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Abstract— In recent years, human activity recognition (HAR) tech-
nologies in e-health have triggered broad interest. In literature, main-
stream works focus on the body’s spatial information (i.e. postures)
which lacks the interpretation of key bioinformatics associated with
movements, limiting the use in applications requiring comprehen-
sively evaluating motion tasks’ correctness. To address the issue, in
this article, a Wearables-based Multi-column Neural Network (WMNN)
for HAR based on multi-sensor fusion and deep learning is presented.
Here, the Tai Chi Eight Methods were utilized as an example as in
which both postures and muscle activity strengths are significant.
The research work was validated by recruiting 14 subjects in total,
and we experimentally show 96.9% and 92.5% accuracy for training
and testing, for a total of 144 postures and corresponding muscle
activities. The method is then provided with a human-machine inter-
face (HMI), which returns users with motion suggestions (i.e. postures
and muscle strength). The report demonstrates that the proposed
HAR technique can enhance users’ self-training efficiency, potentially
promoting the development of the HAR area.

Index Terms— HAR, wearables, multi-sensor fusion, multi-
column neural network, deep learning

I. INTRODUCTION

Human activity recognition (HAR), which monitors human activ-
ities via smart sensor technology, has recently become an important
task in diverse fields, such as health monitoring, rehabilitation su-
pervision, and home-centered fitness assistance [1-8]. HAR can be
implemented by fixed equipment and wearables. The former often
utilizes cameras, infrared sensors, and radio frequency identification
(RFID) [9-15]; and the latter takes advantage of inertial measurement
unit (IMU), plantar pressure sensors, and surface electromyogram
(sEMG), etc. [16-25]. Between them, the fixed equipment enjoys the
benefit of decent accuracy, while lacking scenario flexibility, i.e. HAR
can be merely carried out in a certain room. In contrast, wearables
offer users omnipresent utilization conditions, however, the location
accuracy is sometimes unsatisfying.

Plenty of HAR applications have been reported. For example,
in 2019, Gochoo et al. [13] developed an IoT-based yoga posture
recognition system based on infrared sensors and achieved an average
accuracy of 99.45% in classifying 26 yoga postures. In 2021, Gupta
et al. [17] proposed a YogaHelp system based on IMUs to classify 12
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yoga steps with an accuracy of 83.2%-94.5% and give feedback on
the improper motion speed. Existing techniques can strongly support
tasks that concentrate on the correctness of posture’s spatial status.
However, in many cases, the same posture can correspond to different
muscle strengths, indicating that current works can hardly analyze
users’ performances in sports such as Yoga and Tai Chi, in which
incorrect muscle strength can result in undesired training effects, even
though the posture is reasonable.

To address this issue, in this article, we develop a HAR framework
(conceptually shown in Fig. 1), the core of which is a Wearables-
based Multi-column Neural Network (WMNN) (demonstrated by
Fig. 4), and take the practice of Tai Chi as an example. Here,
IMU, plantar stress sensors, and sEMG are employed for retrieving
users’ bioinformatics. In this work, the term Bioinformatics is used
to identify a generic set of physiological data related to a human
body, either visible or invisible, such as the actual movements and
the muscle activity that preceded or controls the same movement. The
output of the presented network is the classification of the standard
motion and 17 common mistakes of each Tai Chi Method, which
can indicate whether the motion is correct or not, and how to adjust
the motion. Signals from the sensors are merged and processed by
a deep learning algorithm for determining 144 (18 × 8) postures
and core muscle strength. Eventually, the recognition accuracy of
the two metrics can achieve 96.9% and 92.5%, respectively, for the
14 subjects. Compared to the state-of-the-art studies, the proposed
method considers broader motion-related features, e.g. center of
gravity and muscle status, and refines the evaluation at a higher level,
showcasing its prospect in supporting more scenarios.

II. RELATED WORK

In this section, we will review the state-of-the-art work of HAR
from the perspectives of fixed equipment and wearables.

A. HAR based on fixed equipment

There are three prevailing types of non-wearable devices based
HAR: RGB camera or depth camera-based, infrared sensor-based, and
RFID) based. The relevant work will be reviewed in this subsection.

Zerrouki et al. [9] developed an adaptive boosting algorithm to
analyze six classes of activities and compared them with the state-
of-the-art machine learning classifiers. In the work, they employed the
RGB-based motion data from two public databases (i.e. URFD and
UMAFD) and yielded the accuracy of 96.56% and 93.91% respec-
tively. Maddala et al. [10] proposed a joint angular displacement map
(JADM) and combined it with a single-stream deep convolutional
neural network (CNN) model to recognize yoga asanas. In their work,
they created the network with two RGB-D (Red, Green, Blue, and
Depth) based 3-D yoga posture datasets (i.e. HDM05 and CMU),
achieving the accuracy of 89.15% and 88.67% respectively. The
model was tested by the data generated using a nine-camera mocap
system from ten subjects. Similarly, Liu et al. [11] developed a
human posture recognition system using RGB-D color images alone.
They utilized Kinect V2 and collected 13800 samples of six subjects
with 15 motion postures. The color images were put into proposed
generative adversarial networks (GAN) to generate estimated depth
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Fig. 1: The proposed HAR framework, which is showcased in home-centered wearable cloud fitness scenario.

images. After feeding the color images and depth images into a
developed discriminator network, an accuracy of 96.7% was obtained.
Although the above RGB(-D) based posture recognition systems can
achieve high accuracy, their operation is contingent on the detection
area equipped with cameras, and they underlie the risk of privacy
invasion.

