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One of the early surprises in the study of cell adhesion was the discovery that b-catenin plays
dual roles, serving as an essential component of cadherin-based cell–cell adherens junc-
tions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we
review our current model ofWnt signaling and discuss how recent work using model organ-
isms has advanced our understanding of the roles Wnt signaling plays in both normal devel-
opment and in disease. These data help flesh out the mechanisms of signaling from the
membrane to the nucleus, revealing new protein players and providing novel information
about known components of the pathway.

M
odern biomedical science is a partnership
between scientists studying basic cell and

developmental processes in model systems

and clinicians exploring the basis of human
disease. Few fields exemplify this better than

Wnt signaling, born 22 years ago with the re-
alization that the oncogene int1 and the

Drosophila developmental patterning gene

wingless (wg) are homologs (Cabrera et al.
1987; Rijsewijk et al. 1987). Additional con-

nections further fueled research. Drosophila

Armadillo (Arm), a component of the Wg
pathway, is the homolog of the cell junction

proteins b-catenin (bcat) and plakoglobin

(McCrea et al. 1991; Peifer et al. 1992; Peifer
and Wieschaus 1990) joining Wnt signaling

and cadherin-based cell adhesion, a connection

we still do not fully understand (see Heuberger
and Birchmeier 2009). Adenomatous polyposis

coli (APC), the tumor suppressor mutated in

most colon cancers, binds bcat and is a key reg-
ulator of Wnt signaling (Rubinfeld et al. 1993;

Su et al. 1993), putting the Wnt field even
more squarely in the center of cancer research.

Here, we outline recent advances in under-

standing Wnt signaling, casting new light on
thesecritical regulatorsofdevelopment, homeo-

stasis, and disease.

THE CURRENTMODELOFWNT SIGNALING

We first outline the reigning model for

Wnt signaling, focusing on canonical signaling
involving bcat (for reviews of alternate Wnt
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pathways, see e.g., Fanto and McNeill 2004;

Kohn and Moon 2005; Semenov et al. 2007;

van Amerongen et al. 2008; Veeman et al.
2003). The key regulated Wnt effector is bcat.

In cells not receiving signal, bcat accumulates

in adherens junctions, but outside junctions
bcat levels are low, because of its short half-life

(Fig. 1, left). Free bcat is bound by the multi-

protein “destruction complex” (Clevers 2006),
in which the tumor suppressors APC and Axin

present bcat to the kinases glycogen synthase

kinase 3 (GSK3) and casein kinase I (CKI),
facilitating sequential phosphorylation of sites

in bcat’s amino terminus. An SCF-class E3-

ubiquitin ligase containing the F-box protein
Slimb/bTrCP recognizes correctly phosphory-

lated bcat, and targets it for polyubiqitination

and proteasomal destruction. Meanwhile,
TCF/LEF proteins bound to Groucho-family

corepressors keep Wnt target genes tightly off

(Arce et al. 2006).
Wnts bind a two-part receptor: a seven-

transmembrane Frizzled (Fz) and LRP5/6

(Fig. 1, right; Clevers 2006). Both are required

for canonical signaling. Ligand binding triggers

phosphorylation of LRP5/6’s cytoplasmic tail,
creating an Axin-binding site. Axin recruitment

inactivates the destruction complex, in a process

requiring Disheveled (Dvl). This stabilizes bcat,
and it enters nuclei. bcat displaces Groucho

from TCF, nucleating formation of a multipro-

tein activator complex including Pygopus and
Legless/Bcl9, activating Wnt target genes

(Arce et al. 2006). The last 5 years have tested

this proposedmodel, revealing newmechanistic
insights and further complexity. In the follow-

ing section, we examine different steps in Wnt

signaling in turn and describe these new
insights.

PREPARING FOR DEPARTURE—
POSTTRANSLATIONAL
WNT MODIFICATIONS

After signal sequence cleavage and translocation
into the endoplasmic reticulum (ER), Wnts are
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Figure 1. A simplified current view of Wnt signaling. See text for details.
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transported through the endomembrane system

to the cell surface and undergo several modifi-

cations. Wnts undergo N-linked glycosylation
(Burrus and McMahon 1995; Kadowaki et al.

1996; Komekado et al. 2007; Kurayoshi et al.

2007; Mason et al. 1992; Smolich et al. 1993;
Tanaka et al. 2002). Several Wnts also are

palmitoylated at the first conserved cysteine

(Galli et al. 2007; Kadowaki et al. 1996;
Komekado et al. 2007; Willert et al. 2003). In

addition, Wnt3a is modified with palmitoleic

acid at a conserved serine (Takada et al. 2006).
These acylations likely cause the notoriously

hydrophobic nature of secreted Wnts (Willert

et al. 2003).
Posttranslational lipidation of mammalian

Wnts is clearly important for function. Mutat-

ing the conserved cysteine of Wnt1, Wnt3a, or
Wnt5a prevents palmitoylation in cell culture.

