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Abstract

Wnt signaling affects both bone modeling, which occurs during development, and bone

remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially

known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in

understanding the mechanisms of Wnt signaling, which is divided into two major branches: the

canonical pathway and the noncanonical pathway. The canonical pathway is also called the

Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity

pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review

also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and

antagonists affect both the bone modeling and bone remodeling processes. We also review the role

of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as

demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases,

including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt

signaling and its interactions with other signaling pathways in bone will provide potential

therapeutic targets to treat these bone diseases.
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2. INTRODUCTION

Bone is the rigid tissue that functions to move, support, and protect various organs of the

body. It is made mostly of collagen and calcium phosphate. Physiological bone turnover can

be divided into two temporal phases: modeling, which occurs during development, and

remodeling, a lifelong process involving tissue renewal (1). Bone development has two

stages (2): intramembranous ossification and endochondral ossification. Intramembranous

ossification occurs in the formation of flat bones. This begins with the condensation of

mesenchymal stem cells, which then differentiate into osteoprogenitors and become mature

osteoblasts. Later, these osteoblasts will either undergo apoptosis or change into osteocytes.

Endochondral ossification, which takes place on the long bone, also begins with

mesenchymal stem cell condensation. Unlike intramembranous ossification, cartilage is

present during endochondral ossification. Osteoblasts and osteoclasts are two major bone

cells that affect the remodeling process. There is a balance between osteoclastic bone

resorption and osteoblastic bone formation. Most adult skeletal diseases are due to the

disturbance of this balance, including osteoporosis, multiple myeloma, and cancer

metastases. Therefore, study of the proliferation and differentiation of osteoblasts and

osteoclasts can help us to deeply understand these diseases and develop better treatments.

The Wnt family consists of a number of highly conserved genes that regulate gene

expression, cell behavior, cell adhesion, and cell polarity, including 19 genes in humans and

mice, 7 in Drosophila, and 5 in C. elegans. The term “Wnt” is derived from the terms

wingless and int. The Int oncogenes, including Int1, were first identified in the mouse

mammary tumor. In 1987, investigators sequenced wingless in Drosophila and found it was

the homolog of int-1(3). In mammals, the complexity and specificity in Wnt signaling are in

part achieved through Wnt ligands, R-spondin proteins, and norrin. Receptors on the cell

surface and a multi-step process within the cell trigger downstream gene expression.

The production and secretion of Wnt ligands requires lipid modification by the

acyltransferase Porcupine (Porcn) followed by the binding of Wntless (Wls), which serves

as a Wnt chaperone and facilitates the transport of lipid-modified Wnt to the plasma

membrane (4–10). The Wnt pathway is divided into two major branches: the canonical

pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-

catenin pathway (11). There are two major noncanonical pathways: the Wnt-planar cell

polarity pathway (Wnt-PCP pathway)(12) and the Wnt-calcium pathway (Wnt-Ca2+

pathway)(13). The effect of Wnt ligands, receptors, intracellular effectors, transcription

factors, and antagonists on both the bone modeling and remodeling processes have been

studied in mouse models (Table 1).

Wnt signaling proteins participate in multiple developmental events during embryogenesis

and adult tissue homeostasis. Wnt signals have multiple functions, including mitogenic
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stimulation, cell fate determination, and differentiation (1). Wnt signals also affect bone

development, especially the differentiation of osteoblasts. It has always been a hot spot of

research since the first Wnt family protein was identified. This review summarizes various

Wnt signaling pathways and discusses how the Wnt signaling pathway influences bone

development and bone diseases.

3. WNT CANONICAL SIGNALING PATHWAY IN SKELETOGENESIS

3.1. Wnt ligands and Wnt agonists in bone

Wnt ligands, which are cysteine-rich proteins of approximately 350–400 amino acids that

contain an N-terminal signal peptide for secretion (14), have distinct effects on different

phases of bone development, including chondrogenesis, osteoblastogenesis, and

osteoclastogenesis. A recent study reported that Wnt1 mutations were found in four children

who have osteogenesis imperfecta (15), a genetic disorder of increased bone fragility, low

bone mass, and other connective-tissue manifestations (16). The Wnt1 knockout mouse

model has severe mid- and hindbrain deficiencies (17, 18). Wnt1 and Wnt3a control

expression of dorsal genes and suppression of the ventral programs though the Wnt

canonical pathway and gliotactin (Gli) activity (19, 20). Wnt2b functions with T-box 5b

(Tbx5b) to initiate forelimb outgrowth and identity through fibroblast growth factor 10

(fgf10) (21). Wnt3a regulates dorsal mesoderm fate (22) and is required at the earliest stages

of limb formation (23, 24) and craniofacial development (25). Wnt4, Wnt6, Wnt9a, and

Wnt16 are required for joint formation (26–28). Conditional expression of Wnt4 during

chondrogenesis in R26floxneoWnt4; Col2a1-Cre mutant mice resulted in dwarfism and an

increased number of hypertrophic chondrocytes (29). Yingzi Yang’s et al. revealed that

although Wnt5a and Wnt5b are the closest Wnt relatives to each other, they exhibit distinct

activities in coordinating chondrocyte proliferation and differentiation (30, 31). A recent

study showed that Wnt3a+/− and Wnt5a+/− mice have a low bone mass phenotype (32).

Wnt6, Wnt10a, and Wnt10b stimulate osteoblastogenesis and inhibit adipogenesis (33–36).

Mutations in Wnt7a result in defects in limb development (37–41). Wnt7b and Wnt11 are

identified as endogenous ligands regulating chondrocyte and osteoblast differentiation (42–

44). Wnt16 deficiency decreases bone mineral density and increases fracture risk (45).

Norrin, a highly divergent member of the transforming growth factor-beta superfamily, is a

kind of Wnt agonist. It exhibits highly-binding-affinity with Frizzled-4(46). Together with

low-density lipoprotein receptor-related protein (LRP), Norrin and Frizzled-4 can activate

the canonical Wnt signaling pathway (46). Thus, Norrin is related to several inherited

disorders, including osteoporosis-pseudoglioma syndrome (47).

The other class of Wnt agonists, the R-spondin family, consists of 4 types of R-spondins (i.e.

R-spondin1–4) which stimulate β-catenin-dependent signaling. R-spondins were discovered

by Kazanskaya et al. and identified as a novel family of secreted Wnt agonists (48). All R-

spondins contain an N-terminal signal peptide, two furin-like domains, one thrombospondin

type 1 domain, and a C-terminal low complexity region enriched with positively charged

amino acids (48). R-spondins promote osteoblast differentiation and are highly expressed in

skeletal tissues during development and postnatally (49). R-spondin1 promotes osteoblast

differentiation and bone formation while blocking osteoclastogenesis (50). R-spondin2
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deficiency results in skeletal developmental defects (49). R-spondin3 is required for head

cartilage morphogenesis through Wnt/PCP signaling pathway (51). R-spondin4 mutations

result in anonychia, which is the absence or hypoplasia of nails on fingers and toes (52).

3.2. Wnt canonical signaling pathway

The Wnt/β-catenin signaling pathway is the best studied of the Wnt pathways. Although

Wnt signals through several pathways to regulate cell growth, differentiation, function, and

death; it is central to the bone development and homeostasis in adults (53, 54). WNT

signaling has been studied primarily in developing embryos, in which cells respond to

WNTs in a context-dependent manner, but WNTs also have important functions in adults

(55). The current model of how Wnt signals are transduced in the Wnt canonical pathway is

shown in Figure 1B. Wnt proteins, following their binding to a frizzled receptor and a Lrp

co-receptor (most likely LRP6), activate the canonical Wnt signaling pathway. These

receptors transduce a signal to several intracellular proteins that include Dishevelled (Dsh),

glycogen synthase kinase-3β (GSK-3), Axin, Adenomatous Polyposis Coli (APC), and the

transcriptional regulator, β-catenin. This results in the translocation to nucleus of β-catenin,

the association of β-catenin with members of the Lef1/Tcf nuclear protein family, and the

activation of a specific program of gene expression (See Figure 1B, C)

3.3. Wnt receptors and their inhibitors in bone

3.3.1. Frizzled protein and its antagonists (sFRPs) regulate
osteoblastogenesis and osteoclastogenesis—Genetic and biochemical data have

demonstrated that the Frizzled (Fz) proteins are primary receptors for the Wnts (56).