Mashiyama et al. [12] put forward an activity recognition method
using a low-resolution infrared array sensor. In their study, they
collected the infrared data of five activities (No event, Stopping,
Walking, Sitting, and Falling) and obtained an average accuracy
of 94.6% by support vector machine (SVM). Gochoo et al. [13]
proposed an IoT-based yoga posture recognition system employing a
low-resolution infrared sensor-based wireless sensor network (WSN).
The authors collected 93200 posture images of 26 yoga postures
from 18 volunteers and trained a deep convolutional neural network
(DCNN), achieving an average accuracy of 99.45%. Though the
aforementioned infrared-based posture recognition systems can effec-
tively solve the privacy problem, they also depend on the relatively
fixed detection area. Besides, the systems are easily disturbed by
environmental noise such as heat source, light source, and RF
radiation.

Yao et al. [14] proposed an RFID-based posture recognition sys-
tem. The writers employed nine RFID tags and collected the motion
data of 12 orientation-sensitive postures from three subjects. After
training the Dirichlet Process Gaussian Mix- ture Model (DPGMM)
based Hidden Markov Model (HMM), they yielded a classification
accuracy of 99%. Ding et al. [15] designed an automatic, non-
invasive and light-weight Free-weight Exercise MOnitoring (FEMO)
system to recognize the exercising postures. The authors recruited
15 volunteers and collected data from ten activities. When adopting
multiple antennas, the recognition accuracy of the system can main-
tain 90% with multiple users. Despite the high recognition accuracy
achieved by the RFID systems mentioned above, the systems suffer
from the complexity of system assembly.

Although non-wearable devices based HAR systems can obtain
a decent recognition effect, they have the inherent defect of being
limited by the site. For scenarios that highlight the arbitrariness of
application place, they are outperformed by the wearable systems.

B. HAR based on wearables

In this subsection, the three most prevailing means of wearables-
based HAR: IMUs based, sEMG based, and plantar pressure sensors

based, as well as their fusion are reviewed.
Xu et al. [16] proposed a Tai Chi action recognition algorithm,

using node trajectory features. In the study, the authors collected data
from 26 independent actions with 17 IMU sensors and processed the
multiple axes data via DTW (Dynamic Time Warping) algorithm.
They chose ten actions and information from five sensors to train the
SVM model, yielding a ten-classification accuracy of 90.45%. Gupta
et al. [17] developed a YogaHelp system based on IMU sensors to
help amateurs for learning the correct execution of yoga without any
supervision of a trainer. The writers collected the training data from
eight professional yoga trainers with four sensor units. The designed
deep neural network obtained an accuracy of 83.2%-94.5% for 12
yoga steps and efficiently give feedback on whether the motion speed
is improper.

Ryu et al. [18] presented a lower limb human motion detection
system using a sEMG with a TAS (Top And Slope) feature extraction
algorithm. In their research, motion data from ten subjects were
collected via MP150, a commercial sEMG device. The TAS features
were fed into the LDA (Linear Discriminate Analysis) classifier and
the accuracy of 91.4% and 94.26% were achieved in the tasks of
four gait subphases detection and five locomotion modes detection
respectively. Li et al. [19] designed an sEMG-based lower arm
gesture recognition system, proposing a SEAR (Shifts Estimation
and Adaptive coRrection) method to calibrate the electrode shifts’
disturbance introduced to the system (not existed in all types of sEMG
devices). The authors arbitrarily chose the positions of Myo armband
and collected eight gestures from ten subjects. The raw data were
processed by the SEAR method and SVM, and an average accuracy
of 79.32% was obtained.

Wang et al. [20] presented a wearable plantar pressure measure-
ment system for locomotion recognition. In their work, four force sen-
sors were integrated in each smart shoe and six modes of locomotion
data were collected from a below-knee amputee subject. The LDA
algorithm was employed for classification and an average accuracy
of 98.92% was obtained. Jeong et al. [21] proposed a method for
classifying ambulatory activities using eight plantar pressure sensors.
They collected 210 samples of three ambulatory activities with three
participants. By using SVM to classify the walking activities, an
accuracy of 95.2% was achieved.

Haque et al. [22] presented a real-time classification method of
ground-level walking and stair climbing. The walking and stair data
of two volunteers were collected by two IMUs and two FSRs (Force



AUTHOR et al.:WMNN: WEARABLES-BASED MULTI-COLUMN NEURAL NETWORK FOR HUMAN ACTIVITY RECOGNITION 3

Fig. 2: The block diagram of the proposed system.

