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Wnt addiction of genetically defined cancers reversed by

PORCN inhibition
B Madan1, Z Ke2, N Harmston3, SY Ho2, AO Frois1, J Alam2, DA Jeyaraj2, V Pendharkar2, K Ghosh1, IH Virshup1, V Manoharan2,

EHQ Ong2, K Sangthongpitag2, J Hill2, E Petretto3, TH Keller2, MA Lee2, A Matter2 and DM Virshup1,4

Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance

of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by

blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a

novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all

Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts.

This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in

regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the

transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt

signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers.

Oncogene (2016) 35, 2197–2207; doi:10.1038/onc.2015.280; published online 10 August 2015

INTRODUCTION

Wnts are a family of 19 evolutionarily conserved cysteine rich
morphogens that interact with at least 15 different receptors and
co-receptors to regulate a multitude of developmental and
homeostatic processes.1,2 Wnts signal through both β-catenin
dependent and β-catenin independent pathways. Dysregulation
of Wnt signaling is thought to be causal in a subset of cancers due
to mutations in either upstream or downstream components.3,4

Mutations in downstream genes that result in stabilization of
β-catenin protein have been well documented. More recently,
cancer-associated mutations that alter the abundance of Wnt
receptors Frizzled and lipoprotein-related receptor 5 or 6 (LRP5/6)
have been reported, which adds to the complexity of Wnt
signaling in cancer.5–12 The E3 ubiquitin ligases ring-finger protein
43 (RNF43) and zinc and ring finger 3 (ZNRF3) negatively regulate
Wnt signaling by ubiquitinating the Frizzled and LRP5/6 receptors,
promoting their endocytosis and subsequent degradation.13,14

The secreted Wnt agonists of the R-spondin family, RSPO1-4, in
turn negatively regulate RNF43/ZNRF3. Gain of function gene
fusions involving RSPO2 and RSPO3 lead to increased cell surface
abundance of Frizzleds and LRP5/6 and consequently enhanced
Wnt signaling.6,9,13 This is clinically relevant for a subset of patients
with difficult to treat cancers. Chromosomal translocations fusing
the regulatory sequences of EIF3a or PTPRK with RSPO2 and
RPSO3 are found in 10% of APC wild-type colon cancers6,7 and
with varying frequencies (~1–11%) in ovarian, esophageal, lung
and head and neck cancers.15 Thus, there appears to be a subset
of cancers driven by enhanced cellular sensitivity to Wnts.
Wnt driven cancers can be targeted at several steps in the

pathway.16,17 One approach is to target the secretion of all Wnts
by inhibiting the enzymatic activity of Porcupine (PORCN), an

endoplasmic reticulum resident enzyme that post-translationally
palmitoleates Wnts at a highly conserved serine residue.18,19 This
palmitoleation of Wnts is essential for their secretion and binding
to the Frizzled receptors.20–22 Inhibition of PORCN enzymatic
activity offers an approach to overcome the limitations of β-
catenin inhibitors that can only block the canonical Wnt signaling
pathway23–26 or the anti-Frizzled antibodies that are limited in
their ability to target all the Frizzled receptors.17

Here we describe the efficacy of a novel small molecule
inhibitor of PORCN, ETC-159. ETC-159 has robust activity in
multiple cancer models driven by high Wnt signaling. Most
importantly, we have identified that ETC-159 is highly efficacious
in molecularly defined colorectal cancers (CRCs) with R-spondin
translocations. Consistent with a broad Wnt-dependent signaling
network, CRCs with gain of function RSPO mutations respond to
ETC-159 treatment with a rapid and marked shift in the
transcriptome including a highly significant decrease in prolifera-
tion and stem cell markers, and an increase in differentiation
genes. RSPO translocations are novel predictive biomarkers for
identifying Wnt ligand-dependent cancers that are responsive to a
new class of Wnt-pathway inhibitors.

