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Abstract WNT-5A plays critical roles in a myriad of

processes from embryonic morphogenesis to the mainte-

nance of post-natal homeostasis. WNT-5A knock-out

mice fail to survive and present extensive structural

malformations. WNT-5A predominantly activates b-cate-

nin-independent WNT signaling cascade but can also

activate b-catenin signaling to relay its diverse cellular

effects such as cell polarity, migration, proliferation, cell

survival, and immunomodulation. Moreover, aberrant

WNT-5A signaling is associated with several human

pathologies such as cancer, fibrosis, and inflammation.

Thus, owing to its diverse functions, WNT-5A is a crucial

signaling molecule currently under intense investigation

with efforts to not only delineate its signaling mechanisms

and functions in physiological and pathological condi-

tions, but also to develop strategies for its therapeutic

targeting.

Keywords Transcription � Receptors � Embryogenesis �

Migration � Differentiation � Fibrosis � Cancer �

Inflammation

Introduction

WNT-5A is a member of the Wingless/integrase 1 (WNT)

family of secreted glycoproteins. In humans, 19 WNT

proteins (WNTs) are currently known that act as ligands for

several membrane-bound receptors which includes 10 class

Frizzled receptors (FZD), low-density lipoprotein receptor-

related protein (LRP) 5/6 co-receptors, and many non-class

FZD receptors, such as ROR1, ROR2, RYK, and PTK7 [1].

The intracellular WNT signaling is broadly classified into

two main branches—b-catenin-dependent (canonical) and

b-catenin-independent (non-canonical) WNT signaling.

Due to the complexity and vast diversity of downstream

signaling, the canonical and non-canonical nomenclature

has become outdated. WNT/b-catenin signaling is initiated

by binding of a WNT to a class FZD receptor and LRP5/6

co-receptors concluding a multimeric membrane signaling

complex which results in the stabilization and cytosolic

accumulation of transcriptional co-activator b-catenin.

Ultimately, the stabilized b-catenin translocates to the

nucleus where it associates with the T-cell factor/lymphoid

enhancer-binding factor (TCF/LEF) transcription factors

and activates WNT-target gene transcription [1]. In con-

trast, the b-catenin-independent signaling branches

function independent of b-catenin and LRP5/6 and activate

various signaling cascades involved in the regulation of

cell polarity and movements, cytoskeletal reorganization,

and gene transcription. Two of the best characterized b-

catenin-independent WNT signaling pathways are the

WNT/Ca2? and WNT/planar cell polarity (PCP) pathways.

The WNT/Ca2? signaling pathway involves activation of

Ca2?-dependent signaling molecules, including protein

kinase C (PKC), Ca2?/calmodulin-dependent protein

kinase II (CaMKII), and nuclear factor of activated T cell

(NFAT), whereas the WNT/PCP pathway is mediated by
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RhoA signaling or activation of c-Jun N-terminal Kinases

(JNKs) via small Rho-GTPases [2]. The WNT/Ca2? path-

way can also antagonize WNT/b-catenin signaling by

phosphorylation of TCF/LEF transcription factors via

activation of the TGF-b-activated kinase 1 (TAK1)-Nemo-

like Kinase (NLK) cascade [3].

WNT-5A, a prototypical WNT of b-catenin-independent

branch, is highly conserved among species and plays key

roles in the processes governing embryonic development,

post-natal tissue homeostasis, and pathological disorders

throughout the lifespan of an organism (Fig. 1) [4, 5].

Homozygous WNT-5A knock-out mice show perinatal

lethality, primarily due to respiratory failure, and present

extensive developmental abnormalities. It is involved in

lung [6], heart [7], and mammary gland morphogenesis [8]

and regulates stem cell renewal [9, 10], osteoblastogenesis

[11, 12], and tissue regeneration [13]. In addition, aberrant

WNT-5A expression and signaling is associated with var-

ious malignancies [14] and proinflammatory responses [15]

as well as with lung [16], renal [17], and hepatic [18]

fibrosis. WNT-5A signaling has also been implicated in

ciliopathies [19] and WNT-5A antagonism counteracts

vascular calcification [20]. We have recently reported

increased WNT-5A expression in asthmatic airway smooth

muscle cells [21] and have demonstrated that TGF-b

induces WNT-5A expression in airway smooth muscle

cells where it mediates expression of extracellular matrix

proteins (ECM) [21] and participates in airway remodeling

in asthma.

In view of the plethora of evidence associating WNT-5A

with health and disease, there is considerable interest in

understanding its biology. In this review, we discuss our

current understanding of various aspects of WNT-5A sig-

naling and its functions derived from studies in wide

variety of in vivo models including Drosophila, Xenopus,

and mouse; in vitro cell-based systems and patient-based

reports.

WNT-5A gene

WNT-5A cDNA was first isolated from mouse fetal tissue

[22] followed by the isolation and sequencing from human

cells [23]. The human WNT-5A gene is located on chro-

mosome 3p14-p21. The WNT-5A gene generates two very

identical transcripts by utilization of alternative transcrip-

tion start sites and the corresponding upstream sequences

are termed as promoter A and B [24] and their products as

WNT-5A-L and WNT-5A-S, respectively [25]. Both the

promoters have comparable transcriptional potential; their

activity, however, is highly context dependent. WNT-5A

promoter A has been suggested to be more active in human

and murine fibroblasts as compared to promoter B [26].

Both the isoforms have similar biochemical properties such

as stability, hydrophobicity, and signaling activity [25].

While the significance of individual WNT-5A isoforms is

not completely understood, and it is not entirely clear

whether they are functionally redundant, a recent study

showed that they might have different functions [25].

When ectopically expressed, WNT-5A-L inhibited prolif-

eration of various cancer cells lines, whereas WNT-5A-S

leads to stimulation of growth [25].

WNT-5A transcription

WNT-5A is a transcriptional target of an array of cytokines

and growth factors. CUTL1 [27], STAT3 [28], TBX1 [29],

and NFjB [30, 31] have been reported as transcription

factors for WNT-5A in various cell types. We have

recently shown that TGF-b induces expression of WNT-5A

by engaging p38 and JNK signaling via TAK1 in airway

smooth muscle cells [32]. This leads to the stabilization of

b-catenin which then interacts with Sp1. Sp1, in turn, binds

to the WNT-5A promoter and drives its expression [32].

TGF-b has also been shown to induce WNT-5A expression

in mammary glands [8], primary fibroblasts [8], primary

epithelial cells [8], and pancreatic cancer cells [27]. Sim-

ilarly, proinflammatory factors such as interleukin (IL)-1b

[31], tumor necrosis factor-a (TNF-a) [30], lipopolysac-

charide (LPS)/interferon c (IFNc) [15], IL-6 family

members-leukemia inhibitory factor (LIF) and car-

diotrophin-1 (CT-1) [33], and high extracellular calcium

concentration [34] all augment, whereas amino acid limi-

tation [35] represses WNT-5A expression in various cell

types. Collectively, this suggests that WNT-5A is a target

of TGF-b and proinflammatory signaling which will be

discussed below.

Interestingly, WNT-5A is also regulated at translational

level via the numerous AU-rich motifs which are present in

the evolutionary conserved 30-untranslated region of

mRNA [36]. AU-rich element binding proteins (ARE-
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Fig. 1 WNT-5A in health and disease. A schematic representation of

key functions and pathologies associated with WNT-5A
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binding proteins) associate with the AREs and tightly

regulate their stability by posttranscriptional mechanisms.

HuR, a member of embryonic lethal abnormal vision

(ELAV) -like family of ARE-binding proteins, binds to the

30-UTR AREs in WNT-5A mRNA and suppresses its

translation [36].

WNT-5A protein

WNT-5A-L and WNT-5A-S, composed of 380 and 365

amino acids, respectively, are heavily glycosylated and

lipid-modified proteins. Each isoform consists of an

N-terminal hydrophobic signal sequence, a conserved

asparagine-linked oligosaccharide consensus sequence and

about 22 highly conserved cysteine residues (Fig. 2a, b)

[23]. Cleavage of the N-terminal signal sequence is pre-

dicted to generate mature protein containing either 343 or

338 amino acids [25]. However, N-terminal sequencing of

mature WNT-5A isoforms revealed that WNT-5A-L is

cleaved after the 43rd amino acid, whereas WNT-5A-S has

much longer signal sequence with cleavage after the 46th

amino acid, generating mature proteins containing 337 and

319 amino acids, respectively (Fig. 2a, b) [25]. Interest-

ingly, mouse WNT-5A which is *99 % homologous to

human WNT-5A generates same mature protein as human

WNT-5A-S [37]. In mouse WNT-5A, asparagine 114, 120,

311, and 325 have been identified as the N-linked glyco-

sylation sites, whereas a palmitoylation has been identified

at cysteine 104. The palmitoylation of WNT-5A is neces-

sary for its binding to FZD5 and signaling activity but not

required for its secretion [38, 39]. In contrast, glycosylation

of WNT-5A is required for its secretion but dispensable for

its signaling activity [38].