These mutant Wnts are secreted but have little

or no signaling activity (Galli et al. 2007;
Komekado et al. 2007; Kurayoshi et al. 2007;

Willert et al. 2003), and unpalmitoylated Wnts

cannot bind Fz receptors (Komekado et al.
2007; Kurayoshi et al. 2007). Mutating the con-

served serine in Wnt3a prevents palmitoleic

acid addition and blocks secretion (Takada
et al. 2006). These studies suggest a model in

which palmitoleic acid-modification is required

for secretion, and palmitate for Fz binding.
Research on Drosophila Wg confirms the

importance of acylation, but results differ

from those inmammals. For example, mutating
the conserved serine inWg towhich palmitoleic

acid is added in mouse Wnt3a does not prevent

secretion, though it reduces signaling activity
(Franch-Marro et al. 2008a). Wg is palmitoy-

lated (Willert et al. 2003), and mutating this

amino-terminal cysteine results in secreted
but inactive Wg in cell culture (Franch-Marro

et al. 2008a). However, the same mutant

Wg accumulates in the ER in fly tissues
(Franch-Marro et al. 2008a), and mutating this

cysteine in the endogenous wg gene prevents

secretion (Nusse 2003). These data fit well
with the porcupine (porc) phenotype, a strong

loss of Wg signaling (van den Heuvel et al.

1993). Porc is an ER-localized integral mem-
brane O-acyl transferase (Kadowaki et al.

1996) required for Wg palmitoylation (Zhai

et al., 2004), and for Wg ER exit (Tanaka et al.

2002). Vertebrate Porc also promotes Wnt lipi-
dation and is required for signaling (Galli et al.

2007). This suggests Porc acylatesWnts, though

this has not yet been shown.
Apparent differences in palmitoylation’s

importance in Wnt signaling may reflect differ-

ences in levels of Wnt expression. In mamma-
lian and fly cell culture, overexpression may

overcome lack of palmitoylation. Consistent

with this, whereas Porc is required for endogen-
ous Wg signaling, it is not required when Wg is

overexpressed (Noordermeer et al. 1994). In

exploring relationships between Wnt glycosyla-
tion and lipidation, conflicting results were

also obtained in culture versus in flies. Site-

directed mutagenesis of Wnt3a and Wnt5a in
cell culture suggested glycosylation precedes

acylation and is required for ER export

(Komekado et al. 2007; Kurayoshi et al. 2007).
However, porc mutant fly embryos lacking

acylation have defects in Wg glycosylation

(Tanaka et al. 2002), suggesting acylation
precedes glycosylation. While species or Wnt-

specific differences may explain these discre-

pancies, care must be taken in interpreting
experiments in which Wnts are expressed at

nonphysiological levels.

GETTING OUT AND ABOUT—WNT
SECRETION AND TRANSPORT

For several Wnts, reaching the cell surface also

requires Wntless (Wls) and Retromer. Wls

(also known as Evi or Sprinter in flies and
MIG-14 inCaenorhabditis elegans) is an integral

membrane protein found in the Golgi, plasma

membrane, and endosomes (Banziger et al.
2006; Belenkaya et al. 2008; Franch-Marro

et al. 2008b; Port et al. 2008; Yang et al. 2008).

Retromer is a multiprotein complex that shut-
tles cargo from endosomes to the trans-Golgi

(Seaman 2005). Several recent reviews covered

these proteins in detail (Bartscherer and
Boutros 2008; Ching and Nusse 2006; Eaton

2008; Hardin and King 2008). In short, the

data suggest Wls is a “Wnt chaperone,” guiding
Wnts from the Golgi to the cell surface.
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Retromer mutants blockWnt secretion because

Wls is missorted to lysosomes (Belenkaya et al.

2008; Franch-Marro et al. 2008b; Pan et al.
2008a; Port et al. 2008; Yang et al. 2008).

Although this secretion mechanism is highly

conserved, it is not universal. DrosophilaWntD
is secreted independently of lipidation, Porc,

and Wls (Ching et al. 2008).

On secretion, Wnts move away from pro-
ducing cells to influence neighbors (Cadigan

2002; Capdevila and Izpisua Belmonte 2001;

Cayuso and Marti 2005; Strigini and Cohen
1999). One superb model for this is the

Drosophila larval wing imaginal disc, a flat

columnar epithelium. Wg is expressed along
the dorsoventral (D/V) boundary and moves

in both directions, forming a morphogen grad-

ient and regulating short- and long-range
targets in a concentration-dependent manner

(Cadigan 2002; Strigini and Cohen 1999).

Wg can directly act up to 20 cell diameters

from its synthesis site (Zecca et al. 1996).

Several factors influence Wg movement.
Glypicans are heparin sulfate proteoglycans

anchored to cell membranes via a glycerol phos-

phatidylinositol (GPI) linkage (Blair 2005).
Two glypicans, Dally andDally-like (Dly), influ-

ence Wg signaling in wing discs (Fig. 2). Dally

promotes signaling and is suggested to facilitate
Wg movement or act as a coreceptor (Franch-

Marro et al. 2005; Han et al. 2005). Interestingly,

Dly has different functions than Dally. Loss of
Dly increases expression of short-range targets

but decreases long-rangeWg signaling (Franch-

Marro et al. 2005; Han et al. 2005; Kirkpatrick
et al. 2004; Kreuger et al. 2004). Consistent

with this, dly mutants have reduced spread of

Wg from its synthesis site (Han et al. 2005;
Marois et al. 2006). A recent study suggests

Dly mediates transcytosis of apically secreted

Short-range

signaling

Adherens

junction

Short-range

signaling

Wg

Acyl group

Carbohydrate

Reggie-1

Lipoprotein

Dally-like

Long-range

signaling

Long-range

signaling

Wg

producing

cell

Apical Apical

Basolateral Basolateral

Figure 2. Model depicting Wg transcytosis and how this process could influence short- and long-range Wg
signaling in the wing imaginal disc. Wg is secreted apically from producing cells, where association with
extracellular glypican Dally-like directs it into endocytic vesicles. These Reggie-1-associated vesicles undergo
transcytosis and fuse with the plasma membrane to release Wg on the basolateral side of the epithelial sheet.
There, it can undergo long-range diffusion and signaling by associating with lipoproteins. See text for
further explanation.
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Wg, transporting it to the basolateral com-

partment (Gallet et al. 2008) where it then is

presumed to diffuse to activate long-range
targets.