RESULTS

Identification of novel inhibitors of Wnt signaling

To identify potent inhibitors of Wnt secretion, we screened a
library of ~ 225 755 small molecules using a multi-step cell-based
screen.27 HEK293 cells with constitutive high Wnt/β-catenin
signaling due to stable expression of WNT3A and harboring a
luciferase-based Wnt/β-catenin reporter (Super 8xTOPFLASH)
(STF3A cells) were incubated with small molecules for 24 h.
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Luciferase reporter activity was used as a measure of Wnt-pathway
activity. To specifically identify inhibitors of Wnt secretion, potent
compounds that were not cytotoxic were tested using a HEK293
cell line with an integrated STF reporter plasmid (STF cells) and
exogenously supplied WNT3A conditioned medium. Compounds
that selectively inhibited signaling in STF3A but not in STF cells
with WNT3A conditioned medium and had an IC50 o1 μM were
selected as potential PORCN inhibitors. This screen identified a
novel pharmacophore that was further refined by reiterative
structure/activity analysis into a compound named ETC-159 and
its related derivatives (Figure 1a, inset) that are potent inhibitors of
Wnt secretion. ETC-131 and ETC-159 inhibited β-catenin reporter
activity in a dose-dependent manner with an IC50 of 0.5 nM and
2.9 nM, respectively (Figure 1a, i). ETC-131 showed stereo-
specificity, as its enantiomer ETC-130 was four logs less potent,
with an IC50 of 5.4 μM. ETC-159, ETC-131 and the chemically
unrelated PORCN inhibitor Wnt-C59, but not ETC-130, effectively
inhibited the secretion of WNT3A into culture media (Figure 1a, ii)
but did not inhibit β-catenin signaling in STF cells supplemented
with Wnt3A-conditioned medium (IC50 410 μM) (Supplementary
Figures 1A and B). These data confirm that ETC-159 and ETC-131
are potent and specific inhibitors of Wnt secretion.
PORCN-mediated O-palmitoleation is indispensable for the

secretion and function of all Wnts.21 To test if these novel
compounds inhibit Wnt palmitoleation, Wnt3A-V5 was expressed
in HeLa cells metabolically labeled with alkyne-palmitic acid.28,29

Alkyne-palmitoylated Wnt was detected by immunoprecipitation
and click-chemistry coupling of azido-biotin to the alkyne moiety.
Treatment of cells with either ETC-159, ETC-131 or Wnt-C59
prevented the incorporation of palmitate into Wnt3A (Figure 1b).
Furthermore, overexpression of PORCN reversed the inhibitory
effects of ETC-131 and ETC-159 (Figure 1c). These findings indicate
that PORCN is the direct target of ETC-131 and ETC-159.
Wnt palmitoleation is required for its interaction with its carrier

protein WLS.20 Treatment of cells with ETC-159, ETC-131 or Wnt-
C59 but not an inactive enantiomer ETC-130 prevented this
interaction (Figure 1d), explaining why PORCN inhibitors block
Wnt secretion. Inhibition of PORCN also led to a reproducible
decrease in WLS protein abundance, which may be a conse-
quence of altered WLS expression or trafficking.30 ETC-159
treatment also caused decreased abundance of Wnt3a-stabilized
β-catenin protein in both mouse L cells and HEK293 cells
(Figure 1e and Supplementary Figure 1C). Confirming the central
role of PORCN in the biogenesis of all Wnts, ETC-159 inhibited
β-catenin signaling in response to multiple active Wnts
(Figure 1f).31

Xenopus laevis Porcn is less sensitive than mammalian PORCN to
inhibition by Wnt-C59.21 We therefore compared the activity of
ETC-159 against Xenopus Porcn, which is 77% identical to mouse
PORCN. HT1080 cells null for PORCN32 were reconstituted by
transient expression of either mouse HA-Porcn-D or Xenopus
HA-porcn expression plasmids at near-identical expression and
activity levels as assessed by immunoblot and TOPFLASH assay
(Supplementary Figures 1D and E). ETC-159 inhibited mouse
PORCN with an IC50 of 18.1 nM, whereas the IC50 for Xenopus Porcn
was approximately fourfold higher (70 nM) (Figure 1g). These
differences in activity demonstrate its selectivity for mammalian
PORCN and provide genetic evidence that PORCN is the molecular
target of ETC-159.

