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WMR Control Via Dynamic Feedback Linearization:
Design, Implementation, and Experimental Validation

Giuseppe Oriolo, Member, IEEE, Alessandro De Luca, Member, IEEE, and Marilena Vendittelli

Abstract—The subject of this paper is the motion control
problem of wheeled mobile robots (WMRs) in environments
without obstacles. With reference to the popular unicycle kine-
matics, it is shown that dynamic feedback linearization is an
efficient design tool leading to a solution simultaneously valid for
both trajectory tracking and setpoint regulation problems. The
implementation of this approach on the laboratory prototype
SuperMARIO, a two-wheel differentially driven mobile robot, is
described in detail. To assess the quality of the proposed controller,
we compare its performance with that of several existing control
techniques in a number of experiments. The obtained results
provide useful guidelines for WMR control designers.

Index Terms—Asymptotic stability, feedback linearization, mo-
bile robots, motion control, nonholonomic systems, nonlinear sys-
tems, tracking.

I. INTRODUCTION

WHEELED mobile robots (WMRs) are increasingly
present in industrial and service robotics, particularly

when autonomous motion capabilities are required over
reasonably smooth grounds and surfaces. Several mobility
configurations (wheel number and type, their location and
actuation, single- or multibody vehicle structure) can be
found in the applications, see, e.g., [1]. The most common for
single-body robots are differential drive and synchro drive (both
kinematically equivalent to a unicycle), tricycle or car-like
drive, and omnidirectional steering. A detailed analytical study
of the kinematics of WMRs is found in [2].

Beyond the obvious relevance in applications, the problem of
motion planning and control of WMRs has attracted the interest
of researchers in view of its theoretical challenges. In fact, these
systems are a typical example ofnonholonomicmechanisms [3]
due to the perfect rolling constraints (no longitudinal or lateral
slipping of the wheels).

In the absence of workspace obstacles, the basic motion tasks
assigned to a WMR may be formulated as 1) following a given
trajectory and 2) moving between two robot postures. From a
control viewpoint, the peculiar nature of nonholonomic kine-
matics makes the first problem easier than the second; in fact, it
is known [4] that feedback stabilization at a given posture cannot
be achieved via smooth time-invariant control. This indicates
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that the problem is truly nonlinear; linear control is ineffective,
and innovative design techniques are needed.

After a preliminary attempt at designing local controllers,
the trajectory tracking problem was globally solved in [5] by
using a nonlinear feedback law, and independently in [6] and
[7] through the use of dynamic feedback linearization. A recur-
sive technique for trajectory tracking of nonholonomic systems
in chained form can also be derived from the backstepping para-
digm [8]. As for posture stabilization, both discontinuous and/or
time-varying feedback controllers have been proposed. Smooth
time-varying stabilization was pioneered by Samson [9], [10],
while discontinuous control was used in various forms, see, e.g.,
[11]–[15].

Although the problem of controlling certain classes of non-
holonomic systems is virtually solved from a theoretical view-
point, for the WMR control designer there are still many is-
sues that deserve further attention. For example, a drawback
of many posture stabilizing controllers is a poor transient per-
formance. Another difficulty which has often been overlooked
is the necessity of using two different control laws for trajec-
tory tracking and posture stabilization. This is particularly un-
desirable during sensor-based operation, where the robot is ex-
pected to switch continuously between the two, or in the exe-
cution of docking maneuvers. Recently, the problem of synthe-
sizing controllers which can be used for both control tasks has
been explicitly addressed in [16], where exponential tracking
is, however, achieved only for persistently exciting trajectories,
and in [17], through an approach similar to Samson’s original
idea [9] of obtaining (unfortunately very slow) convergence to
a desired posture by solving an auxiliary tracking problem for
a suitably designed trajectory. Other controllers with simulta-
neous tracking/stabilization capabilities are those presented in
[18] and [19], where, however, onlypractical stability (i.e., ul-
timate boundedness of the error) is achieved.

The objective of this paper is to present a method for solving
trajectory tracking as well as posture stabilization problems,
based on the unifying framework of dynamic feedback lin-
earization. In particular, we show that the same controller
achieves zero error in both cases, provided that simple condi-
tions are satisfied. The control design is carried out for the case
of unicycle kinematics, the most common among WMRs, and
implemented on our prototype SuperMARIO. Its performance
is satisfactory, for the generated trajectories are fast, natural,
and predictable.

To allow a critical assessment, we compare the results of the
proposed method with those achieved by using other techniques,
namely two trajectory tracking and three posture stabilization
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(a)

(b)

Fig. 1. Basic motion tasks for a WMR. (a) Point-to-point motion. (b)
Trajectory following.

controllers, highlighting potential implementation problems re-
lated to kinematic or dynamic nonidealities, e.g., wheel slip-
page, discretization and quantization of signals, friction, back-
lash, actuator saturation, and dynamics. This is to be regarded as
a contribution in itself: in fact, while comparative simulations of
control methods are given in [20] for a unicycle and in [21] for
a car-like vehicle, an extensive experimental testing on a single
benchmark vehicle was absent in the literature so far.

This paper is organized as follows. In Section II, we classify
the basic control tasks for a WMR. Modeling and control prop-
erties are summarized in Section III, where linearization via dy-
namic feedback is mainly discussed. In Section IV, the experi-
mental setup used in our tests is described in detail.

After discussing the generation of feedforward commands
(Section V-A), a trajectory tracking controller based on feed-
back linearization is described in Section V-B. Experimental
results of tracking an eight-shaped trajectory are presented in
Section V-C; the performance of the method is compared with
that of a linear and a nonlinear controller, respectively, designed
via approximate linearization along the reference trajectory and
via Lyapunov analysis.

The use of dynamic feedback linearization for solving posture
stabilization problems is studied in Section VI-A. Experimental
results for forward and parallel parking tasks are reported in
Section VI-B; for comparison, the same tasks are executed with
three well-known controllers: a time-varying smooth feedback,
a nonsmooth feedback, and a control law based on polar coor-
dinates transformation.

