-histogram Hm 
using the same weights, as shown in Table 1. 

As the classifier we use the K-nearest neighbor, which 
has been successfully utilized in classification. In our case, 
K=3. To compute the distance between two given images 
I1 and I2, we first obtain their WLD histogram features H1 
and H2. We then measure the similarity between H1 and 
H2. In our experiments, we use the normalized histogram 
intersection Π(H1, H2) as a similarity measurement of two 
histograms [42]:  

1 2 1, 2,

1

( , ) min( , ),
L

i i

i

H H H H
=

Π =∑  (18) 

where L is the number of bins in a histogram. The intui-
tive motivation for this measurement is to calculate the 
common parts of two histograms.  

3.4. Experimental Results 

Experimental results on Brodatz and KTH-TIPS2-a tex-
tures are illustrated in Fig. 8. Herein, the accuracy of our 
method is given as a percentage of correct classifications. 
It is computed as follows: 

#  
.

#   

correct classification
accuracy

total images
=  (19) 

As shown in Fig. 8 (a), we compare our method with oth-
ers on the classification task of Brodatz textures: SIFT, 
Jalba [22], Ojala [35] (i.e., signed grey level difference (SD) 
and LBP), Urbach [45], and Manjunath [28] (i.e., Gabor). 
Note that all the results from other methods in Fig. 8(a) 
are quoted directly from the original papers except for 
those of Gabor [28] and SIFT. The approach in [28] is a 
“traditional” texture analysis method using a global mean 
and standard deviation of the responses of Gabor filters. 
We use the results in [35] for a substitution, in which Oja-
la et al. use the same set-ups for Gabor filters of 6 orienta-
tions and 4 scales. In addition, SIFT is re-implemented by 
us according to [13], in which they optimized the key-
point detection to achieve stable local descriptors. In ad-
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dition, we also refer to the code by Vedaldi 
(http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html). 
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(b) 
Fig. 8. Results comparison with state-of-the-art methods on Brodatz 
and KTH-TIPS2-a textures, where the values above the bars are the 
accuracy and corresponding standard deviations.  

As shown in Fig. 8 (b), we also compare our method 
with SIFT and LBP on the classification task of KTH-
TIPS2-a textures. Likewise, both SIFT and LBP are re-
implemented by us. However, in the implementation of 
SIFT, we use the Laplacian to detect keypoints in Fig. 8 (a) 
while in Fig. 8 (b), we employ the Harris detector, fol-
lowed the idea in [13]. 

From Fig. 8, one can find that our approach works in a 
very robust way in comparison to other methods. Moreo-
ver, the standard deviation of WLD shown in Fig. 8 (a) is 
smaller compared with other methods. Although we have 
rotated and scaled the sub-images of Brodatz textures, we 
also obtain favorable results. It shows that WLD extracts 
powerful discriminating features which are robust to ro-
tation and scaling. The poorer performance of SIFT can be 
partly explained by the small image size (e.g., 64×64 in 
Brodatz database) for a sparse descriptor, from which too 
small a number of keypoints may be located, leading to 
the performance decrease. In addition, the performance of 
LBP can be improved by combining the contrast of im-
ages [34]. Note that due to the fact that the variations in 
the KTH-TIPS2-a set (i.e., pose, scale and illumination) are 
much more diverse than those of the Brodatz set, the ac-

curacies of all the tested descriptors (WLD, LBP and SIFT) 
are accordingly lower than those on the Brodatz. Note 
that we use the K-nearest neighbor classifier in this expe-
riment because we attempt to compare the performances 
of different descriptors. However, using the proposed 
support vector machine (SVM) based classification tech-
niques proposed by Caputo et al. [9] might improve the 
performance significantly. 

Since we have further extended WLD to multi-scale (cf. 
Section 2.4), we also compared the performances of the 
multi-scale versions of LBP (or multi-resolution in [34]) 
and WLD. In Fig. 8 (b), we denote them by MLBP and 

MWLD, respectively. Specifically, MLBP denotes 8,1LBP +  

16, 2 24, 3LBP +LBP and MWLD denotes 8,1 16, 2WLD WLD ++  

24, 3WLD . The features of MLBP and MWLD for each im-

age is to concatenate the histograms from multiple opera-
tors realized with different (P, R) as discussed in Section 
2.4. From Fig. 8 (b), one can find that, compared with 
their single-resolution counterparts, both MWLD and 
MLBP significantly improve the accuracies (by 8.3% and 
8.2%, respectively). 