Sensing Resistor) and tested in real-time. By using the LDA classifier,
the accuracy of 96.50% and 87.21% were obtained in training and
testing respectively. Luo et al. [23] developed an end-to-end gait
sub-phase recognition system based on sEMG and plantar pressure
sensors. By utilizing four-channel sEMG sensors and two-channel
plantar pressure sensors, three male subjects’ locomotion data of four
gait sub-phases were collected. The combination of LSTM (Long and
Short Term Memory) and MLP (Multilayer Perceptron) was proposed
to classify the sub-phases and an average accuracy of 90.79% was
achieved. Chang et al. [24] proposed a hierarchical hand motions
recognition method based on one IMU and two sEMG sensors. The
motion data of six motion gestures were collected from ten subjects.
By training SVM for sEMG signals and decision-tree classifier for
IMU signals before fusing the classification decision, the overall
average accuracy of 95.6% was yielded.

C. Issues to be addressed

Though fruitful research has been conducted in the field of activity
recognition, researchers are inclined to focus on the recognition of
visible postures such as limb, gait, hand gesture, etc. For the training
of yoga, gymnastics, Tai Chi, and other sports that lay emphasis on
the whole body coordination, apart from visible postures, recognition
of the invisible bioinformatics associated with muscle activity is im-
perative. For whole-body coordinated sports, visible body movements
can be easily corrected, while invisible body micro-movements and
muscle force errors are often difficult to detect but have a significant
impact on the effect of the sports. The system framework proposed in
this study can evaluate sports in a comprehensive way, which contains
not only the general limb postures but also the deviation of the body’s
center of gravity and the force of specific muscles. This framework
can help users perform sports to a standard even when the coach is
absent.

III. METHODOLOGY

Fig. 2 shows the system’s block diagram, and in this section, we
will explain the details of the system.

A. Hardware description

For the purpose of evaluating the fitness activities combining body
movements and the muscular forces behind them, the developed
system contains five IMUs, two piezoresistive arrays, and two sEMG
sensors mainly to analyze limb motions, the center of gravity, and
muscle forces, respectively (Fig. 3). Five IMUs are necessary for the
analysis of users’ hands motion. Different users hold different body
features, hence the 3 IMUs deployed at the waist and upper arms
serve as the references for the 2 IMUs located in the lower arms, to
self-calibrate the system for differences in the human body topology.
Though the centre of gravity can also be analyzed by more IMUs
fixed on legs, we introduce plantar pressure insoles to reduce the
obstacles caused by excessive IMU wearing to the user’s movement.
As for the use of sEMG, although muscle force can be detected by

pressure sensors, their detection of muscle force is indirect, thereby
vulnerable to factors such as the tightness of binding with the human
body.

The IMUs in this system consist of a 3-axis accelerometer, 3-axis
gyroscope, and 3-axis magnetometer (Perception Neuron 3, Noitom
Co., Ltd), which can be mounted on limb body segments and the
waist. The piezoresistive arrays in this system contain 48 distributed
channels each and the whole piezoresistive insole device is a 5-layer
structure, whose detailed structure is showcased in our previous paper
[26]. The sEMG sensors in this system (Bipolar sEMG, Sichiray Co.,
Ltd) consist of three Ag/AgCl electrodes each (a bipolar electrodes
pair and a reference electrode), which are utilized to measure the
EMG signal of deltoid in this work. The sampling rates of the sensors
are demonstrated in Fig. 1, and all of the devices are synchronized
through the Network Time Protocol (NTP).

Fig. 3: The full set of hardware equipment wearing schematic and
the specific parameters of the sensors.

B. Network development

On balance, the multi-sensor data in a system tend to maintain
coupled and complementary information (e.g. in this system, although
the plantar piezoresistive arrays are designed as sensors to analyze the
center of gravity of the human body, IMUs also contain certain such
information). Besides, in the tasks of multi-sensor data fusion, data
from various types of sensors often display diverse characteristics, so
the effect of data layer fusion is usually outperformed by feature layer
fusion. Therefore, we developed the WMNN based on feature layer
fusion and CNN-based feature extractor (Fig. 4). In a specific posture,
the data of IMUs and piezoresistive arrays can be regarded as static
data, while sEMG sensing data needs to be analyzed in the form of
sequence due to the inherent properties of EMG signal. We modified
the AlexNet structure [27] and applied it to the WMNN to extract
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Fig. 4: The architecture of the proposed WMNN.

the features of sEMG signals, and used simple mean processing to
extract the features of static IMUs and piezoresistive arrays signals.

1) GAF Block: As CNN is a two-dimensional inputs based neural
network (though one-dimensional convolution exists, its ability of
information extraction is overwhelmed by two-dimensional convo-
lution) while sEMG signals are one-dimensional, it is necessary to
encode the time series of the signals to images. In this research,
we utilized Gramian Angular Field (GAF) proposed by Wang et al.
[28] to generate sEMG images. In the GAF block, the sEMG time
series are rescaled in the interval [-1,1] before being transformed
into the polar coordinate system. The rescaled series is denoted as:
X = {x1, x2, · · · , xn}. If the time stamp of each point is denoted as ti,
and the series span is N, the signal series in polar coordinate can be
obtained by: {

θi = arccos(xi),−1 ≤ xi ≤ 1, xi ∈ X
ri =

ti
N , ti ∈ �

(1)

θi and ri are points’ polar angle and polar radius respectively. Then
the GAF images are yielded by considering the trigonometric sum
between each point. The Gramian matrix G is defined as:

G =


cos(θ1 + θ1) · · · cos(θ1 + θn)
cos(θ2 + θ1) · · · cos(θ2 + θn)

...
. . .