ETC-159 is orally bioavailable and effectively inhibits the growth of
mouse mammary tumor virus-Wnt1 tumors

ETC-159 exhibits good oral pharmacokinetics in mice allowing
preclinical evaluation via oral administration. After a single oral
dose of 5 mg/kg, ETC-159 was rapidly absorbed into the blood
with a Tmax of ~ 0.5 h and oral bioavailability of 100%. The plasma
half-life was ~ 1.18 h and its concentration in the blood remained

above the in vitro IC50 for at least 16 h (Figure 2a). Treatment of
mice with increasing doses of ETC-159 led to a dose-related
increase in exposure (Figure 2a). ETC-131 had poor oral bio-
availability and was therefore used only for in vitro assays.
To identify the doses of ETC-159 that are well tolerated, non-

tumor bearing BALB/c nude mice were treated daily with 10, 50
and 100 mg/kg ETC-159 for 7 days and were then observed for an
additional 7 days off treatment. There was no significant weight
loss or visible signs of toxicity at these doses (Supplementary
Figure 2A). Histological analysis of tissues collected from various
intestinal compartments revealed normal architecture in treated
mice from all groups (Supplementary Figure 2B).
The anti-tumor efficacy of ETC-159 was first tested using a well-

established Wnt dependent, murine mammary cancer model,
mouse mammary tumor virus-Wnt1. Mice carrying an mouse
mammary tumor virus LTR-Wnt1 transgene have marked over-
expression of Wnt1 in the mammary gland, driving hyperplasia
and an eventual development of adenocarcinomas.33 Tumor
fragments from mouse mammary tumor virus-Wnt1 cancers were
orthotopically transplanted into the fourth mammary fat-pad of
BALB/c nude mice. ETC-159 inhibited tumor growth by 52% and
78% at 1 and 3mg/kg by once daily gavage, respectively. Tumor
growth inhibition of 94% was obtained at 10mg/kg/day
(Figure 2b). Importantly, at these doses of ETC-159 there were
no signs of toxicity and little effect on body weight
(Supplementary Figure 2C).
To confirm that ETC-159 was inhibiting Wnt/β-catenin signaling

in vivo, we examined the tumors from control and treated groups.
Control tumors had abundant nuclear and cytoplasmic β-catenin
staining, whereas in treated tumors β-catenin re-localized to the
membrane (Figure 2c and Supplementary Figure 2D).
The decrease in cytoplasmic and nuclear abundance of β-catenin
was accompanied by a treatment-induced decrease in expression
of the β-catenin target genes Axin2, Tcf7 and c-Myc (Figure 2d).
To assess drug penetration into tumor tissue, tumors were

harvested at the indicated times following a single oral dose of 1,
3 or 10 mg/kg ETC-159. Drug concentrations in the tumors were
initially high and fell as predicted by the plasma concentration.
There was a maximal 80% inhibition of AXIN2 expression in the
tumors from mice treated with 3 or 10 mg/kg between 4 and 8 h
after treatment (Figure 2e). Notably, AXIN2 expression returned
to normal before the next dose. As these doses were highly
effective in blocking tumor growth, it suggests that intermittent
Wnt-pathway inhibition is sufficient to obtain good anti-tumor
efficacy.

ETC-159 effectively inhibits Wnt autocrine signaling and growth of
teratocarcinomas

We next tested human cancer cell lines for their sensitivity to
PORCN inhibitors. The human teratocarcinoma cell lines PA-1 and
NCCIT have high autocrine Wnt signaling and express multiple
Wnts, and the Wnt target gene AXIN2.34 Consistent with this, PA-1
cells transfected with the STF β-catenin reporter plasmid showed
robust reporter activity, and both ETC-159 and ETC-131 potently
inhibited the endogenous Wnt/β-catenin signaling in a dose-
dependent manner (Figure 3a).
Binding of Wnts to their receptors Frizzled and LRP5/6

stimulates phosphorylation of both LRP6 and Disheveled (Dvl).
In agreement with the high autocrine Wnt signaling, PA-1 cells
had readily detectable phosphorylated LRP6 and showed an
electrophoretic mobility shift of Dvl2, indicative of phosphoryla-
tion. ETC-159 significantly reduced the phosphorylation of both
Dvl2 and LRP6 (Figure 3b). ETC-159 and ETC-131 also potently
inhibited PA-1 colony formation in soft agar with an IC50 of 35 nM
and 7.7 nM, respectively (Figure 3c). ETC-159 treatment of athymic
nude mice bearing PA-1 or NCCIT xenografts reduced tumor
growth significantly, confirming the requirement for autocrine
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Wnt signaling in vivo (Figures 3d and e). Consistent with inhibition
of Wnt signaling, ETC-159 treatment also significantly reduced
AXIN2 expression in the tumors (Figure 3f). These findings confirm
the efficacy of ETC-159 against human cancers.