Frizzled proteins transmit signaling through both β-catenin-dependent and β-catenin

independent pathways. All members of the Fz family are characterized by the following

features: a putative signal sequence followed by a sequence of 120 amino acids (aa)

containing 10 highly conserved cysteine-rich domains(CRD), a highly divergent region of

40–100 aa predicted to form a flexible linker, seven transmembrane segments separated by

short extracellular and cytoplasmic loops, and a cytoplasmic tail (57, 58). The CRD appears

to be the ligand-binding site of Frizzled proteins. Osteoclastogenesis is promoted

independently of osteoblasts in Fzd8 deficient mice (59). Fzd9 is required for bone

formation (60).

Secreted Frizzled-related proteins(sFRPs), the largest family of Wnt inhibitors, share

sequence similarity with the cysteine-rich domain found in the extracellular region of

Frizzled (61). sFRPs bind the Wnt ligands through their CRD, thereby preventing their

binding to the Frizzled receptor (62). Bodine et al. demonstrated that sFRP-1 is an important

regulator of osteoblast and osteocyte survival in vitro and in vivo. They developed a

sFRP1−/− mouse line and show that deletion of sFRP-1 not only reduces osteoblast and

osteocyte apoptosis, but also potentiates osteoblast proliferation and differentiation, and

increases trabecular bone formation (63–65). sFRP1 transgenic mice exhibit blocked bone

formation and decreased trabecular bone mass (66). According to Gillespie et al., sFRP-1

also plays a role in receptor activator of NF-kappaB ligand (RANKL)-dependent osteoclast

formation (67). sFRP-2 and sFRP-4 are required for limb development (68) and bone

formation (69, 70).
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3.3.2. Low-density lipoprotein receptor-related proteins regulate osteoblast
differentiation through Wnt signaling—The low-density lipoprotein receptor-related

protein (LRP) family is a single-pass transmembrane molecule family involved in Wnt

signaling. In addition to Wnt/Frizzled interactions, LRP5/6 is required for Wnt signalling in

invertebrates (71, 72). The gene arrow in Drosophila encodes a transmembrane protein that

is homologous to LRP5/6 (73). All members of the family contain highly conserved motifs.

Most notably, all contain several complement-type and epidermal growth factor (EGF)

precursor-like repeats, as well as single transmembrane and cytoplasmic domains (74).

LRP5 and LRP6 are 71% homologous and they have overlapping roles during bone mass

accrual (75). Investigators proposed that Wnt protein binds to Fz and LRP to form a

complex, although it hasn’t been observed in Drosophlia (76). Extensive evidence indicates

the importance of low-density lipoprotein receptor-related proteins in Wnt signaling and the

regulation of bone formation. In situ hybridization on skeletal elements in developing mice

to determine LRP5 is expressed in osteoblast and transducing Wnt signaling (77). The

intracellular domain of LRP5 can interact with Axin, stabilize β-catenin, and induce LEF

activation (78). Embryos homozygous for an insertion mutation in the LRP6 gene exhibit

developmental defects that are a striking composite of those caused by mutations in

individual Wnt genes. This indicates a broad role for LRP6 in the transduction of several

Wnt signals in mammals (71). Moreover, mice with a targeted disruption of LRP5 develop a

low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes

evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation

and function in a RUNX-2-independent manner (79). Humans and mice lacking LRP5

exhibit low bone mineral density (BMD). Compound mutants have dose-dependent deficits

in BMD, suggesting functional redundancy between LRP5 and LRP6 in bone development

(75). Conversely, a gain of function mutation in LRP5(Gly171Val) causes a hereditary high

bone mass trait in humans, and transgenic mice expressing this mutation in osteoblasts

display greater bone formation and density (80, 81). LRP6 showed similar function as the

LRP5 in a spontaneous point mutation mouse model, the ringelschwanz(rs). This model,

with a point mutation that leads to an amino acid substitution of tryptophan for the

conserved residue arginine at codon 886(R886W) and cannot efficiently transduce signals

through Wnt signaling, exhibited delayed ossification at birth and a low bone mass

phenotype in adults (82). Disrupting LRP5/6 could affect osteoblastogenesis, then bone

formation, and ultimately trigger bone diseases. Mutation in LRP5 causes the autosomal

recessive disorder osteoporosis-pseudoglioma syndrome (OPPG), whose carriers have

reduced bone mass when compared to age- and gender-matched controls (77). Recent

studies show that missense mutations in LRP6 can lead to osteoporosis (82, 83). In a

duodenal-specific Lrp5 activating mouse model, it was demonstrated that Lrp5 regulates

bone mass by affecting serotonin synthesis (84). N-cadherin interacts with LRP5/6 and

suppresses Wnt signaling and bone formation, which can be disrupted by a competitor

peptide (85). This finding provides a new strategy to promote osteoblast function and bone

formation through Wnt signaling. Another member of the LRP family, LRP4, shares

structure elements within the extracellular ligand binding domain with LRP5 and LRP6.

LRP4 is expressed in bone and is a novel osteoblast expressed Dkk1 and SOST receptor

with a physiological role in the regulation of bone growth and turnover (86). LRP4 also can

bind Wise, a secreted Wnt modulator and Bone morphogenetic protein (BMP) antagonist.
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Recently, a group in the Netherlands identified a new member of the low-density lipoprotein

receptor-related protein family: Lrp8 (87). Knockdown of Lrp8 results in a decrease in the

level of β-catenin (87). These results indicate that Lrp8 is a novel positive factor of Wnt

signaling and may play a role in controlling osteoblast differentiation.

3.3.3. Dkk and Kremen regulate bone mass by modulating Lrp5/6—Among the

several known modulators of Lrp5 activity, Dkk proteins are the best characterized secreted

Wnt-signaling inhibitors. Dickkopf-1(DKK1), a member of the Dickkopf family, is

indispensable for embryonic head induction and limb development in mice (88).

Endogenous Dkk1 expression was detected primarily in osteoblasts and osteocytes (89).

While Dkk1 null mice die at birth due to a lack of head structure, Dkk1 heterozygous

mutants (Dkk1+/−) display increased bone formation and high bone mass phenotype (90).

Conversely, the Dkk1 transgenic mouse [collagen, type I, alpha 1 (Col1A1)] showed

systemic osteopenia, decreased osteoblastic bone formation, and unaffected

osteoclastogenesis (89). Dkk1 is over-produced in human cancer cells while developing

osteolytic lesions associated with metastatic bone disease (91–94). Knockdown of Dkk1

expression by end-capped phosphorothioate Dkk1 antisense oligonucleotide (Dkk1-AS)

abrogated dexamethasone suppression of alkaline phosphatase activity and osteocalcin

expression in MC3T3-E1 preosteoblasts. Exogenous Dkk1-AS treatment alleviated

dexamethasone suppression of mineral density, trabecular bone volume, osteoblast surface,

and the rate of bone formation in bone tissue and ex vivo osteogenesis of primary bone

marrow mesenchymal cells (95). Notably, Dkk1 inhibits Wnt signaling by binding to the

LRP6 component of the receptor complex, instead of exerting an inhibitory effect by

molecular mimicry of Fz or Wnt sequestration like most other Wnt antagonist (96). LRP5

gain-of-function mutations which alter the first epidermal growth factor (EGF)–like domain

(i.e. LRP5 -propeller 1 region) can prevent DKK1-LRP5 interaction and are the cause of

high bone mass (HBM) and mandibular, buccal, and lingual exostoses (80, 91). The

Dkk2−/− mice represent decreasing bone formation by affecting terminal osteoblast

differentiation and mineralized matrix formation (97). This result suggests that Dkk2 plays

an opposite role with Dkk1 in osteoblastogenesis. Dkk2 deficiency led to a substantial

increase in the number of osteoclasts by delayed mineralization of osteoblasts (97, 98).