...
cos(θn + θ1) · · · cos(θn + θn)

 (2)

By introducing the GAF method, sEMG signals can be encoded
into images without losing the temporal dependency. When passing
through GAF transformation, the time series with length N will be
converted into N × N images. To avoid the influence of images’
oversizing on the subsequent convolution efficiency, the dimension of
the sEMG signals is reduced by segmented averaging at the beginning
of the GAF block. The time window for averaging is chosen as 5,
so the output dimension of the GAF block is 200× 200× 2, where 2
denotes the two channels of the sEMG sensors’ inputs (i.e. left and
right deltoid muscles).

Although it will increase the complexity of the operation, the
advantages of GAF transform will cover this defect: first, the GAF
block retains the signals’ temporal dependency when transforming the
time series into two-dimensional images. The main diagonal of the
G matrix contains all the information of the time series. At the same
time, the generation of other elements of the matrix is essentially

TABLE I: Tensors’ dimension in convolutional blocks

Block Layer Output Tensor Block Layer Output Tensor

Block1
Conv1 32 × 200 × 200

Block3
BN3 256 × 50 × 50

BN1 32 × 200 × 200 Pool3 256 × 25 × 25
Pool1 32 × 100 × 100

Block4

Conv6 512 × 25 × 25

Block2
Conv2 64 × 100 × 100 Conv7 512 × 25 × 25
BN2 64 × 100 × 100 BN4 512 × 25 × 25
Pool2 64 × 50 × 50 Pool4 512 × 12 × 12

Block3
Conv3 128 × 50 × 50

Block5
Conv8 512 × 12 × 12

Conv4 256 × 50 × 50 BN5 512 × 12 × 12
Conv5 256 × 50 × 50 Pool5 512 × 6 × 6

a kernel trick different from convolution, which can increase the
dimensionality of features. In addition, converting a one-dimensional
sequence into a two-dimensional image can enable many state-of-the-
art algorithms in the field of computer vision to be used. Therefore,
using the GAF block can obtain a more stable performance than using
raw time series.

2) Mean Block: In a specific posture, signals from IMUs and
piezoresistive arrays can be regarded as static information (i.e. within
a time window of a certain length, the signal value in a channel can be
considered to be ideally constant). Therefore, in the mean block, the
mean value of the signal in each sampling time window is calculated
according to the channel and taken as the features of this posture. To
flatten the signals, the time window for the Mean Block is the same
as the sampling points in a sample segment, so the time window Nt
for IMU data and Piezoresistive data are 20 and 200 respectively (as
the sampling frequencies are 20 Hz and 200 Hz respectively).

3) Convolutional Block: In each convolutional block, the input
feature maps go through the convolution layer, batch normalization
(BN) layer, and max-pooling layer. For convolution layers, 3×3 filters
with a stride of 1 are tested as the overall optimum hyperparameters
in this study. BN layers are set to accelerate the training by reducing
internal covariate shift [29]. The BN layer is placed before the
activation function, BN operation is denoted as:

BNγ,β (xi) = γ
xi − µB√

σ2
B + ε

+ β (3)

Where µB and σB are mini-batch mean and mini-batch variance
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respectively, γ and β are learnable parameters: the scale and shift,
and ε is a minute constant introduced for calculating stability.

Max pooling layers reduce the dimensions of features and facilitate
feature extraction. The non-linear ReLU function is the activation
function of this network. After five consecutive convolutional blocks,
two fully connected layers are employed before the final classifier.
Since the introduction of BN layers, the dropout operation in AlexNet
to prevent overfitting is not performed in fully connected layers. The
transformation of the tensor’s dimension in the convolutional blocks
is demonstrated in Table I.

4) Freeze and Classifier: Since the dataset of this study is
relatively small, considering that using softmax as the classifier often
generates overfitting in the training of small datasets, we learned from
the strategy of R-CNN algorithm [30]: after training the convolutional
layers as the feature extractor, we substituted the softmax layer with
SVM to obtain the activity recognition results. Specifically, after
completing the first step of training (using softmax as the classifier),
we froze all the hyperparameters and parameters before the softmax
layer and fed the extracted features to SVM for classifier training [31-
33]. In this step, to obtain the optimal SVM models under different
Tai Chi Methods, we changed the kernel function, which is used
to map the eigenvector to Hilbert space, in the model. For datasets
in feature space T = {(x1, y1), (x2, y2), ..., (xm, ym)}, the optimization
function of SVM can be expressed as:

min
α

1
2

m∑
i=1

m∑
j=1

αiα jyiy jK(xi)T K(x j) −
∑

i = 1m
αi

s.t.
m∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, 3, ...,m

(4)

Where α is the support vector coefficient and C is the penalty term
of the relaxation coefficient. For the FC layer between features and
the SVM classifier, although decent accuracy is yielded by directly
sending features into SVM, the time complexity is high. FC layer is
used here to reduce the dimension of features, thereby improving the
time complexity.