ETC-159 effectively inhibits the growth and induces differentiation
of colon cancers with RSPO translocations

We sought genetically defined human cancers that might benefit
from treatment with PORCN inhibitors. R-spondins are secreted
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Figure 1. Development of novel PORCN inhibitors. (a) ETC-159 and ETC-131 inhibit Wnt/β-catenin reporter activity and secretion of Wnt3a (i)
STF3A cells were treated with the indicated compounds and luciferase activity was measured after 24 h. Data represents mean± s.d. Inset:
structure of ETC-159 and ETC-131. (ii) STF3A cells were treated with 100 nM of the indicated compounds and Wnt secretion was assessed by
immunoblot of Wnt3A protein in culture supernatants. (b) ETC-159 and ETC-131 inhibit Wnt3A palmitoleation: HeLa cells transiently
expressing Wnt3A-V5 were metabolically labeled for 16 h with alkyne-palmitate (Alk-C16) in the presence of 100 nM of the indicated
compounds. Biotin-azide-clicked palmitate (upper panel), Wnt3a-V5 (lower panel). (c) PORCN overexpression rescues the inhibition of
β-catenin reporter activity: HT1080 cells transfected with Wnt3a, PORCN expression plasmids, and Super 8xTOPFLASH reporter were treated as
indicated for 16 h. The cells were harvested and luciferase activity was measured. Data represents mean± s.d. Data were analyzed using
unpaired t-test and corrected for multiple comparisons. **P⩽ 0.01, ****P⩽ 0.0001 (d) ETC-159 and ETC-131 prevent interaction of Wnt with
Wntless: HeLa cells transiently expressing Wnt3A-V5 were treated overnight with 100 nM of the indicated compounds before
immunoprecipitation of endogenous Wntless. (e) ETC-159 promotes β-catenin degradation: mouse L cells stably expressing Wnt3a were
trypsinizised and treated with DMSO or 100 nM ETC-159 before plating in cell culture dishes. The cells were harvested at indicated time points
and total β-catenin levels were assessed by immunoblot. (f) ETC-159 inhibits Wnt/β-catenin reporter activity induced by diverse Wnts: HT1080
cells were transfected with the Super 8xTOPFLASH and indicated Wnt expression plasmid, and then treated with 100 nM ETC-159 for 24 h
before luciferase assay. Bars represent the mean± s.d. Data were analyzed using unpaired t-test. *P⩽ 0.05, **P⩽ 0.01, ***P⩽ 0.001 (g) ETC-159 is
a more potent inhibitor of mammalian PORCN: porcupine null HT1080 cells transfected with either a murine (1 ng) or Xenopus porcn (0.75 ng)
expression plasmid and Super 8xTOPFLASH reporter were treated with indicated concentrations of ETC-159. The β-catenin reporter activity is
shown as percentage of the DMSO treated control. Data represent the mean± s.d.
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Wnt-pathway agonists, and cancer-associated chromosome trans-

locations that drive RSPO2 or RSPO3 expression have recently
been described.6 We tested if high R-spondin expression drives
sensitivity to PORCN inhibitors. Both RSPO2 and RSPO3 markedly

potentiated Wnt/β-catenin reporter activity, with RSPO3 ~ 1000-

fold more potent than RSPO2. Remarkably all the three RSPO

fusion constructs; EIF-RSPO2, PTPRK(E1)-RSPO3 and PTPRK(E7)-
RSPO3 further enhanced Wnt/β-catenin signaling by 20–60 fold
(Figure 4a). Even in the absence of exogenous Wnt3a expression,

the fusion constructs upregulated Wnt/β-catenin signaling 410
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fold, most likely due to the presence of endogenous Wnt activity.

Importantly, ETC-159 potently inhibited all RSPO2 and RSPO3-
induced signaling, confirming they required the presence of active
Wnts to drive signaling.
We therefore tested the efficacy of ETC-159 in two patient-

derived colon cancer xenografts with confirmed R-spondin fusion

genes; CR-1 with the (PTPRK(e1)-RSPO3(e2) and CR-2 with PTPRK
(e2)-RSPO3(e2) fusions (Figures 4b and c). Tumor fragments were
implanted into the flanks of BALB/c nude mice. Following

development of palpable tumors, the mice were administered
ETC-159 or vehicle by gavage once daily. Both patient-derived
colon cancer xenografts models showed treatment-related growth
inhibition following a variable period of slow response (Figures 4b
and c and Supplementary Figures 3A and B). Most importantly,
PORCN inhibitor therapy in the CRCs with RSPO translocations led
to differentiation. Histologic analysis of tumors treated for
28–30 days showed a near complete loss of adenocarcinoma
and markedly increased acidic polysaccharides including
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mucopolysaccharides as detected with Alcian blue staining
consistent with mucinous differentiation (Figure 4d).