Table 3. Comparison of the average time consumption  

with LBP and SIFT 

Methods LBP WLD SIFT 

Time (s)  0.0015 0.0027 0.5419 

 
Besides the performance comparison with other me-

thods, we also carried out an experiment on the Brodatz 
dataset to compare the efficiency of WLD with LBP and 
SIFT. The experiments are performed on a 1.86 GHz Intel 
Pentium 4 processor using 1.50GB RAM by executing 
C/C++ code. As shown in Table 3, to extract the features 
for an image of this dataset, the average time consump-
tions of LBP and WLD are 0.0015 seconds and 0.0027 
seconds respectively, while that of SIFT is 0.5419 seconds. 
Clearly, the computation of both LBP and WLD is much 
faster than that of SIFT. Herein, the codes of both LBP and 
SIFT are re-implemented by us. In addition, most of the 
time consumed by SIFT is spent on the first step (i.e., 
scale-space extrema detection), which needs to compute 
the convolution of a variable-scale Gaussian with the giv-
en image at different levels of octaves and scales (cf. (17)). 
Hence, inspired from SIFT, some speeded up SIFT-like 
descriptors are proposed, such as [4], [18] and [44]. 

4. APPLICATION TO FACE DETECTION 

In this section, we use a WLD histogram for human face 
detection. Although we train only one classifier, we use it 
to detect frontal, occluded and profile faces. Furthermore, 
experimental results show that this classifier obtains 
comparable performance to state-of-the-art methods. 

4.1. Background 

The goal of face detection is to determine whether there 
are any faces in a given image, and return the location 
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and extent of each face in an image if one or more faces 
are present. Recently, many methods for detecting faces 
have been proposed, and most of them extract the fea-
tures densely [51]. Among these methods, learning based 
approaches to capture the variations in facial appearances 
have attracted much attention, such as [39, 41]. One of the 
most important steps forward is the appearance of the 
boosting based method, such as [6, 19, 20, 26, 36, 47, 49, 
50]. In addition, Garcia and Delak use a convolutional 
face finder for fast and robust face detection [15]. Hadid 
et al. use LBP for face detection and recognition [16]. 

4.2. WLD Histogram for Face Samples 

Based on WLD, as shown in Fig.9, we propose a new fa-
cial representation for face detection. Specifically, we di-
vide an input sample into overlapping regions, and use a 
P-neighborhood WLD operator (P=8 and R=1). In our 
case, we normalize each sample to w×h (e.g., 32×32) and 
derive a WLD histogram representation as follows:  

We divide a face sample of size w×h into K overlap-
ping blocks (K=9 in our experiments) of size (w/2)×(h/2) 
pixels. The overlapping size is equal to w/4 pixels in a 
column and h/4 pixels in a row. For each block, we com-
pute a concatenated histogram Hk, k=0,1,…,K-1. Herein, 
each Hk is computed as shown in Fig. 4. That is, each Hk is 

a concatenated histogram with M sub-histograms k

mH , 

m=0, 1,…, M-1, and k

mH  is also concatenated with T histo-

gram patches ,

k

m tH , t=0,1,…,T-1. Moreover, ,

k

m tH  is an S-

bin histogram patch. In addition, for this group of expe-
riments, we experientially set M=6, T=4, S=3. Note that 

for each sub-histogram k

mH , we use the same weights as 

shown in Table 1. 

 
Fig. 9. An illustration of a WLD histogram feature for face detection. 

For each block, we train an SVM classifier using an Hk 
histogram feature to verify whether the kth block is a valid 
face block (in our case, we use a second degree polynomi-
al kernel function for the SVM classifier). If the number of 
the valid face blocks is larger than a given threshold Ξ, we 
say that a face exists in the input window. As to the pa-
rameter Ξ, its value is a tradeoff between the detection 
rate and false alarms for a face detector. That is, when the 
value of Ξ becomes larger, the detection rate decreases 
but the false alarms also decrease. In contrast, when the 
value of Ξ becomes smaller, the detection rate increases 
but the false alarms also increase. The value of Ξ also va-
ries with the pose of faces. For more details, please refer 

to section 4.4. 