C. Experimental details

1) Data Acquisition: In this study, a total of 14 subjects were
selected for sports data collection, including ten subjects as the
training set and four subjects as the test set. The subjects were 18-
38 years old, with different heights (ranging from 157cm-185cm)

and body shape, and had no history of musculoskeletal diseases.
The relevant information on the subjects is shown in Table II. The
study was exempt from IRB approval by Ethics Review Committee
of Beijing University of Traditional Chinese Medicine.

TABLE II: Relevant information on subjects

Subject Gender Age BMI Subject Gender Age BMI

A1 F 18 21.2 A8 M 25 26.3
A2 F 23 18.4 A9 M 33 29.4
A3 F 24 24.8 A10 M 37 31.2
A4 M 21 28.3 B1 F 21 27.4
A5 M 22 23.6 B2 F 24 26.2
A6 M 22 23.7 B3 M 23 22.4
A7 M 23 19.4 B4 M 38 29.1
1 A and B represent training group and test group respectively.
2 BMI (Body Mass Index) is the weight divided by the square of height

(kg/m2).

As mentioned in the introduction section, we chose the Eight
Methods of Tai Chi and their common mistakes as the postures to be
recognized in this study. Through the communication with Tai Chi
experts, we selected 17 wrong postures for each method (including
the forward and backward of the human body’s center of gravity, the
high and low of the main hand, and the excessive force of the deltoid
and the combination of these errors). In addition, we set the sensor
devices on the subjects as shown in Fig. 1 according to the advice
of experts. With the help and supervision of the same experts, we
collected the data of 14 subjects’ standard movements and 17 wrong
postures of the Eight Methods. For each sub-posture, we collected
data for about three minutes for each subject. After the signal was
segmented based on second with 50% overlap (i.e. one segment per
second, and for every two seconds, three segments are yielded), 320-
400 segments were obtained for each posture. In total, the training set
contained 65000 samples, and the test set contained 25000 samples.

2) Labeling protocol: Each Method has 18 classification cate-
gories: three postures for the main hand multiplied by three postures
for the center of gravity multiplied by two statuses for the deltoid
force. To accurately label the postures, we asked three Tai Chi experts
to aid the labeling work. Because the offset of the center of gravity
and the force exerted by the muscles are difficult to evaluate by
observation, three experts offered the results of posture evaluation
by touching the subjects. By synthesizing the evaluation results of
the three experts, we annotated the corresponding labels.

Fig. 5: The flow of the signals in preprocessing step.
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3) Preprocessing: Where needed, the aim of this step is to remove
the spurious components (e.g. noise, trends) from, and to normalize
the signals to improve the classification accuracy of the network.
After preliminary analysis of the signals, we found out that signals
generated by commercial IMUs with integrated digital filtering do not
need additional preprocessing apart from detrending, while signals
from piezoresistive arrays and sEMG need to be denoised. For
piezoresistive output signals, we first removed the DC component
by subtracting the signals with the average value of a blank group
(without pressure). Then, a Butterworth low-pass filter with a cut-
off frequency of 10 Hz and an order of 4 was used for denoising.
For sEMG signals, we firstly low-pass filtered them to extract the
passband with Butterworth filter using a cut-off frequency of 500 Hz
and an order of 4. Then, a digital IIR (Infinite Impulse Response)
notch filter was utilized to remove the 50Hz power-line interference.
The system function of the second-order notch filter is:

H(z) =
1 − (2cosω0)z−1 + z−2

1 − (2rcosω0)z−1 + r2z−2 (5)

Where w0 = 2π f0/ fs is the notch digital frequency, f0 is the
stopband center frequency, fs is the sampling frequency, and r is the
notch constant, which determines the stopband range and attenuation
characteristics.

As data from diverse subjects may present an overall variance
originating from various body characteristics, the z-score normaliza-
tion was conducted on each sample between the denoising and the
WMNN. Fig. 5 illustrates the flow of signals during preprocessing
(one channel was selected as a sample in each modal). After the
preprocessing steps, the fine data are fed into the WMNN as the
inputs.

4) Model Training and Testing: Due to the relatively small amount
of data in the dataset of this study, we applied the method of cross-
validation to train and validate the model [34]. After building the
network, we fed the data from ten subjects in group A to the
network for ten-fold cross-validation training: after obtaining the
optimal structure of the sEMG convolutional feature extractor with

softmax as the classifier, we locked the network’s hyperparameters
and parameters. Then we changed the classifier to the three most
prevailing classifiers in the field of motion recognition: LDA [35-
37], KNN [38-40], and SVM. The classifiers were also trained with
ten-fold cross-validation to acquire the optimal hyperparameters and
parameters in recognition within each Method of Tai Chi. To evaluate
the generalization of the model, we utilized the network trained
by data from group A to recognize the postures of subjects from
group B and compared the results with the standard labels. For each
Method, we trained a set of parameters for the network to classify
18 classification categories (i.e. one standard posture and 17 common
wrong postures).

For the first step of training (feature extractor training), the Adam
optimizer [41] was used for 50 epochs, the loss function is cross-
entropy loss, the batch size is 100, and the learning rate is 0.001. For
the second step of training (classifier training), the polynomial kernel,
gaussian kernel, and sigmoid kernel were tested, and the gaussian
kernel showed the best performance in this task. The learning process
was boosted by Apple Metal Performance Shaders (MPS).