ETC-159 induces global remodeling of gene expression in colon
cancers with RSPO translocations

To identify the consequences of Wnt-pathway inhibition, we
performed RNAseq on CR-1 patient-derived colon cancer xeno-
graft tumors following 3 days of treatment with vehicle or
ETC-159. ETC-159 treatment caused a highly significant remodeling
of gene expression, with downregulation of 2744 (2420 protein-
coding) genes and upregulation of 2518 (2252 protein-coding)
genes (Benjamini–Hochberg adjusted P-value o0.0001, Figure 5a
and Supplementary Table 1). Confirming the effect on Wnt
signaling, the expression of multiple well-established β-catenin
target genes was significantly reduced (Figure 5b). Importantly,
other downregulated genes were significantly enriched for genes
involved in cell cycle, mitosis and DNA replication, consistent with
a substantial block in proliferation (Figure 5c and Supplementary
Table 2). Indeed, the five most significantly downregulated genes,
ribonucleotide reductase (RRM2), Ki-67 (MKI67), MCM4, cyclin B1
(CCNB1), and claudin2 (CLDN2) are known to be overexpressed in

CRC and are clinical markers for cancer progression
(Supplementary Table 1).35 We then investigated whether
differentially expressed genes (upregulated and downregulated)
were enriched for common genomic signatures using GATHER,36

which interrogates the TRANSFAC (TRANScription FACtor)
database37 for over-representation of common transcription
factor-binding sites. This analysis identified transcription factors
(Figure 5d), including variants of the binding site of E2F
transcription factor family (important regulators of cell cycle,
DNA synthesis and mitosis), as well as other transcription factors
that co-regulate E2F (for example, MYC38 and NYF/NRF139) or act
as downstream effectors of E2F (for example, MYB40). In contrast,
ETC-159 treatment for 3 days led to an upregulation of genes
involved in inter/intra signal transduction, cell differentiation, cell
communication and response to stimulus (Figures 5a, c and e and
Supplementary Table 2). Consistent with the histologically
observed differentiation, markers of differentiated intestinal cells
were significantly enriched (P= 0.0005, hypergeometric test) for
genes showing increased expression following treatment
(Supplementary Table 3). Importantly, intestinal stem cell markers
including ASCL2, LGR5 and TERT were significantly reduced upon
treatment with ETC-159 (P= 0.0005, hypergeometric test)
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(Figure 5e and Supplementary Figure 3C). In summary, we found
widespread transcriptional changes in genes related to cell cycle,
cell proliferation, cell differentiation, and intestinal stem cell
markers after treatment of RSPO3-driven CRC with ETC-159. In a
subset of mice, short-term treatment (as brief as 6 days) lead to

durable suppression of tumor growth (data not shown). These
results suggest that suppression of Wnt/β-catenin signaling
with ETC-159 induces irreversible cellular differentiation thus
preventing regrowth of these tumors. These data establish that
RSPO translocations are bona fide predictive biomarkers for
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PORCN inhibitors, and PORCN inhibition induces differentiation of
RSPO-driven tumors.

Treatment with ETC-159 prevents regrowth of tumors

We wished to extend the results with ETC-159 to other cancers
with Wnt-sensitizing mutations. We identified an RNF43 p.S720X