Finally, in Section VII the obtained results are summarized
and compared in terms of performance, ease of parameters
tuning, sensitivity to nonidealities, and generalizability to
other WMRs. In this way, guidelines are proposed to end-users
interested in implementing control laws for WRMs. Open
problems for further research are pointed out.

II. BASIC MOTION TASKS

The basic motion tasks that we consider for a WMR in an
obstacle-free environment are (see Fig. 1) the following.

• Point-to-point motion: A desired goal configuration must
be reached starting from a given initial configuration.

Fig. 2. Relevant variables for the unicycle (top view).

• Trajectory following: A reference point on the robot must
follow a trajectory in the Cartesian space (i.e., a geometric
path with an associated timing law) starting from a given
initial configuration.

Execution of these tasks can be achieved using either feedfor-
ward or feedback control (or a combination of the two); obvi-
ously, the latter is to be preferred in view of its intrinsic degree
of robustness. When executed under a feedback strategy, the
point-to-point motion task leads to a regulation control problem
for a point in the robot state space—posture stabilizationis the
expression used in this paper. Without loss of generality, the goal
can be taken as the origin of the-dimensional robot configu-
ration space.

Instead, trajectory following leads naturally to a tracking
problem, which may be asymptotic in the presence of an
initial error (i.e., an off-trajectory start for the vehicle). In
the following, the termtrajectory trackingwill be adopted,
referring to the problem of stabilizing to zero ,
the two-dimensional Cartesian error with respect to the position
of a moving reference robot [see Fig. 1(b)].

The design of posture stabilization laws for nonholonomic
systems has to face a serious structural obstruction, that will be
discussed in Section III. As a consequence, opposite to the usual
situation, tracking is easier than regulation for a nonholonomic
WMR. An intuitive explanation of this can be given through a
comparison between the number of inputs and outputs. For the
unicycle-like vehicle introduced in Section III, two input com-
mands ( and ) are available, while three variables (, , and
) are needed to determine its configuration. Thus, regulation

of the WMR posture to a desired configuration implies zeroing
three independent configuration errors. When tracking a trajec-
tory, instead, the output has the same dimension as the input
and the control problem is square.

III. M ODELING AND CONTROL PROPERTIES

Let be the -vector of generalized coordinates for a
wheeled mobile robot. Pfaffian nonholonomic systems are char-
acterized by nonintegrable linear constraints on the gen-
eralized velocities. For a WMR, these arise from the rolling
without slipping condition for the wheels.

The simplest model of a nonholonomic WMR is theunicycle,
i.e., a single upright wheel rolling on the plane (top view in
Fig. 2). The generalized coordinates are
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( ). The constraint that the wheel cannot slip in
the lateral direction is

By expressing all the feasible velocities as a linear combination
of vector fields spanning the null space of matrix , one
obtains the so-calledfirst-order kinematic model

(1)

where and (respectively, the linear velocity of the wheel and
its angular velocity around the vertical axis) are taken as control
inputs ( ). As we will show in Section IV, this model is
equivalent to that of SuperMARIO.

The driftless nonlinear system (1) has several control proper-
ties, most of which actually hold for the whole class of WRMs
and nonholonomic mechanisms in general.

A. Controllability and Stabilizability at a Point

The approximate linearization of (1) at any pointis clearly
not controllable. Hence, a linear controller cannot achieve
posture stabilization, not even locally. However, denoting by

the Lie bracket of and , it is easy to verify that the
accessibility rank condition[22]

rank (2)

is globally satisfied. As the system is driftless, this guarantees
its controllability—although in a nonlinear sense.

A severe limitation on the point stabilizability of system (1) is
that Lyapunov stability cannot be achieved by using smooth (in
fact, even continuous) time-invariant feedback laws. This neg-
ative result is established on the basis of a necessary condition
due to Brockett [23]: smooth stabilizability of a driftlessregular
system (i.e., such that the input vector fields are well defined and
linearly independent at ) requires a number of inputs equal to
the number of states. As a consequence, to obtain a posture sta-
bilizing controller it is either necessary to give up the continuity
requirement and/or to resort to time-varying control laws.

B. Controllability and Stabilizability About a Trajectory

Given a desired Cartesian motion for the unicycle, many
tracking methods require the generation of the corresponding
state trajectory and control inputs

(see Section V-A). In order to be feasible, the
former must satisfy the nonholonomic constraint on the vehicle
motion, that is, be consistent with (1).

Assume that the approximate linearization of (1) is computed
about . Since the linearized system is time-varying, a nec-
essary and sufficient controllability condition is that the control-
lability Gramian is nonsingular. Although we do not give details
here, it is relatively easy to show that such condition is indeed
satisfied as long as or ; this implies that smooth
stabilization is possible and, in particular, linear design tech-
niques can be used to achieve local stabilization for arbitrary
feasible trajectories, as long as they do not come to a stop.

C. Static Feedback Linearizability

The nonholonomic kinematic model (1) cannot be trans-
formed into a linear controllable system usingstatic (i.e.,
time-invariant) state feedback. In fact, the controllability
condition (2) means that the distribution generated by vector
fields and is not involutive, thus violating the necessary
condition for full state feedback linearizability [22].

However, system equations can be transformed via feed-
back into simple integrators (input–output linearization and de-
coupling). The choice of the linearizing outputs is not unique.
An interesting example is the following.

For the kinematic model (1), the globally defined coordinate
transformation

and static state feedback

(3)

lead to the so-called (2, 3)chained form

(4)

with and as linearizing outputs. Note that is the
unicycle position in a rotating left-handed frame having the
axis aligned with the vehicle orientation (see Fig. 2).

More in general, it is known [24] that a two-input driftless
nonholonomic system with states can always be trans-
formed in chained form by static feedback, while for a
set of necessary and sufficient conditions is available. In prac-
tice, most WMR kinematic models can be put in chained form;
a notable exception is the car–trailer system with two or more
trailers hitched at some distance from the midpoint of the pre-
vious wheel axle.

D. Dynamic Feedback Linearizability

For exact linearization purposes, one may also resort tody-
namic state feedback [6], [7]. In this case, the conditions for
full state linearization are less stringent and are satisfied for a
large class of nonholonomic WMRs (e.g., those transformable
in chained form), including the unicycle.

