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Abstract: Wnt/ -catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad 

range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in 
Wnt/ -catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. 

The key mediator of Wnt signaling, -catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular loca-
tions, including the plasma membrane, where -catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm 

where -catenin levels are regulated and the nucleus where -catenin is involved in transcriptional regulation and chromatin interactions. 
Central effectors of -catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the 

LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular -
catenin levels. However, -catenin levels and their effects on transcriptional programs are also influenced by multiple other factors in-

cluding hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad im-
plications of Wnt/ -catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacol-

ogical research and development. The intricate regulation of -catenin at its various locations provides alternative points for therapeutic 
interventions. 
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INTRODUCTION 

 Wnt/ -catenin signaling is a branch of an extensive functional 
network that developed around a class of proteins - called armadillo 
proteins - that dates back to the first anaerobic metazoans. Wnt/ -
catenin signaling is involved in a broad range of biological systems, 
including stem cells biology, developmental biology, and adult 
organ systems.  

 The first detail of the Wnt/ -catenin network was reported in 
1982 with the identification of the proto-oncogene int-1 in mice [1]. 
Later its homolog in Drosophila, Wingless, was shown to be re-
quired for proper wing formation [2]. In 1989 injection of Wnt1 
mRNA in Xenopus was shown to cause body axis duplication, and 
demonstrated the functional conservation of the pathway [3]. Since 
then, the functional importance of Wnt/ -catenin signaling has been 
shown in a plethora of developmental and organ systems including 
the cerebral cortex, the hippocampus, the eye, the lens, the spinal 
cord, limbs, bone, cartilage, somites, the neural crest, skin, teeth, 
the gut, the lungs, the heart, the pancreas, the liver, the kidneys, the 
mammary glands, the hematopoetic system and the reproductive 
system [4-7]. Deregulation of Wnt/ -catenin signaling is implicated 
in a wide spectrum of diseases including degenerative diseases, 
metabolic diseases and cancer [4], [8-11].  

 The key mediator of Wnt signaling, the armadillo protein -
catenin, is found in a dynamic mode at multiple subcellular locali-
zations, including junctions where it contributes to stabilize cell-cell 
contacts, the cytoplasm where -catenin levels are tightly controlled 
by protein stability regulating processes and the nucleus, where -
catenin is involved in transcriptional regulation and chromatin in-
teractions. Central extracellular regulators of -catenin levels are 
the Wnt morphogens. However, multiple other processes, including 
hepatocyte growth factor, prostaglandines, PKA (Protein Kinase 
A), E-cadherin, and hypoxia, can also influence -catenin levels. 
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 -catenin itself is a specialized member of the larger armadillo 
protein family that consists of three subfamilies: the p120 subfam-
ily, the beta subfamily ( -catenin and plakoglobin) and the more 
distant alpha subfamily. The functional interplay between members 
of this protein family is not well understood, but an involvement of 
p120 and plakoglobin in Wnt/ -catenin signaling has been shown. 

 The regulation of the presence and stability of -catenin and 
functionally convergent armadillo proteins – in particular p120 - at 
the various cellular localizations as well as their shuffling within 
the cell provides alternative intervention points for therapeutic rea-
gents. The broad implications of Wnt/ -catenin signaling in devel-
opment, the adult body and in disease renders it a prime target for 
pharmacological research and development. A short overview map 
for canonical Wnt signaling is presented on Fig. (1). 

 The armadillo protein -catenin is the central denominator of 
Wnt/ -catenin (canonical Wnt) signaling. The levels of -catenin at 
different subcellular localizations are regulated by a variety of 
processes including site-specific phosphorylation of -catenin. In 
particular, the control of the turnover of cytoplasmic -catenin by 
the destruction complex and the control of the destruction complex 
by the Wnt signalosome have been studied extensively. Other im-
portant mechanisms regulating subcellular -catenin thresholds are 
those controlling its mobilization from adherens junctions and its 
translocation to the nucleus. One of the central end points of the 
Wnt/ -catenin signaling pathway is the regulation of transcription 
through the binding of -catenin to members of the Tcf-1/lymphoid 
enhancer factors (Lef-1, 3, 4) family of transcription factors in the 
nucleus [12-14].  

 The structure of -catenin can be divided into three domains: 
the N-terminal domain, the armadillo domain consisting of 12 ar-
madillo repeats, and the C-terminal domain [15]. Through pre-
dominantly positively charged armadillo (Arm) repeats, -catenin is 
a member of an expanded and evolutionary ancient protein family 
that includes plakoglobin ( -catenin), APC (adenomatosis polyposis 
coli), p120 and other proteins [16-18]. Local charge alterations of 

-catenin through phosphorylation at a multitude of positions have 
been suggested to regulate its affinity to specific protein partners. 
This includes C-terminal phosphorylation that attenuates the bind-
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ing of -catenin to the cadherin adhesion complex and N-terminal 
phosphorylation that regulates its degradation in the proteasome. 
Furthermore, phosphorylation regulates the association of -catenin 
with Tcf/Lef during transcriptional regulation [19].  

 In this review we will first describe the alterations of -catenin 
in the destruction complex and the proteins that are involved in this 
process. We will then focus on the Wnt signalosome that recruits 
components of the destruction complex thus inactivating it. Subse-
quently, we will summarize how the signalosome is removed from 
the cell surface by endocytosis. Next we will describe the cellular 
pool of -catenin at cell junctions and the mobilization of -catenin 
from this pool. Then we will focus on the implications of -catenin 

in transcription control. Finally, we will summarize some of the 
pathways that influence Wnt/ -catenin signaling. Several proteins 
in the Wnt/ -catenin pathway that are implicated in other cellular 
processes will be briefly described. 

The -Catenin Destruction Complex and its Proteins 

 In the absence of an active Wnt signalosome, cytoplasmic -
catenin associates with the destruction complex. The main known 
structural components of the destruction complex are APC and 
Axin. To this structural core, the casein kinases CK1 , , and  (to 
be referred to collectively as CK1) and GSK3 (glycogen synthase 
kinase 3) are recruited [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Simplified schematic representation of drug targets (yellow stars) in Wnt/ -catenin-mediated signaling. Four key aspects that regulate -catenin-

mediated signaling are highlighted: the destruction complex, the Wnt/ -catenin signalosome, cadherin junctions, and the hypoxia sensing system Hif-1  

(hipoxia induced factor 1 ). Proteins that directly interact with Wnt/ -catenin are marked as colored structures, other proteins are marked as circles.  
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In the degradation complex the processing of -catenin is consid-
ered as a phosphorylation-dependent flux along the Axin scaffold 
protein which is regulated by a stepwise series of phosphorylations 
triggered by the kinases CK1 and GSK3 [15, 20]. A current model 
proposes that -catenin initially binds to Axin. The priming kinases 
CK1 phosphorylate -catenin at Ser45 [20], which enables a subse-
quent phosphorylation by GSK3 at Ser33, Ser37 and Ser41 [21, 22]. 
Subsequent phosphorylation of APC by CK1  and GSK3, leads to 
an increased affinity between APC and -catenin [23] triggering a 
transfer of -catenin from Axin to APC, while Axin is able to bind 
the next -catenin molecule. Finally, APC exposes the N-terminally 
phosphorylated -catenin to -TrCP ( -transducin-repeat-
containing protein) [24], the ubiquitin ligase responsible for ubiq-
uitinylating -catenin leading to its degradation in the proteasome 
[25]. N-terminal phosphorylation of -catenin is not only required 
for its degradation, but also responsible for attenuating its effect on 
transcription [20, 26, 27]. 

Axin 

 In diverse human cancers Axin mutations are associated with 
increased levels of -catenin [28-30]. Mutations in the genes encod-
ing Axin and Axin2 are found in 11% of cases of colorectal cancers 
and in hepatocellular carcinomas [31-33]. Furthermore, mutations 
in the Axin gene are observed in 12% of cases of medulloblas-
tomas, in 35% of cases of adenoid cystic carcinomas and in 20% of 
cases of oral squamous cell carcinomas [34]. 

 In the destruction complex, Axin serves as a coordinating scaf-
fold for the kinases GSK3 and CK1, for the structural protein APC 
and Dishevelled (Dvl/Dsh) as well as for -catenin [35]. Early 
mathematical kinetic modeling for Wnt/ -catenin signaling sug-
gested that Axin levels may be the rate-limiting factor for the deg-
radation of -catenin. These models were based on the assumption 
that Axin concentrations are about three orders of magnitude lower 
than the concentration of other degradation complex components 
known at the time of the study [36]. Since Axin is considered to be 
a rate limiting protein in the destruction complex, strategies involv-
ing an alteration of Axin protein levels are considered to be promis-
ing in drug discovery [36-40].  

 There are two Axin proteins in humans - Axin1 (826aa, 92kDa 
predicted in humans), and Axin2 (also called conductin or Axil, 

840aa, 93kDa). Each of the Axin genes encodes two isoforms, a 
and b, which differ by splicing variants [34]. Axin and Axin2 have 
redundant functions in Wnt/ -catenin signaling, both binding to 
various proteins of the -catenin degradation complex [41, 42]. The 
transcription of Axin2 is a central target of Wnt/ -catenin signaling, 
whereby Axin2 forms a negative feedback loop in the pathway [43]. 
Hence, Axin2 expression is upregulated by Wnt/ -catenin signaling 
while Axin contributes centrally to the degradation of -catenin 
[44].  

 Axin contains a number of domains including a RGS (Regula-
tors of G protein signaling) domain (aa 121 to 247) and a DIX do-
main (Dishevelled/Axin homologous domain) (aa 716 - 900). The 
DIX domain is responsible for Axin homodimerization and the 
formation of heterodimers with Dishevelled [45, 46]. In this proc-
ess, the residues 757-820 of the Axin DIX domain bind to the ho-
mologous DIX domain of Dishevelled [46-48]. In addition to het-
erodimerization through the DIX domain, Axin was shown to have 
two further domains – D and I - that can mediate homodimerization 
[49]. The RGS domain of Axin interferes with the -subunits of G-
proteins (guanine nucleotide-binding proteins) [50, 51]. G  proteins 
were reported to disrupt interactions between Axin and GSK3 [52, 
53] and in Drosophila it was shown that the -subunit of Go physi-
cally binds to Axin and recruits it to the plasma membrane [54]. 
Axin uses aa 437-506 to interact directly with the Armadillo repeats 
2-3 of -catenin [55]. The same repeats were also shown to interact 
with the armadillo protein plakoglobin [56]. Other binding areas in 
the Axin protein are amino acids 89–216 for APC, 507-712 for 

Axam, 353–437 for GSK3, 530–712/757–820 for Dishevelled, 217-
352/508-712 for CK1 and 353-437 for Diversin [35]. Recently it 
was also shown by X-ray analysis that the N-terminal domain of 
Axin (1-80 aa) is responsible for binding to Tankyrase [57]. Interac-
tions with Axin promote dimerizatoin of Tankyrase. Additional 
Axin-interacting proteins include MEKK1 (MAP kinase kinase 
kinase), MEKK4 (MAP kinase kinase kinase 4), CK1 / , I-mfa 
(inhibitor of myogenic basic helix-loop-helix transcription factors), 
Axam (Axin associating protein), PP2A (Protein phosphatase 2), 
Smad3 (Mothers against devapentaplegic 3), LRP5/6 (Low-density 
lipoprotein receptor-related proteins 5/6), MEKK4, Ccd1(Coiled-
coil-DIX1) and PIAS (Protein inhibitor of activated STAT) [35]. 

 Axin thresholds and stability are regulated by different compo-
nents of the Wnt/ -catenin pathway. Axin is stabilized by GSK3-
mediated phosphorylation at Ser330, Thr341 and Ser343 [35, 58]. 
In mice, GSK3-mediated phosphorylation of amino acids Thr609 
and Ser614 of Axin has been shown to be required for its activity 
[59]. Axin phosphorylation by GSK3 and CK1 also leads to in-
creased affinity for -catenin and enhances the phosphorylation and 
degradation of -catenin [59-61]. Since the armadillo domain of -
catenin is positively charged in the area that mediates Axin interac-
tions, phosphorylation of Axin can enhance the interaction, while a 
subsequent N-terminal phosphorylation of -catenin adds a nega-
tive charge that presumably triggers its dissociation from the phos-
phorylated Axin [20].  

 Axin can be dephosphorylated by the serine/threonine phospha-
tases PP1 (Protein Phosphatase 1) and PP2C (Protein Phosphatase 
2C) [60, 62] and the Ser/Thr phosphatase PP2A, which binds to aa 
508-712 and aa 298-506 of Axin [35, 45, 55, 63-65]. PP2A was 
also reported to dephosphorylate APC [66]. PP1 acts on Ser resi-
dues of Axin to reverse CK1 -mediated phosphorylation. Hence, 
inhibition of PP1 can lead to an increased phosphorylation of Axin 
followed by an enhancement of -catenin degradation [60]. Phos-
phatases therefore may be a targetable interferrence point of Wnt/ -
catenin signaling. For instance the phosphatase inhibitor okadaic 
acid (Table 1) reverses LiCl (inhibitor of GSK3) induced activation 
of Wnt/ -catenin signaling [58], and the PP1 inhibitor tautomycin 
(Table 1) was shown to reduce Wnt/ -catenin signaling [60]. 