WNT-5A: receptors and signaling

WNT-5A binding to receptor activates various b-catenin-

independent signaling cascades; however, it can also acti-

vate WNT/b-catenin signaling depending on the cell- and

receptor-context. WNT-5A can signal through multiple

receptors and according to current understanding FZD2,

FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, RYK, ROR2, and

CD146 may function as WNT-5A receptors [34, 37, 40–50].

WNT-5A has been shown to bind to FZD2 inducing

intracellular calcium release and PKC activation in Xeno-

pus [51] and zebrafish embryos [52] and WNT-5A-FZD2-

induced calcium spikes in neurons are implicated in trau-

matic brain injury [53]. WNT-5A binds to FZD2 in a

ROR1- or ROR2-dependent manner and recruits Dishev-

eled (DVL) and b-arrestin to FZD2 leading to the clathrin-

mediated internalization of FZD2 [40]. Internalization of

FZD2 is essential for WNT-5A-induced Rac activation

[40]. WNT-5A also induces clathrin-mediated internaliza-

tion of FZD4 [54] in a PKC- and b-arrestin-dependent

process and that of ROR2 in a PKC-dependent manner

[47]. Similarly, binding of WNT-5A to FZD5 also leads to

its internalization [38]. Internalization of receptors is con-

sidered as a critical step in WNT signaling and a reflection

of active signaling. Although the exact mechanisms

underlying the functional significance of receptor inter-

nalization are not clear, it is believed to facilitate

intracellular signaling activation by recruitment of scaf-

folding proteins such as b-arrestin and may also facilitate

the termination of signaling and receptor recycling [55].

We have recently demonstrated that WNT-5A signals

through FZD8 and RYK receptors leading to the activation

of Ca2?-NFATc1 and JNK signaling which mediates TGF-

b-induced ECM expression in airway smooth muscle cells

[21]. WNT-5A binding to FZD7 activates prosurvival

PI3K/AKT cascade in human melanoma cells which can

account for the resistance of these cells to BRAF inhibitors

[48]. Similarly, WNT-5A can activate the PI3K/AKT

cascade via FZD3 in human dermal fibroblasts and pro-

motes integrin-mediated adhesion of these cells [41]. In

contrast, WNT-5A-activated PI3K/AKT signaling induces

migration in human osteosarcoma cells [56]. Similarly,

WNT-5A induces migration in gastric cancer cells by

activating PI3K/AKT pathway which phosphorylates and

inactivates GSK-3b and activates RhoA leading to

cytoskeleton remodeling [57]. Indeed, cytoskeletal reor-

ganization and cell migration are major cellular effects of

WNT-5A signaling.

WNT-5A is proposed to regulate cell fate via FZD6 in

hair follicles [50], whereas it plays critical role in tuber-

culosis immunology via FZD5 regulating immune

responses by antigen presenting cells and activated T cells

in response to mycobacterium infection [42].

The FZDs belong to the class of seven transmembrane-

spanning G protein-coupled receptors. Recent evidence

shows a role for heterotrimeric G proteins in WNT-5A

downstream signaling. For instance, G proteins are

required for WNT-5A-induced JNK and NFjB activation

in human neutrophils [58]. Similarly, WNT-5A activates

Gai/o proteins leading to Ca2?-dependent ERK1/2 activa-

tion in murine primary microglia [59] and HEK293 cells

[60]. A recent study has shown that Daple (DVL-associ-

ating protein with a high frequency of leucine residues)

functions as a non-receptor Guanine nucleotide exchange

factor in WNT signaling which interacts and activates Gai

in response to WNT-5A stimulation [61]. This indicates

that G protein coupling by FZDs is clearly a relevant

physiological phenomenon, but whether coupling with

heterotrimeric G proteins in FZD signaling is an absolute

requirement or context-dependent remains unclear [62].
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WNT-5A also binds to non-class FZD receptors

including ROR2 and RYK receptor tyrosine kinases. ROR2

is a key receptor for WNT-5A-induced effects during

development as demonstrated by remarkable phenotypic

resemblance between the ROR2 and WNT-5A knock-out

mice [63]. Multiple mechanisms have been suggested to

explain the close functional relationship between WNT-5A

and ROR2. WNT-5A interacts with ROR2 and VANGL2

to form a ternary complex leading to the casein kinase 1d

(CK1d)-induced phosphorylation of VANGL2 which

serves to relay the gradient effects of WNT-5A, thereby

regulating WNT-5A-induced planar cell polarity and

embryonic morphogenesis [64]. WNT-5A associates with

FZD7 in the presence of ROR2 to form a complex required

for DVL polymerization and activation of Rac-dependent

WNT signaling [49]. WNT-5A activates ERK1/2 in

intestinal epithelial cells via ROR2 [65], whereas it acti-

vates JNK-mediated c-Jun transcriptional activity to induce

production of receptor activator of nuclear factor-jB

(RANK), a regulator of osteoclast differentiation and

activation, in osteoclast precursor cells via ROR2 [11].

WNT-5A engages ROR2 to activate JNK signaling and

regulates cell movement [4, 66–68], whereas it induces

assembly of DVL-atypical PKC (aPKC) and polarity

WNT-5A-L      MKKSIGILSPGVALGMAGSAMSSKFFLVALAIFFSFAQVVIEANSWWSLGMNNPVQMSEV 

WNT-5A-S      ---------------MAGSAMSSKFFLVALAIFFSFAQVVIEANSWWSLGMNNPVQMSEV

WNT-5A-L      YIIGAQPLCSQLAGLSQGQKKLCHLYQDHMQYIGEGAKTGIKECQYQFRHRRWNCSTVDN

WNT-5A-S      YIIGAQPLCSQLAGLSQGQKKLCHLYQDHMQYIGEGAKTGIKECQYQFRHRRWNCSTVDN

WNT-5A-L      TSVFGRVMQIGSRETAFTYAVSAAGVVNAMSRACREGELSTCGCSRAARPKDLPRDWLWG 

WNT-5A-S      TSVFGRVMQIGSRETAFTYAVSAAGVVNAMSRACREGELSTCGCSRAARPKDLPRDWLWG 

WNT-5A-L      GCGDNIDYGYRFAKEFVDARERERIHAKGSYESARILMNLHNNEAGRRTVYNLADVACKC 

WNT-5A-S      GCGDNIDYGYRFAKEFVDARERERIHAKGSYESARILMNLHNNEAGRRTVYNLADVACKC 

WNT-5A-L      HGVSGSCSLKTCWLQLADFRKVGDALKEKYDSAAAMRLNSRGKLVQVNSRFNSPTTQDLV 

WNT-5A-S      HGVSGSCSLKTCWLQLADFRKVGDALKEKYDSAAAMRLNSRGKLVQVNSRFNSPTTQDLV 

WNT-5A-L      YIDPSPDYCVRNESTGSLGTQGRLCNKTSEGMDGCELMCCGRGYDQFKTVQTERCHCKFH 

WNT-5A-S      YIDPSPDYCVRNESTGSLGTQGRLCNKTSEGMDGCELMCCGRGYDQFKTVQTERCHCKFH 

WNT-5A-L      WCCYVKCKKCTEIVDQFVCK 

WNT-5A-S      WCCYVKCKKCTEIVDQFVCK 
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Fig. 2 WNT-5A protein. a A comparative analysis of amino acid

sequences of human WNT-5A-L and WNT-5A-S isoforms. Gray

highlighted area represents N-terminal signal sequence in respective

protein. Bold arrows mark the site of signal sequence cleavage and

N-terminus of respective mature protein. The amino acids marked in

red-bold represent posttranslational modification sites on protein

backbone. Number represents the respective position of the amino

acid from the first N-terminal amino acid. The protein sequences are

taken from NCBI: NP_003383.2 (WNT-5A-L) and NP_001243034.1

(WNT-5A-S). b Diagrammatic representation of WNT-5A-L protein.

N-terminal signal sequence is represented by blank box. represents

palmitoylation and represents N-linked glycosylation on the

protein backbone. The respective amino acids locations are marked

above the modification sites. The N-linked glycosylation sites N312

and N326 correspond to N311 and N325 of mouse WNT-5A,

respectively
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complex (PAR3 and PAR6) to regulate neuronal differen-

tiation and polarity [69, 70]. Thus, ROR2 participates in

several key cellular functions of WNT-5A.