With reference to a generic driftless nonlinear system

(5)

the dynamic feedback linearization problem consists in finding,
if possible, a feedback compensator of the form

(6)

with state and input , such that the closed-loop
system (5) and (6) is equivalent, under a state transformation

, to a linear system. Only necessary or sufficient
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(but no necessary and sufficient) conditions exist for the solution
of this problem. Constructive algorithms are essentially based
on input-output decoupling [22].

The starting point is the definition of an -dimensional
output , to which a desired behavior can be assigned.
One then proceeds by successively differentiating the output
until the input appears in a nonsingular way. At some stage,
the addition of integrators on some of the input channels
may be necessary to avoid subsequent differentiation of the
original inputs. Thisdynamic extensionalgorithm builds up
the state of the dynamic compensator (6). If the system is
invertible from the chosen output, the algorithm terminates
after a finite number of differentiations. If the sum of the
output differentiation orders equals the dimension of
the extended state space, full input–state–output linearization
is obtained.1 The closed-loop system is then equivalent to a
set of decoupled input–output chains of integrators fromto

.
We illustrate this exact linearization procedure for the uni-

cycle model (1). Define the linearizing output vector as
. Differentiation with respect to time then yields

showing that only affects , while the angular velocity
cannot be recovered from this first-order differential informa-
tion. To proceed, we need to add an integrator (whose state is
denoted by ) on the linear velocity input

being the new input the linear acceleration of the unicycle.
Differentiating further, we obtain

and the matrix multiplying the modified input is nonsin-
gular if . Under this assumption, we define

so as to obtain

(7)

The resulting dynamic compensator is

(8)

Being , it is , equal to the output
differentiation order in (7). In the new coordinates

1In this case,� is also called aflat output [25].

Fig. 3. WMR SuperMARIO.

(9)

the extended system is, thus, fully linearized and described by
the two chains of integrators in (7), rewritten as

(10)

The dynamic compensator (8) has a potential singularity at
, i.e., when the unicycle is not rolling. The occur-

rence of such singularity in the dynamic extension process is
structural for nonholonomic systems [6]. This difficulty must
be obviously taken into account when designing control laws
on the equivalent linear model.

IV. TARGET VEHICLE: SUPERMARIO

The experimental validation of the proposed control method
and its comparison with existing controllers has been performed
on our prototype SuperMARIO (Fig. 3).

A. Physical Description

SuperMARIO is a two-wheel differentially driven vehicle.
The wheels have a radius of cm and are mounted on an
axle cm long. The wheel radius includes the o-ring used
to prevent slippage; the rubber is stiff enough that point con-
tact with the ground can be assumed. A small passive caster is
placed in the front of the vehicle at 29 cm from the rear axle. The
aluminum chassis of the robot measures 4632 cm
(l/w/h) and contains two motors, transmission elements, elec-
tronics, and four 12-V batteries. The total weight of the robot
is about 20 kg and its center of mass is located slightly in front
of the rear axle. This design limits the disturbance induced by
sudden reorientation of the caster. Each wheel is driven by an
MCA dc servomotor supplied at 24 V with a peak torque of
0.56 Nm. Each motor is equipped with an incremental encoder
counting pulses/turn and a gearbox with reduction
ratio . On-board electronics multiplies by a factor
the number of pulses/turn, representing angular increments with
16 bits.
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Fig. 4. Control architecture of SuperMARIO.

SuperMARIO is a low-cost prototype and presents, therefore,
the typical nonidealities of electromechanical systems, namely
friction, gear backlash, wheel slippage, actuator deadzone, and
saturation. These limitations clearly affect the control perfor-
mance.

B. Control System Architecture

SuperMARIO has a two-level control architecture (see
Fig. 4). High-level control algorithms (including reference
motion generation) are written in C and run with a sampling
time of ms on a remote server (a 300-MHz Pentium
II), which also provides a user interface with real-time visual-
ization and a simulation environment. The PC communicates
through a radio modem with serial communication boards on
the robot. The maximum speed of the radio link is 4800 b/s.
Wheel angular velocity commands and are sent to the
robot and encoder measures and are received for
odometric computations.

The low-level control layer is in charge of the execution of
the high-level velocity commands. For each wheel, an eight-bit
ST6265 microcontroller implements a digital PID with a cycle
time of ms. Two power amplifiers drive the motors with
a 51-KHz PWM voltage.

Custom interpolation algorithms were developed on the PC
to reduce the effect of quantization errors and communication
delays in the reconstruction of the robot posture from the
odometric data. Additional filtering of high-level velocity
commands is included to account for vehicle and actuator
dynamics: simple first-order linear filters smooth possible
discontinuities in the velocity profiles.

C. Kinematics

The kinematic model of SuperMARIO is given by (1), i.e., is
equivalent to that of a unicycle. However, the actual commands
are the angular velocities and of the right and left wheel,
respectively, rather than the driving and steering velocities
and . There is, however, a one-to-one mapping between these
velocities

(11)

A calibration procedure has also been developed to estimate the
actual wheel radii and axle length.

The reconstruction of the current robot configuration is based
on incremental encoder data (odometry). Let and be
the angular wheel displacements measured during the sampling
time by the encoders. From (11), the robot linear and angular
displacements are

The posture estimated at time is

(12)

where2 . Robot localization using the above
odometric prediction (commonly referred to asdead reckoning)
is quite accurate in the absence of wheel slippage and backlash.
These effects are largely reduced when the velocity is kept rea-
sonably small and the number of backup maneuvers is limited.