 Axin protein stability and turnover in the cell is centrally regu-
lated by poly(ADP-ribosyl)ation, followed by ubiquitination and 
protein degradation in the proteasome. Axin ubiquitination is in-
duced by the E3 ubiquitin ligases RNF146 (RING finger protein 
146) that recognizes poly(ADP-ribosyl)ate tails at the protein that 
are added dynamically by the PARP (Poly (ADP-ribose) polym-
erase) proteins Tankyrase1 and Tankyrase2 [67, 68]. In contrast, 
SUMOylation was shown to prevent Axin polyubiquitination and 
thus to stabilize Axin. SUMOylation of Axin occurs at residues 
K951 and K954 in the C-terminal KVEKVD sequence and is im-
plemented by E3 ligases of the PIAS family [69]. SUMOylation 
does not only regulate Axin stability, but also its subcellular local-
ization [69]. Axam downregulates Wnt/ -catenin signaling [70] by 
binding to residues 507-712 of Axin and deSUMOylates the protein 
[35, 69-71]. Interestingly, Axam is also involved in deSUMOyla-
tion of Tcf-4 [72]. Another Axin2-interacting protein that has 
shown to regulate the stability of Axin, is the arginine methyltrans-
ferase PRMT1. PRMT1 directly interacts with Axin and methylates 
Arg378, resulting in a stability increase of Axin and leading to a 
reduction of Wnt/ -catenin signaling [73]. 

 Three nuclear localization signal sequences (NLS) are found in 
the Axin proteins at positions 443-558, 474-483 and 537-547. Be-
cause Axin lacking NLS fails to regulate cytoplasmic levels of -
catenin it has been suggested that Axin may serve as a shuttle for -
catenin between the cytoplasm and the nucleus [74]. Interestingly, it 
has also been shown that Axin may act as a molecular shuttle to 
export -catenin from the nucleus [74], and that this function may 
require Axin oligomerization into larger aggregates [74]. 
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Table 1. Small Molecules, which Downregulate Wnt/ -Catenin Signaling 
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Finally, Axin as well as several other components of the degrada-
tion complex (GSK3, -catenin, Tankyrase and APC) may co-
localize to centrosomes and mitotic spindles [75-78], where Axin 
modulates the distribution of Axin associated-proteins such as 
PLK1 (Serine/threonine-protein kinase, also known as polo-like 
kinase 1) and GSK3, thereby modulating the mitotic process [79]. 

 The structural protein Axin participates not only in Wnt/ -
catenin signaling but also in TGF  (Transforming growth factor 
beta) signaling and MAPK (Mitogen-activated protein-kinase)-
mediated signaling [35]. An overexpression of Axin has been re-
ported to lead to an activation of MAP kinase (Mitogen-activated 
protein kinases) and the c-Jun N-terminal kinase JNK. In TGF  
signaling, Axin assists in TGF -mediated activation of Smad3 [80]. 
Smad3 in turn can activate -catenin signaling through a direct 
interaction with -catenin whereby Smad3 protects -catenin from 
ubiquitination and degradation [81]. 

APC 

 APC is the largest structural core protein of the destruction 
complex (2843 amino acids, 312 kDa). The APC protein has sev-
eral functional domains including an oligomerization domain (re-
sponsible for homodimerization), seven armadillo repeats and three 

-catenin binding repeats of 15 amino acids [82, 83]. The -catenin 
binding repeats were proposed to bind -catenin and assist in its 
positioning to the binding sites of the kinases in the destruction 
complex. In addition, APC has seven 20 aa repeats that are involved 
in release of -catenin after its phosphorylation [15, 24]. In most 
cases, oncogenic mutations in the gene encoding APC are caused 
by a truncation of the -catenin binding region [84, 85]. However, 
APC mutations that do not affect -catenin binding may also be 
cancerogenic e.g. if they lead to a reduction of Axin/APC binding 
and thus to destabilization of the destruction complex [9, 86].  

 APC can be phosphorylated by CK1  at Ser1279 and Ser1392 
[87]. Phosphorylated APC outcompetes Axin from forming a com-
plex with -catenin and it has been suggested that the synchronized 
coordination between Axin, -catenin and APC phosphorylation is 
important for a stepwise processing of -catenin in the degradation 
complex [20, 88]. 

 Similar to Axin, APC was found to act as a nuclear shuttling 
protein and has been implied in nuclear -catenin import as well as 
export [89, 90, 91]. APC has two nuclear localization signals 
(NLS), which use the importin / -system to shuttle APC into the 
nucleus [92]. It was shown that phosphorylation of APC at Ser2054

 

(C-terminal of the second NLS) negatively regulates APC transport 
to the nucleus [92]. Curiously, APC which lacks the NLS can still 
enter the nucleus [93] and it was reported that B56 , the catalytic 
subunit of PP2A, facilitates the nuclear transport of APC [93]. Nu-
clear APC was found to negatively regulate -catenin-mediated 
transcription [94].  

 Among other cytoplasmic proteins that interact with APC are 
plakoglobin ( -catenin) [95], tubulin [96], EB1 (microtubule-
associated protein of the RP/EB family) [97] and hDLG (human 
disks large homolog 1) [94, 98]. In the nucleus APC has been 
shown to interact with DNA polymerase , proliferating cell nu-
clear antigen (PCNA), the protein tyrosine phosphatase (PTP-BL) 
[94], the transcription factor activator protein AP-2alpha and the 
nuclear export factor Xpo1 (Exportin 1) [94]. 

GSK3  

 Glycogen synthase kinase-3 (GSK3) was initially identified as a 
serine/threonine protein kinase, which phosphorylates glycogen 
synthase in rabbit skeletal muscles leading to an inhibition of gly-
cogen synthesis [99]. In humans there are two isoforms, GSK3  
(483 aa, 51kDa) and GSK3  (433 aa, 47kDa), that are encoded by 
different genes. The two isoforms have high amino acid sequence 
identity (97%) in the catalytical domain, but are less conserved 
otherwise. GSK3  has two splicing isoforms, one containing a 13 

aa insertion (GSK3 2) [100]. Although mutations in GSK3 are 
usually not associated with cancers, downregulation of GSK3 has 
been observed in hepatocellular carcinoma, squamous cell carci-
noma and prostate cancer [101-103]. However, GSK3 was also 
suggested as anti-cancer biotarget [104]. GSK3 is involved in a 
large number of cellular processes [104-107]. A knockout of 
GSK3  in mice leads to embryonic lethality and is not compensated 
by GSK3  [108]. Although GSK3 recognition sequences can be 
found in almost half of all human proteins, a recent overview pro-
vides a list of 77 validated substrates of GSK3 [109]. These sub-
strates can be clustered into several functional subsets: inflamma-
tion, cellular proliferation, structural rearrangements and glucose 
metabolism. Importantly, GSK3 appears to be involved in decision 
points between maintaining stem cell properties, and triggering 
differentiation. Inhibition of GSK3 together with inhibiting FGF-
MAPK (FGF - Fibroblast Growth Factor) signaling enables long-
term propagation of embryonal stem cells in mice [110]. Further-
more, deletion of both GSK3  and GSK3  in the brain increases 
self-renewal of neuronal progenitor cells, while neurogenesis is 
downregulated [111]. 

 In the context of Wnt/ -catenin signaling, the GSK3  and 
GSK3  isoforms were shown to be fully redundant [112] and thus 
will be referred to herein collectively as GSK3. However, in other 
cellular processes GSK3  and GSK3  may not fully compensate 
each others functions [113, 114]. 

 An involvement of GSK3 in Wnt/ -catenin signaling was first 
shown in Xenopus laevis embryos, where a mutated GSK3  in-
duced a ventral axis duplication indicative of overactive canonical 
Wnt signaling [21, 115]. In contrast, active GSK3 was shown to 
negatively regulate Wnt/ -catenin signaling through an N-terminal 
phosphorylation of -catenin in the destruction complex [116-118]. 
Interestingly, plakoglobin can also undergo GSK3-dependent phos-
phorylation and proteasomal degradation [119-120]. In the case of 

-catenin, GSK3 requires a priming kinase that acts on a 4-5 amino 
acid C-terminal to a GSK3 phosphorylation site. Phosphorylated 
amino acids of the priming site bind to the catalytic pocket in 
GSK3 , formed by the amino acids Arg96, Arg180 and Lys205 and 
facilitate further phosphorylation through GSK3 [121].  

 The kinase activity of GSK3 can be attenuated by a 
phosphorylation of Ser21/Ser9 (GSK3 /GSK3 ) through different 
kinases: protein kinase A (PKA), Akt/PKB (protein kinase B), PKC 
(protein Kinase C), p90 ribosomal S6 kinase/MAPK-activating 
protein (p90RSK/MAPKAP) and p70 ribosomal S6 kinase 
(p70S6K) [107]. p38 MAPK (p38 mitogen-activated protein 
kinases) can selectively reduce the kinase activity of GSK3 , but 
not GSK3  through a phosphorylation of Thr390, which can lead to 
reduced -catenin degradation [122]. In contrast, autophos-
phorylation of GSK3 / GSK3  at Tyr279 or Tyr216 respectively 
can enhance the activity of GSK3 [107, 123]. 

 There are multiple further protein/protein interactions that can 
modulate GSK3 activity. FRAT1 (frequently rearranged in ad-
vanced T-cell) and FRAT2, members of the GSK-3-binding protein 
family, compete with Axin for GSK3 binding and hence inhibit the 
activity of GSK3 in the context of Axin [124-126] whereby the 
Axin binding site on the GSK3 protein overlaps with the binding 
site for FRAT. Also, Dishevelled can interact with FRAT1, recruit-
ing it to a ternary complex between Dvl, Axin and GSK3. This 
complex leads to an inhibition of GSK3 and consequently to a sta-
bilization of -catenin and an activation of Wnt/ -catenin signaling 
[125]. FRAT1 overexpression is associated with tumorigenesis 
[127-130]. Interestingly, FRAT1 is considered to be one of the links 
between -catenin dependent (canonical) and -catenin independent 
(non-canonical) Wnt signaling through its activation of JNK and 
AP-1(activator protein 1) [131]. 

 In addition to a direct involvement in regulating -catenin sta-
bility by phosphorylation, GSK3 has also a pleothora of indirect 
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implications on Wnt/ -catenin signaling, predominantly synergiz-
ing with its function in antagonizing Wnt/ -catenin signaling. In 
particular GSK3 has both an effect on the transcriptional regulation 
of -catenin, and on central -catenin target genes. The oncogene c-
Myc is among the primary target genes that are upregulated by -
catenin/Lef. GSK3 phosphorylates the Thr58 residue of c-Myc 
leading to a reduction of its half-life [109]. Importantly, GSK3 
phosphorylates Ser resides in the oxygen-dependent degradation 
domain of the transcription factor Hypoxia-inducible factor 1  
(HIF-1 ) that links hypoxia to -catenin-mediated signaling. An 
inhibition of GSK3 promotes HIF-1  stability while an upregula-
tion of GSK3 has an opposite effect [132]. Another interesting sub-
strate of GSK3 with implications on -catenin-mediated signaling is 
the zinc-finger transcription factor Snail, which represses the tran-
scription of E-cadherin. An inhibition of GSK3 leads to an upregu-
lation of Snail followed by a down-regulation of E-cadherin which 
could lead to a cytoplasmic mobilization of -catenin [133]. A more 
detailed description of GSK3 and GSK3 inhibitors is given in [104]. 

 Numerous small molecular GSK3 inhibitors have been reported 
[134, 135]. Most GSK3 inhibitors target the ATP-binding site in the 
catalytic domain of the protein, which has 86% amino acid identity 
to the ATP-binding sites of CDK1 (cyclin-dependent kinase 1) and 
other kinases [107]. Hence, most of the published GSK3 inhibitors 
show low selectivity for GSK3. However, inhibitors that target the 
substrate binding site of GSK3 with increased specificity, are also 
reported [136]. 

 There are also possibilities for increasing the activity of GSK3 
by pharmacological intervention. Phosphorylation of GSK3 by p38 
MAPK on Thr390 reduces the activity of the GSK3 kinase. Accord-
ingly, small molecular inhibitors of p38 MAPK (SB203580 or 
SB239063, Table 1) can lead to increased GSK3 activity and in 
consequence reduced Wnt/ -catenin signaling [122, 137]. Interest-
ingly, both compounds affect only GSK3 , but not GSK3 , making 
the intervention isoform-specific. Several p38 MAPK inhibitors are 
in clinical trials including the anti-inflammatory drug PH-797804 
and dilmapimod [138, 139]. 

Tankyrases 

 There are two Poly (ADP-ribose) polymerases (PARPs) that are 
implicated in Wnt/ -catenin signaling: Tankyrase 1 (PARP5a) and 
Tankyrase 2 (PARP5b) [140, 141]. To a large extent, Tankyrases 1 
and 2 appear to have redundant functions. 