4.3. The dataset 

The training set is composed of two sets, i.e., a positive set 
Sf and a negative set Sn. The positive set consists of 50,000 
frontal face samples. They are collected from web, video 
and digital cameras, and cover wide variations in poses, 
facial expressions and also in lighting conditions. To 
make the detection method robust to an affine transform, 
the training samples are often rotated, translated and 
scaled [39]. After such preprocessing, we obtain the set Sf 
including 100,000 face samples. The negative set Sn con-
sists of 31,085 images containing no faces, and they are 
collected from the Internet. 

As for the test sets, we use three: the first one is the 
MIT+CMU frontal face test set, which consists of 130 im-
ages showing 507 upright faces [39]. The second one is a 
subset from the Aleix Martinez-Robert (AR) face database 
[29]. The AR face database consists of over 3,200 color 
images of the frontal view faces from 126 subjects. How-
ever, we choose those images with occlusions (i.e., condi-
tions of 8-13 from the first session, and conditions of 21-26 
from the second session). The resulting test set consists of 
1,512 images. The third one is the CMU profile testing set 
[41] (441 multi-view faces in 208 images).  

Note that the face samples are of the size 32×32. In or-
der to detect some faces smaller or larger than the sample 
size, we enlarge and shrink each input image. 

4.4. Classifier Training 

As described in Section 4.3, the Sf set is composed of a 
large number of face samples. Furthermore, we can also 
extract hundreds of thousands of non-face samples from 
the Sn set. Thus, it is extremely time consuming to train an 
SVM classifier using the two sets Sf and Sn. For this prob-
lem, we use the resampling methods to train an SVM 
classifier. Specifically, motivated by [50], we also resam-
ple both the positive and negative samples during clas-
sifier training.  

For the positive samples, we first randomly draw a 
sub-set Sf1 with the size Np (in our experiments, Np=3,000). 
Likewise, we also randomly crop out a sub-set Sn1 with 
the size Nn (in our experiments, Nn=3,000) from the non-
face database Sn. Note that for the samples in Sn1, we 
normalize their sizes to w×h (i.e., 32×32). Subsequently, 
we extract a WLD histogram of both the face and non-face 
samples as shown in Fig.9. Using the extracted features of 
faces and non-faces, we train a lower performance SVM 
classifier. Simultaneously, we obtain a support-vector set 

S1, which includes a face support-vector subset 1

fS and a 

non-face support-vector subset 1

nS . 

Using the resulting lower performance SVM classifier, 
we test it on the two training subsets (i.e., Sf and Sn) to 
collect Np misclassified face samples Sf2 and Nn misclassi-
fied non-face samples Sn2. Combining the newly-collected 
sample sets (i.e., Sf2 and Sn2) and the two support-vector 

subsets obtained last time (i.e., 1

fS  and 1

nS ), we obtain two 

new training sets: ( 1

fS +Sf2) and ( 1

nS +Sn2). We then train 
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another SVM classifier with a better performance. After 
several iterations of the aforementioned procedure, we 
finally train a well performed SVM classifier. 

Note that we actually train K sub-classifiers of SVM. 
Each sub-classifier corresponds to a block as shown in 
Fig. 9. Combining these K sub-classifiers, we obtain a final 
strong classifier. 
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Fig. 10. A performance comparison of our method with some existing 
methods on the MIT+CMU frontal face test set. 

Table 4. Performance of our method on the AR test set. 
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Fig. 11. A performance comparison of our method with some existing 
methods on the CMU profile testing set. 

4.5. The Experiment Results 

The resulting final strong SVM classifier is tested on the 
three testing sets described in Section 4.3. The experimen-
tal results are shown in Figs. 10, 11 and Table 4, respec-
tively. Herein, we also compare the performance of the 
resulting SVM classifier (we call it “SVM-WLD”) with 
some existing methods. Note that all the results from oth-
er methods in Figs. 10 and 11 are quoted directly from the 
original papers except for Hadid [16] (which is imple-
mented by us following their idea). During testing on 
these sets, the parameter Ξ takes the different values as 

described in Section 4.2. For the MIT+CMU frontal test 
set, the AR test set, and the CMU profile test set, Ξ is 
equal to 8, 7 and 6 respectively. 