D. Control Constraints

In view of the bounded velocity of the motors, each wheel
can achieve a maximum angular velocity. Through (11), the
bounds on driving and steering velocities are

There is, however, a more stringent constraint due to the lim-
ited resolution of the digital low-level control layer. In fact, the
linear displacement resolution of the robot can be com-
puted from the previous data as

cm

This value corresponds to the least significant bit of the encoder,
so that the average quantization error will be less than 0.02 mm.
In view of the eight-bit resolution of the on-board velocity mi-
crocontroller and of the PWM circuit (having

2The use of the average value� of the robot orientation is equivalent to the
numerical integration of (1) via a second-order Runge–Kutta method.
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Hz as minimum pulse frequency), the actual linear velocity
command has the following threshold and saturation levels:

cm/s

cm/s

To prevent as much as possible wheel slippage, in our control
software we have imposed even more conservative bounds on
high-level velocity commands

m/s rad/s

In view of these saturations, we perform a velocity scaling so as
to preserve the curvature radius corresponding to the nominal
velocities and . The actual commands and are then
computed by defining

and letting

sign if

sign if

if

This procedure implements a low-level post-processing of the
outputs ofanycontroller implemented on SuperMARIO. Since
the curvature of the Cartesian path is locally preserved, this will
not affect the correct execution of regulation tasks, while it may
prevent perfect trajectory tracking. On the other hand, this is per-
fectly reasonable, since it will only happen when the reference
trajectory is not compatible with the vehicle velocity bounds.

V. TRAJECTORYTRACKING

The solution of the tracking problem requires the combina-
tion of a nominal feedforward command with a feedback action
on the error. In the control scheme to be presented, this error
will be defined with respect to the reference output trajectory
(output error). In other tracking controllers, such as those used
for comparison in Section V-C, the tracking error is defined with
respect to the reference state trajectory associated to the output
trajectory (state error).

A. Feedforward Command Generation

Assume the representative point of the unicycle must
follow the trajectory , for (possibly,

). From the kinematic model, (1) one has

ATAN2 (13)

where ATAN2 is the four-quadrant inverse tangent function (un-
defined only if both arguments are zero). Therefore, the nominal
feedforward commands are

(14)

(15)

having differentiated (13) with respect to time in order to com-
pute . The chosen sign for will determine forward or

backward motion of the vehicle. In order to be exactly repro-
ducible using and , the desired Cartesian motion

should be twice differentiable in .
A remarkable property of the unicycle is that, given

an initial posture and a consistent output trajectory
, there is a unique associated state trajec-

tory , which can be computed
in an algebraic way—a consequence of being a
linearizing output under dynamic feedback. In fact, we have

ATAN2 (16)

where is chosen so that , being the initial value
of the orientation. If , a backward motion will result.
Hence, if needed by the tracking control scheme, the nominal
orientation may be computed off-line.

Note the following facts.

• When the desired linear velocity is zero for some, nei-
ther nor are defined from (15) and (16), respec-
tively. This may occur at the initial instant, if a smooth start
is specified, or at a cusp along the geometric path underlying
the trajectory . In the first case, one can use
higher order differential information about at

to determine the consistent initial orientation and an-
gular velocity command. For the second case, continuous
motion is guaranteed by keeping the same orientation at-
tained at ; by using de L’Hôpital analysis in (15), one can
also compute .

• More in general, the reference trajectory may be specified
by separating the geometric aspects of the path (parameter-
ized by a scalar ) from the timing law used for
path execution. The driftless nature of the kinematic model
of a WMR allows to overcome in this way the above “zero
velocity” problem. For the unicycle, we can rewrite purely
geometric relationships as

where time commands are recovered as ,
. Zero-velocity points with well-defined

tangent (e.g., cusps) are obtained for . The feed-
forward pseudo-velocities and are computed by
replacing time with space derivatives in (14) and (15).

B. Feedback Design

A nonlinear controller for output trajectory tracking based on
dynamic feedback linearization is easily devised. Assume the
robot must follow a smooth trajectory which is
persistent, i.e., such that the nominal control input

along the trajectory never goes to zero. On the equivalent
linear and decoupled system (10), it is straightforward to design
an exponentially stabilizing feedback for the desired trajectory
(with linear Cartesian transients) as

(17)
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with proportional-derivative (PD) gains chosen as ,
, for . These signals should be fed to the dy-

namic compensator (8) in order to obtain the actual control in-
puts.

The above result is valid provided that the dynamic feedback
compensator (8) does not meet the singularity . In
view of the persistency of the reference trajectory, this may only
happen during the initial transient of an asymptotic tracking
problem. Below, we give sufficient conditions under which the
singularity does never occur.

Theorem 1: Let and be, respectively, the
eigenvalues of the closed-loop dynamics of the two tracking
error components

Assume that, for , it is (negative real
eigenvalues) and sufficiently small. If

(18)

with and , then the singularity
is never met.

Proof: Being

the singularity is avoided if

(19)

Using the solution of the closed-loop error dynamics

where the constants depend on the initial conditions
and on the chosen eigenvalues, a tedious but simple analysis
shows that the norm of the velocity error is upper bounded by
its value at , provided that , , is sufficiently
small. From this fact and (19), the thesis follows.

Note that the left-hand side of (18) is always positive due to
the persistency of the reference trajectory. Hence, in order to
apply Theorem 1, one must 1) choose the PD gains so as to sat-
isfy the assumption on and and 2) select, if possible, an
initial value for the dynamic compensator state that satisfies
condition (18), where

As a matter of fact, the existence of a suitableis guaranteed
under the additional sufficient condition

(20)

In fact, in this case one may easily check that letting

the following is automatically satisfied:

We emphasize that the sufficient condition (20) can be always
enforced through a suitable velocity scaling procedure along
the reference path. Clearly, this will not affect the asymptotic
tracking of the original reference trajectory as long as the scaled
trajectory approaches the latter as .

We conclude the discussion on trajectory tracking via dy-
namic feedback linearization with some remarks.

• Instead of resorting to the above sufficient conditions for sin-
gularity avoidance, one may envisage a more naive solution
that consists in resetting the stateof the compensator when-
ever its value falls below a given threshold. This strategy
results in a bounded velocity inputwith isolated discon-
tinuities with respect to time, which in our implementation
will be, however, smoothed out by the linear filters (see Sec-
tion IV-B).

• To obtain exact trajectory tracking for a matched initial pos-
ture of the robot, i.e., , and (or

), the dynamic compensator should be correctly
initialized at (or ).

• Being based on the output tracking error, this method does
not require the explicit computation of .