 Tankyrase 1 has four functional domains: the HPS domain 
(consisting of His, Pro and Ser repeats), Ankyrin domain (consists 
of 20 ankyrin repeats), a SAM (sterile alpha motif) domain and the 
catalytic PARP domain. In contrast to Tankyrase 1, Tankyrase 2 
lacks the HPS domain [141]. The PARP domain catalyzes 
poly(ADP-ribosyl)ation, the SAM and Ankyrin domains participate 
in the formation of protein-protein complexes with substrates, while 
the functions of the HPS remain obscure. One of the central proper-
ties of Tankyrases is their capability to form dynamic oligomers 
predominantly through their SAM domain, but presumably also 
assisted by the ankyrin domains, and to subsequently destabilize 
such oligomers through increasing, context depending poly(ADP-
ribosyl)ation [142-146]. The ability of Tankyrase to form dynamic 
multimers has led to the suggestion that Tankyrase oligomers can 
regulate the assembly and disassembly of large polymerized struc-
tures in response to signals [145]. In the context of the destruction 
complex, poly(ADP-ribosyl)ation of Tankyrases, and possibly Axin 
appear to trigger deoligomerization due to an accumulation of nega-
tive charges and repulsive forces [145]. Through poly(ADP-
ribosyl)ation Tankyrases also regulate a number of further protein 
complexes, including complexes involving IRAP (insulin-
responsive amino peptidase), NuMa (nuclear mitotic apparatus 
protein 1), Mcl-1 (myeloid cell leukaemia 1), EBNA-1 (Epstein-
Barr nuclear antigen1), TRF1 (telomeric repeat binding factor 1), 
TAB182 (Tankyrase 1 binding protein 182) and GRB14 (growth 

factor receptor-bound protein 14). A recent overview of Tankyrase 
substrates is provided in [146]. 

 Poly(ADP-ribosyl)ation is a catalytic reaction whereby nicoti-
namide adenine dinucleotide (NAD

+
) is used as a substrate to create 

multimeric side chains. At the first step, in the catalytic PARP do-
main, the nicotinamide part of NAD+ interacts with the Gly1032 
(human Tankyrase 2 amino acid sequence numbering) residue of 
Tankyrase. At the second step, ADP-ribose is transferred from 
NAD

+
 to a glutamic acid residue of the target protein. Next, a fur-

ther monomer is added to the polymer via the same mechanism 
using the hydroxyl group of the previous monomer. Poly(ADP-
ribosyl)ation may include branching points in a process that is 
hiterto poorly understood. In the context of the destruction com-
plex, poly(ADP-ribosyl)ated proteins appear to interact with the 
ubiquitin ligase RNF146 [37, 67, 68].  

 Poly(ADP-ribosyl)ation is a reversible process since poly(ADP-
ribose) polymers may be removed by poly(ADP-ribose) glycohy-
drolase (PARG). It was recently suggested that in this process the 
Glu115 residue of PARG (T.curvata) replaces the ribose moiety 
from an ester followed by a replacement of Glu115 by a water 
molecule [147]. A PARG inhibitor, ADP-HPD was shown to de-
crease Tankyrase stability [148, 149].  

 The involvement of Tankyrase in attenuating the destruction 
complex was described [37]. In the process, Tankyrase poly(ADP-
ribosyl)ates Axin. Poly(ADP-ribosyl)ated Axin is then recognized 
by the RNF146 ubiquitin ligase followed by ubiquitination and 
degradation [37, 67, 68]. The interaction of RNF146 with the 
poly(ADP-ribose) tail of Axin appears to be mediated through a 
recognition of the iso-ADP-ribose moiety (but not ADP-ribose) by 
the WWE domain of RNF146 [150]. In parallel, Tankyrase auto 
poly(ADP-ribosyl)ation also leads to RNF146-mediated ubiquitina-
tion and subsequent degradation [67, 68]. Furthermore, RNF146 is 
poly(ADP-ribosyl)ated and ubiquitinated [68]. The HECT-type 
ubiquitin E3 ligase HUWE1 associates to RNF146 and was sug-
gested to participate in ubiquitin chain elongation [68]. A number 
of RNF146-interacting proteins were identified, including PARP1, 
PARP2 and three proteins involved in DNA-damage response [68]. 
Noteworthy, RNF146 prevents Tankyrase co-localization to centro-
somes [68]. 

 To date it remains unclear whether Tankyrase presence and 
stability in the degradation complex can be regulated by mecha-
nisms other than poly(ADP-ribosyl)ation, and whether such regula-
tion might be dependent on components of Wnt/ -catenin signaling. 
Several kinases are known to be involved in Tankyrase phosphory-
lation: GSK3, PLK1 and MAPK. PLK1 complexes with Tan-
kyrase1 both in vivo and in vitro and activates Tankyrase through 
phosphorylation [151]. Disruption of PLK1 decreases the stability 
of Tankryase 1 and leads to a reduction of its PARP activity. Inter-
estingly, phosphorylation of Tankyrase by PLK1 was also shown to 
affect mitotic spindle assembly (see below) and the regulation of 
telomeric ends [79]. PLK1 also mediates phosphorylation of Di-
shevelled2 [152]. MAPK has been shown to enhance the catalytic 
activity of Tankyrase in the context of IRAP4 [153]. 

 Tankyrase has further cellular functions. It has been shown that 
Tankyrase is involved in glucose transport. In this process, Tan-
kyrase associates with GLUT4 (glucose transporter type 4) vesicles 

through binding to the insulin responsive aminopeptidase (IRAP) 
[153]. The IRAP is required for the targeting of vesicles carrying 
the glucose transporter GLUT4 [154]. GLUT4 mediates the insulin-
stimulated glucose uptake in adipocytes and muscle cells. In this 
context, Tankyrase acts as a positive regulator of insulin-mediated 
GLUT4 translocation from cytosolic vesicles to the cell surface to 
mediate glucose uptake [141].  

 Another role of Tankyrase is its influence on the cell cycle 
through its interaction with the nuclear mitotic apparatus protein 
(NuMA), associated to spindle poles in mitosis from prophase to 
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anaphase [155, 156]. NuMa is thought to be an important structural 
protein both for the nucleus and spindle poles [156]. A Tankyrase 
knockdown leads to defects in mitotic spindle functions and to de-
fects in the microtubules [141]. GSK3 is involved in mitotic phos-
phorylation of Tankyrase [157] on Ser978, Thr982, Ser987 and 
Ser991 in the conserved [S/T]-X-X-X-[S/T] motif. Whether Tan-
kyrase phosphorylation by GSK3 impacts Tankyrase function at the 
mitotic spindle through NuMa poly(ADP-ribosyl)ation remains to 
be studied.  

 Tankyrases are involved in telomere maintenance by 
poly(ADP)ribosylating TRF1 (which prevents telomerase activity 
on telomeres) and releasing TRF1 from telomeres [140, 151]. In 
this context it is noteworthy that there are further links between 
telomeres and Wnt/ -catenin signaling. One of them is TERT (te-
lomerase reverse transcriptase), a catalytic subunit of telomerase, 
that was shown to directly regulate Wnt/ -catenin signal by partici-
pating as a co-factor in the -catenin/Tcf transcriptional complex 
[158]. It has been shown that an overexpression of either TERT or 

-catenin in mouse hair folicles results in a similar phenotype [159, 
160, 161]. Hence, under certain conditions gene regulation by 
TERT and -catenin might intersect [162]. 

 As many other components of the -catenin degradation com-
plex, Tankyrase can be observed in the vicinity of the plasma mem-
brane. Such localization is triggered by E-cadherin-mediated cell-
cell adhesion, as shown on polarized epithelial MDCK cells [157]. 
Tankyrase recruitment to the lateral membrane follows a calcium 
initiated cell-cell adhesion and is reversed by calcium depletion. 
Inhibition of the poly(ADP)ribosylation of Tankyrase leads to its 
stabilization and accumulation near the lateral membrane [157]. An 
inhibition of Tankyrase also leads to an inhibition of EMT ex vivo 
[163], which indicates that Tankyrase may influence intercellular 
adhesion. Accordingly, the disruption of intercellular adhesion by 
calcium depletion leads to a Tankyrase release into cytoplasm. 

 Tankyrases have been identified as a promising target for inhib-
iting Wnt/ -catenin signaling. Several research groups have identi-
fied small molecules that inhibit Tankyrases and correspondingly 
Wnt/ -catenin signaling (Table 1) by stabilizing the destruction 
complex [37-40], [165, 166].  

 Tankyrase inhibitors can be classified into two groups that bind 
differentially to the PARP catalytic center: one group binds to the 
nicotinamide pocket whereas the other occupies predominantly the 
adjacent ADP pocket. The first group includes the Tankyrase selec-
tive XAV939, and many generic PARP inhibitors (PDB structures 
in Protein Data Bank, www.rcsb.org: 3KR8, 3MHJ, 3P0P, 3P0Q, 
3MHK and 3U9H) [37, 165, 166]. These compounds usually have 
stacking interactions with the side chain of Tyr1071 and form two 
hydrogen bonds with Gly1032 (numbering for human Tankyrase 2). 
Tankyrase inhibitors that bind to the ADP pocket include IWR1, 
JW55, and JW74 (Table 1) [38-40]. These molecules participate in 
stacking interactions with the side chain of histidine (aa 1201 in 
Tankyrase 1, aa 1048 in Tankyrase 2) and in hydrogen bonding 
with the backbone amides of Tyr1213 (Tyr1060 in Tankyrase 2) 
and Asp1198 (Asp1045 in Tankyrase 2) in the adenine dinucleotide 
pocket (PDB structures in Protein Data Bank, www.rcsb.org: 
1UDD, 1UA9 and 4DVI) [167-169]. An interesting binding mecha-
nism is exerted by the compound PJ34 (PDB code, www.rcsb.org: 
3UH2) in that two molecules of PJ34 (Table 1) can simultaneously 
bind to the Tankyrase PARP domain; one in the nicotineamide 
pocket, the other in the ADP pocket [170]. A profound review on 
ADP-(ribosyl)ation as old and new targets for cancer therapy is 
given in [171]. 

The Wnt receptor complex 

 The Wnt signalosome is the the best studied system that coun-
teracts -catenin degradation and enhances -catenin-mediated 
signaling. The Wnt signalosome does so by recruiting components 
of the destruction complex to the membrane, a process that is trig-

gered by binding of one of several Wnt morphogens to the trans-
membrane proteins Frizzled and LRP5/6. In the process, the Wnt 
signalosome itself is cleared from the plasma membrane by endocy-
tosis. 

 Before Wnt morphogens can induce the Wnt signalosome, they 
mature by undergoing a number of post-translational modifications 
prior to being secreted. During post-translational maturation, Wnt 
morphogens undergo N-glycosylation in the endoplasmic reticulum 
(ER) [172-174], S-palmitoylation of the N-terminal residue Cys77 
(mouse Wnt3a) [175] and acetylation with palmitoleic acid at 
Ser209, which is required for secretion [176, 177]. The functional 
implications of these post-translational modifications are not en-
tirely understood. For example, some studies suggest that glycosy-
lation is important for secretion, while other studies do not confirm 
such a link [172], [178]. Although palmitoleic modification may not 
be strictly required for secretion, it participates in Wnt binding to 
Frizzled receptors and in Wnt signal transduction [179]. Wnt pro-
teins with a mutation in the cystein that is the target for palmitoyla-
tion are not able to transduce Wnt signaling. It has been proposed 
that the hydrophobicity of palmitate and palmitoleic acid is required 
for Wnt to interact with cellular membranes, which is necessary for 
the interaction with Frizzled/LRP5/6 receptors [180]. The lipid 
modifications as well as the acceptor amino acids are highly con-
served among different Wnt proteins in diverse organisms.  

 After posttranslational modifications in the ER, Wnt proteins 
are transported to the Golgi apparatus. From the Golgi apparatus, 
Wnt proteins are translocated to the cellular membrane with the 
assistance of the seven-pass transmembrane orphan G-protein cou-
pled receptor Evenness interrupted (Evi)/Wntless(Wls) (GPR177 in 
mammals) that co-localizes to the Golgi apparatus, cellular mem-
brane and endocytic vesicles [176, 181-183]. Evi/Wntless exports 
all Wnt proteins [184]. In Drosophila it has been shown that acyla-
tion of Wnts is required for their binding to Evi/Wls, while glycosy-
lation and S-palmitoylation do not appear to be required [172, 181, 
185]. In mammalian cells N-linked glycosylation is required for 
GPR177 localization to the Golgi apparatus and targeting to the 
plasma membrane [186, 187]. In mouse, deletion of GPR177 leads 
to axis formation defects and early fetal lethality [188]. Finally, 
Evi/Wls is cleared from the plasma membrane by endocytosis in a 
process that involves the GTPase Rab5 [164]. Clathrin-mediated 
endoytosis of Evi/Wls and endosomal sorting through the trans-
Golgi network (TGN) appear to be required for the proper secretion 
of Wnt morphogens. Thus, disruption of these processes leads to an 
Evi/Wls accumulation on the plasma membrane and a downregula-
tion of Wnt secretion [176, 189]. Lipidation and acidification of 
secretory vesicles was suggested to be important for Wnt secretion 
[176, 190] and a blockage of v-ATPase-mediated acidification of 
secretion vesicles leads to an accumulation of the Evi/Wls complex 
in vicinity of the cellular membrane and downregulates Wnt secre-
tion [185]. Interestingly, the transcription of the mammalian 
GPR177 gene is enhanced by Wnt/ -catenin signaling [186].  