IV. EXPERIMENTAL RESULTS

In this section, the results of the five experiments conducted in
this study are demonstrated. Besides, Table III compares the results
of this study with relevant work in detail.

A. Experiment I: The frozen part training

In order to obtain the optimal microstructure of the feature extrac-
tor, we compared different dimensions of the convolution and changed
different hyperparameters to train the original network (without
changing the classifier but only using softmax) and achieved the op-
timal hyperparameters under eight Methods respectively. According
to the results, the overall optimal combination of hyperparameters is
3×3 convolutional kernel size, the stride of 1, and the max-pooling
mode. The data from group A were utilized in this experiment for
cross-validation training. The specific results of the training are shown
in table IV and V.

TABLE III: Comparison with state-of-the-art work on HAR

Ref. Task Hardware Algorithms Datasets Accuracy

[10]
Recognizing 42 yoga poses

in 10 orientations
One nine-camera mocap system

A joint angular displacement map(JADM)

and convolutional neural network (CNN)

Training set: HDM05 and CMU (public)

Test set: obtained from 10 subjects

Training: 89.15% and 88.67%

(two public datasets)

Test: 94.43%-98.93%

(different subjects)

[13] Recognizing 26 yoga postures
WSN contains three low-

resolution infrared sensors

Deep convolutional neural network

(DCNN)

Collection of 93200 posture

images from 18 volunteers
An average of 99.45%

[15] Recognizing 10 fitness motions
Four RFID tags and

four antennas

KL divergence based segmentation

and Doppler profile matching
Data from 15 volunteers Approximately 90%

[16] Classifying 10 actions of Tai Chi Five IMU sensors
Dynamic time warping (DTW)

and support vector machine (SVM)

Twenty sets of 26 independent

actions with 17 IMUs
An average of 90.45%

[17]
Recognizing 12 yoga steps and give

feedback on the improper motion speed
Four IMU sensors Deep neural network Data from 8 professional yoga trainers

83.2%-94.4%

(different subjects)

[18]
Detection of four gait subphases

and five locomotion modes

A commercial sEMG device

(MP150)

Top and slope (TAS) and

linear discriminate analysis (LDA)
Data from 10 subjects 91.4% and 94.26%

[23] Classifying four gait subphases

Four-channel sEMG sensors

and two-channel plantar

pressure sensors

Long and short term memory (LSTM)

and multilayer perceptron (MLP)
Data from 3 male subjects An average of 90.79%

[24] Recognizing six hand gestures
One IMU and

two sEMG sensors
SVM and decision-tree Data from 10 subjects An average of 95.6%

[This work]

Evaluating the body movements

and muscle force for

Tai Chi Eight Methods training

Five IMU sensors,

two bipolar sEMG sensors,

and two piezoresistive insoles

A CNN feature extractor

and SVM (WMNN)

Training set: data from 10 subjects

Test set: data from 4 subjects

Training: overall 96.9%

Test: overall 92.5%

1 Three colors respectively indicate categories of non-wearable based, uni-sensor wearable based, and multi-sensor wearable based.
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TABLE IV: The overall accuracy of the original network under different dimensions of convolution

Ward-off Roll Press Push Pluck Lay Elbow Lean

1D 93.3% 91.4% 92.8% 92.4% 91.9% 90.1% 91.1% 92.3%
2D (GAF) 95.1% 96.7% 95.8% 95.2% 94.1% 92.9% 92.6% 93.4%

TABLE V: The overall accuracy of the original network under different hyperparameters

Hyperparameters

Methods
Ward-off Roll Press Push Pluck Lay Elbow Lean

Kernel Size

2×2 95.1% 94.3% 93.7% 95.1% 94.1% 89.7% 92.3% 90.8%

3×3 93.9% 96.7% 95.8% 95.2% 93.3% 92.9% 92.6% 93.4%

5×5 85.6% 89.2% 88.3% 91.2% 90.3% 91.1% 83.9% 92.4%

Stride

1 95.1% 96.7% 95.8% 95.2% 94.1% 92.2% 92.6% 93.4%

2 92.1% 95.5% 94.9% 93.6% 92.2% 92.9% 90.5% 93.2%

3 94.2% 95.9% 92.4% 91.4% 91.7% 91.8% 89.1% 92.3%

Pooling

Mean Pooling 92.3% 94.5% 94.9% 92.5% 94.0% 89.6% 90.2% 93.5%

Max Pooling 95.1% 96.7% 95.8% 95.2% 94.1% 92.9% 92.6% 93.4%

No Pooling 91.1% 93.8% 95.2% 94.4% 91.2% 90.8% 91.7% 92.4%
1 Bolded represents the optimal hyperparameters under the corresponding Method.

(a) (b)

Fig. 6: The recognition accuracy under Eight Methods under different classifiers (error bars indicate standard deviations among subjects):
(a) training set (group A) results and (b) test set (group B) results.