Membrane microdomains also play roles in

Wg secretion/diffusion (Katanaev et al. 2008).
Reggie-1 (Flotillin-2) is a cytoplasmic com-

ponent of noncaveolin lipid microdomains

(Babuke and Tikkanen 2007; Langhorst et al.
2005). Reggie-1 loss strongly reduces long-

range Wg targets but has no effect on short-

range targets (Katanaev et al. 2008). Conversely,
Reggie-1 overexpression inhibits short-range

and activates long-range targets, even when

Reggie-1 expression is restricted to Wg-
expressing cells. As Reggie-1 is implicated in

vesicular trafficking (Babuke and Tikkanen

2007; Langhorst et al. 2008) andWg can associ-
ate with lipid rafts (Zhai et al. 2004), these data

suggest Reggie-1 workswithDly to promoteWg

transcytosis and subsequent long-range diffu-
sion (Fig. 2).

After transcytosis, how does Wg travel

across wing discs? Several proteins participate.
Wg can associate with lipoprotein particles,

which are required for long-range signaling

(Panakova et al. 2005). Endocytosis is proposed
to be less efficient basolaterally, facilitating

Wg diffusion (Marois et al. 2006). The Wg

receptors Fz, Fz-2, and Arrow can promote
Wg degradation (Han et al. 2005; Piddini

et al. 2005), while the secreted hydrolase

Notum can inhibit Wg signaling by modifying
Dally and Dly (Giraldez et al. 2002; Han et al.

2005; Kirkpatrick et al. 2004; Kreuger et al.

2004).
It is not clear whether wing imaginal discs

provide a general paradigm for Wnt transport.

Even in the fly embryonic epidermis, where
Wg signaling regulates cell fates (DiNardo

et al. 1994), thingsmay be different.Wg is inter-

nalized by secreting cells and recycled (Pfeiffer
et al. 2002), consistent with transcytosis.

However, while Dly is required forWg signaling

in this tissue (Franch-Marro et al. 2005), the
inhibitory role evident in wing discs is not

observed. Distinguishing general from tissue-

specific mechanisms for transport of Wg and
other Wnts remains an important goal.

ACROSS THE PLASMA MEMBRANE—
ASSEMBLING WNT SIGNALOSOMES

Wnt/bcat signaling is generally mediated by

two families of cell surface proteins: Fz family

serpentine receptors, and lipoprotein receptor-
related proteins (LRP) mammalian LRP5 and

LRP6 and fly Arrow (Arr) (Cadigan and Liu

2006; Gordon and Nusse 2006; He et al.
2004). Forced association of Fz and LRP/Arr
activates Wnt/bcat signaling (Cong et al.

2004; Holmen et al. 2005; Tolwinski et al.
2003), consistent with reports that Wnt pro-

motes Fz-LRP6 association in vitro (Tamai

et al. 2000).
Wnt signaling also promotes phosphoryl-

ation of PPPSPxS motifs in LRP6’s cytoplasmic

tail by GSK3 and CKI (Tamai et al. 2004;
Davidson et al. 2005; Zeng et al. 2005). LRP6

contains five PPPSPxP motifs and systematic

mutagenesis revealed that all five contribute to
signaling activity (MacDonald et al. 2008).

Phosphorylated LRP6 recruits Axin to the

plasma membrane, presumably inactivating the
Axin-APC bcat-destruction complex (Fig. 3)

(Tamai et al. 2004; Zeng et al. 2005).

Wnt stimulation also induces LRP6 oligo-
merization into a large ribosome-size structure,

termed the LRP6 signalosome (Fig. 3) (Bilic

et al. 2007). Wnt induces phospho-LRP6 aggre-
gates at the cell surface that colocalize with Dvls

(Bilic et al. 2007), cytosolic proteins containing

PDZ and DIX domains that are required for
Wnt/bcat signaling (Wallingford and Habas

2005; Wharton 2003). Intriguingly, Dvl forms

microscopic puncta in cells (Roberts et al.
2007; Wharton 2003) that are recruited to the

plasma membrane by Wnt signaling by inter-

action with Fzs (Cong et al. 2004; Wong et al.
2003). Dvl puncta are dynamic and form

through interactions between two portions of

Dvl DIX domains (Schwarz-Romond et al.
2007a). Dvl dimerization is not sufficient to

activate Wnt/bcat signaling; instead, higher

order oligomers are required (Schwarz-
Romond et al. 2007a). Although Dvl could

not be detected in LRP6 signalosomes (Bilic

et al. 2007), this may be because of its
dynamic properties and instability in vitro.
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However, imaging studies in living cells sup-
port a model in which Wnt induces a large

plasma membrane complex of phospho-LRP,

Fz, and Dvl.
Axin is found in LRP signalosomes (Bilic

et al. 2007), consistent with phospho-LRP

binding Axin (Tamai et al. 2004; Zeng et al.
2005). GSK3 is also in signalosomes (Bilic

et al. 2007) and Axin is required for LRP phos-

phorylation (Zeng et al. 2008). This suggests
signalosome formation is not strictly linear.