 Also central to the secretion of mature Wnt morphogens is the 
multipass membrane protein Porcupine (Porc) that interacts with 
the N-terminal domain of Wnt [191]. Loss of Porc leads to an ac-
cumulation of Wnts in the ER [192]. Porc function is antagonized 
by the protein Oto, which is a homolog of the Drosophila glycosyl-
phosphatidylinositol (GPI)-inositol-deacylase PGAP1. Oto deacety-
lates Wnt proteins in the secretory pathway, leading to its retention 
in the endoplasmic reticulum [193]. A class of potent small mole-
cule inhibitors called IWP (Table 1) that target Porc and thereby 
inhibit Wnt secretion was identified using high-throughput screen-
ing [38]. Diverse IWP analogs were reported recently [194]. 

 Signaling of Wnts is limited to approximately 20 cellular layers 
from the source of secretion [195]. It has been shown that heparane 
sulfate proteoglycans (HSPG) are involved in Wnt signaling and 
stabilizing the activity of purified Wnt proteins through preventing 
their aggregation [196]. Since Wnt proteins/morphogens are insolu-
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ble and highly lipophilic, they require a specialized transport sys-
tem. One way to transport Wnt proteins are lipoprotein particles, 
which associate with lipid modified Wnts [197, 198]. Another in-
teresting way to transport Wnts is a direct translocation from cell to 
cell through a series of exocytosis-endocytosis cycles [199]. Hence, 
Wnts can be transported between the cells via exosomal vesicles 
[198, 200].  

 There are several models that describe the binding of Wnt 
morphogens to the Fz-LRP5/6 receptors to initiate Wnt/ -catenin 
signaling [7]. Historically, Wnt morphogens and Frizzled receptors 
were classified as canonical ( -catenin dependent) and non-
canonical ( -catenin independent) proteins. However, closer scru-
tiny revealed that at least some of the Frizzled receptors and Wnt 
proteins can participate in both -catenin dependent and independ-
ent signaling in a context-dependent manner [201-204]. LRP5 and 
LRP6 are thought to play redundant roles in the Wnt signalosome 
and are usually referred to as LRP5/6 [205, 206]. In humans, 19 
Wnt morphogens and 10 Frizzled receptors are known to date. Mu-
tations in Frizzled receptors were first identified in mutant Droso-

phila [207]. Later, it was found that Frizzled proteins belong to the 
family of seven-pass transmembrane receptors and bind Wnts [208, 
209]. The most popular model proposes that Wnt binds to the 
transmembrane protein Frizzled and provides a link to the trans-
membrane protein LRP5/6. This binding forms the core of the Wnt 
signalosome and triggers a receptor oligomerization. Hetero-
oligomerization of Fz-LRP5/6 is sufficient for activating Wnt/ -
catenin signaling as demonstrated elegantly by studies involving 
chimeric Fz-LRP5/6 and Fz-Dkk proteins [210-212]. Evidence 
suggests that LRP6, in addition to participating positively in Wnt/ -
catenin signaling, may also be engaged in an inhibitory role in -
catenin independent Wnt signaling [213, 214].  

 The oligomerization of the Wnt signalosome is enhanced on the 
intracellular side of the complex by Dishevelled, which oligomer-
izes through its DIX domain [215-217]. The Ser/Thr-rich motifs on 
LRP6 together with Disheveled (Dvl) are then responsible for re-
cruiting Axin and GSK3 to the Wnt signalosome [218-222], induc-
ing Axin polymerization at the cytoplasmic side of the receptor 
complex [46]. In this process, the lipid kinases PI4KII and PIP5KI 
have been implicated in the formation of the Wnt signalosome and 
the translocation of Axin/GSK3 from the destruction complex to the 
plasma membrane [223]. It was shown in Drosophila that the re-
cruitement of Dishevelled and Axin to the membrane is facilitated 
through G-proteins with trimeric Go-proteins acting as immediate 
transducer [224-227]. One of the Go subunits, G o, uses an RGS 
domain to interact directly with Axin, recruiting it to the membrane 
[54, 228]. G o also interacts with Rab5, an interaction that presu-
muably promotes the internalization of the Wnt/Frizzled/LRP com-
plexes [54, 229]. The Go subunit, G , recruits Dishevelled to the 
plasma membrane upon Wnt binding to the Frizzled receptors [54].  

 Together with Axin, two kinases - GSK3 and the primer kinases 
CK1( , , ) - are juxtaposed with LRP5/6 [230]. CK1-mediated 
phosphorylation acts as primer, which triggers GSK3-mediated 
phosphorylation. CK1  and GSK3 phosphorylate PP(S/T)PX(S/T) 
repeats in the cytoplasmic C-domain of LRP5/6, a step that is cru-
cial for rescuing -catenin from degradation [53, 217, 219, 231]. 
Upon binding to LRP5/6, the kinases GSK3  and CK1  switch 
from phosphorylating -catenin to phosphorylating LRP5/6 [217, 
232]. One model suggested that phosphorylation of Dishevelled-2 
by CK1  increases its affinity to Frizzled receptors [219, 233]. 
CK1  was also shown to be required for Dvl-2 phosphorylation and 
its binding to LRP5/6 [230]. In turn, CK1  was shown to be directly 
activated by Wnt signaling through C-terminal dephosphorylation 
[234]. 

 Recently, the seven-pass transmembrane protein TMEM198 
was identified in Xenopus tropicalis and shown to associate with 
LRP6, recruiting CK1 to the receptor complex and promoting LRP6 
phosphorylation [235]. Proline-directed kinases have also been 

shown to be involved in LRP5/6 C-terminal phosphorylation in-
cluding PKA, Pftk (Cdk14), MAPK (such as p38, ERK1/2, and 
JNK1) and G-protein-coupled receptor kinases (Grk5/6) [236, 237]. 
Recently it was also found that Wnt/ -catenin signaling cooperates 
with tyrosine signaling through FGFR2 (FGF receptor 2), FGFR3 
(FGF receptor 3), EGFR (epidermal growth factor receptor) and 
TRKA kinases (Tyrosine kinase receptor type 1) [238]. Intrigu-
ingly, phosphorylated PP(S/T)PX(S/T) peptides alone, derived from 
the C-terminus of LRP5/6, are able to activate Wnt signaling 
through a direct inhibition of GSK3 [222, 239]. 

 The release of -catenin from phosphorylation by CK1  and 
GSK3 may not be the only mechanism for the Wnt signalosome to 
regulate -catenin levels. It was found that LRP6 can stabilize -
catenin indirectly through Axin degradation and GSK3 inhibition 
[231, 240]. Without the structural protein Axin, CK1  and GSK3 
cannot form a complex that phosphorylates -catenin at the N-
terminal end.  

 A further mechanism, by which the Wnt signalosome reduces 
-catenin degradation, is an induced GSK3 internalization by multi-

vesicular endosomes. This physically reduces the cytoplasmic pres-
ence of the kinase [241, 242, 243]. 

 The LGR4, -5 and -6 G-protein coupled receptors were shown 
to associate with the Frizzled-LRP5/6 signalosome and mediate 
Wnt/ -catenin signaling in intestinal crypt cells. LGR receptors 
were previously considered to be orphan, but recently R-spondin 
was identified as their ligand [244, 245, 246]. 

Furthermore, the parathyroid hormone receptor was found to di-
rectly regulate -catenin signaling through interactions with Di-
shevelled, but without an involvement of Frizzled receptors [247]. 

 Most of the described receptors are expressed specifically in 
certain organs, or tissues. Thus parathyroid hormone receptors exert 
their function in kidneys and bones [248], while LGR4-6 are found 
in the stomach, in the stem cell compartment of the small intestine 
and in hair follicles [249]. The complex interface between various 
receptors and components of -catenin signaling appear to allow an 
intricate adaptive regulation. 

 The Wnt signalosome has been a target for developing antibod-
ies and small drug therapeutics. A monoclonal antibody against 
Wnt-1 has shown to induce apoptosis in cancer cell lines expressing 
the Wnt-1 protein [250]. Antibodies against Frizzled-5, developed 
by OncoMed, have shown anti-tumor properties [251]. The OMP-
18R5 antibody, developed in collaboration between Bayer and On-
coMed, has entered Phase I clinical trials. Furthermore, antibodies 
against Frizzled 10 (FZD10) may reduce osteosarcoma growth and 
metastasis [252].  

 A small molecule, which triggers the internalization of Wnt 
receptors, has been identified as the FDA approved antihelminthic 
drug Niclosamide (Table 1). Amongst other functions, Niclosamide 
was found to inhibit Wnt/Frizzled-1 signaling with an IC50 of 0.5 ± 
0.05 μM [253-255]. It also downregulates Dishevelled-2 (Dvl-2) 
[256] and induces LRP6 degradation in prostate and breast cancer 
cells [254]. Interestingly, Niclosamide has no reported toxicity 
against non-cancer cells [256].  

Dishevelled 

 Dishevelled participates in both -catenin dependent and inde-
pendent Wnt signaling. Three different Dishevelled proteins are 
known in humans, which have a similar size and domain organiza-
tion. All Dishevelled proteins share three functional domains: an N-
terminal DIX domain (named after Dishevelled and Axin), a central 
PDZ domain (Postsynaptic density 95, Discs Large, Zonula oc-
cludens-1) and a C-terminal DEP domain (Dvl, Egl-10, Pleckstrin). 

 The DIX domain is responsible for the polymerization of Di-
shevelled in the Wnt signalosome [257]. The resulting tetrameriza-
tion of the Frizzled-LRP5/6 signal complex has been shown to be 
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required for the phosphorylation of the cytoplasmic tail of LRP5/6 
[258]. The protein Ccd1, which also has a DIX domain, serves as a 
positive regulator of Wnt signaling by forming heterodimers with 
the Dishevelled DIX domain [259]. Recently, the ability of Axin to 
polymerize through its DIX domain was shown to be crucial for its 
function in the destruction complex, while a binding between the 
Axin DIX domain and its Dishevelled counterpart abrogates Axin 
polymerization. Hence, in addition of being important for the Wnt 
signalosome, heteromer formation through the DIX domain might 
be important for inhibiting the formation of the destruction complex 
by Dishevelled [46, 48], [260, 261]. 

 The DEP domain of Dishevelled was suggested to mediate the 
interaction with membrane lipids [262] and to facilitate the interac-
tion with Frizzleds through direct binding [263].  

 The PDZ domain of Dishevelled interacts with the cytosolic C-
terminal tail of Frizzled [264]. This interaction can be counteracted 
by the Dapper (Dapper1 and Dapper3) proteins, which bind to the 
Dishevelled PDZ domain to prevent its interactions with Frizzled 
[216, 265, 266]. Proteins of Dapper family have been shown to 
promote Dishevelled degradation mediated by lysosomes instead of 
proteasomes [265, 267, 268]. Interestingly, Dishevelled was shown 
to promote Wnt5a-induced endocytosis of Frizzled by using the 
PDZ-domain to interact with the N-terminal region of -arrestin 2 
[269, 270]. Furthermore, Dishevelled 2 was shown to interact with 
a subunit of the clathrin adaptor protein AP2, micro2-adaptin. The 
interaction appears to be required for Frizzled 4 internalization 
[271]. 

 Phosphorylation modulates the activity of Dishevelled in the 
Wnt signalosome [272]. Three kinases, CK2, PAR1 and CK1 /  
that respond to Wnt signaling, have been implicated in Dishevelled 
phosphorylation [273, 274]. For instance in mouse SN4741 neu-
rons, both Wnt5a and Wnt3a have been shown to induce phos-
phorylation of Dishevelled-2 and Dishevelled-3 [273]. Based on 
loss-of-function and gain-of-function experiments a model of a 
stepwise phosphorylation of Dishevelled was suggested. First, Di-
shevelled is phosphorylated by the CK2/PAR1 kinases and then by 
CK1 [274]. It was proposed that CK1  can inactivate Dishevelled 
through phosphorylation [274]. 

 The roles of Dishevelled in Wnt/ -catenin signaling go beyond 
stabilizing the Wnt signalosome and destabilizing the degradation 
complex. In Xenopus it has been demonstrated that mutations in the 
NLS of Dishevelled attenuate Wnt/ -catenin signaling [275]. Di-
shevelled translocates to the nucleus, where it interacts with the -
catenin/Tcf complex and participates in transcriptional regulation of 

-catenin target genes [276, 277]. In the nucleus, Dishevelled can 
also form a complex with the histone deacetylase Sirtuin 1 (SIRT1), 
which supports the transcription of Wnt target genes. In accordance, 
the SIRT1 inhibitor cambinol negatively regulates Wnt signaling 
(Table 1) [278]. Sirtuin1 is a member of the sirtuins proteins family 
and posseses (NAD+

)-dependent acetyl-lysine deacetylating activ-
ity. 