B. Experiment II: The classifiers training and generalization
optimization

Table VI compares diverse state-of-the-art baseline methods on the
dataset and validates the optimal of the proposed method in this task.
When no feature extractor is introduced, the results on the training
set are decent while a sharp decrease is witnessed in the test set.
This is because the classifier only tries to separate the vectors in
the hyperspace, and lacks the mining of essential features. Thus,
the feature extractor based on deep learning is necessary to extract
more deep features to enhance the generalization of the method
to new individuals. Although the original network using softmax
as the classifier performs well in cross-validation, the recognition
accuracy of the model reduces greatly when the test set data (i.e.

data from group B) that the model has never learned is introduced.
In order to optimize the generalization of the model, we compared
the performance of several classifiers frequently-used in activity
recognition. As shown in Fig. 6 (a) and Fig. 6 (b), SVM outperforms
other classifiers in both the training set and test set. In the training
set, the performance of various classifiers is relatively consistent, and
they all achieve decent training accuracy. Specifically, in the test set,
SVM maintains high classification accuracy while other classifiers,
especially softmax, suffer from poor generalization. It can be seen
that the system has achieved good accuracy in both the learned
training set and the unlearned test set, and is competent for the
task of comprehensively analyzing body movements and the muscular
forces behind them. The classification confusion matrix of the Ward-
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Fig. 7: The confusion matrix of Ward-off Method. For the categories, the first number represents the main hand (0 is standard, 1 is high, 2
is low), the second number represents the centre of gravity (0 is standard, 1 is forward, 2 is backward) and the third number represents the
deltoid force (0 is standard, 1 is excessive), which are arranged in Gray code order.

TABLE VI: The comparison among diverse state-of-the-art ma-
chine/deep learning backbones on the feature extractor

Backbones Training accuracy Test accuracy

No extractor (Only SVM) 94.7% 81.6%

No extractor (Only DNN) 94.5% 87.1%

AlexNet 95.2% 90.5%

GoogleNet 95.9% 90.1%

VGG-11 96.2% 91.7%

ResNet-18 96.1% 92.1%

This method 96.9% 92.5%

off sub-postures under the SVM classifier is showcased in Fig. 7 as
an example, while table III shows a comparison of our work with
other state-of-the-art results reported in literature.

C. Experiment III: Multi-sensor data complementarity analysis

Generally, IMU data are mainly used to analyze limb movements
(in this study, it is used to analyze whether the main hand is high
or low); Piezoresistive arrays data are mainly used to analyze the
center of gravity and gait (in this study, it is used to judge whether
the center of gravity is forward or backward); sEMG data are mainly
used to analyze muscle force (in this study, it is used to estimate
whether the deltoid is excessive rigid). For the purpose of analyzing
the coupling and complementarity among multi-sensor data, we only
utilized uni-modal data to complete its main task, and compare it
with the results of introducing all data. The data from group A
were utilized in this experiment. Fig. 8 demonstates the samples
distribution on the hyperplane mapped by T-SNE algorithm: By
fusing the multi-sensor data, boundaries of main hand evalutation
and center of gravity evaluation become clearer, which means the
reduction of the likelihood of overfitting.

Fig. 8: The comparison of features’ hyperplane projections between
uni-modal and multi-modal under different sub-tasks.

As showcased in Fig. 9 that IMUs’ and piezoresistive arrays’ data
are highly complementary to data from other sensors. By fusing
multi-sensor data, the classification accuracy of single-mode tasks
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Fig. 9: The comparison of classification accuracy between uni-modal
and multi-modal under different sub-tasks.

Fig. 10: Recognition accuracy of different sub-tasks with time.

is significantly improved compared with that of using only a single
sensor. On the contrary, the modal identification of deltoid force
almost completely depends on the sEMG sensors. In this task, the
recognition accuracy using multi-sensor data is similar to that of using
sEMG sensors only.

D. Experiment IV: System time stability analysis

To test the time stability of the system, we collected the motion data
of the subjects from group A after wearing the devices for a certain
time and recognized the postures via the trained model. Starting from
baseline, the movement data of the Eight Methods were collected
every 10 minutes. Fig. 10 displays the change in the average accuracy
of three types of sub-tasks (classification of the main hand, center
of gravity, and deltoid force) with the continuous wearing time. It
can be observed that the recognition accuracy of the main hand and
center of gravity has good time stability (reflecting that the time drifts
of IMUs and piezoresistive insoles are acceptable); The recognition
accuracy of deltoid force has a significant decline with the passage
of continuous use time (reflecting the severe time drift of the data
collected by sEMG sensors). To study the mechanism of the time drift
of the sEMG sensors, the sEMG electrodes of half of the subjects
were adjusted (rub alcohol on skin surface and reapply electrodes)
before each measurement as a control.

V. DISCUSSION AND LIMITATION

By applying the proposed WMNN, we fused the multi-sensor
data in the feature layer. The system recognizes the fitness activities
by comprehensively analyzing the visible body movements and the
invisible muscular forces behind them for the first time. The system
can achieve a decent accuracy in the classification of sub-motions
of Eight Methods of Tai Chi and be commendably generalized to
the data it has never learned before. In this section, some results are
discussed in detail, which draws forth the merits and the limitation
of this work.