Dkk1 antagonizes LRP5/6 by competitively binding to LRP with high affinity (99), and its

antagonistic function is significantly enhanced by Kremens, which are another type of

transmembrane molecule (100). Kremen1 (Krm1) and Kremen2 (Krm2) are high-affinity

Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt canonical signaling

(101). Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid

endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. As we

described before, the R-spondin (RSpo) family of secreted proteins act as potent activators

of the Wnt signaling pathway (102). Although RSpo1 does not directly activate LRP6, it

interferes with DKK1/Kremen-mediated internalization of LRP6 through an interaction with

Kremen, resulting in increased LRP6 levels on the cell surface (102). Krm2, unlike Krm1, is

predominantly expressed in bone. Specific overexpression of Krm2 in osteoblasts in

transgenic mice(Col1a1-Krm2) results in severe osteoporosis (103). Dexamethasone, an

agent known to induce osteoporosis, upregulates Dkk1 expression in primary human
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osteoblasts and provides a molecular explanation for osteoporosis caused by long-term

glucocorticoid use (104).

3.3.4. Other Wnt antagonists—Sclerostin (SOST), which is a member of the cysteine-

knot superfamily, has been localized to the chromosome region 17q12-q21 (105). SOST is

expressed exclusively in mouse and human bone by osteocytes embedded within the

mineralized matrix (106, 107). At first, sclerostin was considered a BMP signaling

antagonist because it competed with type I and type II bone morphogenetic protein receptors

for binding to BMPs, decreased BMP signaling, and suppressed mineralization of

osteoblastic cells (108). However, subsequent studies have shown that it is also a Wnt

signaling antagonist by binding LRP5/6(109, 110). Sclerostin binding to the six-bladed β-

propeller domain of LRP5/6 is mediated by the central core of sclerostin but not the amino-

and carboxyl- terminal flexible arm region (111). Sclerostin also binds to Lrp4 and functions

in bone formation and turnover (86, 112). Mouse genetics have demonstrated the link

between SOST and bone formation. In vivo, SOST−/− mice showed a high bone mass state,

and transgenic mice overexpressing SOST exhibited low bone mass and decreased bone

strength (108, 113, 114).

Wise shares 38% amino acid identity with sclerostin and appears to be a context-dependent

regulator of Wnt signaling; it may inhibit or stimulate Wnt signaling. Data from Itasaki et al.

shows that Wise is an inhibitor of Wnt signaling by binding to the Wnt co-receptor,

lipoprotein-related protein 6, LRP6 and thus competing with Wnt8 for binding to

LRP6(115).

Wnt-inhibitory factor-1(WIF-1) is a secreted protein that binds to Wnt proteins and inhibits

their activities (116). The deduced 379-amino acid WIF-1 secreted protein contains an N-

terminal signal sequence, a 150-amino acid WIF domain, 5 epidermal growth factor (EGF;

131530)-like repeats that are similar to those of tenascin, and a C-terminal hydrophilic

domain of approximately 45 amino acids (116). WIF-1 is present in fish, amphibians, and

mammals, and is expressed during Xenopus and zebrafish development in a complex pattern

that includes paraxial presomitic mesoderm, notochord, branchial arches and neural crest

derivatives. In vitro, WIF-1 binds to Drosophila Wingless and Xenopus Wnt8 produced by

Drosophila S2 cells.

3.4. Dishevelled and Axin proteins relay Wnt signals from receptors to downstream
effectors

Dishevelled (Dvl-1, -2, and -3 in mammalian, Dsh in Drosophila) is composed of an amino-

terminal DIX domain, a PDZ domain in the middle, and a carboxy-terminal DEP domain

(117). Dsh can interact with Fz directly (118) through the conserved the motif (Lys-Thr-X-

X-X-Trp) located two amino acids after the seventh transmembrane domain in Fz (119).

Investigators have identified PAR-1 as a Dsh-associated kinase. PAR-1 potentiates Wnt

activation of the β-catenin pathway. Suppressing endogenous PAR-1 function inhibits Wnt

signaling through β-catenin in mammalian cells, and Xenopus and Drosophila embryos.

PAR-1 seems to be a positive regulator of the β-catenin pathway.
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Similar to Dsh, cytosolic protein Axin (a scaffolding protein controlling beta-catenin

stability) interacts with LRP. Wnts stimulate phosphorylation of LRP on the Pro-Pro-Pro-

(SerTrp)Pro[PPP(S/T)P] motif, which creates an inducible docking site for Axin (78, 120,

121). The Dvl and Axin proteins each contain a conserved DIX domain in their sequences

(122). Though their DIX domain, Dvl-1 directly binds to Axin and Dvl-1 inhibits Axin-

promoted GSK-3β-dependent phosphorylation of β-catenin and APC. Furthermore, deletion

of the DIX domains of Dvl-1 and Axin destroys their abilities to accumulate and to degrade

β-catenin (123). Possibly, Wnt binding of Fz and LRP promotes direct interactions between

Axin and Dvl through their domains, reconfiguring the protein complex that regulates the

level of β-catenin in the cell (11).

3.5. Wnt signaling in cytoplasm

In the absence of Wnt ligands, a master complex comprising APC, GSK-3β, Axin, and

Casein kinase I (CKI) phosphorylates cytoplasmic β-catenin, marking it for ubiquitination

and subsequent proteasomal degradation (124). Wnt ligands binding to the membrane co-

receptors (LRP5/6 and Frizzled) inhibit this complex, allowing nuclear translocation of

dephosphorylated β-catenin, where it activates a large number of context-dependent target

genes (125).

The Apc (adenomatous polyposis coli) tumor suppressor gene is involved in the initiation

and progression of colorectal cancer (126). Conditional homozygous Apc mutation mice

died perinatally showing greatly impaired skeletogenesis. The majority of the precursor cells

lacking APC-mediated control of β-catenin level failed to differentiate into chondrocytes or

osteoblasts (127). Also, APC is suggested to regulate the function of chondrocytes,

osteoblasts, and osteoclasts though catenin-cadherin interactions. Conditional knockout of

Apc with the osteocalcin promoter disclosed dramatic defects in bone development, a

significant accumulation of bone matrix, disturbance in bone architecture, rapidl rate of bone

formation, and lack of osteoclasts (128). Conditional knockout of Apc with the Col2a1

promoter is embryonic lethal and it causes the majority of the precursor cells lacking Apc to

fail to differentiate into chondrocytes or osteoblasts (127). Mice carrying osteoblast-specific

deletion of both the Apc and β-catenin genes display growth and survival characteristics

similar to those lacking only the β-catenin gene, suggesting that the severe phenotype

induced by loss of Apc is due to dysregulation of β-catenin signaling (128).

Axin acts as a scaffold in the Axin-APC-GSK3β-CKI complex to assemble β-catenin

substrate and kinases (GSK3β and CKI)(129). Axin has several domains. The RGS

(Regulators of G protein signaling) domain interacts with APC(78). The DIX domain can

interact with Dishevelled as discussed before. There are two vertebrate Axin genes, which

act as negative regulators (130). Axin1 is constitutively expressed, but Axin2 (Axil) is a

direct target of the Wnt pathway and mediated through Tcf/LEF factors. This suggests that

Axin2 participates in a negative feedback loop, which could serve to limit the duration or

intensity of a Wnt-initiated signal (131). Mice with deletion of Axin1 exhibit defects in axis

determination and brain patterning during early embryonic development (132). Axin2−/−

mice display enhanced expansion of osteoprogenitors, accelerated ossification, stimulated

expression of osteogenic markers, and increased mineralization (133). Axin2-null mice
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exhibit a phenotypic defect resembling craniosynostosis in humans (133). Recently, another

group revealed that disruption of Axin2−/− expression not only played a critical role in

intramembranous bone formation, but also accelerated chondrocyte maturation and

influenced the endochondral bone formation (134).

Glycogen synthase kinase 3(GSK3) has two highly conserved isoforms α and β originally

identified in 1980(135). In the Wnt pathway, GSK3β is recruited to form a complex via

interaction with Axin, where it phosphorylates three serine(S)/threonine(T)residues(S33,

S37, T41) at the amino-terminal region of β-catenin (130, 136). These phosphorylated S/T

residues are critical for its recognition by the F-box β-Trcp (130). Hyperphosphorylated β-

catenin is subjected to ubiquitylation by the F-box β-Trcp E3 ligase complex followed by

degradation via the 26S proteasome (137). Hoeflich et al. found that lithium treatment,

which inhibits GSK-3, can inhibit transactivation of NF-κB (a key transcription factor of

osteoclasts) without affecting degradation of I-κB and translocation of NF-κB to the nucleus

(138). Thus, NF-κB is regulated by GSK-3 at the level of the transcriptional complex (138).