• The PD control law (17) requires the velocitiesand . To
compute these, there are two possible options, both based on
the availability of the robot posture as reconstructed
from the odometry: either use the stateof the dynamic com-
pensator together with the last two rows in (9), or numerically
differentiate [with the increments directly
provided by the odometric sensors]. In ideal conditions, the
two solutions are equivalent, whereas the second is expected
to be more robust with respect to unmodeled dynamics.

C. Experiments

We now report experimental results of SuperMARIO tracking
the eight-shaped trajectory of Fig. 5, defined by

The trajectory starts from the origin with rad; this
information is not needed by the dynamic feedback linearizing
controller, but it is needed to generate in the two other
tracking controllers used for comparison [see (21) and (22)].
The initial velocities are m/s, rad/s.
A full cycle is completed in s.

To assess the performance of the feedback linearization
controller, we also present experimental results of two state
tracking methods. The first is obtained by performing a
preliminary change of inputs in the unicycle model, then
approximately linearizing the error dynamics with regard to the
reference trajectory, and finally imposing a desired closed-loop
characteristic polynomial with a simplelinear designfor the



842 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002

Fig. 5. Eight-shaped reference trajectory.

transformed control inputs. In terms of the original control
inputs, this leads to the following equations:

sign

(21)

A convenient choice (see [20] for details) of the gains is

with , .
The second tracking controller is the outcome of anonlinear

designbased on an appropriate Lyapunov function [9]

(22)

Inspired to the previous linear design, one can choose the gain
functions and and the constant gain as

In the first set of experiments, the robot starting configura-
tion is matched with the reference trajectory [i.e., ].
Figs. 6–8 show the results obtained by the dynamic feedback
linearization controller (8)–(17), with ,

and . Here, as in all the experiments,
, and are reconstructed from encoder data using the odo-

metric model (12), while and are the reference velocities
computed by the controller. The tracking of the reference trajec-
tory is very accurate; residual errors are mainly due to quantiza-
tion and discretization of velocity commands. Note that the de-
sired Cartesian trajectory is followed with the robot in forward

Fig. 6. Trajectory tracking via dynamic feedback linearization:x (��), y
(��) (m), and� (—) (rad) versus time (s).

Fig. 7. Trajectory tracking via dynamic feedback linearization: driving
velocity v (m/s).

Fig. 8. Trajectory tracking via dynamic feedback linearization: steering
velocity! (rad/s).
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Fig. 9. Trajectory tracking via dynamic feedback linearization: norm of
Cartesian error (m).

Fig. 10. Trajectory tracking with linear feedback design: norm of Cartesian
error (m).

motion. The achieved performance can be compared with those
of the other two controllers (both with and )
looking at Figs. 9–11, which show for each case the norm
of the Cartesian error, obtained using the reconstructed, and
the reference , . Note in Fig. 10 the large transient error in-
duced by the vehicle/actuator dynamics in the presence of an ini-
tial nonzero value of . Both the feedback linearization and
the nonlinear design controller are more effective in reducing
this error. On the whole trajectory, the mean value of the error
ranges from 1 cm (linear design) to 0.5 cm (nonlinear design)
and to 0.38 cm (feedback linearization design).

A second set of experiments was performed letting
(m, m, rad), i.e., starting with an initial

state error with respect to the assigned trajectory (asymptotic
tracking). Only the linearly designed controller and the dy-
namic feedback controller were compared (see Figs. 12 and
13), using the same control parameters as before. The obtained
transients are quite similar, although a smaller overshoot is

Fig. 11. Trajectory tracking with nonlinear feedback design: norm of
Cartesian error (m).

Fig. 12. Asymptotic trajectory tracking via dynamic feedback linearization:
Cartesian errorse ande (m).

Fig. 13. Asymptotic trajectory tracking with linear feedback design: Cartesian
errorse ande (m).
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experienced with dynamic feedback linearization, as implied
by the choice of the PD gains.

VI. POSTURESTABILIZATION

As mentioned in Section III, point stabilization of nonholo-
nomic WMRs cannot be achieved by smooth static feedback.
Below, we show that the tracking scheme (8)–(17) based on dy-
namic linearization provides a discontinuous controller that is
effective for posture stabilization, and compare its performance
with three existing controllers.

A. Feedback Design

To extend the tracking controller based on feedback lineariza-
tion to the posture stabilization problem one must avoid the sin-
gularity not only during the transient (as in the trajec-
tory tracking case) but also asymptotically, i.e., as the robot ap-
proaches the final destination. Again, this simply requires an
appropriate choice of the PD gains and a suitable initialization
of the dynamic compensator state.

Assume w.l.o.g. that the origin is the desired final posture,
and denote by

OR OR

a subset of which will require special attention. The
remaining part of the configuration space can be parti-
tioned in two regions

Theorem 2: Consider the unicycle system (1) under the ac-
tion of dynamic compensator (8). Setting in the
PD control law (17), i.e., choosing

(23)

yields exponential convergence from any starting configuration
to the origin, under the following assumptions.

A1. Gains , ( ) satisfy the conditions

(24)

(25)

A2. The initial state of the compensator is chosen as

(backward motion) if

(forward motion) if

but its value is otherwise arbitrary, except for the additional con-
dition

(26)

Proof: Use of control (23) in (10) implies that coordinates
and converge to zero exponentially, provided that the orig-

inal control inputs and given by (8) remain bounded. To
show this, we must prove that 1)does not go to zero in finite
time, and 2) tends to zero for , in spite of its denomi-
nator vanishing.

1) Since from (9) it is , one has iff
, for a generic . Integrating the

closed-loop system (10) under control (23), we have

(27)

(28)

where eigenvalues and coefficients are functions of
initial state and PD gains

From these expressions and condition (24), it is easy to show
that a finite such that exists iff

with . From this, a quadratic equation
in is derived which has the single nonzero root

Once rewritten in terms of the PD gains, this expression
leads to the forbidden initialization condition (26).

2) Assumption A1 implies that the eigenvalues are real and
ordered as . From (8), we
rewrite as

and using (23), (27), and (28), the numerator oftakes the
form
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with . Its asymptotic convergence rate is larger than
due to the eigenvalue ordering. As for the denomi-

nator, squaring and adding (27) and (28) gives

with . Since the asymptotic rate of convergence of
this quantity is exactly , we conclude that tends
exponentially to zero as .