 Furthermore, Dishevelled proteins also participate in interac-
tions that affect structural rearrangements of the cell [279]. Through 
its PDZ domain, Dvl-1 was shown to protect microtubules from 
depolymerization. It was furthermore demonstrated that the stabi-
lization of microtubules by Dvl-1 is enhanced by GSK3 inhibition 
[280]. Studies in C. elegans, Drosophila and vertebrates have led to 
the conclusion that Wnt/ -catenin signaling may regulate the orien-
tation of the mitotic spindle through Dishevelled [281-283]. 

 Finally, autophagy has been proposed to inhibit Wnt signaling 
through Dishevelled degradation. It has been shown that an ubiquit-
ination of Dishevelled by the Von Hippel-Lindau protein facilitates 
its binding to p62, which in turn assists an LC3-mediated recruit-
ment of Dishevelled to autophagosomes [276]. In late stages of 
colon cancer, a negative correlation between Dishevelled expres-
sion and autophagy was observed [276].  

The PDZ domain of Dishevelled has been used to develop small 
molecule inhibitors for Wnt/ -catenin signaling. A series of syn-
thetic inhibitors were identified by virtual screening, QSAR and 
computer-based modeling on the basis of Scaffolds A and B (Table 
1) [284-288]. These compounds interact with the groove of PDZ 
domain, which interacts with the Dapper proteins [216]. Compound 
J01-017a (Table 1) is currently the strongest Dishevelled binder, 
inhibiting Wnt signaling with a Ki of 1.5+/-0.2 M [288]. Com-
pound NSC668036 [289] imitates a Dapper protein and binds to the 
PDZ domain of Dishevelled. Compound 3289–8625 (Table 1) binds 
to the same pocket as NSC668036 in Dishevelled with a Kd of 
10.6+/-1.7 M [286].  

The Roles of Endocytosis in Wnt/ -Catenin Signaling 

 Endocytosis plays crucial role in most signaling pathways. In 
Wnt/ -catenin signaling, both clathrin- and caveolin-mediated en-
docytosis have been described [246, 290]. Clathrin-mediated 
endocytosis is mediated through vesicles that are coated by the 
clathrin protein, also referred to as clathrin-coated pits, while 
caveolin-mediated endocytosis is characterized by membrane 
proteins called caveolins which participate in the formation of 
membrane invaginations called caveolae.  

 It has been shown that the Wnt signalosome including Frizzled, 
GSK-3, Dishevelled and AXIN co-localizes with caveolae where 
the proteins involved in the signalosome are thought to be seques-
trated, preventing them from participating in the formation of a 
destruction complex [217, 243, 246, 290]. It remains unclear 
whether all Frizzled receptors can be processed through this endo-
cytic pathway [290]. The involvement of caveolin in the endocyto-
sis of LRP6/Frizzled was shown to be amenable to pharmacological 
inhibition by filipin (Table 1) [291].  

 Somewhat contradictory data are published on clathrin-
mediated endocytosis [292]. For example, in the ventral cuticle of 
Drosophila larvae, clathrin-mediated endocytosis was reported to 
be required for the removal of the Wingless protein leading to a 
downregulation of the signal [293]. However, clathrin-mediated 
endocytosis was also claimed to be required for Wnt/ -catenin sig-
naling as shown by using the endocytosis inhibitors hypertonic 

sucrose and chlorpromazine in L-cells [164, 242]. Interestingly, one 
of the important components of clathrin-mediated GPCR endocyto-
sis is the clathrin-associated sorting protein (CLASP) -arrestin, 
which was shown to be required for Wnt/ -catenin signaling [294].  

 For example, co-expression of -arrestin and Dishevelled was 
shown to induce Wnt/ -catenin signaling [270, 295]. Furthermore, 
in Xenopus embryos it was shown that morpholinos against -
arrestin reduce endogenous -catenin levels and interrupt induced 
axis duplication [270]. In this context it was demonstrated that -
arrestin can form a trimeric complex with Axin, and the N-terminus 
of Dishevelled [270]. It was also suggested that -arrestin may cou-
ple Frizzled receptors to phosphorylated Dishevelled and thus par-
ticipate in Wnt/ -catenin signal transduction. [290].  

 Blocking of endocytosis resulted in Dvl-2 degradation [269]. 
Thus, although endocytosis clears the Wnt signalosome from the 
cellular surface, there is an increasing evidence that clathrin-
depending endocytosis is in itself an important process in Wnt/ -
catenin signal activation [164, 290, 292].  

 Endocytosis is not a process that is limited to the core Wnt sig-
nalosome. Recently, the endocytic adaptor disabled-2 (Dab-2) was 
shown to selectively recruit LRP6 to clathrin-dependent endocyto-
sis whereby CK2-mediated phosphorylation of Ser1579 in LRP6 
promotes its interactions with Dab-2 and the association with 
clathrin [296]. Clathrin-mediated internalization was also shown for 
LGR4-mediated -catenin signaling, a process that could be dis-
rupted by the small molecule clathrin inhibitor monodansyl-
cadaverine (MDC)[244]. Curiously, the Wnt inhibitor Dkk1 also 
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triggers an internalization of LRP6 through clathrin-mediated endo-
cytosis [164, 297].  

 Divergent consequences have been reported for the endocytosis 
of Wnt signalosomes on Wnt/ -catenin [298]. Endocytotic vesicles 
containing Wnt signalosomes may shuttle to early endosomes (EE) 
from which the receptor complex may be sequestrated into intralu-
minal vesicles of multivesicular endosomes (MVEs). These can 
either be released as exosomes, whereby exocytosis itself can act as 
a signal transduction mechanism [199, 298], [299], or MVEs may 
fuse with lysosomes that lead to a degradation of the included pro-
teins [298, 300, 301]. It is unclear to what stage during this process 
the Wnt signalosome will remain active, however, deactivation of 
Wingless was shown to occur after it accumulates in multivesicular 
endosomes which target it further for lysosomal degradation [302]. 
It was shown that in response to Wnt ligands or LRP6 overexpres-
sion, GSK3 in complex with LRP5/6 is delivered to the lumen of 
MVEs, separating GSK3 from its cytosolic substrates [241, 303]. 
Two proteins Hrs/Vps27 and Vps4 that are components of the en-
dosomal sorting (ESCRT) machinery have shown to be required for 
MVE formation and it has been demonstrated that inhibition of Hrs 
or Vps4 leads to reduced Wnt/ -catenin signaling [241]. 

 Finally, autophagy can negatively regulate Wnt pathway 
through the degradation of ubiquitinated Dishevelled which aggre-
gates with LC3-mediated autophagosomes [276].  

Connections between the Wnt-Frizzled-LRP5/6 signalosome 
and the E-cadherin adhesion complex 

 A close interaction between the Wnt signalosome and cell-cell 
junctions may exist both on a physical and functional level. N-
cadherin [304] and E-cadherin [305] were shown to be able to di-
rectly associate with Lrp5/6. Binding of Wnt morphogens to the 
Frizzled-LRP5/6 induces a CK1 -dependent phosphorylation of 
both LRP5/6 and E-cadherin [306] inducing a dissociation of 
LRP5/6 from E-cadherin [230]. Furthermore, Wnt binding to Friz-
zled-LRP5/6 induces the phosphorylation of CK1  dependent phos-
phorylation of p120 (at Ser268 and Ser269) leading to the dissocia-
tion of p120 from the E-cadherin complex [230]. This process was 
shown to be sensitive to the specific CK1 /  inhibitor IC261 (Table 
1) [307, 308]. IC261 was shown to bind tubulin and act as an in-
hibitor of microtubules polymerization [308]. Intriguingly, p120 
that has a major cytoplasmic function at the cytoplasmic end of E-
cadherin, also interacts with the Wnt signalosome making it an 
important linker protein [305]. A depletion of p120 prevents inter-
actions between CK1  and LRP5/6, disrupting LRP5/6 phosphory-
lation and AXIN recruitment to the LRP5/6 signalosome, leading 
ultimately to increased -catenin degradation [305]. An absence of 
p120 also has been reported to disrupt CK1 -mediated phosphoryla-
tion of Dvl2 [305]. In turn, signaling through the proteins Dishev-
elled and Frodo regulates the stability of p120 [309]. 

 Evidence has also been presented that E-cadherin phosphoryla-
tion by CK1  in response to Wnt binding to Frizzled-LRP5/6 de-
creases the affinity of -catenin to E-cadherin, leading to the release 
of -catenin from its complex with E-cadherin. This process can 
provide an additional increase of the cellular threshold of free -
catenin. Hence, Wnt signaling can trigger synergistically a stabili-
zation of -catenin, a release of -catenin from its complex with E-
cadherin and a dissociation of p120 from E-cadherin.  

 An inhibitor of CK1  and CK1  - PF670462 (Table 1) was 
reported to be a potent inhibitor of Wnt/ -catenin signaling with an 
IC50 of 17 nM [308].  

Adherens complexes in the context of -catenin signaling 

 Another major location for -catenin are adhesion complexes 
that retain a significant cellular -catenin pool. Indeed, E-cadherin 
containing adhesion complexes are supposed to be one of the key 
regulators of the cytoplasmic -catenin pool [310]. A simple reduc-
tion of cellular E-cadherin was shown to be sufficient to increase 

significantly free cellular -catenin, and an abrogation of E-
cadherin-mediated adhesion can correlate with an increase in the 
transcription of -catenin target genes, a phenomenon that is often 
accompanied with cancer progression and poor prognosis [311-
315]. Strikingly, -catenin can be actively mobilized from adhesion 
complexes by Wnt-independent signaling pathways. 

 Adhesion complexes have multiple roles in the cell, including 
structural functions, protective functions and a role in signaling 
pathways, including prominently Wnt/ -catenin signaling [316-
319]. The central component of adherens and tight junctions are 
cadherins, a family of single-pass transmembrane Ca

2+
-dependent 

proteins. Changes in mutual cadherin concentrations are referred to 
as cadherin switches. Hence, the increase of N-cadherins against E-
cadherins is a hallmark of an epithelial to mesenchymal transition 
(EMT) both in normal development and in metastasis [320-323]. 
Cadherin switches are crucial for motility, invasiveness, migration 
and metastasis in cancer cells [324, 325]. In several works a reverse 
correlation between invasiveness of cancer cells and E-cadherin-
mediated adhesion was shown [326, 327].  

 The extracellular N-terminal domain of E-cadherin mediates 
cell-cell adhesion and consists of five repeats that are stabilized by 
calcium ions [321, 328]. In the context of -catenin-mediated sig-
naling, the intracellular domain of E-cadherin is important. It con-
nects, by its juxtamembrane domain (JMD), adhesion complexes to 
components of the cytoskeleton involving the armadillo proteins -
catenin and plakoglobin, as well as p120 and -catenin [329, 330]. 
The clustering of cadherins is regulated by p120 [331, 332]. Bind-
ing of p120 stabilizes cadherins and protects them from internaliza-
tion and degradation [333, 334] and it has been proposed that the 
concentration of p120 is a direct limiting factor for cadherins pools 
[335]. Recruitment of p120 to one type of cadherins sequesters it 
from binding to another type of cadherins [335]. Hence, a knock-
down of p120 reduces cadherin levels by facilitating their degrada-
tion, a process that can affect cellular -catenin levels. p120 is also 
implied in multiple other ways that attenuate Wnt/ -catenin signal-
ing as described below.  

 Centrally important for Wnt/ -catenin signaling is the competi-
tive binding between -catenin and plakoglobin to E-cadherin 
through the catenin-binding domain (CBD) [336-340]. All 12 ar-
madillo repeats of -catenin participate in this interaction. Another 
armadillo protein - -catenin - facilitates the interactions between 
E-cadherin and -catenin, and anchors actin filaments to -
catenin/E-cadherin [15, 341]. Binding between -catenin and -
catenin occurs through the first two armadillo repeats of -catenin 
[342]. Interactions between -catenin and -catenin can be inhibited 
by Tyr142 and Tyr654 phosphorylation of -catenin through the 
tyrosine kinases Fer and Fyn [343, 344]. 

 C-terminal phosphorylation of -catenin attenuates the affinity 
between -catenin and E-cadherin and thus can contribute to regu-
late free cellular -catenin levels [19, 311]. Hence, phosphorylation 
of Tyr654 regulates the orientation of the C-terminal tail of -
catenin, changing its position from closed to open. The induced 
conformational change enables a number of binding proteins to 
interact with -catenin [345]. It has been demonstrated that a 
Tyr654Glu point mutation in -catenin imitates the negative charge 
of a phosphorylation and reduces the affinity of -catenin to cadher-
ins. Tyr654 phosphorylation of -catenin also enhances Ser675 
phosphorylation by protein kinase A (PKA) [346]. Ser675 phos-
phorylation appears to promote the stability of -catenin, and assists 
in its binding to the Creb Binding Protein (CBP) and as a conse-
quence triggers an enhancement of -catenin-mediated signaling 
[347], [348]. In addition, protein kinase B (AKT)-mediated Ser552 
phosphosylation of -catenin promotes its induction of transcription 
through Tcf/Lef [349-351]. 