Rather, LRP phosphorylation initially recruits

Axin, bringing additional GSK3 to promote
more LRP phosphorylation. This positive

feedback loopmay be important in signalosome

formation (Fig. 3); consistent with this, Dvl
puncta can recruit Axin and CKI (Schwarz-

Romond et al. 2007b). InDrosophila, biochemi-

cal evidence for Arrow signalosomes has not
yet been reported. Analysis of chimeric Arrow

receptors argues for distinct initiation and
amplification steps in Wg signaling (Baig-

Lewis et al. 2007), which could be consistent

with the vertebrate model (Fig. 3).
A recent report added to the complexity of

LRP6 signalosomes (Pan et al. 2008b). siRNA

screening revealed that phosphatidylinositol
4-kinase type IIa (PI4KIIa) and phosphatidyl-

inositol-4-phosphate 5-kinase type I (PIP5KI)

are required for Wnt-induced LRP-phosphory-
lation and bcat accumulation in culture,

and Wnt/bcat signaling in Xenopus (Pan et al.

2008b). PI4KII and PIP5KI produce phos-
phatidylinositol (4,5)bis-phosphate (PIP2)

(Doughman et al. 2003), and delivery of PIP2

to cells stimulated Wnt signaling, whereas
PIP2 depletion reduced LRP-phosphorylation

by Wnt (Pan et al. 2008b). Wnt stimulation

also increased PIP2 formation. This was
Dvl-dependent, and recombinant Dvl activates
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Figure 3. Model for the Wnt-induced formation of LRP5/6 signalosomes. In the absence of Wnt (at the left),
LRP and Fz receptors are unassociated in the plasma membrane. Some data suggest that Fz may be coupled
to trimeric G proteins, with the Gao subunit in the inactive GDP-bound form. PIPKIIa (not shown for
simplicity) and PIP5KI are membrane associated but inactive. The destruction complex (Axin, APC, GSK,
and CKI) phosphorylates bcat, tagging the protein for ubiquitination and proteosomal degradation (see text
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phosphorylation of the cytoplasmic tail of LRP5/6 by CKI and GSK3 and recruitment of the destruction
complex by binding to Axin. In addition, Gao is converted to its active GTP-bound form. One potential
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accumulation of hypophosphorylated bcat, which can then translocate to the nucleus. See text for more details.

K.M. Cadigan and M. Peifer

6 Cite this article as Cold Spring Harb Perspect Biol 2009;1:a002881

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


PIPKI in vitro, suggesting a new role for Dvl.

PIP2 is required for LRP6 signalosome for-

mation, and PIP2 is enriched in fractions con-
taining signalosomes (Pan et al. 2008b). This

provides strong evidence for PI kinases and

PIP2 in Wnt receptor function (Fig. 3).
If Dvl binds and activates PIP5KI, how is

Dvl activated by Wnt signaling? One possibility

is through Fz-mediated G protein signaling.
Studies in both mammalian cell culture (Liu

et al. 2005) and Drosophila (Katanaev et al.

2005) suggest Gao is required for Wnt/bcat
signaling. This requirement is upstream of Dvl

(Katanaev et al. 2005), suggesting a model in

which information is passed from Fz to Gao
to Dvl (Fig. 3).

How do LRP signalosomes promote bcat

accumulation? Wnt stimulation or LRP overex-
pression decrease Axin protein levels in several

systems (Kofron et al. 2007; Mao et al. 2001;

Tolwinski et al. 2003), which should compro-
mise the destruction complex. LRP-mediated

Axin down-regulation and inhibition of bcat

degradation can be recapitulated in vitro, but
LRP still stabilizes bcat when endogenous

Axin is replaced with a nondegradable version

(Cselenyi et al. 2008). LRP’s phosphorylated
tail can directly inhibit GSK3 activity

(Cselenyi et al. 2008; Piao et al. 2008), which

may contribute to destruction complex inhi-
bition. Consistent with this, dephosphorylated

bcat and APC are recruited to the plasmamem-

brane on Wnt signaling (Hendriksen et al.
2008). Interestingly, dephosphorylated bcat

generated by LRP6 activation is much more

potent (molecule for molecule) at activating
Wnt target genes than overexpressed non-

phosphorylatable bcat (Hendriksen et al.

2008); thus, additional bcat activation events
may occur on receptor activation.

LRP signalosomes also colocalize with

Caveolin-1, a caveolae marker (Bilic et al. 2007).
Functional connections between Wnt/bcat sig-
naling and Caveolin-1 were reported, suggesting

that caveolae-induced endocytosis of LRP6 is
required for signaling (Yamamoto et al. 2006).

However, caveolin-1, caveolin-2, and caveolin-3

knockouts are all viable, as are caveolin-1
caveolin-3 double knockouts (Le Lay and

Kurzchalia 2005), suggesting that they do not

play essential roles. In fact, caveolin-1 mutants

were reported to have increasedWnt/bcat signal-
ing (Sotgia et al. 2005).Drosophila lacks recogniz-

able Caveolins (Le Lay and Kurzchalia 2005),

suggesting that caveolae are not essential for Wg
signaling.

IF IT IS IN THE TEXTBOOK, WHY ARE YOU
STILL STUDYING IT?

The canonical model for Wnt regulation was an

important advance, and is widely accepted
and incorporated into cell biology textbooks.

However, this overstates our knowledge of how
things actually work: Many key questions

remain. Given thatAxin,which binds numerous

partners, is likely the scaffold for destruction-
complex assembly, APC’s mechanistic role

remains mysterious. Second, it is not clear

where the destruction complex resides, or
whether its localization changes on Wnt sig-

naling to modulate inactivation. Third, the

detailed biochemical interactions modulating
bcat phosphorylation and release to the E3

ubiquitin-ligase remain to be elucidated.

Finally, the multiple APC and Axin family
members in many animals raise questions

about differential function or redundancy.