As shown in Fig. 10, we compare the performance of 
our method with some existing methods on the 
MIT+CMU frontal face test set, such as Bourdev [6], Gar-
cia [15], Hadid [16], Huang [20], Lin [26] and Viola [47]. 
Meanwhile, Lin et al. also proposed a method for detect-
ing occluded faces. SVM-Grey denotes that we only use 
the grey intensities as input for the SVM classifier, and 
other experimental setups are the same as for the SVM-
WLD. From Fig. 10, one can find that SVM-WLD locates 
89.3% faces without any false alarm, and works much 
better than SVM-Grey (76.3% faces without a false alarm). 
Furthermore, SVM-WLD is comparable to the existing 
methods, e.g., Lin [26]. 

In Table 4, we show the detection results on the AR 
test set. From this table, one can find that SVM-WLD lo-
cates 99.7% faces without any false alarm and locates all 
faces with only 3 false alarms. In addition, in Fig. 11, we 
compare SVM-WLD with some existing methods, such as 
Huang [20] and Schneiderman [41] on the CMU profile 
test set. To locate those profile faces with in-plane rota-
tion, we also rotate the testing images. From Fig. 11, one 
can find that SVM-WLD locates 85.7% faces without any 
false alarm. 

However, different criteria (e.g., the training examples 
involved and the number of scanned windows during 
detection etc.) can be used to favor one over another, 
which makes it difficult to evaluate the performance of 
different methods, even though they use the same 
benchmark data sets [51]. Thus, the results shown in Figs. 
10 and 11 just illustrate that our method works robustly 
and achieves a performance comparable to the state-of-
the-art methods. Some results from our detector on these 
three test sets are shown in Fig.12. 

 

 

 
Fig. 12. Some experimental results from our detector on the 
MIT+CMU frontal test set (first row), the AR database (second row) 
and the CMU profile test set (third row). 
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5 MORE EXPERIMENTAL VALIDATIONS AND DISCUSSIONS 

In this section, by conducting more experimental valida-
tions, we will discuss some issues about our method, in-
cluding the relationship between WLD and Weber’s Law, 
the influence of the parameter setting on the performance 
of WLD, the different filter functions for the computation 
of the differential excitation, the influence of the WLD 
components on its performance, and the robustness of 
WLD to noise. 

5.1 WLD and Weber’s Law 

In this section, we compare the performance of the pro-
posed descriptor WLD with another descriptor which 
also follows Weber’s Law, but employs a logarithm filter 
function. We analyze the reason for the performance dif-
ference between these two descriptors, and provide evi-
dence to support our results and analyses. 

As presented in Section 2.1, WLD is motivated by We-
ber’s Law. However, we should point out that WLD is not 
the only possible way to follow the Law. Its computing 
approach also does not exactly match the Law well. 
Moreover, an alternative method exactly following the 
Law might be as follows, employing a Logarithm opera-
tor. Specifically, Weber’s Law can be described as 

( / )dp C dI I= , where dp is the differential change in per-

ception, and dI is the differential change in image intensi-
ty. By integrating this equation, one can get 

log( / )rp C I I= , where Ir is the threshold below which no 

change can be perceived. Hence, the 2D histogram of 
log(I/Ir) and gradient orientation can also be employed as 
an image descriptor. Furthermore, to improve the robust-
ness of log(I/Ir) to the variations due to illumination and 
noise, one can use log(I/Im) (i.e., log(I/Ir) - log(Im/Ir) ) in-
stead, where Im is the mean in a local neighborhood. We 
call this alternative descriptor WLDlog, and denote the de-
scriptor presented in Section 2 as WLDarctan for clarity. 