GSK3α−/−;GSK3β+/− mice exhibit a dwarfism phenotype with significantly shortened long

bones and vertebra, while GSK3α+/− and GSK3β+/− mice display normal skeleton

development (139).

Casein kinase Ialpha (CKIα) is another Axin-associated kinase, whose phosphorylation of

β-catenin is required for subsequent phosphorylation of β-catenin by GSK3(140). Wnt

signaling inhibits GSK3β, but not CKIα phosphorylation of β-catenin (130, 141). Therefore,

CKIα may represent a node at which other signaling pathways regulate β-catenin protein

(130, 141).

Rac1, a Rho-family small GTPase, can accumulate β-catenin via Gαq/11βγ signaling

involving phosphatidylinositol-3 kinase(PI-3K)(142). The role of Rac1 depends on the

phosphorylation of β-catenin at Ser191 and Ser605, an event chiefly mediated by c-Jun

NH2-terminal kinase 2(JNK2) in the stromal cell line ST2 (142). Mutations of these residues

significantly affect β-catenin nuclear accumulation in response to Wnt (142).

SRY-box containing gene 9 (Sox9) is an intrinsic transcription factor that is inhibited by the

Wnt canonical signaling pathway (143). It can antagonize Wnt/β-catenin signaling in

chondrocyte differentiation in two distinct mechanisms: the Sox9 N-terminus is necessary

and sufficient to promote β-catenin degradation, whereas the C terminus is required to

inhibit β-catenin transcriptional activity without affecting its stability (143).

There are generally two pools of β-catenin: one is associated with cadherins while the other

is “free” in the cytosol/nucleus. The latter pool is involved in gene transcription regulation

(137). Phosphorylated β-catenin is specifically recognized by beta-transducin repeat

containing protein (β-Trcp), an F-box/WD40-repeat protein that also associates with S-phase

kinase-associated protein 1 (Skp1), which is an essential component of the ubiquitination

apparatus (144). Mutations at the critical phosphoserine residues of β-catenin results in the

loss of recognition by β-Trcp and in the accumulation of β-catenin (144). Inhibition of

endogenous β-Trcp function by a dominant negative mutant stabilizes β-catenin and
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activates the Wnt canonical pathway (144). Activating mutations in the human β-catenin

gene have been found in human colon cancer and melanomas (145).

β-catenin through Wnt signaling plays a very important role in skeletal development by

regulating chondrogenesis, osteoblastogenesis, osteoclastogenesis, and limb patterning.

First, β-catenin regulates chondrocyte differentiation (26, 146, 147). The transgenic mouse

of β-catenin under Col2A1 promoter control reveals that cartilage formation and

endochondral ossification were greatly reduced (26). In the β-cateninc/c, Dermo-1-Cre mice,

the long bones were greatly shortened, thickened, and bowed, and cartilage formation was

ectopic due to the ectopic chondrocyte differentiation at the expense osteoblasts (148).

Detailed in vivo and in vitro loss- and gain-of-function analysis reveals that β-catenin

activity is necessary and sufficient to repress the differentiation of mesenchymal cells into

Runx2- and Sox9-positive skeletal precursors (146). These results suggest that β-catenin is

required for the suppression of chondrocyte differentiation and the allowance of osteoblast

formation during both intramembranous and endochondral ossification (148). Recent studies

of inducible cartilage-derived β-catenin uncovered that β-catenin also affects chondrocyte

maturation, primary and secondary ossification center development, and perichondral bone

formation (149, 150). Furthermore, β-catenin could affect osteoblast differentiation (146,

147). Global inactivation of β-catenin results in early embryonic death. Conditionally

inactivatable β-catenin mice expressing cre under the control of the osteocalcin promoter

displayed striking reductions in both the trabecular and cortical bone compartments (128).

Study of the calvarial osteoblasts of the conditional knockout mice in vitro revealed that β-

catenin is not required for the initial commitment of cells to the osteoblast lineage, but that it

appears to be essential for the performance of more mature osteoblast (128). Interestingly,

Long et al. found that conditional knockout of β-catenin in osterix expressing osteoblasts

promotes osteoblast formation and suppresses bone resorption (151). This finding indicates

a complicated role for β-catenin in bone homeostasis. Recent studies demonstrate that

BMP-2 acts synergistically with β-catenin to promote osteoblast differentiation. The Wnt

autocrine loop mediates the induction of alkaline phosphatase and mineralization by BMP-2

in pre-osteoblastic cells (152). Additionally, alterations in β-catenin signaling in osteoblasts

brought about by each mutation leads to marked disturbances in osteoclast differentiation

(128, 148), as evidenced by the dramatic increase in osteoclast numbers and severe

osteopenia in β-catenin conditional knockout mice (128). Stabilizing expressed β-catenin in

mice could cause osteopetrosis through osteoclast defects (153, 154). Constitutive activation

of β-catenin in osteoclast cells causes severe osteopetrosis (154). Dosage-dependent

inhibition of β-catenin expression shows an opposite phenotype of mice. β-catenin

heterozygosity in osteoclast lineage causes osteoporosis while β-catenin deletion in

osteoclasts causes osteopetrosis (154). Other studies have shown that the osteoprotegerin

(OPG) gene, a major inhibitor of osteoclast differentiation, may be a direct transcriptional

target for complexes containing the β-catenin protein (153, 155). Mesenchymal β-catenin

has multiple roles during limb patterning (156). Abnormal expression of mesenchymal β-

catenin causes limb truncation and apical ectodermal ridge (AER) defects (156). In vitro,

osteoblasts lacking the β-catenin gene exhibited impaired maturation and mineralization

with elevated expression of the osteoclast differentiation factor, RANKL, and diminished

expression of the RANKL decoy receptor, osteoprotegerin (128). According to these
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findings, we know that β-catenin regulates bone development during different phases and

that abnormal β-catenin may cause bone diseases (e.g. osteoporosis and osteopetrosis).

3.6. Wnt signaling in nucleus

In vertebrates, β-catenin acts astranscriptional activator, which is needed to overcome target

gene repression by Groucho/TLE proteins and to permit promoter activation as the final

consequence of Wnt signaling (157). The vertebrate transcription factors T cell factor (TCF)

and lymphocyte enhancer binding factor (LEF) interact with β-catenin and mediate Wnt

signaling (158). XTcf-3, also known as transcription factor 7-like 1 (T-cell specific, HMG-

box), is a maternally expressed Xenopus homolog of the mammalian (high-mobility-group)

HMG box factors Tcf-1 and Lef-1. N-terminal deletion of XTcf-3 (delta N) abrogates the

interaction with β-catenin, as well as the consequent transcription activation (159). Tcf1 is

one of the two Tcf genes expressed in osteoblasts. Mice lacking Tcf1 exhibit a low bone

mass phenotype that is caused by a secondary increase in bone resorption, as indicated by

the increased number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated

osteoclasts (153) Mice lacking Tcf1 also exhibit dwarfism caused by inhibition of

chondrocytes differentiation (160). Constitutive expressing β-catenin binding and

cooperation element, Lef1ΔN, in osteoblasts increases trabecular bone mass (161). In

Lef−/−Tcf1−/− double knockout mice, embryos have defects in limb bud development and

paraxial mesoderm differentiation (162). Opg expression is decreased in Tcf1−/− osteoblasts,

indicating that TCF1 regulates osteoclast differentiation through Opg (153).

Runx2 (runt homology domain transcription factor 2) is the major transcription factor for

osteogenesis (163). It determines the osteoblastic differentiation at the early stage and

inhibits it at the late stage (164). Wnt-dependent gene expression increases during the early

phase of osteoblast differentiation in vitro, is enhanced by prostaglandin activation of the

transcription factor Runx2, and is specifically suppressed in Runx2 antisense-depleted

osteoblasts (165). Runx2 can form a complex with Lef or TCF, which then binds the

composite binding site in the fgf18 promoter, a direct target of Wnt canonical signaling and

an essential regulator of bone development (166).