With the realization that Axin is the scaffold
for destruction-complex assembly, the search

began for other APC mechanisms of action.

One model is that APC helps localize the
destruction complex to the correct location

(Fig. 4A). There has been substantial difficulty

in localizing endogenous Axin, though if over-
expressed it forms large cytoplasmic puncta.

GSK3 and CKI both accumulate throughout

cells, reflecting their many substrates. Thus,
the clearest picture came from studying APC.

Both mammalian APC (Näthke et al. 1996)

and Drosophila APC2 (McCartney et al. 1999;
Yu et al. 1999) are enriched at the cortex of

epithelial cells, suggesting this may be the

normal location of the destruction complex.
Consistent with this, missense mutations in fly

APC2 exhibit a strong correlation between loss

of cortical protein localization and loss of func-
tion in Wnt regulation (McCartney et al. 2006).
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The apical cortex is attractive, as it brings APC

into proximity of at least a subset of Fz receptors

(Wu et al. 2004).
However, other data is less consistent with

this model. Although fly APC1 and APC2 are

redundant in many tissues (Ahmed et al.
2002; Akong et al. 2002a), their intracellular

localizations are quite distinct. APC1 localizes

to axons in neurons, and to centrosomes and
microtubules when overexpressed (Akong

et al. 2002a; Akong et al. 2002b; Hayashi et al.

1997). APC1 and APC2 have similar differ-
ential localization in male germline stem cells

(Yamashita et al. 2003). How do we explain

this? Possibilities include: (1) Each APC local-
izes to the other location at lower but still func-

tional levels, (2) The destruction complex can

function at several locations, or (3) APC does
not localize the destruction complex. Over-

expressed Axin recruits APC to cytoplasmic

puncta (e.g., Faux et al. 2008), perhaps
consistent with the latter conclusion, but

colocalization of endogenous APC and Axin is

difficult to detect. It is also important to

remember that APC proteins have Wnt inde-
pendent cytoskeletal functions (Näthke 2006),

and thus many of the sites where APC proteins

localize, including their predominant locali-
zation sites, may reflect these cytoskeletal

functions rather than the localization of the

destruction complex.
Strikingly, in C. elegans, localization of Wnt

signaling proteins during Wnt-mediated asym-

metric divisions suggests a different way of
wiring the pathway (Mizumoto and Sawa

2007; Takeshita and Sawa 2005). Apr-1 (APC),

Pry-1 (Axin), and Dvl homologs all localize
to the cortex, and do so asymmetrically.

Surprisingly, Wrm-1/bcat acts at the cortex to

inhibit Wnt signaling, a striking reversal of
canonical signaling, whereas cortical Apr-1

mediates nuclear “export” of Wrm-1 (these

data might also be explained by cytoplasmic
Wrm-1 retention). Thus, natural selection can
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reshape even this highly conserved pathway;

similar asymmetries may occur in other

animals (Schneider and Bowerman 2007).

REGULATING bCAT DESTRUCTION IS A
COMPLEX TOPIC

Other models for APC function arose from

structural/biochemical studies. The Weis and

Xu laboratories examined affinities of bcat for
both APC and Axin (Choi et al. 2006; Ha

et al. 2004; Liu et al. 2006; Xing et al. 2003).

The results were intriguing. Under basal con-
ditions, bcat’s affinity for Axin is higher than

that for APC. However, if APC is phosphory-
lated by GSK3 within the bcat-binding 20-

amino acid (aa) repeats, APC has a higher affi-

nity for bcat than Axin. This led Kimelman
and Xu (2006) to propose that the destruction

complex goes through a cycle of structural

rearrangements (Fig. 4B). It assembles with
Axin bound to bcat, because of its higher affi-

nity. bcat and APC are both phosphorylated

by GSK3, triggering transfer of bcat to APC.
This is suggested to facilitate bcat transfer to

the E3 ubiquitin ligase, with presumed APC

dephosphorylation by PP2A resetting the
system. This is an intriguing model, which can

be tested by site-directed mutations in APC.

In contrast, Weis’ laboratory interpreted
their data differently. They directly showed

that Axin can be a scaffold for substrate phos-

phorylation (Ha et al. 2004). However, phos-
phorylated APC bound to bcat is not

accessible to dephosphorylation (albeit by

PP1, not PP2), inconsistent with the catalytic
cycle model. They suggest that altered APC

affinity for bcat allows it to accommodate dras-

tically different bcat levels in the presence or
absence of Wnt signal.

Recent data support a role for APC in facil-

itating transfer of phospho-bcat to the E3
ubiquitin ligase (Su et al. 2008). In a cell-free

system, extracts from APC mutant colon

cancer cells can phosphorylate but not ubiquiti-
nate bcat, consistent with Axin playing the

primary scaffolding role. Adding tagged APC

restores ubiquitination. Added APC also
restores the ability of phospho-bcat to coIP

with bTrCP. Finally, APC can protect

phospho-bcat from dephosphorylation. These

results are quite interesting, and suggest trans-
ferring bcat from the destruction complex to

the E3 ligase is an important APC role.

DECONSTRUCTING THE DESTRUCTION
COMPLEX

Full mechanistic understanding requires dis-
secting the moving parts of the destruction

machine. Several laboratories did so. Wehrli’s

laboratory examined Axin’s mechanism of
action by site-directedmutagenesis and analysis

in vivo in Drosophila (Peterson-Nedry et al.
2008). Their results were quite surprising.

Substantial Axin function was retained by

proteins lacking binding sites for APC (the
RGS domain) or for bcat. Even Axin lacking

the GSK3 binding site retained some function.