Table 5. Performance comparison of WLDarctan and WLDlog 

Method WLDarctan WLDlog 

Brodatz 97.5 93.3 

KTH-TIPS2-a 56.4 50.2 

We compare the performance of the two descriptors 
WLDlog and WLDarctan on the Brodatz and KTH-TIPS2-a 
textures. The results are shown in Table 5. Note that Ir is 
set to 5 in the experiments. From the table, one can find 
that WLDarctan outperforms WLDlog in both databases, al-
though the latter matches Weber’s Law well. One expla-
nation for WLDarctan outperforming WLDlog in both data-
bases, is that the performance gain of WLDarctan benefits 
from the gradient computation with the filter f00 when we 
compute the differential excitations in (2), since the gra-
dient is relatively more robust to the illumination varia-
tions compared with the image intensity. The observation 
that the performance gap for the KTH-TIPS2-a textures 
(6.2%) is a little larger than that for the Brodatz textures 

(4.2%) also supports this point, since the illumination var-
iations of the KTH-TIPS2-a textures are much more di-
verse than those of the Brodatz textures. 

We provide more evidence to validate that WLDarctan 
outperforms WLDlog with the distribution of the average 
histogram. Specifically, as shown in Fig. 13, we plot the 
average histogram of log(I/Im) on 2,000 textures images. 
By comparing Fig. 13 and Fig. 3, one can find that the fre-
quencies of the differential excitations of WLDarctan distri-
bute more evenly than those of the log(I/Im), which also 
provides evidence that the discrimination of WLDarctan 
outperforms that of WLDlog. 
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Fig. 13. Average histogram of log(I/Im) on 2,000 texture images. Note 
that for log(I/Im), we only plot the values in the interval [-1.5, 1], and 
the smaller and larger values are counted into the first bin and the 
last bin. 

5.2 The Effects of Parameters 

In this section, we discuss the influence of the parameter 
setting of M, T, and S. For a histogram based method, the 
setting of M, T, and S is a tradeoff between discriminabili-
ty and statistical reliability. In general, if these parameters 
(i.e., M, T, and S) become larger, the dimensionality of the 
histogram (i.e., the number of its bins) becomes larger and 
thus the histogram becomes more discriminable. Howev-
er, in a real application, the entries of each bin become 
smaller because the size of the input image/patch is fixed. 
This degrades the statistical reliability of the histogram. If 
the entries of each bin become too small, it in turn de-
grades the discriminability of the histogram because of its 
poor statistical reliability. In contrast, if these parameters 
(i.e., M, T, and S) become smaller, the entries of each bin 
become larger, and the histogram becomes statistically 
more reliable. However, if these parameters are too small, 
the dimensionality of the histogram also becomes too 
small, and it degrades the discriminability of the histo-
gram.The experiment results with the Brodatz textures 
when varying the parameters are plotted in Fig. 14. In 
these experiments, we just vary one parameter and fix the 
other ones. One can discover that the performance 
changes slightly, which shows that the histogram based 
method is relatively robust, although obviously its di-
mensionality changes. 

5.3 Performance Comparison Using Different Filters 
We compare the influence of different filters, as men-
tioned in Section 2.2.1 (i.e., arctangent and sigmoid func-
tions) on the performance of the WLD descriptor. The test 
dataset is the Brodatz dataset, and the performances of  
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Fig. 14. The effects of using different M, T, and S parameters 
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Fig. 15. (a) Performance comparison of WLD using different filter functions; (b) performance comparison of WLD using a sigmoid function and 
the parameter β takes different values; (c) and (d) are the plots of average histograms of the differential excitations using different functions 
on 2,000 texture images, i.e., (c) for sigmoid (β=1), and (d) for the Weber fraction Gratio(xc ) (we only plot the values in the interval [-5, 5]. For 
those smaller and larger values, we use the first and last bin to compute their frequencies, respectively).  

three different filters are shown in Fig. 15 (a). In the fig-
ure, “linear” means that we directly use the Gratio(xc ) 
(shown in (3)) as the differential excitation of the current 
pixel ξ(xc).  

From Fig. 15 (a), one can find that both the WLD de-
scriptors using the sigmoid (β=1) and arctangent func-
tions obtain very similar performance, and both outper-
form the WLD descriptor using the linear form (i.e., 

( )ratio cG x ). As shown in Fig. 15 (c) and (d), we plot the 

average histograms of the differential excitations using a 
sigmoid function and Gratio(xc ) on 2,000 texture images. 
One can observe that both the average histograms of the 
differential excitations using sigmoid function (as shown 
in Fig. 15 (c)) and using arctangent function (as shown in 
Fig. 3) are more even than that using the linear form. 