To finish the proof, consider the following facts.

• The unicycle reaches the origin with a horizontal tangent
( or ), because approaches zero faster thanin
view of the eigenvalue ordering.

• Motion inversions do not occur since never crosses
zero, as shown in the first part of the proof.

• The trajectory is confined to the region (either or )
from which the unicycle starts. In fact,and never change
sign because the eigenvalues are real and thanks to the choice
of sign for in assumption A2.
Their immediate consequence is that also the orientation

converges to zero. As for its rate of convergence, it is exponen-
tial in view of the fact that the derivative of converges ex-
ponentially to zero.

Some remarks are needed at this point.

• As the Cartesian position transients are linear, the unicycle
trajectories obtained with the proposed controller are com-
pletely predictable and can be easily shaped by choosing the
PD control gains. Note that the unicycle can reach the goal
either with a forward or with a backward motion.

• The equality part of condition (24) in Theorem 2 is by no
means necessary; it is only used for deriving a closed form
for the forbidden initialization (26) of the dynamic compen-
sator. Other choices are possible and will lead to different
forbidden initializations. The inequality part of the same con-
dition implies that the eigenvalues that characterize the tran-
sient are real, so that no oscillations are experienced during
the approach to the destination.

• In view of the discontinuity at the origin of the linearizing
controller with respect to the state of the ex-
tended system, as well as of the fact that the initial configu-
ration should belong to , the proposed feedback con-
troller does not yield Lyapunov stability in a strict sense, but
simply exponential convergence.
If the initial configuration belongs to , Theorem 2

cannot be applied. In fact, control (23) would bring the unicycle
to the origin with the wrong orientation, namely, if

, if , if ,
and if . In such a situation, it is necessary to
reset the compensator state at some time , so as to invert
the motion at a configuration . A simple way to
obtain this is to introduce a via point
in the regulation procedure, as illustrated below by the parallel
parking experiment. Convergence to the origin is then obtained
in two phases: in the first, is the desired setpoint, and
converges exponentially to based on Theorem 2. Thus,
in a finite predictable time will enter a sufficiently small

neighborhood of contained in , where the second phase
can be safely started by resetting the setpoint to the origin.

Clearly, the choice of will affect the shape of the generated
path. For example, in the case , a reasonable strategy is
to set , , , which yields a symmet-
rical maneuver spanning equal lengths on bothand axes.
The necessity of adding a via point whenbelongs to does
not necessarily represent a drawback of the method; a suitable
choice of the via point allows better control of the path shape
while approaching the goal configuration. In particular, the re-
sulting stabilization motion contains at most one backup ma-
neuver. With this modification, our method guarantees global
exponential convergence of the vehicle to the desired configu-
ration.

B. Experiments

To show the performance of the feedback linearization con-
troller (23) for posture stabilization, we report the results of Su-
perMARIO executing first aforward parkingtask from

(m, m, rad) to the origin. For comparison, we also
executed the same task with three additional posture stabilizing
controllers.

The first [9] is asmooth time-varyingfeedback control, which
has exactly the same structure of the trajectory tracking con-
troller (22). To achieve posture stabilization, however, the ref-
erence signals (state trajectory and control inputs) must be ap-
propriately chosen. One possibility is to set, for all, ,

[and thus ] and

with an auxiliary error vector and a so-calledheating
function

We also implemented on SuperMARIO anonsmooth time-
varying feedback [13] designed on the chained form (4). The
control law, designed on the basis of thebacksteppingprinciple,
is nonsmooth with respect to the state, which is fed back only
at uniformly sampled instants. At ( ),
one lets

(29)

where , , and

with , and . Equation (29)
should be used in conjunction with (3) in order to generate the
actual velocity inputs and .
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Fig. 14. Posture stabilization using dynamic feedback linearization (forward
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).

Fig. 15. Posture stabilization via dynamic feedback linearization (forward
parking): Cartesian motion(x; y) (m).

The third posture stabilizing controller used for comparison
overcomes the obstruction of Brockett condition for smooth sta-
bilizability by applying a change of coordinates such that the
input vector fields of the transformed equations are singular at
the origin [12]. In particular, defining thepolar coordinatetrans-
formation

ATAN2

a Lyapunov-like technique is used to design the following con-
trol law:

(30)

with and positive constants. Also this feedback, once
rewritten in terms of the original state variables, is discontin-
uous at the origin of the configuration space.

Fig. 16. Posture stabilization via dynamic feedback linearization (forward
parking): driving velocityv (m/s).

Fig. 17. Posture stabilization via dynamic feedback linearization (forward
parking): steering velocity! (rad/s).

For all controllers, the accuracy in regulation to the origin is
determined by the satisfaction of the following terminal bounds:

cm cm rad

Figs. 14–17 refer to the results of the dynamic feedback lin-
earization controller (23) with gains chosen as ,
, , , and compensator initialization

(m/s). The convergence to the goal is fast and very
natural, as shown in Fig. 15, a stroboscopic view of the robot
motion sampled every 1.5 s. Note that saturation occurs on both
inputs during the transient phase.

The performance of the smooth time-varying controller is
shown in Fig. 18. The gains have been set to , ,

, , and , while has been initialized
at . After a relatively fast approach, the convergence
becomes extremely slow when the unicycle is close to the goal.
In particular, this is evident in Fig. 19, a stroboscopic view of
the robot motion sampled every 10 s. An inherent limitation of
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Fig. 18. Posture stabilization with smooth time-varying feedback (forward
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).

Fig. 19. Posture stabilization with smooth time-varying feedback (forward
parking): Cartesian motion(x; y) (m).

this control design is the large number of backup maneuvers,
executed with the unicycle approximately aligned with the final
desired orientation.

Fig. 20 displays the outcome of the application of the control
law (29), with s, , and . The
rate of convergence of the nonsmooth time-varying controller
is somewhat improved but still quite slow. A stroboscopic view
of the unicycle motion sampled every 5 s is reported in Fig. 21.
Note that the approach in thedirection is very uniform, while
maneuvers in the vicinity of the goal are aimed at adjusting
rather than . This is intrinsic in the structure of the chained
form used for the control design.