WNT-5A activates intracellular calcium release to fine

tune neuronal growth by axonal outgrowth and repulsion.

WNT-5A signals via RYK leading to calcium release from

stores through IP3 receptors as well as calcium influx

through transient receptor potential (TRP) channels

inducing axonal outgrowth. On the other hand, simultane-

ous association of WNT-5A with RYK and FZD releases

calcium from TRP channels without involvement of IP3
receptors and induces axonal repulsion [71]. WNT-5A also

forms a ternary complex with RYK and VANGL2 to relay

the WNT/PCP effects [72], whereas WNT-5A-RYK sig-

naling is required for inhibition of reactive oxygen species

(ROS) production and maintenance of hematopoietic stem

cell quiescence [73].

Recently, WNT-5A binding to an adhesion molecule

CD146 has also been described, leading to the recruitment

of DVL2 to the complex and activation of downstream

JNK signaling cascade [45]. CD146 has been linked to cell

migration via RhoA-dependent cytoskeletal rearrange-

ments [74]. In line with that, WNT-5A-CD146 axis

regulates polarity and migration of cells [45, 75].

Effects of WNT-5A on b-catenin signaling

Interestingly, in addition to activating the b-catenin-inde-

pendent WNT pathway, WNT-5A can also have positive or

negative regulatory effects on WNT/b-catenin signaling

depending on the receptor- and cell-context. Indeed, a

study has shown that WNT-5A can both activate and

inhibit b-catenin-dependent WNT signaling during mouse

embryonic development [76]. WNT-5A knock-out

embryos show increased b-catenin activation in telen-

cephalon and embryonic fibroblasts from WNT-5A knock-

out animals show heightened response to WNT3A, a pro-

totypical b-catenin-dependent signaling WNT [40].

Another study demonstrated that WNT-5A competes with

WNT-3A for binding to FZD2, a receptor for both the

WNTs, thereby inhibiting the WNT-3A-induced b-catenin

signaling [40]. The WNT-5A-activated CaMKII–TAK1–

NLK1 cascade has been implicated in WNT/b-catenin

suppression [3]. In addition, WNT-5A inhibits WNT-3A-

induced b-catenin signaling via ROR2 and CD146 [37, 45].

In hematopoietic stem cells, WNT-5A inhibits b-catenin

signaling supposedly via suppression of ROS production

[73]. Similarly, WNT-5A inhibits b-catenin signaling by

promoting its degradation through an alternative E3 ubiq-

uitin ligase complex composed of siah2-APC-Ebi [77].

Purified WNT-5A, on the other hand, can activate b-cate-

nin-dependent transcription in the presence of FZD4 and

LRP5 [37, 46]. Also, WNT-5A activates b-catenin signal-

ing in pancreatic cancer cells [27, 78] and dermal

fibroblasts [79]. Similarly, osteoblast-lineage cells from

WNT-5A knock-out mice show reduced WNT/b-catenin

signaling and WNT-5A pre-treatment potentiated the

WNT/b-catenin signaling in bone marrow stromal cells via

upregulation of LRP5 and LRP6 expression [80].

Functions of WNT-5A

Embryogenesis

WNT-5A has been identified for its key involvement in

defining the body outgrowths in addition to many other

specific features. WNT-5A expression is most abundant

during early embryonic developmental stages between

10–14 days post conception [5, 22]. Importantly,

homozygous WNT-5A knock-out mouse embryos show

perinatal lethality underlining its vital role in embryogen-

esis. During development, regions undergoing extensive

outgrowth like limbs, tail, and facial structures exhibit

prominent WNT-5A expression where it is present in a

graded fashion with the highest abundance at the tips of

these structures and lowest in the proximal areas [5, 22].

WNT-5A knock-out leads to severe malformations in the

outgrowth structures, a shortened anterior–posterior (A–P)

and severely compromised proximal–distal (P–D) body

axis. These malformations could be traced back to the

underlying axial skeleton which exhibited a shortened

vertebral column due to smaller vertebrae size and the

absence of caudal vertebrae. The phenotype apparently

originates from the critical role of WNT-5A as a mitogen

required for the proliferation of the mesodermal progeni-

tors early in embryonic development. The mesodermal

stem cells which arise early in development can continue to

develop in the primitive streak even in the absence of

WNT-5A but lack the ability to divide and give rise to the

progeny. Impaired self-renewal capacity leads to progres-

sive depletion of the stock of these stem cells resulting in

insufficient numbers of cells to develop the distal skeleton

and leading to the absence of related structures [5].

Similar to WNT-5A knock-out mice, WNT-5A trans-

genic mice show perinatal lethality when WNT-5A is

induced early in development exhibiting severe deformities

resembling the WNT-5A knock-out phenotype [81].

Overexpression of WNT-5A induced malformations of

limbs, tail, and facial structures. Underdeveloped limb

skeletal elements, reduced number of tail vertebrae, and

shortened upper and lower jaw bones constituted the

mutant phenotype. Interestingly, overexpression of WNT-

5A in later embryonic stages and in adult animals was well

tolerated with no visible phenotype [81]. This study
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highlights a critical window during embryonic develop-

ment when WNT-5A activity is most required [81].

Further studies have looked into the organ-specific

developmental roles of WNT-5A and have identified a

crucial role for distal morphogenesis of internal organs. For

instance, WNT-5A knock-out mice fail to develop the

genital tubercle [5] and have intestinal deformities [82].

Prominent WNT-5A expression is observed in the gut

mesenchyme during intestinal morphogenesis which per-

sists throughout the development of the small intestine [5,

83]. In line with that, WNT-5A knock-out mice show

severe malformations in the small intestine with drastically

reduced length and the presence of a secondary cavity. In

addition, the mutants present an imperforated anus [82].

Interestingly, overexpression of WNT-5A during embry-

onic development also leads to gut malformations

resembling the WNT-5A knock-out phenotype. Specifi-

cally, WNT-5A transgenic mice show shortening of the

small and large intestine, caecum, and stomach and also

present anal imperforation [81]. Of note, both the loss and

overexpression of WNT-5A does not interfere with the

intestinal differentiation or cell fate decisions. The under-

lying mechanisms that lead to the malformations observed

in WNT-5A transgenic mice are not clear yet. However,

the observation that overexpression of WNT-5A leads to

the downregulation of ROR2 in intestine [81] could reveal

the reason behind the similarities in both the WNT-5A

transgenic and knock-out phenotypes. ROR2 is a receptor

for WNT-5A and ROR2 knock-out mice show a phenotype

resembling that of WNT-5A knock-out [63]. Therefore,

increased expression of WNT-5A which leads to the

downregulation of ROR2 could present a similar phenotype

as ROR2 knock-out. Although the downstream WNT-5A

signaling after overexpression remained intact, it is

tempting to speculate that ROR2-dependent WNT-5A

signaling is crucial for the embryonic development and that

the loss of ROR2 in WNT-5A transgenic mice underlies

the similarity with the WNT-5A knock-out phenotype.

Convergent extension (CE) is the critical morphogenetic

movement during gastrulation wherein the germ layers

narrow down mediolaterally resulting in the elongation of

embryo from head to tail and shaping of body axis [84]. CE

requires collective cell migration and cell intercalations.

WNT-5A-activated signaling has been associated with CE

movements [85–87] owing to its ability to regulate cell

migration and polarity (as discussed in this review). Thus,

embryonic structural abnormalities in WNT-5A knock-out

and transgenic mice may not only arise from impaired

proliferation but also due to derailed CE movements.