4. NONCANONICAL WNT SIGNALING PATHWAY PROMOTES BONE

FORMATION

For a long time it was thought that all Wnt signaling was mediated through β-catenin.

However, research now proves that Wnt also signals through β-catenin-independent

mechanisms, known as the noncanonical pathway, to regulate vertebrate development (167).

Like the canonical Wnt pathway, which plays an important role in bone development and

diseases, the noncanonical Wnt pathway also participates in bone formation. Noncanonical

pathways can be divided in two major subpathways (Figure 1E): the Wnt-planar cell polarity

pathway (Wnt-PCP pathway)(12) and the Wnt-calcium pathway (Wnt-Ca2+ pathway)(13).

In the Wnt-PCP pathway, Wnt5a regulates limb morphogenesis (168), chondrogenesis (169–

171) and osteoblastogenesis (172) with receptor tyrosine kinase-like orphan receptor (Ror)

proteins. Moreover, the Wnt-PCP pathway also regulates osteoclastogenesis. Wnt5a-Ror2

signals activates JNK and recruits c-Jun on the promoter of the gene encoding RANK
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(Figure 1F) (173, 174). In the Wnt-Ca2+ pathway, Wnt5a binds to the Frizzled receptor,

which leads to a short-lived increase of 1,4,5-triphosphate(IP3), 1,2 diacylglycerol (DAC),

and Ca2+ with PLC, triggers NFκB and NFAT activation, and regulates osteoclastogenesis

(175). In a recent study, investigators found that Wnt-Lrp5 signaling may induce mTORC2-

AKT signaling activity and trigger glycolytic enzymes in bone cells to promote bone

formation (176). This finding indicates that Wnt signaling may regulate bone homeostasis

cooperate with glucose metabolism.

5. NETWORK BETWEEN WNT AND OTHER BONE DEVELOPMENT

PATHWAYS

5.1. Crosstalk between the Parathyroid hormone (PTH) pathway and Wnt signaling

Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a

major mediator of bone remodeling and as an essential regulator of calcium homeostasis

(177). However, the mechanisms of PTH’s anabolic effect on bone are not fully studied.

5.1.1. PTH pathway induces osteoblast differentiation through Wnt/β-catenin
signaling—Substantial data suggests that PTH can influence Wnt signaling in different

phases and then bone development (Figure 1D). Also, PTH treatment can increase the

expression of the Wnt protein, wnt4 (178). PTH also can decrease the expression of Wnt

inhibitors such as Sost by directly inhibiting Sost transcription, which leads to an increase in

Wnt signaling (178–180). A recent study showed that in osteoblastic MC3T3-E1 cells, the

up-regulation of expression levels of osteoblast differentiation markers when treated with

hPTH(1–34) were blocked by knocking down β-catenin expression (181). Transgenic mice

expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased

bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt

antagonist SOST, increased Wnt signaling, increased osteoclast and osteoblast numbers, and

decreased apoptosis (182). In postmenopausal woman, intermittent PTH can reduce the

circulating sclerostin levels (183). Moreover, the effects of PTH on the canonical Wnt

signaling pathway can up-regulate the receptor complex proteins (FZD-1or LRP6) and

decrease the antagonist (Dkk-1)(184). Although PTH treatment reduces Dkk1 expression,

the over-expression of Dkk1 does not attenuate the anabolic response to PTH in vivo (185,

186). In addition, in vitro and in vivo evidence suggests direct crosstalk of PTH1R and Wnt

signaling pathway (187). Binding of PTH to PTH1R induces association of the PTH–

PTH1R complex with the extracellular domain of the Lrp6 Wnt co-receptor in absence of

the Wnt ligand binding. This results in rapid phosphorylation of Lrp6 by PKA, which is

activated by the cAMP signaling pathway downstream of PTH–PTH1R. Phosphorylated

Lrp6 recruits Axin and thereby targets the β-catenin degradation complex to the cell

membrane. A recent study identified a Dvl-binding motif in the PTH receptor (PTH1R),

which activates the β-catenin pathway by directly recruiting Dvl independent of Wnt or

LRP5/6(188). These studies suggest that PTH-induces osteoblast differentiation mainly

through activation of the Wnt canonical pathway.

5.1.2. Wnt/β-catenin signaling controls chondrocyte hypertrophy and
maturation through the PTH pathway—Wnt/β-catenin signaling regulates initiation of
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chondrocyte hypertrophy by inhibiting parathyroid hormone-related protein (PTHrP)

signaling activity, but it does not regulate PTHrP expression (189). In addition, Wnt/β-

catenin signaling regulates chondrocyte hypertrophy in a non-cell autonomous manner and

growth differentiation factor 5 (Gdf5)/Bmp signaling may be part of the downstream

pathway (189). Furthermore, Wnt/β-catenin signaling also controls final maturation of

hypertrophic chondrocytes, but such regulation is PTHrP signaling-independent (189). In

long bone development, Wnt5a is required for longitudinal skeletal outgrowth and both

Wnt5a and Wnt5b regulate the transition between different chondrocyte zones independently

of the Indian hedgehog(Ihh)/PTHrP negative feedback loop(30).

5.2. Crosstalk between the Indian hedgehog pathway and Wnt signaling

During normal development, Indian hedgehog (Ihh) signaling appears to act as a switch

within a specific population of inner perichondral mesenchyme to initiate a program of bone

formation (190, 191). Ihh is the only member of the hedgehog family of secreted molecules

that is expressed in chondrocytes during endochondral bone formation. Ihh is synthesized by

prehypertrophic chondrocytes and by early hypertrophic chondrocytes. Ihh−/− mice have

normally shaped skeletal elements at the condensation stage, but subsequently dramatic

abnormalities of bone development appear. Investigators indicate that the proliferative effect

of Ihh is likely due to a direct action of this molecule on non-hypertrophic chondrocytes

(192). Failure to activate this switch results in cells adopting an alternative chondrocyte

pathway of development. Ihh is involved in the differentiation of osteoblast progenitors into

runt-related transcription factor 2 (Runx2)-positive osteoblast precursors (Figure 2).

Because the expression of Wnt7b and Tcf1 in the perichondrium is lost in the Ihh mutant, it

was proposed that Ihh may signal upstream of Wnt signaling(42). Loss of function of Wnt9

could temporally and spatially downregulate Ihh signaling in the appendicular skeleton and

ultimately lead to a delay by 1 day in chondrocyte and osteoblast maturation, as well as

shorten the proximal long bone(28). Wnt5a cooperates with Ihh to trigger degradation of

NK3 homeobox 2 (Nkx3.2), an early-stage chondrogenic factor, and represses

chondrogenesis (193). Along with the fact that β-catenin and Lef1 associate with the Ihh

promoter in vivo, this data suggests that Wnt9a-dependent regulation of Ihh is probably

mediated via the canonical/β-catenin pathway. This is further supported by the observation

that Ihh expression levels in humeri of Wnt9a;β-catenin double heterozygous animals were

slightly reduced and that, depending on the cre-deleter line, Ihh expression varies from

downregulation to temporary loss or delayed expression in the skeletal elements of mice

lacking β-catenin activity (28, 42, 147). Besides Indian hedgehog, Wnt signaling interacts

with sonic hedgehog to regulate tooth spatial patterning (194, 195). Wnt and sonic hedgehog

(SHH) signaling antagonize each other to regulate patterning through Shh antagonist Gli3

expression (19, 196–199) and Wnt antagonist Sfrp1 and Sfrp2(200–202).

5.3. Crosstalk between the TGF-β/BMP pathway and Wnt signaling

BMPs, members of the transforming growth factor beta (TGF-β) superfamily, are potent

osteogenic agents that stimulate maturation of mesenchymal osteoprogenitor cells to

osteoblasts (203). BMPs transduce signals by binding to heteromeric complex of type 1 and

type 2 serine/threonine kinase receptors (type 1 receptors are divided into three kinds,
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BMPR1A, BMPR1B and ActR1) (204). Smads are the major signal transducers for the

serine/threonine kinase receptors (205). There are three classes of Smads: receptor-regulated

Smads (R-Smads) that can be TGF-β/BMP activated, common partner TGF-β/BMP

mediator Smads (Co-Smads), such as Smad 4; and inhibitory Smads (I-Smads). Upon ligand

stimulation and activation by type II receptors, type I receptors phosphorylate R-Smads,

which in turn form complexes with Co-Smads (206). The R-Smad/Co-Smad complexes then

translocate into the nucleus and regulate transcription of target genes by interacting with

various transcription factors and transcriptional co-activators or co-repressors. The third

class of Smads, I-Smads, negatively regulates signaling by the R-Smads and Co-Smads.