These data suggest that the destruction com-
plex is stabilized by multiple interactions, with

individual protein contacts somewhat dispen-

sable. Strikingly, mutants lacking the PP2A
binding site or Dix domain had phenotypes

suggesting that these mutant proteins could

not be turned off by Wnt signaling, consistent
with proposed roles for PP2A and Dvl in

inactivating the destruction complex. Finally,

an Axin mutant lacking the bcat binding site
was complemented in trans by one lacking the

APC binding site, suggesting that the functional

destruction complex contains multiple copies
of Axin.

APCs are also complex mosaics (Näthke

2006; Polakis 2007). All share core domains
that together are sufficient for Wnt regulation:

Arm repeats, 15- and 20-aa repeats that bind

bcat, and SAMP repeats that bind Axin. Many
APCs also carry carboxy-terminal extensions,

allowing interactions with microtubules, the

microtubule plus-end binding protein EB1,
and other partners, presumably modulating

cytoskeletal functions. Colon tumors carry

truncated APC proteins lacking a subset of
bcat binding sites and all the Axin-binding

SAMP repeats (Polakis 1995). In mice, a trun-

cated APC lacking the cytoskeletal-interacting
carboxyl terminus but retaining one SAMP
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motif still regulates Wnt signaling (it is homo-

zygous viable) (Smits et al. 1999). In contrast,

loss of 65 additional amino acids abrogated
Wnt signaling. This complemented earlier

work in cultured colon cancer cells, which also

suggested key roles for 20-aa and SAMP
repeats (Munemitsu et al. 1995; Rubinfeld

et al. 1997).

All APCs share amino-terminal Arm repeats
(Peifer et al. 1994), known binding sites for

several protein partners (Näthke 2006). In

Drosophila APC2, the Arm repeats play key
roles in Wnt signaling (McCartney et al. 2006;

Hamada and Bienz 2002; McCartney et al.

1999). Both the Arm repeats and the region
including the 20-aa and SAMP repeats are

important for APC2’s cortical localization

(McCartney et al. 2006), supporting the
hypothesis that APC2 acts at the cortex in

Wnt regulation and suggesting the existence of

an unidentified cortical partner.
Two APC2 alleles precisely mimic trunca-

tions in human tumors (Polakis 2007), allowing

testing of hypotheses concerning roles of trun-
cated proteins. Some suggested that they have

dominant-negative effects on Wnt signaling or

chromosome segregation, and it remained
unclear whether they are null for Wnt regu-

lation. Phenotypic comparisons with the null

allele revealed that truncated APCs are severely
impaired but not null for Wnt signaling. They

do not have dominant-negative effects on Wnt

signaling, although they can have dominant-
negative effects on cytoskeletal events

(McCartney et al. 2006). These data support

the “just-right” hypothesis (Albuquerque et al.
2002), suggesting that selection during develop-

ment of colon polyps favors mutations that

reduce but do not eliminate APC regulation,
producing just the right level of Wnt signal.

Behrens’ laboratory explored possible roles

of another conserved sequence they term the
CID (Kohler et al. 2009), using a cultured cell

assay pioneered by Polakis (Munemitsu et al.

1995; Rubinfeld et al. 1997). To their surprise,
truncated APC lacking all SAMP repeats sub-

stantially rescued bcat regulation, in contrast

to what is seen in mice (Smits et al. 1999).
Instead, they saw a sharp drop in rescuing

ability when they removed the CID, a sequence

conserved in both insect and both mammalian

APCs. As the authors point out, these data are
somewhat paradoxical, because some colon

tumors carry truncated APCs retaining CID.

They find that different colon cancer cell lines
differ in their ability to be rescued by

SAMP-less fragments, suggesting that differ-

ences at other loci are important. These data
also reinforce the idea that multiple protein

interactions are likely important to assemble a

functional destruction complex.

APC IN AND OUT OF NUCLEI

Although regulating bcat stability is critical for

Wnt signaling, some data suggest additional

roles for APC and Axin in Wnt regulation. One
early, plausible suggestion was that the destruc-

tion complex is also a cytoplasmic anchor for

bcat, reducing activation of Wnt target genes
(Fig. 4C) (Tolwinski and Wieschaus 2001).

Wieschaus’ laboratory found that Wnt signal-

ing alters Axin stability, thus regulating its cyto-
plasmic anchoring function (Tolwinski et al.

2003). Others provided evidence for an anchor-

ing role for APCs (Ahmed et al. 2002; Akong
et al. 2002a; Krieghoff et al. 2006). It seems

likely that cytoplasmic retention plays an

important modulatory role, working together
with targeted destruction.

Others suggested APC acts in other cellular

compartments. Nuclear localization and export
signals on APC led to the suggestion that

it regulates bcat nuclear export (Fig. 4D)

(reviewed in Brocardo and Henderson 2008).
Two papers support an even more direct role

for APCs in nuclei (Fig. 4D). Hamada and

Bienz (Hamada and Bienz 2004) identified
interactions between APC and the transcrip-

tional repressor (carboxy-terminal binding

protein [CtBP]) by proteomics. They argue
that nuclear CtBP, by binding APC and thus

indirectly recruiting bcat, is a nuclear bcat

sink (see Fig. 5), reducing TCF association and
thus reducing Wnt-regulated transcription.

Even more direct action is envisioned by

Jones’ laboratory (Sierra et al. 2006). APC can
be ChIPed at the Wnt target gene c-myc.
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Strikingly, it binds there with bTrCP and CtBP.