 The cellular kinase Src (c-Src) phosphorylates amino acids 
Tyr86 and Tyr654 in the C-terminus and in the last armadillo repeat 



Wnt/beta-catenin Signaling and Small Molecule Inhibitors Current Pharmaceutical Design, 2013, Vol. 19, No. 4    649 

of -catenin respectively [345]. This phosphorylation also struc-
turally impairs -catenin binding to E-cadherin and can lead to 
increased cellular -catenin levels [19, 341, 345, 352]. An increase 
of Src levels leads to a disruption of intercellular adhesion and E-
cadherin dysfunction, while an inhibition of Src by small molecules 
has the opposite effect [353-355]. Hence, the Src kinase inhibitor 
bosutinib (SKI-606) (Table 1) was shown to increase the membrane 
localization of -catenin and intercellular adhesion [356-357] and 
bosutinib has shown promising results in Phase I clinical trials in 
advanced solid tumors [358].  

 A further mechanism by which -catenin levels can be regu-
lated at adhesion complexes is the Presenilin 1 (PS1)/ -secretase 
system that can cleave the cytoplasmic domain of E-cadherin. The 
cleavage can be stimulated by calcium influx and has been reported 
to lead to a disruption of the E-cadherin– -catenin complex fol-
lowed by an increase of cytoplasmic - and -catenins [359, 360]. 
Furthermore, the cleaved cytolpasmic terminal fragment (CTF) of 
E-cadherin has been demonstrated to sequester free -catenin from 
the cytoplasm by forming a physical complex with -catenin. This 
complex may translocate to the nucleus and interfere directly with 

Tcf/Lef signaling [314, 361, 362]. Increased -catenin levels in the 
cytoplasm and high levels of a sequestrated cytoplasmic domain of 
E-cadherin were found to correlate with malignancy in esophageal 
squamous cell carcinoma [363]. Furthermore, it has been shown 
that tumor invasiveness can be correlated to an accumulation of E-
cadherin in the nucleus [363, 364]. Accordingly, an overexpression 
of E-cadherin lacking a transmembrane and/or an extracellular do-
main was shown to stabilize cytoplasmic -catenin levels [363]. 
Also increased levels of metalloproteinases can lead to a cleavage 
of the cytoplasmic domain of E-cadherin, as has been shown in 
metastasic prostate cancers [365], [366]. Alterations in E-cadherin, 
directly affect the anchoring of actin filaments and simultaneously 
influence signal transduction mediated through -catenin and p120 
[367, 368]. 

 Intriguingly, X-ray structures of -catenin with its binding part-
ners (www.rcsb.org) along with biochemical data show that the -
catenin binding proteins Tcf/ICAT/APC and APC/E-cadherin can-
not bind -catenin simultaneously [15, 42, 369]. APC and E-
cadherin share the conserved sequence SxxxSLSSL that interacts 
with the armadillo repeats 3 and 4 of -catenin, while APC, ICAT, 
Tcf and E-cadherin have a conserved Dx x x2-7E motif ( -
hydrophobic, -aromatic), which binds to the armadillo repeats 5-9 
of -catenin [15]. This is important since E-cadherin may compete 
with APC for binding to -catenin or plakoglobin in a mutually 
exclusive manner [95, 370].  

 Interestingly, also EpCAM (Epithelial cell adhesion molecule), 
one of the first tumor-associated antigens identified, was shown to 
be a -catenin dependent signal transducer, and -catenin is in-
volved in nuclear signaling by EpCAM itself [371]. It has been 
demonstrated that a proteolytic cleavage of EpCAM by Presenilin 2 
releases EpICD, which forms a complex with -catenin and Tcf/Lef 
leading to an induction of c-Myc and Cyclin A and E expression 
[371, 372].  

 Small molecules targeting cadherins have shown to affect can-
cer metastasis. The synthetic cyclic pentapeptide, ADH-1 (N-Ac-
CHAVC-NH2) targets N-cadherins (it imitates the HAVD amino 
acid sequence of N-cadherin), increases cellular levels of E-
cadherin, and has demonstrated efficacy in Phase I clinical trials 
against melanoma [373, 374]. Small molecules that influence C-
terminal phosphorylation and thus mobilization of -catenin are 
discussed below. 

Other Transmembrane Receptors Influencing Wnt/ -Catenin 

Signaling 

 The hepatocyte growth factor/scatter factor (HGF) is involved 
in regulating morphogenesis, embryonal development and regenera-
tive processes [375, 376], and an activation of HGF signaling dur-

ing tumorigenesis can promote proliferation, angiogenesis and mo-

tility [377, 378]. c-Met, the tyrosine kinase receptor of HGF has 
been linked to -catenin signaling [379, 380] and it has been shown 
that HGF/c-Met can activate -catenin signaling independent from 
Wnt signaling [381] at the site of E-cadherin containing junctions. 
Binding of HGF to c-Met triggers an autophosphorylation at 
Tyr1234 and Tyr1235, which in turn mediates a tyrosine kinase-
mediated Tyr654 and Tyr670 phosphorylation of -catenin [382] 
inducing the dissociation of -catenin from E-cadherin [352, 383]. 
Similarly, Tyr142 and Tyr654 phosphorylation by the FLT3/ITD 
kinase (Fms-like Tyrosine Kinase-3) leads to a dissociation of -
catenin from its complex with E-cadherin [344, 384]. Tyr654 phos-
phorylation is also required for -catenin binding to Tcf4, adding to 
the synergistic effect of c-Met-mediated -catenin phosphorylation 
[344]. Accordingly, Imatinib (Table 1), a tyrosine kinase inhibitor, 
was shown to reduce Wnt/ -catenin signaling [385]. The small 
molecule PHA665752 (Table 1), which inhibits c-Met-mediated 
phosphorylation, has shown to act inhibitory on HGF induced -
catenin signaling [379, 386].  

 Also the Endothelin A receptor (ET(A)R), through Src-depen-
dent EGFR (epidermal growth factor receptor) transactivation, 
causes a Tyr654 phosphorylation of -catenin leading to its mobili-
zation from E-cadherin [387]. Moreover, the receptor tyrosine 
kinases FGFR2, FGFR3, EGFR and TRKA have recently been 
shown to increase cytoplasmic -catenin concentrations via a 
Tyr142 phosphorylation that releases -catenin from cadherin com-
plexes [238].  

 In addition to mobilizing -catenin, a C-terminal phosphoryla-
tion of -catenin protects the protein from Ser/Thr phosphorylation 
in the degradation complex and thus can lead to increased cyto-
plasmic levels of -catenin [380], [388]. It has also been shown that 
HGF could activate -catenin signaling through inducing a degrada-
tion of E-cadherin which again would lead to a mobilization of -
catenin [366]. The matrix metalloproteinase-7 (MMP-7), a down-
stream target of Wnt/ -catenin signaling, participates in HGF-
induced degradation of E-cadherins. [366]. Furthermore, HGF sig-
naling may also alter -catenin thresholds secondarily through regu-
lating Snail leading to a repression of the transcription of E-
cadherin which in turn leads to a reduced -catenin pool at cellular 
junctions [389, 390]. HGF/c-Met-mediated stabilization of -
catenin has been associated with several types of tumors [391]. The 
small molecule PHA665752 (Table 1), which inhibits c-Met-
mediated phosphorylation, has shown to act inhibitory on HGF 
induced -catenin signaling [379, 386].  

 Phosphorylation of E-cadherin by CK1  at Ser846 also reduces 
its binding to -catenin [306]. Interestingly, a phosphorylation of E-
cadherin and -catenin (Thr112 and Thr120 by PKD1) can also lead 
to the opposite effect: to stimulate -catenin/E-cadherin complex 

formation [341, 392, 393]. Accordingly, it has been shown that 
downregulation of PKD1 is associated with advanced prostate can-
cers [393].  

The -Catenin Tcf/Lef Transcription Complex 

 Besides its implications in junctions, the main effector function 
of -catenin is in the nucleus. Here it regulates transcription 
through interactions with a number of transcription factors, includ-
ing predominantly Tcf/Lef, Hif-1 and possibly also Oct4. -catenin 
may also have a more unspecific role on transcription regulation 
through interactions with chromatin. The shuttling of cytoplasmic 

-catenin to the nucleus and back to the cytoplasm is not entirely 
understood. A picture emerges, where the nuclear uptake of -
catenin can be enhanced by the context-dependent C-terminal 
phosphorylation of -catenin at S675 by PKA. Evidence suggests 
that the export of -catenin from the nucleus to the cytoplasm can 
be GSK3-dependent [394]. Both kinases are well-explored drug 
targets. A further mode of -catenin transport to the nucleus was 
proposed to be a binding between -catenin and Tcf/Lef in the cy-
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toplasm, followed by its transfer to the nucleus [12, 13, 395]. Other 
mechanisms that influence the shuttling of -catenin to the nucleus 
have been discussed earlier. 

 In the nucleus, the interaction between -catenin and the zinc 
finger transcriptional factors of the Tcf/Lef family has been de-
scribed and is seen as the classical regulatory unit for Wnt/ -catenin 
target genes (http://www.stanford.edu/~rnusse/wntwindow.html). 
All members of the Tcf/Lef family (Tcf-1, Tcf-3, Tcf-4 and Lef1) 
contain an N-terminal binding domain for -catenin, followed by a 
context-dependent regulatory domain (CRD) with binding sites for 
the co-repressor Groucho (Gro), a HMG-box DNA-binding domain, 
and a C-terminal domain with binding sites for the co-repressor C-
terminal binding protein (CtBP) [396, 397]. Lef1 in general acts as 
a transcriptional activator in complex with -catenin. Tcf3 is con-
sidered to be predominantly a transcriptional repressor. Tcf-1 and 
Tcf-4 have been claimed to execute context dependent dual activa-
tor or repressor roles [396]. In mice, Tcf-3 represses Wnt/ -catenin 
signaling either through a competitive physical interaction with -
catenin or via competition for Tcf/Lef binding sites on DNA [396, 
398]. Further diversity of family members may be created by alter-
native splicing [399]. 

 In the absence of -catenin, members of the Tcf/Lef family 
form a complex with co-repressors such as Groucho, CtBP, and 
HDAC leading to a repression of the transcription complex [5, 400-
402]. -catenin directly displaces Groucho/TLE from Tcf/Lef by 
binding to a N-terminal low-affinity binding site that overlaps with 
the Groucho/TLE-binding site rendering the Tcf/Lef into a tran-
scription activator [403]. It has been reported that the interactions 
between -catenin and Tcf/Lef are charge-dependent and occur 
through the formation of salt bridges between Lys amino acids of -
catenin and Glu amino acids of Tcf [404]. The histone acetyltrans-
ferase CREB binding protein (CBP) attenuates the complex and 
acts as a context-dependent transcriptional regulator [394]. 

 Also, the armadillo protein plakoglobin is able to associate with 
the Tcf/Lef transcriptional complex, although with less affinity than 

-catenin, and early reports claim that both proteins are able to 
activate Tcf/Lef reporters [405-407]. Plakoglobin was also shown 
to promote transcriptional activity independently from -catenin 
[407], and although plakoglobin was shown to be less potent to 
activate Wnt/ -catenin downstream genes, c-Myc expression is 
significantly elevated by plakoglobin [408]. Interestingly, similar to 

-catenin, ectopic over-expression of plakoglobin was shown to 
lead to axis duplication in Xenopus [409]. Further indications for a 
functional redundancy between the two structurally related proteins 
come from mouse studies showing that mice lacking plakoglobin do 
not show developmental apparent abnormalities. Furthermore, a 
decrease of plakoglobin in Xenopus does not affect embryonic axis 
formation [405].  

 p120 also affects Wnt/ -catenin-mediated transcription. In the 
absence of phosphorylated p120, the zinc finger transcription factor 
Kaiso binds to the HMG domain of Tcf, forming a co-repressor 
complex together with histone deacetylase (HDAC). Phosphoryla-
tion of p120 causes its dissociation from E-cadherin, its entrance to 
the nucleus and binding to Kaiso. In consequence, Kaiso loses its 
role as a co-repressor [230]. Kaiso binding sites are frequently lo-
cated near Wnt responsive elements of several -catenin target 
genes including Siamois, c-Myc and cyclin D1 [410-413]. Notably, 
this process was shown to be enhanced by Wnt-signaling indicating 
that several armadillo components that are present in adhesion junc-
tions could be involved in mediating a convergent signaling pro-
gram.  