mutation in the AsPC-1 pancreatic cell line (Supplementary Figure 4A),
and c.826_827delCT in MCAS, an ovarian cell line and confirmed
the presence of a p.E174X mutation in the HPAF-II pancreatic
cancer cell line. These RNF43 mutations also predict sensitivity
of autocrine signaling to ETC-159 as assessed by effects on
AXIN2 (Supplementary Figure 4B), colony formation in soft agar
(Supplementary Figures 4C–E) and low-density plating
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(Supplementary Figure 4F). ETC-159 decreased HPAF-II tumor
growth in a dose-dependent manner, with tumor growth
inhibition of 91% at 100mg/kg and no loss of body weight
(Figure 6a, Supplementary Figure 4G). At 30 mg/kg we found
significant downregulation of AXIN2 expression (Figure 6b). AsPC-1
tumor xenografts were also highly sensitive in vivo to ETC-159
(Figure 6c). Consistent with what was observed in RSPO3-
translocated CRCs, the ETC-159 treated RNF43 mutant pancreatic
tumors showed signs of differentiation, with increased expression
of mucin genes (Figure 6d) and markedly increased Alcian blue
staining (Figure 6e). Mice with bilateral AsPC-1 flank xenografts
were treated for 21 days and then observed for an additional
6 weeks (Figure 6f, 10 mice, 20 tumors per arm). Notably, not a
single tumor re-grew during the observation period. Similar results
were obtained with pancreatic patient-derived xenografts with
RNF43 mutations (data not shown). These results suggest that
suppression of Wnt/β-catenin signaling with ETC-159 in geneti-
cally defined tumors induces irreversible cellular differentiation
thus preventing regrowth of these tumors.

DISCUSSION

Precision therapy in cancer requires both knowledge of individual
driver lesions, and having an appropriate targeted intervention for
that specific lesion. Our study shows that genetically defined
human CRCs with RSPO2/3 translocations are highly sensitive to
the novel PORCN inhibitor ETC-159. This establishes that the
over-expressed RSPO works wholly or at least significantly through
the Wnt pathway, and that inhibiting production of Wnts can be
an effective therapy for these cancers. The development of potent
upstream Wnt inhibitors, coupled with these readily detectable
predictive biomarkers, is an important step forward in the
treatment of selected patients. Notably, the response of these
Wnt-dependent cancers to PORCN inhibition appears to be
terminal differentiation, consistent with a role for Wnts in
maintaining these cancers in an undifferentiated state.
A number of agents are in development to block Wnt signaling

upstream, by inhibiting Wnt biogenesis, or by blocking the
interaction of Wnts with their receptors.17,41–43 Antibody and
recombinant protein-based therapeutics have advantages of high
affinity and specificity but have long half-lives and low off-rates,
characteristics that may contribute to toxicity. Small molecule
PORCN inhibitors are highly effective in preventing Wnt secretion
and overcome the limitations of antibody and protein-based
therapeutics. At therapeutic doses, PORCN inhibitors do not
produce overt intestinal or skin toxicity in mouse models, perhaps
owing to differences in tissue penetration or dosing
schedules.21,42 However, given the well-established role of Wnts
in bone metabolism it will be important to assess the effect of
PORCN inhibitors on bone metabolism in clinical studies.
The efficacy of PORCN inhibitors in CRCs has not been

demonstrated previously. CRCs often have downstream activation
of Wnt/β-catenin signaling due to APC or β-catenin mutations,
which should render them insensitive to PORCN inhibition.
Molecules that prevent the interaction of β-catenin with
co-activators such as CREB binding protein (CREBBP/CBP) may
prove efficacious in the CRCs with APC or β-catenin mutations.
One such molecule PRI-724 is in phase I clinical trials, however, its
efficacy in CRCs needs to be established.44 The identification of a
subset of CRC with RSPO overexpression confirms the importance
of Wnt signaling in CRC.6 RSPO overexpression is postulated to
drive cancers via sensitization to locally expressed Wnts (recently
reviewed by Madan et al.43). Our data confirm that transcriptional
activation after RSPO overexpression requires active Wnts. The
highly significant therapeutic effect of ETC-159 on the patient-
derived CRC xenografts suggests that the major function of
over-expressed RSPOs in cancer is to make cells highly responsive
to Wnts. The most striking consequence of ETC-159 treatment of

both the pancreatic and the colorectal models was the cellular
differentiation of the tumors, which was accompanied by
increased expression of various mucins. Upstream inhibition of
Wnt signaling may be a form of tumor differentiation therapy that
prevents tumor regrowth rather than causing tumor death.9,17