They suggest that transient APC recruitment

leads to long-term repression, and argue that
carboxy-terminally truncated APCs in colon

tumors, which no longer interact with CtBP,

are impaired in this. These possible direct
roles for APC in repressing bcat-driven tran-

scription are intriguing. However, activating

bcat mutants, lacking single phosphorylation
sites and thus not targeted for destruction, can

cause colorectal and other cancers (Polakis

2007), suggesting that regulating bcat stability
is APC’s primary role, with other roles likely

to be modulatory.

DOUBLE THE FUN

Questions about APC function are further
complicated by the two family members in

mammals (APC and APC2) and Drosophila

(APC1 and APC2). All four regulate bcat sta-
bility, so their shared core domains must be

sufficient for this. Fly APC1 negatively regulates

Wnt signaling in the eye (Ahmed et al. 1998),
whereas fly APC2, which is more broadly

expressed, regulates Wnt signaling in the

embryonic epidermis (McCartney et al. 1999).
However, in many tissues, they are functionally

redundant (Ahmed et al. 2002; Akong et al.

2002a). Further, even in tissues in which one
has the predominant role, removing the other

enhances Wnt activation (Akong et al. 2002a;

Benchabane et al. 2008). This argues that even
low levels of APC, near the detection threshold,

confer residual function. Redundancy among

mammalian APCs could explain why APC

mutants are found only in colorectal tumors

and not other tumors in which Wnt activation

is implicated (Polakis 2007); however, the lack
of published mouse APC2 mutants precludes

this analysis.

Exploring functions of the two fly APCs led
to further insights (Takacs et al. 2008). In

screening for mutations suppressing the APC1

eye phenotype, Ahmed’s laboratory obtained
APC2 alleles. This was surprising, because in

other contexts the two APCs act redundantly,

and suggests that APCs play positive as well as
negative roles in Wnt signaling. Their data

further suggest that APC can promote Axin

turnover, likely in response to Wnt signals,

and suggest that this requires the Arm repeats,
while the carboxy-terminal region is dispensa-

ble. These striking findings remind us that feed-

back regulation is likely to play a role in
signaling. The mechanism for targeting Axin

for proteolysis remains to be determined. The

HECT domain E3 ubiquitin-ligase Edd binds
to APC, but stabilizes rather than destabilizes

Axin and APC (Ohshima et al. 2007) suggesting

even more complexity in feedback regulation.
There are also two mammalian Axins, with

presumed functional overlap. Axin loss leads

to early embryonic lethality (Zeng et al. 1997).
Axin2/Conductin mutants are viable with cra-

niofacial defects in mice (Yu et al. 2005) and

human patients (Lammi et al. 2004). Chia and
Constantini (2005) tested functional equiva-

lence by knocking Axin2 into the Axin locus;

this resulted in a viable, normal mouse. Flies
have only a single Axin, which is essential for

Wnt regulation (Hamada et al. 1999; Willert

et al. 1999). In contrast, C. elegans also has
two Axins. Both diverged dramatically from

mammalian and fly Axins, retaining only recog-

nizable RGS and Dix domains (Korswagen et al.
2002; Oosterveen et al. 2007). The two worm

Axins functionally overlap; axl-1 mutations

enhance many pry-1 phenotypes, while Axl-1
has phenotypes in some tissues unaffected by

Pry-1 loss. The reduced sequence similarity

and altered protein interactions call into ques-
tion the universality of mechanisms of regulat-

ing bcat.

AND IF THAT WAS NOT COMPLEX
ENOUGH, LET US ADD NEW PLAYERS

Recent work identified several other potential

Wnt regulators. One is Wtx/Amer, originally

identified as a gene mutated in renal Wilms
tumors (Rivera et al. 2007). Other Wilms

tumors have activating mutations in bcat

(Koesters et al. 1999), suggesting that Wnt sig-
naling plays a role in pathogenesis. Two recent

papers independently connected Wtx to Wnt

signaling. Moon’s laboratory used proteomics
to identify new partners of bcat, APC, and
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Axin (Major et al. 2007). Among themwasWtx,

which bound all three TAP-tagged baits. Wtx

can also interact directly with bTrCP, suggesting
that it might help bridge the destruction

complex and E3 ligase. In vivo assays in

Xenopus supported a role in negativeWnt regu-
lation. However, changes in bcat stability and

Wnt pathway activation were milder than

those caused by loss of core components of
the destruction machinery.

In parallel, Behrens’ laboratory identified

Wtx (they refer to it as Amer1) in a two-hybrid
screen for proteins interacting with APC’s Arm

repeats (Grohmann et al. 2007).Wtx can recruit

APC to the plasma membrane, perhaps by
binding PIP2, and Wtx positively regulates

APC stability. These two datasets are distinct

but consistent—stabilizing APC would
promote bcat destruction. However, much

more remains to be learned aboutWtx function.

Wtx has a second vertebrate paralog, which
might explain the relatively modest effects of

knockdown in Xenopus and the presence of

Wtx mutations in Wilms’ but not other
tumors (Yoo et al. 2008). Surprisingly,

however, there are no Wtx homologs in flies

or worms, suggesting that it is not a universal
part of the pathway.

Another possible vertebrate-specific Wnt

regulator is the cytoskeletal protein MCAF,
which cross-links actin, intermediate filaments,

and microtubules. MACF1 mutant mice are

embryonic lethal (unlike its paralog BPAG,
which has postnatal neural defects) (Chen et al.