Finally, the results obtained with the polar coordinates con-
troller (30), with gains , , and , are reported
in Fig. 22. The convergence to the goal is very fast and natural.
In Fig. 23, a stroboscopic view of the unicycle motion sampled
every 1 s is given.

Fig. 20. Posture stabilization with nonsmooth time-varying feedback (forward
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).

Fig. 21. Posture stabilization with nonsmooth time-varying feedback (forward
parking): Cartesian motion(x; y) (m).

Fig. 22. Posture stabilization using feedback in polar coordinates (forward
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).
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Fig. 23. Posture stabilization using feedback in polar coordinates (forward
parking): Cartesian motion(x; y) (m).

Fig. 24. Posture stabilization via dynamic feedback linearization (parallel
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).

We also executed aparallel parking from
(m, m, rad) to the origin. The results obtained with the feedback
linearization controller (23) are shown in Fig. 24–27. As

, a via point (m, m, rad) has been added.
The PD gains are the same as before, while the compensator
state initialization is chosen here as for the first
phase, performed in backward motion, and for
the second phase, which is started in a neighborhood ofand
performed in forward motion. The simple first-order linear filter
introduced to account for actuator dynamics is also effective in
smoothing the discontinuity in the driving velocity generated
by the reset procedure. On the other hand, the presence of the
same filter for the steering velocity, coupled with the software
velocity saturation, neutralizes the effect of the singularity in
due to the zero crossing of the filtered driving velocity.

For comparison, we have executed a similar experiment
with the polar coordinates controller (30), using the same
gains as before; here, the starting configuration is chosen as

Fig. 25. Posture stabilization via dynamic feedback linearization (parallel
parking): Cartesian motion(x; y) (m).

Fig. 26. Posture stabilization via dynamic feedback linearization (parallel
parking): driving velocityv (m/s).

Fig. 27. Posture stabilization via dynamic feedback linearization (parallel
parking): steering velocity! (rad/s).
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Fig. 28. Posture stabilization using feedback in polar coordinates (parallel
parking):x (– –),y (–�) (m), and� (—) (rad) versus time (s).

Fig. 29. Posture stabilization using feedback in polar coordinates (parallel
parking): Cartesian motion(x; y) (m).

(m, m, rad). The performance is shown in
Fig. 28 and 29 and indicate that there is no backup maneuver
in this case. If the robot had been initially closer to the positive

axis, this control law would have automatically driven the
robot backward and then in forward motion to the goal. This
is a general property of controller (30): in the final phase,
the vehicle will always approach the goal in forward motion,
having executed at most one backup maneuver. Finally, note
that the behavior of the controlled system is not continuous
with respect to the initial state. For example, assume that the
initial configuration is , and .
Positive and negative arbitrarily small values ofwill lead to
different transient motions to the goal (in fact, symmetric with
respect to the axis).

VII. GUIDELINES FOREND-USERS

A. Summary and Comparison

We have performed several motion tasks with SuperMARIO
using the proposed control law based on feedback linearization

as well as the other controllers. The experimental tests presented
in this paper are representative of the average performance of the
controllers. We summarize our acquired experience in general
observations that can be useful guidelines for implementation
of the same control strategies on other vehicles.

First, the computational load for all methods is quite similar
in the case of the unicycle. Basically, both trajectory tracking
and posture stabilization controllers can be implemented with
on-board computing power. Our choice of separating high-level
control routines, performed on a remote server, from low-level
control loops in charge of realizing the reference velocity com-
mands reflects the choice of a modular structure. Such decom-
position is expected become even more convenient for WMRs
with more complex kinematics, such as a tractor vehicle towing
trailers.

All the implemented trajectory tracking methods can be
generalized to more complex vehicles, provided their models
are transformable in chained form. Such generalizations can
be found in [10] and [21]. From the point of view of control
parameters tuning, especially for more complex WMRs, the
dynamic feedback linearization technique appears to be simpler
since it boils down to the choice of stabilizing gains for a chain
of integrators; in any case, it can be always carried out on the
original equations without resorting to the transformation in
chained form.

In Table I, posture stabilization controllers are compared in
terms of performance, ease of parameter tuning, sensitivity to
nonidealities, generalizability to more complex WMRs, and re-
lation with tracking controllers.

Time-varying controllers, both smooth and nonsmooth, ex-
hibit a rather slow convergence to the goal. In general, the non-
smooth controller should behave better due to its exponential
rate of convergence, but the dependence of this rate on the con-
trol gains is critical. The oscillatory behavior of the vehicle
during the approach to the goal, which makes the motion er-
ratic, is an intrinsic characteristic of both time-varying control
laws. The presence of several motion inversions makes these
methods sensitive to mechanical nonidealities (e.g., backlash)
of the wheels, and may introduce a remarkable difference be-
tween the movement computed from the odometry and the ac-
tual vehicle displacement. In our experience, this behavior was
confirmed also in experiments performed with a car-like vehicle
(the MARIO robot [26]), where a nonnegligible backlash on the
steering angle of the front wheels led to a substantial error in the
final positioning. Another potential problem with the presented
nonsmooth controller is that, being based on a low-rate sampled
state feedback [see (29)], the robot could in principle “miss”
the final goal even if passing through it. A positive feature of
time-varying control laws is that they can readily be general-
ized to any WMR allowing a chained-form representation [10],
[13].

The controller based on polar coordinates transformation per-
formed very well. The resulting vehicle path is very natural
(in the sense that is similar to that followed by an experienced
human driver) and convergence is quite fast, with a weak depen-
dence on the choice of the few control gain parameters. Since
at most one backup maneuver is needed, disturbances due to
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TABLE I
A COMPARISON OF THEPOSTURESTABILIZATION CONTROLLERSIMPLEMENTED ON SUPERMARIO

wheel backlash are minimized. Unfortunately, a direct exten-
sion of such controller is not yet available for vehicles with more
complex kinematics. The idea of using a state-space transforma-
tion that is singular at the goal configuration, however, stands on
its own and has been exploited by other researchers, e.g., in [27].