Runx2 and R-Smads physically interact with each other upon activation of BMP signaling,

and cooperatively regulate the transcription of target genes, leading to the osteoblast

differentiation of mesenchymal progenitor cells (207–209). BMP induces Runx2 expression

in mesenchymal progenitor cells through the action of R-Smads (210), and R-Smads in turn

interact with Runx2 to further induce osteoblastic differentiation.

There are several ways that Wnt and BMP signaling pathways interact with each other and

influence bone development. First, BMPR1A signaling upregulates the expression of

sclerostin, which is the SOST gene product and acts as a downstream effector of BMPR1A,

leading to an inhibition of canonical Wnt signaling and a decrease in bone mass by

upregulating osteoclastogenesis through the RANKL-OPG pathway (211). Moreover,

GSK3/Wnt regulates BMP/Smad1 signal termination (212). Smad1, an R-Smad, contains

mitogen-activated protein kinase (MAPK) and GSK3 phosphorylation sites in its linker

region (213). GSK3 phosphorylation is required for the polyubiquitination of Smad1 (213).

BMP signaling triggers sequential Smad1 phosphorylation by BMPR, MAPK, and GSK3

and then polyubiquitination (213). Once Smad1 is targeted for degradation, it is transported

to the centrosome where the triply phosphorylated and polyubiquitinated Smad1 is degraded

by proteasomes (213). This process may be regulated by Wnt signaling. Wnt3a protein

inhibits Smad1 phosphorylation by GSK3 and stabilizes pSmad1Cter, which is a Smad1 C-

terminal phosphorylated by BMPR(213). Thus, the inhibitory phosphorylation of the MAPK

and GSK3 sites regulate the duration of the Smad1/5/8 signal (212). In this way, BMP

determines the intensity of the Smad1/5/8 response, while FGF decreases and Wnt increases

its duration (Figure 1A) (212). Furthermore, BMP-2 antagonizes Wnt signaling in osteoblast

progenitors by promoting an interaction between Smad1 and Dvl-1 that restricts β-catenin

activation (214). Treatment with Wnt3a (but not BMP-2) stimulated Lef1-mediated

transcriptional activity, whereas co-stimulation with both Wnt3a and BMP-2 markedly

reduced Wnt3a-induced reporter activity (214). Without stimulation, Dvl-1 and Smad1 are

co-immunoprecipitated and form a complex through the linker region of Smad1(214).

Wnt3a treatment transiently disrupted the Dvl-1/Smad1 interaction coincident with nuclear

accumulation of β-catenin (214). In contrast, when cells were exposed to both Wnt3a and

BMP-2, there was an enhanced accumulation of the Dvl-1-Smad1 complex and a decreased

nuclear accumulation of β-catenin (Figure 1B) (214). In addition, canonical Wnt signaling

can be activated by BMP-2 during osteoblast differentiation (215). When primary calvarial

osteoblast cells were treated with BMP-2, there was an increase in the expression of Wnt

Ligands (i.e. Wnt7a, Wnt10b, Wnt11, and Wnt13) and Wnt Receptors (e.g. Fz3, Fz10, and

Lrp6)(215). Additionally, Axin regulates TGF-β signaling by promoting the degradation of
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Smad7 (216) and regulating the stability and transcriptional activity of the Smad3 co-

response with GSK3β (217, 218). Axin, Arkadia, and Smad7 formed a ternary complex

with their protein-protein interactions (216). Then Axin acts as a scaffold to facilitate

Arkadia-mediated polyubiquitination of Smad (an I-Smad), regardless of TGF-β signaling,

and leads to Smad7 degradation (216). A study in 2001 showed that Axin physically

interacted with Smad3 through its C-terminal region located between the β-catenin binding

site and the Dishevelled-homologous domain (218). Axin colocalized with Smad3 in the

cytoplasm in vivo and the transcriptional activity of TGF-β was enhanced by Axin (218).

Recent research draws an inverse conclusion about the role that Axin plays in TFG-β
signaling. It was shown that Axin facilitates GSK3β-mediated phosphorylation of Smad3 at

Thr66, which triggers Smad3 ubiquitination and degradation, while reduction in the

expression or activity of Axin/GSK3β leads to increased Smad3 stability and transcriptional

activity without affecting TGF-β receptors (217). Since the physiological level of Axin

protein is usually extremely low and this study relies on loss-of-function assays, the role of

Axin in Smad7 degradation remains debatable (217). Axin may negatively regulate TGF-β
signaling by ubiquitination and degradation of Smad3 with GSK3β (217).

The abovementioned findings indicate a complicated crosstalk between Wnt and TGF-

β/BMP signaling. In skeletal bone formation, activation of Wnt signaling determined

osteoblast progenitor commitment, otherwise mesenchymal precursors differentiate into

chondrocytes or adipocytes (146, 148, 219). BMP signaling indirectly promotes

chondrogenesis by blocking Wnt signaling (220). The proliferation of osteoprogenitors is

promoted by Wnt signaling and the maintenance of their precursor status (220). TGF-

β/BMP signals stimulate those cells to become mature osteoblasts (220–222). Hence, TGF-

β/BMP and Wnt signals have opposing effects on osteoprogenitors and cooperative effects

in osteoblasts since both the BMP and Wnt pathways promote further osteoblast

differentiation as indicated by expression of alkaline phosphatase (ALP) and mineralization

(Figure 2) (220).

6. WNT INVOLVEMENT IN SKELETAL DISEASES

Given the important and diverse biological functions of Wnt signaling, it is not surprising

that defects or deregulation of Wnt signaling leads to various human skeletal diseases. Table

2 provides a list of human diseases that are caused by Wnt signaling disorders. WNT3 is

required at the early stages of human limb formation. Tetra-amelia, a rare human genetic

disorder characterized by complete absence of all four limbs and other anomalies, is

reportedly caused by Wnt3 loss-of-function mutations (25). A WNT5A mutation has been

found in patients with Robinow syndrome, which is characterized by short-limbed dwarfism

and abnormalities in the head, face, and external genitalia (223). Mutations of WNT7A

cause Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome (AARRS), which is a rare

autosomal recessive disorder characterized by severe malformations of upper and lower

limbs with severely hypoplastic pelvis and abnormal genitalia, and Fuhrmann syndrome,

which is a syndrome consisting of bowed femurs, aplasia or hypoplasia of the fibula, and

poly-, syn-, and oligodactyly (37). Studies of two families with distinct limb malformation

disorders indicate that the R292C mutation of WNT7A causes AARRS while the A109T

mutation of WNT7A causes Fuhrmann syndrome in humans (37). In 2011, Balwi et al.
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determined that the G204A mutation of WNT7A also causes AARRS (224). Mutations in

WNT10A cause odontoonychodermal dysplasia (OODD), which is described as an

ectodermal dysplasia with dystrophic nails, misshapen teeth (e.g. peg-shaped incisors),

erythematous lesions of the face, and the thickening of palms and soles which showed

hyperhidrosis (225–228). A study of 44 human osteosarcoma samples indicated that

WNT10B expression correlated with survival rate (229). Split-hand/split-foot malformation

(SHFM), which is a rare limb development characterized by variable degrees of median

clefts of hands and feet, can result from a homozygous missense mutation of WNT10B (230–

232).

For the production and secretion of Wnt ligands, both Porcupine (Porcn) and Wntless (Wls)

have crucial and non-redundant roles as indicated by the severe phenotypes in Porcn and

Wls mouse models that are similar to several Wnt knockout mice (6, 233–239). It was

recently discovered that mutations in PORCN drive the X-linked dominant syndrome known

as focal dermal hypoplasia (FDH) or Goltz syndrome (OMIM: 305600)(6, 234, 240–242).