Lungs are complex organs with extensive branching, a

large number of different types of specialized cells, and

distinct P–D polarity. WNT-5A, as a major determinant of

P–D polarity, is prominently expressed in the embryonic

lungs [6, 22] where it is localized in both the mesenchymal

and epithelial compartments. WNT-5A signaling is most

enhanced at the tip and around the branching epithelium

[6]. In later stages, WNT-5A is predominantly localized to

the lung epithelium and attains a typical P–D gradient with

most expression in the distal branching epithelium and

almost no presence in the proximal regions [6]. Analysis of

lungs obtained from WNT-5A knock-out mice revealed

extensive developmental malformations. The trachea was

truncated with reduced number of cartilages [6]. The

branching morphogenesis of WNT-5A knock-out lungs

was compromised as revealed by the increased number and

overexpansion of terminal airways. Also, the intersaccular

walls were thick and hypercellular indicating failed matu-

ration of lungs in WNT-5A knock-out embryos. Further

analysis revealed that loss of WNT-5A did not interfere

with cell differentiation but led to hyperproliferation

resulting in intersaccular septum thickening and disrupted

vasculature [6]. Interestingly, WNT-5A knock-out lungs

presented increased expression of sonic hedgehog/patched

(SHH/PTC), fibroblast growth factor (FGF), and bone

morphogenetic protein(BMP)-4 indicating the molecular

mechanisms involved in the observed WNT-5A knock-out

phenotype [6]. Notably, lungs of WNT-5A knock-out mice

show resemblance with the FGF-10 knock-out [88], SHH

knock-out [89, 90], SHH transgenic [91], and BMP-4

transgenic [92] lung phenotype, which underlines the

interactive network of WNT-5A, FGF-10, SHH/PTC, and

BMP-4 in lung development. Lung-specific WNT-5A

transgenic expression also disrupts lung morphogenesis as

demonstrated by dilated terminal airways, loss of branch-

ing, and smaller size of the lungs [93]. Interestingly,

supporting a role for WNT-5A in regulating other signaling

cascades, WNT-5A overexpression repressed SHH/PTC

expression and distribution in the lung epithelium, whereas

it augmented FGF-10 abundance in the mesenchyme [93].

While FGF-10 expression is increased, WNT-5A overex-

pression severely impairs the ability of epithelium to

respond to FGF-10 [93]. Thus, WNT-5A fine-tunes the

developmental signaling underlying the epithelial-mes-

enchyme communication which is required for proper lung

morphogenesis [93].

WNT-5A expression is crucial for proper neuronal

generation and axonal guidance during embryonic devel-

opment and in post-natal life. WNT-5A knock-out mice

show anomalies in the dopaminergic midbrain neuronal

morphogenesis, organ innervation, and show increased

neuronal apoptosis [94, 95]. Robust WNT-5A expression is

detected in ventral midbrain where it promotes dopamin-

ergic neurite and axonal growth [95]. In fact, WNT-5A

promotes and cooperates with WNT/b-catenin signaling to

generate midbrain dopaminergic neurons in vivo and in

stem cells [39, 96], whereas WNT-5A expression in the

572 K. Kumawat, R. Gosens

123



sympathetic neurons is crucial for axonal branching for

proper organ innervation via ROR1 and ROR2 receptors

[63, 94]. WNT-5A can also signal via RYK to mediate

cortical axonal growth and guidance [43, 71]. The absence

of axonal guidance in both the ROR1/2- and RYK-deficient

mice shows their function is non-redundant and the uti-

lization of respective receptors may be context dependent.

WNT-5A is also required for proper cardiac morpho-

genesis as WNT-5A knock-out mice show severe defects in

the septation of the cardiac outflow tract (OFT) [97]. OFT

originates from an embryonic region called second heart

field (SHF) which functions as a source of progenitor cells

for development of most of the heart. WNT-5A is

expressed in the pharyngeal mesoderm adjacent to cardiac

neural crest cells in both mouse and chicken embryos and

in the myocardial cell layer [97]. WNT-5A expression is

induced in SHF by a transcription factor-TBX1 and loss of

WNT-5A results in severe decline in the number of SHF

progenitor cells and deployment of these progenitors to the

OFT leading to cardiac deformities [7, 29, 98].

In summary, WNT-5A signaling is crucial to the

development of internal organs and the formation of

skeletal structures. Of importance, WNT-5A cooperates

with other WNTs (e.g., WNT-11) and several non-WNT

morphogens involved in development including TGF-b,

BMPs, FGFs, and SHH signaling [8, 93, 99, 100]. This

cooperation is essential, and while removing WNT-5A

from this signaling network may lead to severe embryonic

phenotypes, these phenotypes may not be attributed to

WNT-5A alone. An intriguing example is the close coop-

erativity of WNT-5A and WNT-11 in the development of

the second heart field in mice. Here, WNT-5A and WNT-

11 are both required in suppressing WNT/b-catenin sig-

naling in progenitors in the developing heart to allow for

differentiation [7]. Recently, it was shown that WNT-5A

and WNT-11 cooperate to regulate convergent extension

movements leading to A–P axis formation in mice [101].

However, mice lacking WNT-5A (and not WNT-11) show

severe A–P axis shortening and limb truncations high-

lighting a redundant role for WNT-11 in this process [5,

101, 102]. Clearly, WNT-5A is an essential component in

the machinery that governs embryogenesis, and signaling

by WNT-5A is non-redundant with that of other b-catenin-

independent signaling WNTs.

Migration

Cell migration requires acquisition of new asymmetry and

polarity along with reorganization of the cytoskeleton and

breaking and/or reprocessing cell–cell and cell–substrate

adhesions. As such, the WNT/PCP and WNT/Ca2? path-

ways have been linked with migration of cells. Several

studies have elucidated the significance and molecular

mechanisms of WNT-5A-induced cell migration (Fig. 3).

For instance, a study has identified the WNT-5A-ROR2

axis in regulating cell motility. WNT-5A interacts with

ROR2 and induces its association with Filamin A, an actin

binding protein, which, in turn, leads to formation of

filopodia [103]. Filopodia are actin-based structures pro-

jecting at the leading edge of migrating cells and are

important in formation of focal adhesions attaching to the

substrate and facilitating directional cell movement [104].

WNT-5A-induced ROR2-Filamin A association activates

aPKC which in turn activates JNK. Activated JNK may

mediate cell migration by microtubule organizing center

(MTOC) reorientation and actin remodeling via phospho-

rylation and activation of CapZ-interacting protein

(CapZIP) [105]. In addition, JNK can also phosphorylate

paxillin regulating focal adhesion complexes [106, 107]

and modulating cell motility in response to WNT-5A. In

another mechanism, WNT-5A induces cell migration via

Daple-mediated Rac activation [108]. Daple interacts with

DVL in response to WNT-5A and facilitates its interaction

with aPKC consequently inducing Rac activation. This

leads to cytoskeletal reorganization promoting lamellipodia

formation and cell migration [108]. In addition to aPKC,

WNT-5A can also employ Rab35 to activate Rac in a

DVL-dependent manner and induce cell migration [109].

The WNT-5A-RhoA axis has been prominently linked

with cytoskeletal remodeling and cell motility in various

cell systems. WNT-5A induces RhoA activation via DVL

and Daam1 in breast cancer cells [110] or via PI3K/AKT

signaling in gastric cancer cells [57]. Activated RhoA, in

turn, may engage other downstream pathways such as JNK

to mediate WNT-5A-induced cell migration [67].

CD146, an adhesion molecule, can also activate RhoA

and has been shown to be involved in cell migration [74].

Interestingly, WNT-5A induces redistribution of CD146

and accumulation of a unique membrane complex com-

posed of actin, myosin IIB, and FZD3 (termed W-RAMP)

asymmetrically at the cell periphery in a DVL- and PKC-

dependent manner in melanoma cells [75]. This complex,

in turn, initiates directional movement and requires RhoB-

and Rab4-mediated membrane internalization and endo-

somal trafficking [75]. Of note, the cell movements in this

context were RhoA independent. A recent study, on the

other hand, has shown that WNT-5A directly binds to

CD146 to activate DVL leading to activation of JNK

thereby promoting formation of cell protrusions and cell

migration [45]. Whether WNT-5A employs RhoA or the

membrane complex-W-RAMP, for JNK activation down-

stream of CD146 is not clear.

Besides non-canonical WNT signaling, WNT-5A can

also activate b-catenin-dependent signaling to promote cell

migration. In melanoma cells, WNT-5A activates small

GTPase ADP-ribosylation factor 6 (ARF6) via FZD4-LRP6
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binding. ARF6 releases membrane-bound b-catenin from

N-cadherin increasing its cytosolic abundance and trig-

gering b-catenin-dependent transcriptional program that

induces invasion and metastasis [46].

WNT-5A can also alter the adhesion properties of cells

to regulate migration. For instance, WNT-5A binding to

FZD3 activates the PI3K/AKT cascade in human dermal

fibroblasts and promotes integrin-mediated adhesion of

these cells [41].

Thus, WNT-5A exerts migratory effects in large number

of cell and tissue types in physiological and pathological

contexts.

Stem cell differentiation and regeneration

Owing to its property of regulating cell polarity, cell

movement, and cell proliferation along with the antago-

nistic effects on WNT/b-catenin signaling, WNT-5A may

play a critical role in modulating cell fate determination

and differentiation of stem cells.