In Experiment I, though the set of convolution kernel of 3×3 and
the stride of 1 brings a relatively small receptive field on one hand,
we increase the depth and make it easier to search for details on
the other hand. Using less width to increase depth is in line with
the perception of the network in the AI field in recent years [42,
43]. For sEMG signals, the pooling layer may reduce the sensitivity
of feature perception at different time steps. While in this method,
the use of pooling layers improved the performance of the system.
This may be due to the difference in the tasks: in tasks such as
gesture recognition that recognize motion gestures through sEMG
signals, pooling layers tend to blur the features of the signal, thereby
decreasing the classification effect. In this work, sEMG is mainly
utilized to analyze the strength of deltoid muscle force, and it focuses
more on the density and amplitude of the signal. Although the sEMG
signal has been denoised before WMNN, it still contains some noise.
Using max-pooling can further suppress the noise while improving
the saliency of the feature map in the region.

Softmax trains deep features that divide the entire hyperspace or
hypersphere according to the number of categories, ensuring that
the classes are separable. However, Softmax does not require intra-
class compactness and inter-class separation, which often results
in poor performance on test sets with relatively small datasets. In
Experiment II, when the original network attempted to work on the
test set, which it had never learned, the performance degenerated
greatly. To address the decline in accuracy, we introduced the SVM
to serve as the classifier instead of the Softmax. SVM is an excellent
small sample learning method and has good robustness, which is
derived from the underlying logic of SVM: In Hilbert space, SVM
is committed to making the decision boundary as far away from the
samples as possible [31-33]. Therefore, based on the small sample
size of this study, SVM effectively ameliorates the generalization
of the system. Compared to more complex multimodal architectures
such as the Multi-modal Transformer [44], the WMNN proposed
in this study focuses more on robustness and generalization on
small datasets. When the dataset is larger, normalized data from a
large number of subjects can effectively improve the generalization
problem presented in the previous section, when a deeper network
architecture is expected to achieve higher accuracy in application
scenarios where computing power allows, and this is where our future
research will be conducted.

In experiment III, the judgment accuracy of the system for the
main hand and center of gravity has been significantly improved after
using multi-sensor data, which is in line with the advantage of multi-
sensor fusion method: when the multi-sensor data is collaborative
and comprehensive, the precision and reliability of the system will
be improved [46]. In this study, by introducing the multi-sensor
fusion method, in addition to expanding the function boundary of a
single sensor, it also mines the complementarity between IMUs and
piezoresistive insoles’ data to enhance the accuracy of the system.

In Experiment IV, the accuracy of muscle force classification
analyzed by sEMG sensors decreased significantly with the pas-
sage of continuous use time. This is because, with the increase
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Fig. 11: The radar charts of different subjects’ user experience.

of continuous wearing time, the sweat film formed by sweating
between the electrodes and the skin and the stretching and contraction
of human muscles will impair the performance of sEMG sensors
[45]. Therefore, unless optimizing the hardware (e.g. the adhesive
biocomposite electrodes proposed by Yang et al. [47] and in-sensor
adaptive machine learning system developed by Ali et al. [48]), it
is necessary to frequently readjust the conductive hydrogel on the
electrode surface and wipe the skin with alcohol during use. In
addition, the development of new algorithms for online, real-time
calibration of human impedance to mitigate the bias caused by factors
such as sweat is also expected to be feasible. We leave this for future.

To evaluate the experience of using the system, the 14 subjects
were invited to perform the Tai Chi Eight Methods with and without
system assistance. After the training, we evaluated the efficiency,
workload, and accuracy of the training, where efficiency was char-
acterized by the time consumed in training to achieve the same
accuracy, accuracy was characterized by the accuracy of the training
movements, and the workload was measured by the NASA Task Load
Index (TLX) form [49]. The radar charts of user experience for all
subjects are shown in Fig. 11. As can be seen from the radar charts,
the efficiency and accuracy of completing the training with system
assistance increased significantly and the workload decreased greatly.
Although subjects in Group B suffered a slightly worse experience
overall than subjects in Group A due to their data not being learned
online, their E, A, and W all overwhelmed the unaided situation.

The latency of the system mainly derives from the following
aspects: communication latency and computation latency. All the
sensors are connected with the host server by BLE Mesh and its
latency refers to the time interval from when the device puts data
into the Bluetooth protocol stack to when it is received by the host.
Through the test, it can be seen that the BLE transmission delay
fluctuates around 10ms. Computation latency is mainly generated in
processing inputs and offering feedback via GUI in our system. In the
processing stage, the proposed system based on lightweight WMNN
spends less than 40 ms to obtain the classification results. Besides,
the time of showcasing the results by GUI can be omitted. Therefore,
the overall system latency is about 50ms, which is fully acceptable
for users.

VI. CONCLUSION

In this study, we propose a generalized multi-sensor fusion frame-
work for HAR based on WMNN to comprehensively evaluate motion
tasks’ quality. The visible movements (limb motion and center of
gravity) and associated invisible bioinformatics (muscle force) are
firstly analyzed jointly in the framework. Compared to camera-based
systems, which often require exercising in an environment with
multiple cameras, our system is more adaptable to different scenarios
and can be carried more flexibly outdoors. Besides, our system
contains rich information (including body movement, the body center
of gravity, and muscle force) needed to analyze sports actions,
which can facilitate the analysis of sports’ correctness. Therefore,
the proposed technique can function more conveniently, flexibly, and
accurately, which empowers multiple applications like rehabilitation
and health monitoring, apart from home-centered fitness, potentially
advancing the development of next-generation e-health with the novel
framework.
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