We further compare the performance of the WLD de-
scriptor using a sigmoid function and the parameter β 
takes different values. As shown in Fig. 15. (b), one can 
see that the accuracy decreases slightly as β increases. 
Therefore we set β=1 in 15. (a). 

5.4 Performance Comparison of Components 

As described in Section 2, WLD consists of two compo-
nents: differential excitation and orientation. In this sec-
tion, we compare the contributions of these two compo-
nents to the performance of WLD. In addition, we also 
test the performance of directly using gradient which is 
computed as shown in (2). In these comparisons, one can 
make thorough observations on the contributions of these 
components. 

Tests were conducted on the Brodatz textures, and the 
performances are shown in Fig. 16. In the figure, “gra-
dient” denotes the method using gradients directly com-
puted by (2), “differential excitation” denotes that using 

the differential excitation ξ(x) computed by (6); “orienta-
tion” means that using the gradient orientation θ(x) com-
puted by (8). Each of these components from each image 
is grouped as a histogram for classification. 
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Fig. 16. Performance comparison of different component of WLD 

From Fig. 16, one can see that the performance gap be-
tween differential excitation and gradient (23.2%) is much 
larger than that between WLD and differential excitation 
(6.9%). Furthermore, the performance of orientation is 
close to that of differential excitation. It shows that the 
ratio used for the computation of differential excitation 
and orientation is important for the performance of the 
WLD descriptor. We believe that the ratio can remove the 
multiplicative noise further compared with gradient, 
which is helpful for the discrimination of a descriptor. 

5.5 Robustness to Noise 

As discussed in Section 2.2, both the two components of 
WLD (i.e., differential excitation and orientation) are 
computed using the ratio (c.f. Eqs. (6) and (8)). Thus, 
WLD is robust to multiplicative noise. In this section, we 
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test the robustness of WLD to additive noise, and also 
compare its performance with that of SIFT and LBP. 
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Fig. 17. A performance comparison between WLD, LBP and SIFT on 
the Brodatz textures with added white Gaussian noise. 

As can be seen from Fig. 17, we compare the perfor-
mances of WLD, LBP and SIFT on the Brodatz textures 
with added white Gaussian noise. Here, the x axis is 
log(1/SNR), i.e., the logarithm of the inverse of the signal-
to-noise ratio (SNR). SNR is computed as: SNR =f(I)/ f(N), 
where f(I) and f(N) are the power of the input image I and 

the noise image N: 
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where n is the dimensionality of the input image and 
noise image. 

From Fig. 17, one can see that the three descriptors 
WLD, LBP and SIFT are equally robust to the added 
white Gaussian noise when the noise strength is smaller 
than 5%. The performances of these three descriptors de-
crease when the noise strength is larger than 5%. Howev-
er, the performance of WLD is still better than that of SIFT 
and LBP. For WLD, we believe that the reasons lie in the 
following issues: the computation means of differential 
excitation using the gradient and ratio; the suppression 
toward the ends of arctangent function; and the histo-
gram computation clustering the near differential excita-
tions. 

6. CONCLUSION 

We propose a novel discriminative descriptor called 
WLD. It is inspired by Weber’s Law, which is a law de-
veloped according to the perception of human beings. We 
organize WLD features to compute a histogram by encod-
ing both differential excitations and orientations at certain 
locations. Experimental results show that WLD illustrates 
a favorable performance on both Brodatz and KTH-
TIPS2-a textures compared with the state-of-the-art me-
thods (e.g., SIFT and LBP). Besides the performance com-
parison with the other methods, we also compare the 
computational cost of WLD with LBP and SIFT. The anal-
ysis shows that the computation of WLD is much faster 
compared with that of SIFT, and is comparable to that of 
LBP. 

For the face detection task, we train only one classifier, 
but it can accurately detect the frontal, occluded and pro-
file faces. The results on the three datasets, i.e., the 

MIT+CMU frontal face test set, the Aleix Martinez-Robert 
(AR) face database and the CMU profile testing set, dem-
onstrate the effectiveness of the proposed method 
through experiments and comparisons with other existing 
face detectors. 

The current work has been developed for texture clas-
sification and face detection. Future interest lies in how to 
exploit the proposed descriptor for the domain of face 
recognition and object recognition. 
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