Consistent with this hypothesis, there was massive remodeling of
the transcriptome in RSPO-overexpressing CRC xenografts within
3 days of treatment. The marked decrease in expression of
proliferation, cell cycle and intestinal stem cell maintenance
genes, and an increase in differentiation markers suggests that a
high Wnt signal holds these cells in a proliferative, but
undifferentiated state. Loss of Wnts appears to both turn-off
proliferation, and allows differentiation. Notably, our transcrip-
tional analysis did not identify a stress response nor a DNA
damage response. Whether the transcriptome alterations are
simply a consequence of interrupted β-catenin signaling, or are
due to a combination of inhibition of multiple canonical
(β-catenin) and non-β-catenin pathways will require further study.
In summary, we demonstrate that ETC-159 has remarkable

efficacy in preclinical models of genetically defined cancers. In US
alone there are ~ 130 000 new cases of CRC every year. An
estimated 9% patients have RSPO translocations,6 suggesting
~ 12 000 of these patients might benefit from a PORCN inhibitor.
The efficacy of ETC-159 in preventing growth of CRCs with RSPO
fusions strongly suggests that additional RSPO fusion-bearing
cancers will also be highly responsive to treatment with PORCN
inhibitors. Furthermore, ~ 4–18% of patients with ovarian,
endometrial and gastric cancer patients have RSPO translocations
and could potentially benefit from the use of ETC-159. The safety
and efficacy of ETC-159 warrants its evaluation in patients with
Wnt driven cancers.

MATERIAL AND METHODS

Reagents

The following plasmids and antibodies were gifts from various
research groups, Super 8x TOPFLASH reporter (STF) from Randy
Moon, pGK-WNT3A from Karl Willert, pMKIT-3xHA-mPORCN-D
from Tatsuhiko Kadowaki, human PORCN (isoform B) from Charles
Murtaugh, RSPO3 from Wanjin Hong and R-spondin fusion
constructs from Genentech, WNT3A antibody from Shinji Takada.

Wnt secretion and TOPFLASH assays

HEK293 cells stably transfected with STF reporter and pPGK-WNT3A
plasmid (STF3A cells) were treated with varying concentrations of
compounds. HT1080 cells were transfected in 24-well plates with
50 ng Wnt, 100 ng mCherry and 550 ng STF plasmids. For PORCN
rescue experiments, 100 ng 3xHA-mPORCN-D was added. For
testing the sensitivity of mouse and Xenopus porcupine, PORCN
null HT1080 cells were transfected with 1 ng of PORCN plasmids.
After 24 h of transfection, the cells were lysed in 0.6% NP40 in PBS
containing protease inhibitors. STF reporter activity was measured
using firefly luciferase substrate (Promega, Madison, WI, USA) and
was normalized to the cell viability, determined using LDH assay.27

For Wnt secretion, STF3A cells were treated with ETC-159 diluted in
1% fetal bovine serum-containing media. Wnt3A-conditioned
medium was obtained from L cells stably expressing Wnt3A
(American Type Cell Culture: CRL-2647).

Metabolic labeling with Alk-C16 and click chemistry and Wnt-WLS
interaction

HeLa cells transfected with V5-tagged WNT3A were cultured in
DMEM containing fatty acid-free BSA and ω-alkynyl palmitic acid
(Alk-C16). Following overnight incubation with the compounds,
cells were lysed, WNT3A was immunoprecipitated and subjected
to click labeling and detection as described.21 HeLa cells

Wnt addiction treated by PORCN inhibition

B Madan et al

2205

© 2016 Macmillan Publishers Limited Oncogene (2016) 2197 – 2207



transfected with WNT3A-V5 were treated with 0.1% DMSO or
indicated compounds for 16 h. Following immunoprecipitation of

WLS, the proteins were analyzed as previously described.21

Soft-agar colony assay

For colony formation assays cells were plated in 24-well culture
plates. 1500 cells/well mixed with 0.35% agar and complete media

were layered on top of 0.5% agar supplemented with complete
growth media. An additional 500 μl of medium with or without
ETC-159 was added to each well. After 2–3 weeks, colonies were
stained with 5 mg/ml MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide) and counted with a Gelcount instrument
(Oxford Optronix, Abingdon, UK).

Immunoblot

Cells were lysed using 50mM Tris-HCl, 150 mM NaCl, 1% sodium

deoxycholate, 0.25 mM EDTA (pH 8.0), 1% Triton X-100, 0.2%
sodium fluoride and protease inhibitor cocktail (Sigma, St Louis,
MO, USA). Dvl2 (cat# 3224 S), pLRP6 (cat# 2568 S), LRP6 (cat#

3395 S), anti-rabbit IgG-HRP (cat# P0448), anti-mouse IgG-HRP
(cat# P0447) antibodies were obtained from Cell Signaling
Technology (Danvers, MA, USA). Immunoblots on PVDF were
developed using SuperSignal West Dura substrate (Thermo

Scientific, Rockford, IL, USA). The images were captured using
the LAS-3000 Life Science Imager (Fujifilm; Tokyo, Japan).