Wnt agonists, R-spondins, are newly recognized factors in osteoarthritis. A recent study

showed that R-spondin1 acts as an anabolic agent for preservation of joint architecture in

arthritis by antagonizing DKK1(50). The expression level of R-spondin2 is reduced in

osteoarthritis osteoblasts and is at least partially responsible for their reduced Wnt signaling

and abnormal mineralization (243). Wnt antagonist Sclerostin is related with several bone

diseases. Sclerosteosis, an autosomal recessive sclerosing bone dysplasia is due to the loss of

the SOST expression (108, 244). Van Buchem disease, an inherited skeletal dysplasia

characterized by enlargement of the lower jaw and a thickening of the long bones and the

top of the skull, is also caused by the deletion of SOST-specific regulatory element in the

patients’ genome (114, 245, 246). Craniodiaphyseal dysplasia (CCD), which results in facial

distortion, is the most severe form of sclerotic bone diseases caused by mutations in SOST

(247). Plenty of studies demonstrate that DKK1 is attributed to cancer bone metastases,

osteolytic lesions, osteopenia, and multiple myeloma (89, 91, 248). SNPs in the sFRP1

intron and 3′-untranslated region were significantly associated with the BMD value of

Japanese women (249). Functional polymorphisms within the frizzled-related protein 3 gene

(FZP3) confer susceptibility for hip osteoarthritis in females (250). Mutations of LRP4

cause Cenani-Lenz syndrome, a rare autosomal recessive disorder characterized by

syndactyly and oligodactyly of fingers and toes as well as disorganization and fusion of

metacarpals (251, 252). Sclerosteosis2, which presents cortical hyperostosis, syndactyly of

fingers, and the shortening and radial deviation of several distal phalanges, is less severe

than Sclerosteosis (253, 254). Kneissel et al. identified two mutations of LRP4 (i.e. R1170W

and W1186S) in patients suffering from Sclerosteosis2 (112). Osteoporosis pseudoglioma

syndrome (OPPG) is an autosomal recessive disorder characterized by severe juvenile-onset

osteoporosis and congenital or juvenile-onset blindness (255). Several mutations of LRP5

were observed in OPPG patients (77, 256–260). Mutations in LRP5 will not only cause

osteoporosis, but also cause high bone mass syndrome (80, 261–264). The binding affinity

of Wnt antagonists and LRPs was decreased by LRP5/6 mutations and results in a high-

bone-mass phenotype in humans (265–268). Ringelschwanz is caused by a point mutation in

Lrp6 in mice, and it leads to delayed ossification at birth and osteoporosis in adults (82).
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Mice lacking Axin2 exhibit malformation of skull structures, a phenotype resembling

intramembranous ossification in humans (133). Axin2 is also linked to normal tooth

development since the loss-of-function of Axin2 may cause family tooth agenesis (269).

Repression of Wnt canonical signaling in osteocytes contributes to a bone pathology

characterized by bone mineralization deficiency and known as renal osteodystrophy or

chronic kidney disease-mineral and bone disorder (CKD-MBD) (270).

7. TARGETING WNT SIGNALING TO TREAT BONE DISEASES

Historically, diseases of bone loss have been treated with agents that block bone resorption.

However, this type of therapy stimulates only a modest increase in bone mineral density,

and osteoporotic patients retain an elevated risk for fracture (271). Wnt signaling has

emerged as a key regulator of skeletogenesis. In most cases, Wnt ligands promote bone

growth, which leads to the expectation that Wnt signaling factors could be used to treat bone

diseases. Wnt canonical signaling offers multiple steps that may be considered as potential

drug targets.

Osteosclerosis, an elevation in bone density, is normally detected on an X-ray as an area of

whiteness. The pathogenesis of osteosclerosis involves an inactivating mutation in the SOST

gene. The SOST gene encodes a protein Sclerostin that is expressed in various tissues, but is

found chiefly on bone cells (osteocytes)(272). In the Wnt signaling pathway, sclerostin acts

as an inhibitor by inactivating LRP5. As aforementioned, SOST−/− mice showed high bone

mass and transgenic mice overexpressing SOST exhibit low bone mass and decreased bone

strength (108, 113, 114). These findings indicate that sclerostin inhibits bone anabolic

effects and may be a therapeutic target for osteoporosis. Osteoporosis is a silent disease that

makes bone fragile and increases the risk of fracture. Osteoporosis is considered a major

public health threat for 44 million Americans, including approximately 30 million women.

In a recent first-in-human study, administration of sclerostin monoclonal antibody (AMG

785) to healthy men and postmenopausal women inhibited sclerostin and showed promise

for further clinical studies for stimulating bone formation in bone diseases such as

osteoporosis (273). A recent study in mice demonstrated that the sclerostin antibody

improves skeletal parameters in the osteogenesis imperfecta mouse model (274). This

finding provides a new therapy to increase bone mass and reduce fractures in pediatric OI.

Dickkopf-1 (Dkk1) is a soluble inhibitor of Wnt, which disrupts osteoblast differentiation

and action (275). In a femoral fractures repair study, the anti-Dkk1 antibody (Dkk1 Ab)

influences fracture repair, with prompt activation enhancing repair and inactivation

impairing it (276). Femoral fractures were generated in C57BL/6 mice. The mice were

treated twice a week with vehicle or Dkk1 Ab initiated immediately postoperatively (Day 0).

Day 0 initiation enhanced repair, with significant gains seen for callus area, BMC, BMD,

and biomechanical properties. These data suggest that Dkk Ab may have clinical utility in

facilitating fracture repair. Multiple myeloma (MM) is associated with the development of

osteolytic bone disease, mediated by increased osteoclastic bone resorption and impaired

osteoblastic bone formation. In the study of the effect of Dkk1 on the development of

osteolytic lesions in the 5T2MM murine model of myeloma, inhibiting Dkk1 prevented the

suppression of bone formation and prevented the development of osteolytic bone disease in
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myeloma (277). Dkk1 is expressed by murine 5T2MM myeloma cells. After injection of

5T2MM cells into C57BL/KaLwRij mice, anti-Dkk1 treatment prevented 5T2MM-induced

suppression of osteoblast numbers and surface. Treatment increased the mineralizing surface

by 28%, increased the bone formation rate by 25%, significantly protected against 5T2MM-

induced trabecular bone loss, and reduced the development of osteolytic bone lesions. By

evaluating the bone anabolic effects of a Dkk1 neutralizing antibody (BHQ880) in MM, we

know that Dkk1 inhibits osteoblast activity (278). In vitro BHQ880 increased OB

differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and

reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)-hu murine model

of human MM, BHQ880 treatment led to a significant increase in OB number, serum human

osteocalcin level, and trabecular bone. Also, in vivo BHQ880 treatment inhibits MM cell

growth in the SCID-hu murine model. These studies provide evidence that confirm Dkk1 as

an important therapeutic target in myeloma and provide the rationale for clinical evaluation

of the Dkk1 antibody to improve bone disease and to inhibit MM growth.

GSK-3β is a crucial regulator of the Wnt canonical pathway and lithium is an inhibitor of

GSK-3β (279). Lithium enhances bone formation and improves bone mass in mice, perhaps

via activation of the canonical Wnt pathway (279). Activation of β-catenin by lithium

treatment has the potential to improve fracture healing, but only when utilized in later phases

of repair after mesenchymal cells have become committed to the osteoblast lineage (280).

Furthermore, lithium chloride (LiCl) treatment inhibited myeloma bone disease and

decreased the tumor burden in bone (281). As a potential clinical treatment to bone diseases,

lithium also has the advantage that it has been used safely and effectively for over half a

century to treat bipolar illness (282).

In the design of therapeutic drugs for Wnt signaling related bone diseases, there are several

advantages in targeting sclerostin, dkk, and GSK-3β. Sclerostin and dkk are characterized as

extracellular targets that are suitable for the use of biologics. In addition, the inhibition of

GSK-3β or the absence of sclerostin or dkk results in increased bone mass. Sclerostin has

the additional advantage of being selectively expressed in bone, which is better than Dkk

and GSK-3β (283). Dkk is also highly expressed in bone. Notably, Wnt agonists and R-

spondins are extracellular ligands which modulate the Wnt pathway through LRP5 and have

great potential as Wnt signaling targets for the design of drugs for osteoarthritis.