Hematopoietic stem cells exhibit a shift from b-catenin-

dependent to -independent WNT signaling with aging

where high levels of WNT-5A are present in aged stem

cells [10]. Interestingly, treatment of young hematopoietic

stem cells with WNT-5A induces age-related changes such

as aging-associated stem cell apolarity, reduced regenera-

tive capacity, and an aging-like myeloid–lymphoid

differentiation shift via activation of small Rho GTPase

CDC42 [10]. On the other hand, reduction of WNT-5A

expression in aged hematopoietic stem cells leads to their

functional rejuvenation [10]. Moreover, effects of WNT-

5A as observed in this study are dependent on the cell-

intrinsic WNT-5A abundance and not on WNT-5A levels

in stromal cells [10]. It is interesting to note that WNT-5A

negatively regulates hematopoietic stem cell differentiation

via inhibition of WNT/b-catenin and NFAT signaling

thereby maintaining them in a quiescent stage and pro-

moting their repopulation [73, 111, 112]. This effect is

mediated by RYK-dependent inhibition of endogenous

reactive oxygen species (ROS) generation [73].

Similarly, WNT-5A is also critical in mesenchymal

stem cell (MSC) biology. MSCs can differentiate into

multiple cell types such as adipocytes and osteocytes.

Higher expression of WNT-5A is detected in MSCs as

compared to committed preadipocytes which can only give

rise to adipocytes [113]. Interestingly, depletion of WNT-

5A in MSCs leads to their commitment to adipocytes and

loss of osteocyte producing capacity demonstrating that
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Fig. 3 WNT-5A-activated signaling cascades in cell migration.

Diagrammatic representation of few key signaling cascades engaged

by WNT-5A to regulate actin cytoskeletal remodeling and cell

migration. ARF6 ADP-ribosylation factor 6, GEF100 ARF-guanine

nucleotide exchange protein 100, FlnA filamin A, aPKC atypical

protein kinase C, JNK c-Jun N-terminal protein kinase, CapZIP

CapZ-interacting protein, DVL disheveled, Daam1 DVL-associated

activator of morphogenesis 1, Daple DVL-associating protein with a

high frequency of leucine residues, ROCK rho-associated kinase,

LRP6 low-density lipoprotein receptor-related protein 6, G G pro-

teins, [Ca2?]i intracellular calcium release

574 K. Kumawat, R. Gosens

123



WNT-5A is critical for the regulation of differentiation and

lineage commitment of MSCs [113]. Indeed, the presence

of WNT-5A in human bone marrow MSC inhibits adipo-

genesis and promotes osteoblastogenesis by inhibition of

peroxisome proliferator-activated receptors c (PPARc)

transactivation via a CaMKII-TAK1-TAK1-binding pro-

tein2 (TAB 2)-NLK signaling axis and simultaneous

induction of runt-related transcription factor (RUNX)

expression [114]. PPARc activation is required for adipo-

genesis, whereas RUNX2 is critical for osteogenesis [115].

Interestingly, WNT-5A-activated PKC and ROCK signal-

ing can also induce osteogenic differentiation in adipose-

tissue-derived mesenchymal stromal cells [116]. Thus,

WNT-5A functions as a master regulator determining MSC

differentiation into osteogenic or adipogenic lineages.

In line with its role in morphogenesis and stem cell

differentiation, WNT-5A has recently been shown to be

involved in tissue repair and regeneration after injury. A

study demonstrated robust induction of WNT-5A-positive

mesenchymal cells following an intestinal injury which are

specifically localized in the wound bed [13]. The presence

of WNT-5A provided a demarcation of the regenerating

proliferative area via potentiation of TGF-b signaling. This

allowed a fine-tuning of regeneration and proper wound

healing [13]. Increased amount of WNT-5A is observed in

lung tissue from mouse model of acute respiratory distress

syndrome (ARDS) which could be the repair response of

damaged lungs to resolve the injury [117]. Indeed, WNT-

5A can promote the survival of bone marrow derived

MSCs following an oxidative-stress injury and can induce

their differentiation into the type II alveolar epithelial cells

via activation of JNK and PKC signaling [117].

WNT-5A also regulates spermatogenesis by supporting

self-renewal and survival of spermatogonial stem cells

(SSC) [9]. In contrast to hematopoietic stem cells and

MSCs, SSCs do not express WNT-5A but its receptors—

FZD3, FZD5, FZD7, and ROR2. Interestingly, WNT-5A is

expressed and provided by the testicular stromal popula-

tion—sertoli cells, where it promotes SSC maintenance and

activity by inhibiting apoptosis in JNK-dependent manner

[9].

Thus, WNT-5A may exert a highly context-dependent

cell-intrinsic and -extrinsic effects in regulation of stem

cell biology, regeneration, and repair.

WNT-5A in disease

Consistent with the broad functional effects of WNT-5A

during embryonic and adult life, disrupted WNT-5A sig-

naling leads to the development of various pathological

conditions in humans. We here summarize the role of

WNT-5A in human pathologies such as fibrosis, inflam-

mation, and cancer.

Fibrosis

WNT-5A mRNA and protein expression is increased in

fibroblasts obtained from lungs of usual interstitial pneu-

monia (UIP) patients [16]. Similarly, increased WNT-5A

expression is detected in lungs following mechanical

ventilation where it participates in the mechanical venti-

lation-induced pulmonary fibrosis [118]. WNT-5A is also

present in high abundance in BAL fluid of sarcoidosis

patients [119]. Augmented levels of WNT-5A are also

detected in the dermal fibroblasts from keloids [120],

whereas WNT-5A expression is identified in the fibrotic

areas of affected human liver [121] and found increased

in liver tissues from mouse model of liver fibrosis [18,

122].

Activated hepatic stellate cells (HSCs) are keys to the

development of fibrotic liver by contributing the extra-

cellular matrix (ECM) and other fibrotic factors. WNT-5A

is particularly enriched in the ECM deposited by activated

HSCs [121] which express more WNT-5A than the qui-

escent HSCs [18, 122] and normal human fibroblasts

[121].

Fibroblasts from pulmonary fibrosis patients and keloid

regions show increased proliferation, survival, and

expression of ECM proteins [123, 124]. WNT-5A engages

cAMP-PKA-CREB and PKA-GSK-3b-b-catenin pathways

in dermal fibroblasts protecting them from apoptosis [79].

In line with these observations, WNT-5A promotes pro-

liferation and survival of lung fibroblasts and also

augments fibronectin and integrin expression [16]. Simi-

larly, WNT-5A drives proliferation of and ECM

deposition by activated HSCs [18]. Tissue fibrosis is an

important feature of airway remodeling in obstructive

lung diseases such as asthma and chronic obstructive

pulmonary disease (COPD) in which airway smooth

muscle can play a critical role. We have recently identi-

fied a role for WNT-5A in TGF-b-induced ECM

expression in airway smooth muscle cells [21]. WNT-5A

is a target of TGF-b in airway smooth muscle cells where

it engages b-catenin-independent WNT signaling activat-

ing Ca2?-NFAT and JNK to induce ECM expression [21].

While TGF-b can regulate WNT-5A expression in airway

smooth muscle cells, WNT-5A regulates expression of

TGF-b in HSCs [18] underlining a critical profibrotic axis

in fibrotic disorders.

In contrast of its profibrotic role, WNT-5A may be

protective in diabetic renal nephropathy. High-glucose

suppresses WNT-5A expression among other WNTs and

promotes expression of fibrotic markers via TGF-b

[125]. Forced expression or presence of recombinant

WNT-5A inactivates GSK-3b thereby stabilizing b-

catenin and counteracts high-glucose-induced fibrotic

effects [125].
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Inflammation

WNT-5A is associated with several inflammatory disorders

where it not only mediates proinflammatory cytokine and

chemokine production but also regulates migration and

recruitment of various immune effector cells.

Microbial pathogens [42, 126] and several proinflam-

matory factors such as IL-1b [31], TNF-a [30], LPS/IFNc

[15], and the IL-6 family members LIF and CT-1 [33]

induce WNT-5A expression in various cell types high-

lighting a critical role for WNT-5A in immune responses.

Abundant expression of WNT-5A is detected in the gran-

ulomatous lesions in the Mycobacterium tuberculosis-

infected lungs [42], in the chronic periodontitis tissue

[127], sera and bone marrow macrophages of patients with

severe sepsis [15], the atherosclerotic lesions in humans

and mouse [128], in human dental pulpitis tissues [129], in

circulation and visceral fat tissues of obese patients [130],

and in the synovial tissue and synovial fibrobalsts from

rheumatoid arthritis patients [30, 131].

WNT-5A is associated with the maintenance of innate

immune responses both in homeostasis and pathology.