 The Tcf/Lef transcriptional complex has a multitude of further 
binding partners [402]. Proteins like Pontin52 [414], the TATA-
binding protein [415], Bcl-9/Legless, and Pygopus [416, 417] have 
all shown to promote the formation of a -catenin/Tcf complex. 
Chibby (Cby), a small (126 aa) protein antagonizes Wnt/ -catenin 

signaling by forming a ternary complex with protein 14-3-3  and -
catenin [418, 419]. The protein TC-1, associated with thyroid can-
cer, in turn can bind to Cby and inhibit its interactions with -
catenin, leading to an upregulation of -catenin target genes [420, 
421]. Further tissue-specific proteins like Osterix (osteoblasts-
specific transcription factor) are also able to repress the transcrip-
tional complex through a disruption of Tcf binding to DNA [422]. 
As earlier described, Dishevelled in response to Wnt signaling may 
also localize to the nucleus [275, 423] where it forms a quaternary 
functional complex with Tcf/Lef and c-Jun, whereby c-Jun acts as 
scaffold [277]. Further proteins, associated with the Tcf/Lef com-
plex and regulate its activity are reviewed in [396, 402]. 

 Tcf/Lef-mediated transcription is target of numerous regulative 
covalent modifications like phosphorylation, SUMOylation, ubiq-
uitination, and acetylation [201, 396]. It has been shown that CK1  
and CK2 phosphorylate Lef-1 [424] leading to a disruption of inter-
actions between -catenin and Lef-1, but not between Lef-1 and the 
template DNA. Hence, CK1 -mediated phosphorylation results in a 
transcriptional repression of Lef-1/ -catenin target genes. In con-
trast, it has been demonstrated that Ser42 and Ser61 phosphoryla-
tion of Lef-1 by CK2 enhances Lef-1/ -catenin-mediated transcrip-
tion [424, 425]. Initially it was supposed that CK2-mediated phos-
phorylation increases Lef-1 affinity to -catenin. However, affinity 
studies have shown that Lef-1 phosphorylation does not affect its 
binding to -catenin [426]. Instead, it was found that CK2-mediated 
phosphorylation leads to a decrease of Lef-1 interactions with the 
Gro/TLE1 co-repressor [427].  

 The Nemo-like kinase (NLK) phosphorylates amino acids 
Thr155 and Ser166 of Lef-1 and amino acids Thr178 and Thr189 of 
Tcf-4 which have been shown to lead to a reduced DNA-binding 
[20, 428, 429]. Thus, NLK has been proposed to be a negative regu-
lator of -catenin/Tcf controlled transcription [430]. Indeed, in 
human embryonic kidney 293 (HEK293) cells and the cervical 
epithelioid carcinoma cell line HeLa, NLK inhibits -catenin-
regulated target genes expression [428, 431]. Curiously, in zebraf-
ish midbrain and mammalian neural progenitor cell (NPC)-like cell 
lines, NLK-mediated phosphorylation of Lef-1 upregulates Wnt 
signaling [432].  

 The E3 ligase PIASy SUMOylates Lef-1, which could lead - 
context dependent - to either an activation or to an inhibition of 
Lef-1 [72, 433].  

 Different small molecule inhibitors that act at the level of the 
Tcf/Lef transcription complex have been reported. ICG-001 selec-
tively binds to CBP, but not to the closely-related protein p300. 
ICG-011 disrupts the interaction of CBP with -catenin and down-
regulates target genes expression [434]. Recently, ICG-001 has 
shown to be able to block EMT (epithelial to mesenchymal transi-
tion) induced by TGF 1 in a RLE-6TN rat lung epithelial-T-antigen 
negative cell line. [435]. ICG-001 has reached Phase 1 clinical trials 
[436]. During a high-throughput screening the approved FDA diu-
retic ethacrynic acid (Table 1) was found to down-regulate Wnt/ -
catenin signaling by inhibiting the formation of the -catenin/Lef-1 
complex [437, 438] in chronic lymphocytic leukemia (CLL) cells, 
although at a low IC50 (Table 1). A number of ethacrynic acid de-
rivatives have since been synthesized leading to a significant po-
tency improvement [439].  

 Several small molecules were found among natural products 
that disrupt the -catenin/Tcf-4complex: CGP049090, PKF118-
310, PKF115-584 and ZTM000990, all with an IC50 slightly below 
1 M (Table 1) [440-442]. Docking studies have shown that the 
assumed binding site for these compounds in -catenin corresponds 
to a cavity located between amino acids Arg469, Lys435, Lys508, 
Glu571 and Arg515 which interacts with Tcf-4 [443]. A further set 
of compounds, PNU-74654 and BC21 (Table 1), also inhibits the 
interactions between -catenin and Tcf. The binding of BC21 to -
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catenin was shown to depend on the polar amino acids Lys435, 
Arg469, Lys508, Arg515, and Glu571 of -catenin [443, 444]. 

 In addition to Tcf/Lef, the oxygen sensing zinc finger transcrip-
tion factor Hif-1  has been pointed out as a central regulatory ele-
ment in -catenin signaling. In an oxygen rich environment, Hif-1  
gets hydroxylized through the HIF prolyl hydroxylase, triggering a 
subsequent ubiquitination by the von Hippel-Lindau protein 
(pVHL) that targets Hif-1  for rapid degradation in the proteasome 
[445]. Strikingly, the von Hippel Lindau protein has also been im-
plied in promoting the degradation of cytoplasmic -catenin, while 
maintaining the expression of E-cadherin [446]. In contrast, it was 
shown that PI3K (Phosphoinositide 3-kinase) through MAPK in-
duces Hif-1  signaling [447]. A second positive regulatory pathway 
has been described for PI3K/mTOR that is involved in regulating 
Hif-1  protein synthesis through AKT/PKB (protein kinase B), 
mTOR (mammalian target of rapamycin) and S6K (p70 S6 kinase) 
[448]. It has recently been demonstrated that the PI3K inhibitor 
GDC-0941 represses Hif1  and Hif-2  expression and activity 
[449].  

 In a low oxygen environment – as frequently found in stem cell 
niches – Hif-1  forms a complex with ARNT (the constitutive ac-
tive form of Hif-1 ) and enters the nucleus where it competes with 
Tcf/Lef proteins for -catenin binding [450]. Hence, it has been 
proposed that while under normoxic conditions -catenin binds 
predominantly to Tcf/Lef and activates classical Wnt/ -catenin 
downstream genes, under hypoxic conditions, Hif-1  may recruit -
catenin to alternative binding sites at promoters e.g. promoters that 
enhance tumor survival [446]. Strikingly, the promoters of genes of 
Tcf-1 and Lef-1contain hypoxia response elements (HREs) [451] 
and Hif-1  is directly involved in regulating Tcf/Lef protein abun-
dance [451]. Hif-1  also is involved in regulating the transcription 
of proteins implied the destruction complex, and has been shown to 
negatively regulate the transcription of APC via hypoxia-responsive 
elements, which could lead to increased cellular -catenin levels. In 
a feedback loop APC mediates a repression of Hif-1  while APC 
depletions result in increased Hif-1  levels [452]. Furthermore, 
GSK3 has been reported to phosphorylate and destabilize Hif-1  
[132]. 

Cross-talk with other Pathways: Interconnections Between 

Inflammation and Wnt/ -Catenin Signaling 

 Both COX activity and Wnt/ -catenin signaling are intercon-
nected and have been associated with tumorigenesis. An inhibition 
of the cyclooxygenases COX-1 and COX-2 leads to reduction of 
prostaglandin synthesis including the pro-inflammantory prosta-
glandin E2 (PGE2) [453]. PGE2 activates a signaling cascade 
through the EP2 and EP4 receptors that leads to a PKA dependent 
Ser552 and Ser675 phosphorylation of -catenin. The phosphoryla-
tion promotes -catenin stabilization and nuclear uptake [52, 347, 
348]. Strikingly, it was shown that Tyr654 phosphorylation of -
catenin, e.g. by receptor tyrosine kinases [311, 454], facilitates a 
Ser675 phosphorylation by PKA [346]. Hence, a model has been 
proposed whereby an activation of c-Met induces Tyr654 phos-
phorylation of -catenin, which leads to a dissociation of -catenin 
from adhesion complexes followed by a possible phosphorylation 
by PKA on Ser674, which enhances nuclear uptake of -catenin 
and a recruitment of transcription factors [346]. In addition, it was 
shown that PGE2 interaction with EP1-4 receptors leads to activa-
tion of G s which competes with APC for binding to the RGS do-
main of Axin [455]. Hence, PGE2 may also contribute to a Wnt-
independent destabilization of the -catenin destruction complex 
[455]. Finally, PKA-mediated phosphorylation of GSK3 may also 
lead to increased -catenin levels [456]. 

 Recently a connection between prostaglandin H2 and Wnt/ -
catenin signaling was shown on the transcriptional level. Hence, the 
gene encoding 15-prostaglandin dehydrogenase, which dehydroge-
nates prostaglandin H2, was shown to be repressed by -catenin 

[457]. Furthermore, mutated APC can lead to an elevated COX2 
gene expression [458]. 

 A number of anti-inflammatory COX-2 inhibitors were reported 
to affect Wnt signaling [459]. In this context, it has been demon-
strated that an inhibition of COX enzymes by non-steroid anti-
inflammatory drugs or aspirin can reduce the risk of Wnt/ -catenin 
dependent colorectal cancers significantly [460]. Furthermore, it 
was shown that Rp-8-Br-cAMP (Table 1), a small molecule inhibi-
tor of PKA, reduces the translocation of -catenin to the nucleus 
and reduces the expression of Wnt/ -catenin target genes [461]. 

TGF  and -Catenin Signaling 

 The TGF  signaling pathway belonging to the same protein 
superfamily as bone morphogenic proteins (BMP) and Nodal, is 
involved in multiple biological processes including proliferation, 
apoptosis and cancerogenesis [462-464]. TGF  and Wnt/ -catenin 
signaling are interconnected at several levels through Smad pro-
teins. In particular the TGF  inhibitory protein Smad7 is regulated 
by components of the Wnt/ -catenin signaling pathway but it also 
affects Wnt/ -catenin signaling[464, 465]. For instance it has been 
shown that Axin assists in the degradation of Smad7 through serv-
ing as a scaffold for the E3 ligase Arkadia, which ubiquitinates 
Smad7 and targets it for degradation [464]. Also the ubiquitin ligase 
Smurf2, which belongs to the HECT class of ubiquitin ligases, 
binds Smad7 and targets the TGF  receptors for degradation [466]. 
Interestingly, Smurf2 has also been suggested to act as as an ubiq-
uitin ligase for Axin, and a knockdown of Smurf2 leads to a reduc-
tion of -catenin/Tcf reporter activity [467]. Furthermore, it was 
shown in mouse keratinocytes that Smad7 associates with -catenin 
and enhances its degradation by recruiting the E3 ubiquitin ligase 
Smurf2 [468]. Hence, a knockdown of Smad7 leads to an increase 
of -catenin-mediated signaling [468]. Smad7 was also shown to 
interact with the -catenin-Tcf/Lef transcriptional complex and to 
regulate apoptosis in a TGF  dependent manner [469]. It has been 
proposed that Smad7 selectively downregulates the mobile pool of 

-catenin while it upregulates the pool of -catenin that interacts 
with E-cadherin [468, 470, 471]. 

 Smad7 is not the only representative of the Smad family that 
affects -catenin. Smad4 in complex with its receptor R-Smad in-
teracts with -catenin in the nucleus. In chondrocytes it was shown 
that the C-terminal domain of Smad3 interacts with the N-terminal 
and central domains of -catenin in a TGF- -dependent manner 
[81]. 

 Finally, the TGF  pathway was shown to induce phosphoryla-
tion of -catenin at Tyr654 through an activation of Src kinase(s), 
influencing both the presence in junctional complexes, and the nu-
clear localization of -catenin [163].  

Interconnections Between PDGF and -Catenin Signaling 

 Platelet-derived growth factor (PDGF) regulates cellular divi-
sion and participates in angiogenesis. PDGF treatment leads to a 
phosphorylation of the p68 helicase, which facilitates the nuclear 
translocation of -catenin and its interaction with the Tcf/Lef com-
plex [472]. Interestingly, in a prostate cancer model, PDGF has 
shown to promote the formation of a nuclear transcription complex 
including -catenin and Hif-1 , establishing a link between PDGF 
signaling, hypoxia and -catenin [473]. In an apparent feedback 
loop, the extracellular Wnt inhibitor sFRP1 was shown to increase 
the expression of platelet-derived growth factor-BB (PDGF-BB) in 
mesenchymal stem cells (MSC) [474]. 

Interconnections Between Notch and -Catenin Signaling 

 Both Notch and Wnt/ -catenin signaling are interconnected. 
Recently it was shown that membrane-associated uncleaved Notch 
directly interacts with -catenin, serving as a protein trap and down-
regulating the cellular levels of -catenin. This process has been 
demonstrated to require the endocytic adaptor protein Numb and 
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lysosomal activity [475]. In turn, the Notch ligand Jag1, which is a 
target of Wnt/ -catenin signaling, functions as a Wnt-dependent 
Notch activator [476].  

CONCLUDING REMARKS 

 Although Wnt/ -catenin is a major signaling pathway with very 
significant implications in a broad range of diseases, addressing the 
pathway through small drugs or therapeutic antibodies is still at its 
infancy. Despite the description of a multitude of interesting bio-
targets in the pathway, together with the identification of reagents 
that interfere with these bio-targets, it is by no means clear which 
bio-targets in the pathway may give a lead in drug discovery. 