8. SUMMARY AND FUTURE DIRECTIONS

The relationship between Wnt signaling components and human bone diseases or skeletal

abnormalities observed in mutant mice revealed the importance of Wnt signaling in bone

development. Defects in Wnt ligands and its agonists have resulted in bone development

disorders, joint formation deficiency, or osteoporosis (284). Mutation in Wnt cell surface

receptor LRP5/6 leads to various kinds of bone diseases. The extracellular antagonist

sclerostin is related to several bone diseases, including sclerosteosis, van Buchem disease,

and CCD. The mutation of other antagonists (e.g. Dkk and WIF) results in altered bone

density. Furthermore, the Wnt signaling pathway has networks with other bone development

signaling pathways such as the PTH pathway, the Indian hedgehog pathway, and the TGF-β/

BMP-Smad pathway. Through this network, Wnt signaling regulates bone remodeling and
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mesenchymal stem cell fate determination. After decades of studying Wnt signaling, a

picture is formed of how Wnt ligands bind to cell surface receptors and trigger intracellular

responses and the transcription of downstream genes. However, many important questions

regarding this pathway remain unresolved (e.g. molecular structure of Wnt pathway

components and their mechanism of interaction, the complicated network between the

canonical Wnt pathway, noncanonical Wnt pathway, and other pathways in bone).

Because of the important role of Wnt signaling in bone development and diseases,

researchers have designed several drugs based on this pathway. Preclinical studies with

agents designed to inhibit SOST, Dkk1, and GSK-3β hold promises in treating bone

diseases. However, potential problems exist with the long-term use of GSK-3 inhibitors

since GSK-3 inhibitors would be expected to mimic the overexpression of Wnt signaling

and, therefore, may become oncogenic (285). Another approach to the Wnt pathway has

been to focus on extracellular mediators such as Sclerostin, which is selectively and highly

expressed in bone. Targeting Sclerostin has great promise for treating osteoporosis and for

fracture repair, but the kinetics of bone formation changes over time remain to be studied

(283). The Wnt pathway has many ligands, antagonists, and intracellular proteins that

influence bone development and diseases. Thus, there are many potential drug targets in

Wnt signaling that may be useful in treating bone diseases. Future research will include

determining which target is the best to use in clinical therapy. In any drug discovery

program, issues of safety are paramount, especially in the treatment of chronic bone diseases

that will likely involve long-term therapy (271). When considering how best to direct drug

discovery in the Wnt canonical pathway, identification and screening upstream in the

pathway is more promising than targeting β-catenin and downstream events (271). For

instance, Wnt 10b, LRP5, and sFRP1 all have no negative side effects such as familial

exudative vitreoretinopathy (286) and irregular skin thickness (287). R-spondins are

potential drug targets as well.
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Abbreviations

GSK glycogen synthase kinase-3β

SOST sclerostin

DKK1 Dickkopf-1

Tbx5b T-box 5b

fgf10 fibroblast growth factor 10

LRP low-density lipoprotein receptor-related protein

Dsh Dishevelled

APC Adenomatous Polyposis Coli
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sFRPs Frizzled protein and its antagonists

Fz Frizzled

aa amino acids

CRD cysteine residues

TCF factors T cell factor

LEF lymphocyte enhancer binding factor

EGF epidermal growth factor

BMD bone mineral density

rs ringelschwanz

OPPG osteoporosis-pseudoglioma syndrome

BMP Bone morphogenetic proteins

HBM high bone mass

Krm1 Kremen1

Krm2 Kremen2

RSpo R-spondin

WIF-1 Wnt-inhibitory factor-1

Apc adenomatous polyposis coli

CKI Casein kinase I

RGS Regulators of G protein signaling

S serine

T threonine

PI-3K phosphatidylinositol-3 kinase

JNK2 c-Jun NH2-terminal kinase 2

HMG high-mobility-group

Runx2 (runt homology domain transcription factor 2

DAC diacylglycerol

PTHrP parathyroid hormone-related protein

PTH Parathyroid hormone

Ihh Indian hedgehog

R-Smads receptor-regulated Smads

Co-Smads common partner Smads

I-Smads inhibitory Smads
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ALP alkaline phosphatase

AARRS Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome

OODD odontoonychodermal dysplasia

SHFM Split-hand/split-foot malformation

CCD Craniodiaphyseal dysplasia

FZP3 frizzled-related protein 3 gene

CKD-MBD chronic kidney disease-mineral and bone disorder

MM Multiple myeloma

SCID severe combined immunodeficiency

Sox9 SRY-box containing gene 9

β-Trcp beta-transducin repeat containing protein

Skp1 S-phase kinase-associated protein 1

OPG osteoprotegerin

AER apical ectodermal ridge

RANKL receptor activator of NF-kappaB ligand

XTcf-3 transcription factor 7-like 1 (T-cell specific, HMG-box)

TRAP Tartrate-resistant acid phosphatase

Gdf5 Growth/differentiation factor 5

Nkx3.2 NK3 homeobox 2

SHH sonic hedgehog

TGF-β transforming growth factor beta

MAPK Mitogen-activated protein kinases

Gli Gliotactin

Col1A1 collagen, type I, alpha 1

Dkk1-AS antisense oligonucleotide
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Figure 1.
The Wnt pathway and its interactions with other pathways in bone. (a)Wnt signaling and the TGF-β/BMP-Smad pathway

influence each other during bone development. The Wnt pathway participates in R-Smad degradation and so does the Bmp

pathway in β-catenin degradation. (b. c)The Wnt canonical pathway: Wnt proteins, following their binding to a frizzled receptor

and a Lrp co-receptor (most likely LRP6), activate the canonical Wnt signaling pathway. These receptors transduce a signal to

several intracellular proteins that include Dishevelled (Dsh), glycogen synthase kinase-3β(GSK-3), Axin, Adenomatous

Polyposis Coli(APC), and the transcriptional regulator, β-catenin. This results in the translocation to nucleus of β-catenin, β-

catenin’s association with members of the Lef1/Tcf family of nuclear proteins, and activation of a specific program of gene

expression. (d) Wnt interacts with PTH1R, decreases wnt antagonists, Sost, WIF1 and Dkk expression, and sustains β-catenin

stabilization. (e, f) The Wnt noncanonical pathway. The Ca2+ pathway and PCP pathway affect osteoblastogenesis and

osteoclastogenesis.
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Figure 2.
The role of the canonical Wnt, Ihh, Bmp and PTH/PTHrP signaling pathways in regulating the differentiation of mesenchymal

precursors. The Wnt canonical pathway and Ihh, Bmp, PTH/PTHrP pathways control the commitment of mesenchymal

precursors and also the differentiation of osteoblasts/osteocytes. Though these processes, they regulate the osteoblastogenesis

and bone remodeling.
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Table 2

Human genetic skeletal disease and Wnt signaling

Gene Nature of miscues Diseases References

WNT3 Loss of function Tetra-amelia (25)

WNT5A/ROR2 Mutations Robinow syndrome (223)

WNT7A Mutations Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome(AARRS) (37, 224)

Fuhrmann syndrome (37)

WNT10A Mutations Odontoonychodermal dysplasia(OODD) (225–228)

WNT10B Mutations Split-hand/foot malformation(SHFM) (230–232)

Expression correlates with
survival rate Osteosarcoma (229)

SOST Mutations Sclerosteosis (244)

deletion Sost-specific regulatory
element Van Buchem disease (114, 245, 246)

Mutations Craniodiaphyseal dysplasia(CCD) (247)

DKK1 Expression is higher Paget’s disease (292)

LRP4 Mutations Cenani-Lenz syndactyly syndrome (251, 252)

Mutations Sclerosteosis2 (112)

LRP5 Mutations Osteoporosis prseudoglioma syndrome(OPPG) (77, 256–260)

Mutations High bone mass syndrome (80, 261–264)

Mutations affect binding affinity
of Wnt antagonists and LRPs High bone mass (265, 266)

Axin2 Loss of function Family tooth agenesis (269)

FRP3 Polymorphic SNPs Higher incidence of osteoarthritis in females (250)
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