Basal WNT-5A expression by macrophages drives static

IFN-b and -c expression via a Rac1-NFjB pathway and

also regulates expression of CD14 which is required for

antigen recognition and innate immune responses during

infection [132]. In addition, basal WNT-5A signaling also

supports survival of macrophages as loss of WNT-5A

decreases expression of prosurvival genes such as BCL-2,

BCL-xl, and MCL-1, with a concomitant increase in

expression of Bax, a proapoptotic protein [132]. Thus,

WNT-5A is suggested to contribute to the immune system

readiness for countering any future infection. Pathogenic

signals such as microbes or microbial products (i.e., LPS)

induce expression of WNT-5A which mediates the release

of proinflammatory factors such as TNF-a, IL-6, and

interferons from macrophages [132]. In addition, WNT-5A

also promotes phagocytosis of microbes in a PI3K-Rac1-

dependent manner. Interestingly, WNT-5A does not influ-

ence bacterial killing inside the phagosome prolonging

presence of the antigen and as such might contribute to the

development of sepsis by supporting sustenance of the

microbial infection and persistence of proinflammatory

macrophages at the site of infection [133].

WNT-5A also contributes to the immune responses by

regulating the differentiation of T cells [42]. Mycobac-

terium infection or the presence of LPS induces WNT-5A

expression in human antigen presenting cells and T cells in

a TLR-NFjB-dependent manner where it mediates

expression of IL-12 and IFNc [42] contributing to the

antimicrobial defense. TLR-4–MyD88 signaling is also

associated with downstream effects of WNT-5A to induce

expression of IL-12p40 and IL-6 in primary macrophages

[134]. Similarly, LPS/IFNc induces WNT-5A expression

in macrophages where it activates CaMKII and mediates

the release of IL-1b, IL-6, IL-8, and MIP1b [15].

Neutrophil recruitment to the region of infection or site

of injury under the influence of various chemoattractants is

another key event in innate immune response, whereas

excessive neutrophilic inflammation has been linked to

various diseases such as asthma and COPD. Human neu-

trophils express several WNT-5A receptors such as FZD2,

FZD5, and FZD8 and treatment with WNT-5A induces the

release of IL-8 and CCL2 via MAPK signaling, promoting

neutrophil migration [58]. CCL2 is an important neutrophil

chemoattractant and is also contributed by the macro-

phages. WNT-5A upregulates CCL2 expression in

macrophages via JNK and NFjB signaling [135] and

supernatants from LPS-treated macrophages effectively

induce neutrophil migration via WNT-5A [58] emphasiz-

ing an important macrophage-neutrophil cross-talk

mediated by WNT-5A.

WNT-5A has come under intense scrutiny for its role in

neuroinflammatory disorders. WNT-5A induces upregula-

tion of cyclooxygenase-2 (COX-2) expression and

production of proinflammatory cytokines IL-1b, IL-6, and

TNF-a in primary microglia [59]. It has also been associ-

ated with the Alzheimer’s disease-linked

neuroinflammation. b-Amyloid peptide (Ab) induces

expression of WNT-5A in primary cortical neurons where

it activates NFjB via upregulation of NF-jB-inducing

kinase (NIK) and mediates expression of IL-1b [136].

WNT-5A-mediated Ab-induced neuroinflammation is

suggested to contribute to the neurotoxicity and Alzhei-

mer’s disease-related neural degeneration [136].

The proinflammatory functions of WNT-5A are not only

restricted to the immune cells. In human adipocytes, WNT-

5A induces IL-6 and IL-1b expression [130]. In bone

marrow stromal cells, LPS induces WNT-5A where it

regulates expression of a plethora of proinflammatory

cytokines in a MAPK- and NFjB-dependent signaling and

promotes chemotactic migration of monocytes and T cell

indicating a possible role in pathophysiology of rheumatoid

arthritis [30]. In endothelial cells, WNT-5A augments

COX-2 expression and proinflammatory cytokine produc-

tion via the Ca2?-PKC-NFjB axis and increases vascular

permeability and endothelial cell migration [137]. WNT-

5A expression is induced in human dental pulp cells fol-

lowing TNF-a stimulation where it regulates IL-8 and

CCL2 expression via a MAPK and NFjB signaling cas-

cade and influences macrophage migration [129].

In contrast to the proinflammatory role, WNT-5A can

also have opposing effect on inflammation. It has been

shown to negatively regulate LPS-induced inflammatory

responses in microglia by inhibiting COX-2 upregulation

[138]. Another study showed that WNT-5A could function
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as anti-inflammatory factor by suppressing the proinflam-

matory M1 phenotype of macrophages in the presence of

LPS/IFNc [139] thus limiting the inflammation in various

pathological situations. A dose-dependent interaction

between WNT-5A and LPS could explain this discrepancy

as different doses of LPS elicit differential WNT-5A

responses by macrophages. It is quite plausible that low

doses of LPS support proinflammatory function of WNT-

5A, whereas at high LPS doses WNT-5A induces a

tolerogenic phenotype in macrophages [133] thereby sup-

pressing inflammation.

Cancer

WNT/b-catenin signaling is closely associated with

malignant disorders [140]. WNT-5A, owing to its proper-

ties of both activating and inhibiting WNT/b-catenin

signaling and regulating cell movements, can be linked

with cancer pathobiology. Studies have proposed both pro-

and anti-tumor functions for WNT-5A and have identified

several underlying signaling cascades (Table 1). Low or

loss of expression of WNT-5A is linked to increased

metastatic and invasive phenotype and poor prognosis in

breast and colorectal cancers, whereas in thyroid cancer, it

may have tumor-suppressor activity despite its increased

expression [141–144]. Likewise, deletion or loss of WNT-

5A expression is observed in human B cell lymphomas and

myeloid leukemias [145]. On the other hand, strong

expression of WNT-5A is shown in prostate cancer, acute

T-cell leukemia, melanomas, and non-melanomas where it

correlates with cell motility and tumor invasiveness [146–

151].

Aberrant expression of components of b-catenin-inde-

pendent pathway, WNT/PCP, has also been reported in

Chronic lymphocytic leukemia (CLL) [152]. The study

showed that WNT-5A, which is also expressed in the CLL

cells, promotes polarized cell migration towards chemo-

kine gradient (CXCL10, CXCL11, CXCL12, and CCL21)

in CK1-dependent manner [152]. In another example, high

expression of WNT-5A is observed in the PBMCs derived

from acute T-cell leukemia/lymphoma (ATL) patients

[151]. Due to its effects on osteoclast differentiation [151],

WNT-5A may drive osteolytic bone lesions and hypercal-

cemia which are the major complications in ATL patients

[153, 154].

In contrast to CLL and ATL, WNT-5A may have tumor

suppressive effects in ALL. Loss of WNT-5A expression is

reported in acute myeloid and acute lymphoblast leukemia

[145]. WNT-5A has been shown to be epigenetically

silenced by promoter hypermethylation in acute lymphoblast

leukemia cells leading to the loss of expression which may

drive unrestricted B cell proliferation and malignant devel-

opment [155]. Indeed, WNT-5A heterozygous mice develop

spontaneous B cell malignancies underlining the tumor

suppressive role of WNT-5A [145].

Similarly, WNT-5A promoter hypermethylation is also

observed in the esophageal squamous cell carcinoma

(ESCC) tissues [156]. Ectopic expression of WNT-5A led

to reduction in b-catenin signaling and inhibition of

clonogenicity and motility in ESCC cell lines suggesting

the tumor suppressive role of WNT-5A in ESCC [156].

WNT-5A expression is highly increased in gastric can-

cer and positively associates with tumor invasiveness,

metastasis, and survival of the patients [157]. Administra-

tion of anti-WNT-5A antibody attenuates liver metastases

of gastric cancer cells in vivo [158]. WNT-5A employs

several mechanisms to regulate gastric cell invasiveness

such as activation of focal adhesion kinase and Rac1 to

regulate turnover of paxillin-containing adhesions [157],

activation of PI3K/AKT pathway to regulate actin stress

fiber formation [57], and activation of JNK and PKC sig-

naling to induce Laminin c2 [159] promoting cell

migration. Additionally, WNT-5A abundance correlates

with the expression of MCP-1 and IL-1b in gastric cancer

tissues indicating that WNT-5A may drive macrophage

infiltration and tumor-related inflammation [160].

WNT-5A expression is highly increased in non-small

cell lung cancer (NSCLC) and has been associated with

poor prognosis [161, 162]. Tobacco smoke is a very potent

inducer of lung cancer [163] and exposure to cigarette

smoke-extract induces WNT-5A expression in human

bronchial epithelial cells [164]. WNT-5A activates PKC to

upregulate anti-apoptotic genes such as BCL-2 in these

cells thereby protecting them from death explaining the

tumorigenic properties of WNT-5A [164].