Animal care

BALB/c nude, NCr nude or NOD-scid-gamma mice were

purchased from the InVivos, Singapore or Jackson Laboratories
(Bar Harbor, ME, USA). The Duke-NUS Institutional Animal Care
and Use Committee or BRC Institutional Animal Care and Use
Committee approved all animal studies. Animals were housed in

standard cages and were allowed access ad libitum to food
and water.

Tumor implantation and treatment of mice

PA-1, NCCIT, AsPC-1 and HPAF-II cells were obtained from

American Type Cell Culture. All cell lines were mycoplasma-free.
In all, 5–10 × 106 cells resuspended in 50% matrigel were injected
subcutaneously into flanks of BALB/c nude, NCr nude or NOD-scid-

gamma mice. For human xenograft models, patient-derived solid
tissue fragments were subcutaneously implanted in BALB/c nude
mice. All groups were matched for tumor size with equal variance
before treatment. ETC-159 formulated in 50% PEG400 (vol/vol) in

water was administered by oral gavage at a dosing volume of
10 μl/g body weight. Tumors were measured as described.21

Immunohistochemistry

Tumors were processed for β-catenin immunohistochemistry as

described.21 For staining mucins, sections were incubated with 3%
acetic acid for 3 min, stained with Alcian blue (pH 2.5) for 30 min
and counterstained with neutral fast red.

RNA isolation and qRT-PCR

Total RNA isolated from the cell lines or tumors using RNAeasy kit
(Qiagen, Hilden, Germany) was reverse transcribed with iScript
reverse transcriptase (BioRAD, Hercules, CA, USA). Real time

quantitative PCR (qPCR) was performed with SsoFast EvaGreen
assay from BioRad. HPRT and ACTB were used as housekeeping
genes (Supplementary Table 4).

Sample preparation for pharmacokinetic and Liquid
chromatography–mass spectrometry/mass spectrometry analysis

For pharmacokinetic analysis, plasma mixed with 50 ng/ml
carbamazepine and extraction solvent (70% acetronitrile and
0.1% formic acid) was incubated for 10min at –20 °C. After
vigorous shaking for 30 min and centrifugation, samples were

resolved on the Kinetex C18 column (Phenominex, Torrance, CA,
USA). Mass spectrometry parameters for ETC-159: multiple
reaction monitoring m/z 392.0→m/z 212; collision energy, 29 V;

declustering potential, 50 V and collision cell exit, 12 V. Mass
spectrometry parameters for carbamazepine: multiple reaction
monitoring m/z 237.1→m/z 194.1; collision energy, 27 V; DP,
100 V and CXP; 26 V. Quantitation was carried out using the

multiple reaction monitoring of the transitions. The lower limit of
quantification of ETC-159 was 1 ng/ml. Pharmacokinetic para-
meters were calculated by the non-compartmental method45

using Phoenix WinNonlin 6.3 software (Pharsight, Princeton, NJ,

USA).

RNA-seq analysis

RNA-seq libraries were prepared using the Illumina TruSeq

stranded Total RNA protocol with subsequent PolyA enrichment.
Paired-end reads (100 bp) from the RNA-seq libraries were aligned
against the human genome (hg19/GRCh37) and Ensembl anno-
tated transcripts (build 75) using Tophat version 2.0.946 allowing

two mismatches per mate. Read counts were summarized at the
level of individual genes using HTseq-count47 considering only
reads that mapped unambiguously to the transcriptome. Differ-
ential expression analysis was carried out using DESeq.48 Only

genes showing expression lower than the 60th quantile were
filtered out. Genes showing changes in their expression at the
significance level of Benjamini–Hochberg adjusted P-value

o0.0001 were defined as being differentially expressed after
correction for multiple testing. Enrichment for manually curated
markers of differentiation cell types and stem cell genes were
performed using a series of hypergeometric tests. In this, only

those genes expressed in the set of samples were used as
background. The results of these enrichments remain the same,
regardless of the filtering criteria used before the differential

expression analysis or whether the set of reads used was pre-
filtered using Xenome.49

Data analysis

Data was analyzed using Prism v5.0 (GraphPad, La Jolla, CA, USA)

and R. Significance for all tests was set at P⩽ 0.05 unless otherwise
stated.
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