Similar positive comments can be drawn on the performance
of the posture stabilization method designed via dynamic
feedback linearization. In particular, this scheme allows par-
allel parking with backward–forward motion, which is a very
natural maneuver. The control tuning requires the choice from
a very large feasible set of PD gains. The relationship with the
analogous controller for trajectory tracking is very simple: it
is sufficient to add the feedforward terms, i.e., the reference
output position, velocity, and acceleration [compare (17) with
(23)].

As for the use of an additional dynamics within the control
law, it has pros and cons. On one side, this design compensates
for the use of a first-order kinematic model of the unicycle, by
bringing linear acceleration into the picture. On the other side,
it is necessary to prevent zeroing of the compensator state and
the consequent singularity of the control commands; this may
be guaranteed by enforcing additional conditions (such as those
of Theorem 1 for tracking and of Theorem 2 for stabilization)
or may be achieved in practice by resetting the compensator
state whenever its value falls below a given threshold. In our
implementation, the simple strategy of filtering plus saturating
the velocity commands keeps the actual commands bounded in
any case.

The generalization to point-to-point motion tasks for WMRs
with more complex kinematics is under way. It basically con-
sists in extending the idea of suitably shaping the transient be-
havior on the linear side of the problem by appropriate selection
of the gain structure (a PD for generalized coordinates),
so as to achieve a smooth and correct “entrance” into the goal
for the two outputs representing the robot Cartesian position.

All the controllers mentioned in this paper use a measure
of the state reconstructed on the basis of the robot odometry.

In principle, the actual motion of SuperMARIO on the ground
may be quite different and should be computed with the aid
of exteroceptive sensors. However, in our experiments, this
difference was not visually appreciable, as shown by the videos
on the web page http://labrob.ing.uniroma1.it/projects/ram-
sete.html. The satisfactory performance of dead reckoning
localization is of course related to the execution of relatively
slow motions.

A final remark is needed about the application of the control
methods of this paper when workspace obstacles are present. In
a completely known environment, it may be convenient to tackle
the navigation problem of a WMR using a three-layer control
structure. The highest layer is devoted to motion planning and
takes care of the nominal avoidance of obstacles; the nonholo-
nomic motion constraints of the WMR may or may not be taken
into account at this stage. The second layer takes charge of mo-
tion execution and uses one of the trajectory tracking controllers
given in this paper. In the vicinity of the goal, fine posture reg-
ulation (docking) can be obtained at the lowest layer by means
of one of the presented stabilizing controllers.

B. Future Directions

From an application viewpoint, there are some important is-
sues that deserve further research.

Inclusion of dynamics.In this paper, the control problem—as
very often done—has been addressed on the first-orderkine-
maticmodel of the unicycle. This situation should not only be
regarded as a simplification of the problem: it also reflects the
fact that the control architecture of our mobile robot (as with
most robots and manipulators) does not allow the user to impose
acceleration or torque inputs. As explained in Section IV-B,
only the reference velocities , can be fed to the propor-
tional-integral-derivative (PID) microcontrollers of the actua-
tors. The linear velocity input imposed to the robot, which
coincides with the state of the dynamic compensator, is used
to compute , through (11). If theactuallinear velocity of
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the vehicle is different from (as it may be, particularly at the
beginning of motion), it is the low-level PID control which will
bring it to the value specified by the high-level control.

However, for massive vehicles and/or at high speeds, consid-
eration of robot dynamics is necessary for realistic control de-
sign. The dynamics of general nonholonomic systems is thor-
oughly analyzed in [28] and, more specifically for WMRs, in
[29]. Interestingly, nonlinear static state feedback can be used
to cancel, in the nominal case, all inertial parameters so as to
lead to thesecond-order kinematic model

(31)

with as the -dimensional state and acceleration
as the new control input. The control laws used in this paper do
not directly apply to this case (they may have finite jumps in the
velocity). However, we are currently working out an extension
of the present approach, which can be sketched as follows.

Feedback linearization of model (31) for the unicycle
requires again a one-dimensional dynamic controller, but leads
to a closed-loop linear system consisting of two chains ofthree
input–output integrators. As with the first-order model, the
singularity may occur when the linear velocityof the vehicle
(now a state variable) goes to zero at a finite time. For a trajec-
tory tracking task, there is virtually no difference with respect
to the theory presented here. For a posture stabilization task,
using the linearizing coordinate and control transformations,
one should seek conditions on the control gains of the linear
controller (now a PD for each chain) so as to guarantee the
correct relative rates of exponential convergence for the state
variables, in such a way thatdoes not go to zero in finite time
and is always bounded (compare with the proof of Theorem
2).

Robust control design.Very few papers have addressed ro-
bustness issues in the control of nonholonomic systems. Robust
stabilization of WMRs in chained form was obtained in [30] and
[31] by applying iteratively an open-loop command; exponen-
tial convergence to the desired equilibrium is obtained for small
perturbations in the kinematic model. Another solution to the
regulation problem based on the backstepping framework was
proposed in [32]. A conceptually different approach to the de-
sign of effective control laws in the presence of nonidealities
and uncertainties is represented by learning control, as shown
in [26]. We also note that perturbations acting on nonholonomic
mobile robots are not of equal importance: a deviation in a di-
rection compatible with the vehicle mobility is clearly not as
severe as a deviation which violates the kinematic constraints
of the system (e.g., lateral sliding).

Use of exteroceptive feedback.Proprioceptive sensors, such
as encoders, become unreliable in the presence of wheel slip-
page. As a result, the robot may progressively “lose” itself in
the environment. A solution is to close the feedback loop with
exteroceptive sensors providing absolute information about the
robot localization in its workspace; sensor fusion techniques are
relevant at this stage. The design of sensory feedback for non-
holonomic robots is at the beginning stage but growing fast.
Preliminary results with visual feedback from a fixed camera
system are described in [33].

WMRs not transformable in chained form.Among the open
problems in controlling general WMRs, we mention the case of
multibody vehicles that do not admit a transformation in chained
form, such as a unicycle or car-like tractor with two or more
trailers hitched at some distance from the midpoint of the pre-
vious wheel axle. A possible approach to posture stabilization,
using iterative steering of a nilpotent approximation model, can
be found in [34].
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