Extensive WNT-5A expression is detected in human

melanoma biopsies where it correlates with the formation

of distant metastases and poor prognosis [148, 150]. WNT-

5A strongly induces cell migration and invasion of mela-

noma cells, possibly, by inducing epithelial-to-

mesenchymal transition (EMT) while decreasing the

expression of metastatic suppressors [150, 165]. IL-6

induces WNT-5A in melanoma cells via p38 which, in

turn, mediates cell migration [166]. As discussed earlier,

WNT-5A activates ARF6 in melanoma cells leading to

disruption of N-cadherin-b-catenin interaction, enhanced

b-catenin-mediated transcription and invasion [46]. It can

also activate Ca2?-dependent signaling leading to the

activation of calpain protease which cleaves filamin A.

Cleavage of filamin A induces cytoskeletal remodeling and

cell motility [167]. WNT-5A can also confer a survival

advantage to melanoma cells, thereby negatively influ-

encing the outcome of therapeutic approaches. Prolonged

treatment with BRAF inhibitors induces WNT-5A

expression in melanoma cells and contributes to the

development of resistance to BRAF inhibitor-induced
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apoptosis [48]. This process involves FZD7- and RYK-

mediated activation of prosurvival AKT signaling [48].

Knock-down of endogenous WNT-5A decreases mela-

noma cell proliferation and sensitizes them to BRAF

inhibitor-induced cell death [48].

WNT-5A regulates motility in prostate cancer cells as

well by promoting actin remodeling via Ca2?-CaMKII

signaling [146]. Prostate cancer tissues show increased

expression of WNT-5A [146, 168] promoting migration

and invasiveness [147]. WNT-5A signaling through ROR2

and FZD2 activates protein kinase D (PKD) and JNK to

induce Matrixmetalloprotease 1 (MMP1) expression via

JunD [147]. MMP1 expression is important for prostate

cancer cell invasiveness and bone metastasis [169]. Bone is

a major site for metastasis of various tumors including

prostate cancer. Prostate cancer cells show increased

migration towards bone marrow stromal cells which is

suppressed in the presence of WNT-5A siRNA-transfected

bone marrow stromal cells, suggesting that WNT-5A can

also function as a chemoattractant or homing factor for

prostate cancer cells [170]. The prostate cancer and bone

cross-talk also promotes prostate cancer cell proliferation.

WNT-5A expressed by bone marrow stromal cells induces

expression of BMP-6 in prostate cancer cells via a PKC-

NFjB pathway [171]. BMP-6, in turn, activates SMAD and

b-catenin signaling to promote proliferation in prostate

cancer cells [171]. Indeed, considerable nuclear b-catenin

staining is found in prostate cancer tissues [147]. This

signaling mechanism also explains the development of

castration-resistant prostate cancer phenotype. Prostate

cancer cells require androgens for their growth and as such

androgen restriction is first-line therapy for prostate cancer

patients. With time, considerable subsets of patients

develop androgen-resistant prostate cancer. WNT-5A

induced BMP-6, thus contributes to the proliferation of

prostate cancer cells in the absence of androgens [171].

Studies have suggested a broader function for WNT-5A

in cancer than just cell growth and invasion. For instance, it

can relay immunomodulatory and proangiogenic functions

or modulate cell survival. WNT-5A induces the release of

IL-6, MMP2, and vascular endothelial growth factor

(VEGF) containing exosomes from melanoma cells in a

Table 1 WNT-5A in cancer

Cancer Expression Signaling Effector(s) Consequence(s)

Prostate Upregulated [146, 147, 168] PKD-JNK-JunD [147]

PKC-NFjB [171]

Ca2?-CaMKII [146]

MMP1 [147, 169]

BMP6 [171]

Invasion, metastasis [146, 147, 169]

Proliferation [171]

Non-melanoma Upregulated [149] ? ? Invasion [149]

Melanoma Upregulated [48, 148, 150] GEP100-ARF6 [46]

Ca2?-Calpain [167]

AKT [48]

Ca2?, CDC42 [172]

PKC-STAT3 [173]

b-Catenin [46]

Filamin A [167]

VEGF, IL-6, MMP2 [172]

LDH5 [174]

Invasion, migration [46, 150, 166, 167]

EMT [165]

Survival, proliferation [48]

Angiogenesis [172]

Immune evasion [173]

Metabolic reprogramming [174]

Gastric Upregulated [157] FAK, Rac1 [157]

PI3K-AKT [57]

JNK, PKC [159]

Paxillin [157]

Actin [57]

Laminin c2 [159]

Migration [57, 157–159]

Tumor inflammation [160]

NSCLC Upregulated [161, 162] PKC-AKT [164] BCL-2 [164] Survival [164]

Acute ATL Upregulated [151] ? RANK [151] Osteolytic lesions [151]

Colorectala Upregulated [184] ? ? Invasion [184]

Thyroidc Upregulated [143]c Ca2?-CaMKII [143] b-Catenin [143]c (Reduced) proliferation, migration [143]c

Breast Downregulated [141, 142] CDC42 [189] b-Catenin [188]

MMP9 [189]

Tumor growth [185]

Invasion [187–189]

Colorectalb Downregulated [144] ? b-Catenin [179] Proliferation, migration [144, 179, 183]

AML/ALL Downregulated [145] ? ? B cell proliferation [145]

ESCC Downregulated [156] ? b-Catenin [156] Proliferation, migration [156]

? unknown
a Early recurrence or metastatic
b Lymph-node negative or Dukes’ B
c Despite overexpression, WNT-5A is suggested to function as tumor suppressor in thyroid carcinoma, reduces b-catenin activity and prolif-

eration and migration
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Ca2?- and CDC42-dependent process that requires

cytoskeletal reorganization [172]. Co-culture of WNT-5A-

deficient melanoma cells with endothelial cells suppresses

endothelial cell branching, whereas treatment of endothe-

lial cells with exosomes isolated from WNT-5A-treated

melanoma cells induces angiogenesis highlighting a

proangiogenic role for WNT-5A [172]. WNT-5A also

suppresses expression of tumor-associated antigens in

melanoma cells via activation of PKC and STAT3. This

leads to impaired cytotoxic T-cell clearance of tumor cells

[173]. Interestingly, WNT-5A can drive metabolic repro-

gramming in cancer cells by inducing lactate

dehydrogenase 5 (LDH5) leading to an increase in anaer-

obic glycolysis [174]. The serum level of LDH is an

important predictor of prognosis and treatment response in

melanoma patients [175]. WNT-5A and LDH5 expression

levels positively correlate in melanoma patient tissue

samples [174]. This is particularly important as strong

staining of both WNT5A and LDH5 is linked with reduced

disease-free survival in melanoma patients [148, 174].

Contrary to its effects in melanoma cells, WNT-5A

increases oxidative phosphorylation rates in breast cancer

cells demonstrating a context-dependent function of WNT-

5A that can also explain its tumor-promoter and tumor-

suppressor roles [174].

What drives increased expression of WNT-5A in cancer

cells? A study has found that microRNA-26a expression is

reduced in prostate cancer cells [176]. miR-26a suppresses

WNT-5A and forced expression of miR-26a attenuates cell

proliferation, metastasis, and EMT, and induced G1 phase

arrest suppressing WNT-5A expression and inhibiting

prostate cancer progression [176]. Epigenetic mechanisms

could also participate in the aberrant expression of WNT-

5A in cancer cells. Hypomethylation of the WNT-5A

promoter in prostate cancer cells accounts for the increased

transcription of WNT-5A in these cells [177]. In another

scenario, reduced expression of WNT-5A antagonists such

as Klotho might contribute to increased availability and

signaling of WNT-5A in cancer cells [178]. Expressions of

Klotho and WNT-5A are inversely correlated in melanoma

tissues, whereas the presence of Klotho suppressed mela-

noma cell invasion [178].

In addition to tumor-promoting activity, WNT-5A also

functions as tumor suppressor in few cancer types. In

colorectal cancer (CRC), loss of WNT-5A is frequently

observed and associated with poor prognosis and survival

[144]. In line with this, methylation of the WNT-5A pro-

moter is observed in metastatic CRC cell lines explaining

low abundance of WNT-5A in CRC [179, 180]. Promoter

methylation of WNT-5A is associated with distinct tumor

subtypes in colorectal cancer [181, 182]. Treatment of

CRC cells with Genistein, a soy flavonone and tyrosine

kinase inhibitor with protective activity in CRC, reduces

WNT-5A promoter methylation thereby increasing WNT-

5A gene expression and inhibiting cell proliferation [183].