 Creating specific agents to any bio-target is a challenge. In ad-
dition, several of the known bio-targets in the Wnt/ -catenin path-
way are also implied in a multitude of other pathways raising speci-
ficity issues. Since the Wnt/ -catenin signaling pathway is highly 
complex, a number of back-up mechanisms as well as feedback 
loops exist. In this context it is also necessary to bear in mind that 

-catenin is a member of a larger protein family – the armadillo 
protein family - and other members of that family, including p120 
and plakoglobin, may have functions that are supportive to, or over-
lapping with -catenin. Although it is not settled where the best 
druggable bottlenecks in the pathway may be, or if such bottlenecks 
exist at all, three main interference points in the pathway are at 
current predominantly explored: (i) the Wnt signalosome, (ii) the 
destruction complex and (iii) -catenin targets and interactions in 
the nucleus. In a broader sense, other manipulations including alter-
ing cellular junctions, influencing prostaglandine-mediated signal-
ing, affecting HGF signaling and mechanisms that influence Hif-1  
levels are important in the context of addressing Wnt/ -catenin 
signaling.  

 Hence, it is not clear to what extent the pathway could be si-
lenced by a single therapeutic agent and whether it may ultimately 
be necessary to regulate the pathway at two or multiple points si-
multaneously in an approach that may be termed “cloud inhibition”. 
Indeed, a combination of an EGFR and Tankyrase inhibition re-
cently revealed a close functional correlation of both pathways and 
confirmed the synergistic effect of a dual antagonistic treatment in 
lung cancer cells [477]. Zibotentan, a ET(A)R antagonist when 
combined with the EGFR inhibitor gefitinib, reduces -catenin 
activity [387]. Furthermore, it has been shown that -catenin-
mediated resistance to PI3K and AKT inhibitors can be reversed by 
XAV939 (Table 1), a PARP/Tankyrase blocker [478].  

 However, even if Wnt/ -catenin signaling can be reduced more 
stringently with combinations of inhibitors, it is important to note 
that a complete inhibition of Wnt/ -catenin signaling may not be 
desirable as it may be necessary to maintain a basic Wnt/ -catenin 
activity in an organism to ensure the viability of natural Wnt de-
pendent cells. 

 Despite of all the described issues, significant excitement is 
sensed in the field that developing reagents altering Wnt/ -catenin 
signaling can provide valuable new therapeutic tools which will 
allow to address disease conditions that have hitherto escaped 
therapeutic success. 
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ABBREVIATIONS 

ADP-HPD = Adenosine 5'-diphosphate (hy-

droxymethyl) pyrrolidinediol 

ADH-1 = Peptide N-Ac-CHAVC-NH2 

APC = Adenomatosis polyposis coli 

AP-1  = Activator protein 1 (AP-1), transcrip-

tion factor  

AP-2alpha  = Transcription factor activator protein  

Micro2-adaptin  = Subunit of clathrin AP2 adaptor pro-
tein 

ADP = Adenosine diphosphate 

Axam = Axin associating protein 

Axin2 = Axis inhibition protein 2 

-TrCP = -transducin-repeat-containing pro-

tein 

Bcl-9 = B-cell CLL/lymphoma 9 protein 

B56  = Protein Phosphatase 2A subunit 

CBD  = Catenin-binding domain  

CBP = Protein cAMP response element-

binding (CREB)-binding protein 

Ccd1 = Coiled-coil-DIX1 

Cer = Cerberus 

c-Jun = Transcription co-factor 

Diversin = Planar cell polarity protein, contain-
ing ankyrin domain 

DIX domain = Dishevelled/Axin homologous do-

main 

CK2 = Caseine kinase 2 

CDK1 = Cyclin-dependent kinase 1 

CLASP = Clathrin-associated sorting protein 

CK1  = Casein kinase 1  

CK1  = Casein kinase 1  

CK1  = Casein kinase 1  

CK1  = Casein kinase 1  

c-Met = Hepatocyte growth factor receptor 

(HGFR) 

c-Myc = Myelocytomatosis virus oncogene 
cellular homolog 

CRD = Context-dependent regulatory domain 

in proteins of Tcf/Lef family 

CREB = Cyclic-AMP response element-

binding protein 

CtBP = C-terminal binding protein 

CTF  = Cytolpasmic terminal fragment  

Dab-2 = Endocytic adaptor disabled-2  

Dapper = Dishevelled-associated antagonist of 
-catenin 

DEP domain  = Dvl, Egl-10, Pleckstrin 

DIX domain  = Dishevelled/Axin homologous do-

main 

DKK = Dickkopf 

Dvl/Dsh = Dishevelled  

EE = Early endosomes 

EB1 = Microtubule-associated protein 

RP/EB family member 1 

EBNA-1  = Epstein-Barr nuclear antigen 1 

EGFR  = Epidermal growth factor receptor 

EMT = Epithelial-mesenchymal transition 

EpCAM  = Epithelial cell adhesion molecule 
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ESCRT  = Endosomal sorting complex required 

for transport 

ET(A)R = Endothelin A receptor 

Ex vivo = Experiments conducted with tissues 
outside of the organism, but in condi-
tions close to natural 

Evi/Wls = Evenness/Wntless 

FDA  = Food and drug administration 

Fer  = Proto-oncogene protein tyrosine 

kinase 

FGF  = Fibroblast growth factor 

FGFR2 = Fibroblast growth factor receptor 2 

FGFR3 = Fibroblast growth factor receptor 3  

FLT3/ITD = Cluster of differentiation antigen 135 
(CD135), also known as Fms-like ty-
rosine kinase 3  

FRAT1 = Frequently rearranged in advanced T-

cell lymphomas 1 proto-oncogene 

FRAT2 = Frequently rearranged in advanced T-

cell lymphomas 2 proto-oncogene 

FZ, FZD = Frizzled, receptor of Wnt proteins 

Frodo = Signaling adaptor protein 

FYN  = Proto-oncogene protein tyrosine 
kinase 

G , G , G , Go  =  Guanine nucleotide binding proteins 

GPI = Glycophosphatidylinositol 

GLUT4 = Glucose transporter type 4 

GPCR = G-protein coupled receptor 

G proteins  = Guanine nucleotide-binding proteins 

Grk5/6 = G-protein-coupled receptor kinases  

GRB14 = Growth factor receptor-bound protein 

14 

GPR177 = G protein-coupled receptor 177 

(GPR177) 

GSK3 = Glycogen synthase kinase 3 

GTPase = GTPase-activating protein 

hDLG1 = Human disks large homolog 1 

HECT = Domain homologous to the E6-AP 
carboxyl terminus 

Hif-1  = Hypoxia-inducible factor 1  

HGF = Hepatocyte growth factor 

HGFR = Hepatocyte growth factor receptor 

HPS domain  = His/Pro/Ser domain of tankyrase 

HRS/VPS27 = Hepatocyte growth factor receptor 

tyrosine kinase substrate 

HSPG  = Heparane sulfate proteoglycans  

HUWE1 = HECT-type ubiquitin E3 ligase 1 

IC50 = Half maximal (50%) inhibitory con-

centration (IC) of a substance  

ICAT  = Inhibitor of -catenin and Tcf4 

I-MFA  = Inhibitor of myogenic basic helix-
loop-helix transcription factors  

IRAP  = Insulin-responsive amino peptidase 

IWP  = Inhibitor of Wnt production, small 

molecule 

IWR = Inhibitor of Wnt response, small 

molecule 

Jag1 = Jagged 1 protein 

JMD  = Juxtamembrane domain  

JNK = c-Jun N-terminal kinase  

JW74 = Inhibitor of tankyrases, small 

molecule 

Kaiso = Bi-modal DNA-binding protein, tran-

scription regulator 

Kd = Dissociation constant 

Ki  = Inhibition constant 

LC3 = Light chain of the microtubule-
associated protein 1 

LEF = Lymphoid enhancer factor-1; tran-

scription factor 

LGR4, 5 = Leucine-rich repeat-containing G 

protein-coupled receptor 4, 5 

LRP5/6 = Low-density lipoprotein receptor-
related proteins 5/6 

MAPK  = Mitogen-activated protein kinase  

Mcl-1 = Myeloid cell leukaemia 1 

MDC  = Monodansyl-cadaverine  

MDCK cells = Madin-Darby canine kidney (MDCK) 

cells 

MEKK1 = MAP kinase kinase kinase 1 

MEKK4 = MAP kinase kinase kinase 4 

MM = Multiple myeloma 

MMP-7 = Matrix metalloproteinase-7  

MSC = Mesenchymal stem cells 

MVEs  = Multivesicular endosomes  

NLS = Nuclear localization signal sequences  

NAD
+
  = Nicotinamide adenine dinucleotide 

NLK = Nemo-like kinase 

NuMa  = Nuclear mitotic apparatus protein 1 

Oct-4 = Octamer-binding transcription factor 

4 

OMP-18R5 = OncoMed Pharmaceuticals 18R5 

Osterix = Osteoblast specific transcription fac-
tor 

PAR1 = Prader-Willi/Angelman region-1 

PARG = Poly (ADP-ribose) glycohydrolase 

PARP = Poly (ADP-ribose) polymerase 

PCNA  = Proliferating cell nuclear antigen 

p62 = Nucleoporin 62, a protein complex 

associated with the nuclear envelope 

PDB = Protein Data Bank, www.rcsb.org 

PDGF = Platelet-derived growth factor 

PDZ domain  = Postsynaptic density 95, Discs Large, 

Zonula occludens-1 

PFTK (CDK14) = Serine/threonine-protein kinase 
PFTAIRE-1 

PGAP1  = Glycosylphosphatidylinositol (GPI)-

inositol-deacylase 

PGE2 = Prostaglandine E2 

PIAS  = Protein inhibitor of activated STAT-

1, E3 SUMO-protein ligase 

PI3K, PI4KII, PIP5KI = Phosphatidylinositol kinases 

PKA = Protein kinase A  

PKB (AKT) = Protein kinase B 

PKC = Protein kinase C 

PKD1 = Protein kinase D1 

PLK1 = Serine/threonine-protein kinase, also 
known as polo-like kinase 1 

PORC = Porcupine 
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PP1  = Protein phosphatase 1 

PP2A  = Protein phosphatase 2A 

PP2C = Protein phosphatase 2C 

PRMT1  = Arginine methyltransferase 

PS1 = Presenelin 1  

PTP-BL  = Protein tyrosine phosphatase  

p38 MAPK  = p38 mitogen-activated protein kinase 

p70S6K  = p70 ribosomal S6 kinase  

p90RSK/MAPKAP = p90 ribosomal S6 kinase/MAPK-

activating protein  

p120 = Armadillo repeats containing protein, 

referred to also as catenin  

QSAR  = Quantitative structure-affinity relash-
ionship 

Rab5 = Ras superfamily of monomeric G 
proteins, localized to clathrin vesicles 

and early endosomes 

RGS domain  = Regulators of G protein signaling 

RNF146  = RING finger protein 146 ubiquitin 
ligase 

R-Smad = Receptor of Smad 4 

R-spondin  = Secreted activator protein 

SAM domain  = Sterile alpha motif 

SAR = Structure-activity relationship 

SFRP = Soluble Frizzled-related protein 

SIRT1 = Histone deacetylase Sirtuin 1 

SN4741  = Dopaminergic neurons derived from 

transgenic mouse embryos 

Smad3 = Mothers against devapentaplegic 3  

Smad4 = Mothers against devapentaplegic 4  

Smad5 = Mothers against devapentaplegic 5  

SNAIL = Zinc-finger transcription factor 

c-SRC = Cytoplasmic SRC tyrosine kinase 

(Src - abbreviation of sarcoma) 

STF = Super TOPFlash reporter containing 
Tcf/Lef binding sites 

SUMO = Small Ubiquitin-like Modifier protein 

SUMOylation = Post-translational modification of 

proteins by adding SUMO 

TAB182 = Tankyrase 1 binding protein 182 

TATA-binding protein = Transcription factor, which binds 

TATA DNA sequence 

Tankyrase = TRF-1-interacting ankyrin related 
ADP-ribose polymerase 

TC-1 = Thyroid cancer protein 1 

TCF = T- cell factor; transcription factor 

TERT  = Telomerase reverse transcriptase 

subunit 

TGF   = Transforming growth factor  

TGN = Trans-Golgi network 

TLE1 = Transducin-like enhancer protein 1 

TMEM198  = Transmembrane protein 198 

TRF1 = Telomeric repeat binding factor 1 

TRKA kinases  = TRK1-transforming tyrosine kinase 

protein or Trk-A 

RNF146 = Poly(ADP-ribose)-directed E3 ligase 

ROR = RAR-related orphan receptor 

RYK = Related to receptor tyrosine kinase 

V-ATPase = Vacuolar-type H+-ATPase 

WIF-1 = Wnt inhibitory factor-1 

WNT = Wntless/Int1 signaling protein 

WWE domain = Common interaction module in pro-
tein ubiquitination and ADP ribosyla-
tion, has 3 conserved amino acids - 
two tryptophans and glutamate 

Xpo1(Exportin 1) =  Protein, participating in the nuclear 

export 
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