WNT-5A also attenuates migration of colon cancer cell

lines [144]. As activated WNT/b-catenin is associated with

CRC, ectopic expression of WNT5A resulted in substantial

inhibition of tumor cell clonogenicity of CRC cells, with

downregulation of intracellular b-catenin protein level and

concomitant decrease in b-catenin activity [179].

In a contrasting study, increased WNT-5A expression is

associated with poor prognosis in CRC patients and WNT-

5A promoted directional cell migration and invasion in

CRC cells. However, increased expression of WNT-5A is

not sufficient to augment malignancy or metastasis in APC-

driven intestinal tumor model [184] suggesting that addi-

tional, not yet understood, mechanisms govern WNT-5A

activity at different stages of cancer pathogenesis. While

further studies are required to elucidate a clear role of

WNT-5A in CRC, it is tempting to speculate that WNT-5A

acts as a tumor suppressor in b-catenin-dependent stages of

CRC progression.

Loss of WNT-5A is observed in primary invasive breast

cancers and is associated with higher histological grade and

rapid appearance of distant metastases leading to shorter

recurrence-free survival in these patients [141, 142]. The

low abundance of WNT-5A in breast cancer cells could be

attributed to epigenetic silencing of the WNT-5A promoter.

Elevated expression of protein inhibitor of activated STAT

1 (PIAS1) is found in breast cancer tissues and it has been

shown to associate with methylated regions of WNT-5A

promoter in breast cancer cells [185]. PIAS1, a transcrip-

tional regulator, is known to recruit DNA

methyltransferases (DNMTs) thereby regulating promoter

methylation. Of note, knock-down of PIAS1 coincides with

reduced methylation and increased acetylation of the

WNT-5A promoter indicating gene activation with a sub-

sequent increase in WNT-5A expression. It leads to

reduction in the number of tumor-initiating cells and

attenuates breast cancer growth in vivo suggesting that

epigenetic silencing of WNT-5A via PIAS1 is an important

feature in breast cancer [185]. Additionally, the low WNT-

5A expression could also be due to posttranslational sup-

pression of WNT-5A mRNA in breast cancer cells by HuR

proteins. Of note, HuR expression is highly augmented in

invasive breast cancer cells [36]. Further, miRNA-374a is

highly increased in breast cancer tissues and is associated

with poor metastasis-free survival [186]. miRNA-374a

promotes EMT and metastasis in breast cancer cells both

in vivo and in vitro via targeted downregulation of negative

regulators of WNT/b-catenin signaling such as WNT-5A

[186].

The tumor suppressive function could also be attributed

to adhesion promoting function of WNT-5A in certain cell

types. WNT-5A could regulate mammary epithelial cell
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adhesion by phosphorylating Discoidin domain receptor 1

and activating its interaction with collagen thereby nega-

tively regulating cell migration [187]. Similarly, WNT-5A

stimulation of breast epithelial cells increases adhesion by

inducing CK1a-dependent phosphorylation of b-catenin

which, in turn, promotes E-cadherin-b-catenin association

[188]. This stabilizes adheres junctions and attenuates b-

catenin transcriptional function [188]. WNT-5A activates

CDC42 in various cell types including breast cancer cells.

A study found that WNT-5A-activated CDC42 limits

ERK1/2 activation and subsequent MMP9 expression. This

is suggested to restrain cell migration and invasiveness in

breast cancer [189]. In agreement with these observations,

small WNT-5A-derived peptides could increase adhesion

and decrease metastasis and invasion of breast cancer cells

both in vitro and in vivo [190, 191].

In contrast to the tumor-suppressor function of WNT-5A

in breast cancer, studies have also suggested a cell migra-

tion-promoting role for WNT-5A. In a breast cancer cell line

MDA-MB-231 which expresses very low endogenous

WNT-5A, stimulation with WNT-5A activated a DVL2- and

Daam1-dependent RhoA signaling inducing cell migration

[110], whereas in another breast cancer cell line with high

endogenous WNT-5A levels (MCF-7), WNT-5A can pro-

mote cell migration via a DVL2-Rab35-Rac1-dependent and

RhoA-independent signaling [109]. In a contrasting study

using MCF-7 cell line, WNT-5A attenuated filopodia for-

mation and cell migration via activation of cAMP-regulated

phosphoprotein of 32 kDa (DARPP-32) and CREB [192].

Interestingly, macrophages associated with primary breast

cancer tissues have been shown to express WNT-5A [193].

The co-culture of MCF-7 with macrophages promotes

WNT-5A expression in macrophages and invasiveness of

MCF-7, a feature which was also recapitulated by direct

stimulation of MCF-7 with recombinant WNT-5A [193].

Similarly, microglia, the resident brain macrophages, have

been shown to enhance breast cancer cell (MCF-7) invasion

in a WNT-dependent manner [194]. The study showed

microglia transporting breast cancer cells into the brain tis-

sue [194]. Of note, WNT-5A has been shown to induce

proliferation and invasion of microglia [59]. While the pro-

cell migratory effects of WNT-5A in breast cancer require

further studies, it is quite possible that WNT-5A regulates

breast cancer metastasis depending on the tumor-microen-

vironment communication.

The opposing roles for WNT-5A in cancer are intriguing

and are matter of intense investigation. As WNT-5A

antagonizes WNT/b-catenin signaling, it is tempting to

speculate that it functions as tumor suppressor in WNT/b-

catenin-dependent cancers provided it activates the down-

stream cascade involved in this antagonism. The pro-tumor

activity might be attributed to the cell migratory, prolifer-

ative. and prosurvival effects of WNT-5A. Moreover, the

differential role of WNT-5A could also be due to different

properties of recently characterized WNT-5A isoforms.

WNT-5A promoter generates two identical transcripts uti-

lizing alternative transcription start sites—WNT-5A-L and

WNT-5A-S [24–26]. While WNT-5AL inhibits tumor

growth, WNT-5AS promotes it. Expression of these two

isoforms is altered in breast cancer, cervix carcinoma, and

aggressive neuroblastomas where WNT-5A-L is down-

regulated and WNT-5A-S is most abundantly expressed

[25]. Thus, not only the downstream signaling but also the

abundance of specific isoforms can contribute to the dif-

ferential effects of WNT-5A in cancer. Thus, the

downstream effects of WNT-5A are highly context

dependent and the differential signaling mechanisms it

engages may account for the opposing functions of WNT-

5A in cancer.

WNT-5A as a therapeutic target

While we still await a clear understanding of WNT-5A

biology, development of certain WNT-5A mimicking

molecules and their beneficial effects in animal models of

diseases raise hopes for therapeutic targeting of WNT-5A

for curing deadly diseases. Foxy5 is a WNT5A derived

N-formylated hexapeptide which mimics tumor suppres-

sive effects of WNT5A on breast cancer both in vitro [190,

191] and in vivo [191]. The presence of Foxy5 has anti-

migratory effects on breast cancer cell line [190, 191] and

administration of Foxy5 has been shown to prevent lung

and liver metastases in a mouse model of breast cancer

[191]. The substitution of N-terminal formyl group of

Foxy5 with a t-butoxycarbonyl group (t-boc) reversed its

function turning Foxy5 into WNT-5A antagonist, termed

Box5 [195]. Box5 antagonizes WNT-5A-induced mela-

noma cell invasion [195] and prevents b-amyloid peptide-

induced WNT-5A-dependent inflammation and neurotoxi-

city in mouse cortical cultures [136].

Likewise, UM206, a oligopeptide with high homology

to WNT-5A, functions as a FZD1/FZD2 antagonist with

therapeutic benefit in reducing cardiac remodeling an ani-

mal model of myocardial infarction [196]. Although the

effects of UM206 cannot be attributed specifically to

WNT-5A as the peptide also blocks signaling induced by

WNT-3A, WNT-5A is known to regulate fibroblast pro-

liferation, migration, and activation leading to matrix

remodeling [16, 103].

Conclusion

WNT-5A is a pleotropic growth factor with wide-ranging

effects in different cells and tissues, regulating key func-

tions throughout the human life span. While it is
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indispensable for proper embryonic development, it is

equally critical for maintenance of tissue homeostasis in

adult life. Simultaneously, derailed WNT-5A signaling

results in various pathological disorders in humans.

Understanding the mechanisms involved in the mainte-

nance of WNT-5A homeostasis such as its inducers and

signaling partners, both positive and negative modulators,

is key for therapeutic targeting of this important WNT in

various diseases.
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