2006). Although MACF embryos do not die

until E11.5, they arrest at E7.5, and lack meso-
derm and the primitive streak. The phenotype

is similar to that ofWnt3a or LRP 5 þ 6 knock-

outs, thoughmarker analysis in theMACF study
is relatively limited.MACF1 can coIP with Axin,

APC, bcat, and GSK3, suggesting that it associ-

ates with the destruction complex, and that
MACF1 siRNA blunts Wnt3-induced transcrip-

tion and reduces bcat levels. MACF1 also coIPs

with LRP5/6, suggesting a possible role in
destruction complex inactivation. Consistent

with this, MACF1 knockdown reduces Axin

recruitment to the membrane after Wnt treat-
ment. It will be interesting to further examine

phenotypic similarities and differences

between MACF1 and other key Wnt pathway

proteins. The lack of reported Wnt phenotypes
of mutations in Shortstop, the fly homolog,

suggest that MACF1’s role in Wnt signaling

may also be vertebrate-specific.
Bejsovec’s laboratory discovered another

novel negative regulator, Rac-GTPase-activating-

protein RacGAP50C, in screening for modifiers
of Drosophila wg mutants (Jones and Bejsovec

2005). It may act in synergy with Naked

cuticle (Nkd). RacGAP50C has a known role
in cytokinesis (Gregory et al. 2008; Zavortink

et al. 2005), but its role inWnt signaling is inde-

pendent of this, and, surprisingly, independent
of GAP activity. The mechanism by which

RacGAP50C acts, and whether its mammalian

homolog regulates Wnt signaling remain to be
determined.

Nkd and itsmammalian homologs alsomay

differ in their importance in flies andmammals.
Both bind Dvl (e.g., Rousset et al. 2001;

Wharton et al. 2001), but their function is

unknown. Fly Nkd is a key negative regulator
(Zeng et al. 2000), although signaling is not

activated to quite the same degree as is seen

on complete destruction complex inactivation.
Overexpressing zebrafish Nkd homologs sup-

presses both canonical and noncanonical Wnt

signaling (Van Raay et al. 2007). Surprisingly,
however, Nkd1 and Nkd2 single mutant mice

and even Nkd1 Nkd2 double mutants are

viable and relatively normal (Zhang et al.
2007). Double mutants have subtle cranial

abnormalities like those of Axin2. Thus, Nkd

is a relatively minor modulator of mammalian
Wnt signaling.

INTO THE NUCLEUS—TARGET GENE
REGULATION BY bCAT/ARM

On entry into the nucleus, stabilized bcat/Arm
transcriptionally regulates Wnt target genes.

However, bcat/Arm cannot bind DNA. Rather,

it is a coregulator, binding to transcription
factors. Members of the TCF family of high

mobility group (HMG) DNA-binding proteins

are responsible formuch of this regulation. Flies
and worms have only one TCF (TCF/Pangolin
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and POP-1, respectively). Mammals have four

TCFs (TCF1, Lef-1, TCF-3, and TCF-4). In

addition to TCFs, several other transcription
factors can recruit bcat to target genes, includ-

ing mouse PitX1 (Kioussi et al. 2002), Xenopus

SOX17 (Sinner et al. 2004), and C. elegans

FOXO-1 (Essers et al. 2005). Here, we focus

on the mechanism by which bcat/Arm regu-

lates transcriptional activity of TCFs.
TCFs are thought to be bimodal regulators

of Wnt targets (Fig. 5). In the absence of

signal, they act with corepressors to keep Wnt

target genes silenced. bcat/Arm binding to

TCF antagonizes this repression and recruits

additional coactivators, inducing target gene
expression. Thus, TCF is a transcriptional

switch, with bcat/Arm converting repression

to activation (reviewed in Parker et al. 2007;
Stadeli et al. 2006; Willert and Jones 2006).

TCFs recognize specific DNA sequences

through their HMG domains (Laudet et al.
1993). Several studies of different TCFs largely

agree that CCTTTGAT is a high affinity site

for the HMG domain (Barolo 2006). However,
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recruiting HDACs. In addition, the ISWI-ACF1 is recruited to the WRE in a TCF-independent way. Although
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TCF can also bind motifs differing from this

consensus (Hallikas et al. 2006). In addition,

several Wnt response elements (WREs) in flies
have functional TCF-binding sites varying sig-

nificantly from the consensus (Chang et al.

2008a; Lee and Frasch 2000; Riese et al. 1997).
Given the degeneracy of DNA recognition by

TCF, potential binding sites are found with

high frequency throughout the genome. This
suggests that additional sequence information

may exist to specify which TCF sites can act

as WREs.
For some TCFs, an additional DNA-binding

domain was recently shown to provide greater

DNA-binding specificity. Some mammalian
TCF isoforms (TCF-1E and TCF-4E) contain

an additional motif carboxy-terminal to the

HMG domain, allowing them to bind an
extended DNA sequence (Atcha et al. 2007).

This 30-residue motif—the C-clamp—is

highly conserved in invertebrate TCFs (Atcha
et al. 2007). The extended sequence it binds

(RCCG; R¼A or G) resembles the sequence of

“TCF helper sites” (GCCGCCR), recently dis-
covered in several fly WREs, where they are as

essential for Wnt responsiveness as classic

TCF-binding sites (Chang et al. 2008b). These
WREs require the TCF C-clamp for activation,

and in vitro DNA binding studies suggest fly

TCF binds in a bipartite manner, with the
HMG domain binding the classic site and the

C-clamp binding the Helper site (Chang et al.

2008b). This mechanism appears to be essential
in flies (where all major TCF isoforms contain a

C-clamp) and raises the question of how ver-

tebrate TCFs lacking a C-clamp efficiently
locate their targets.

In the absence of Wnt stimulation, TCF is

thought to silence target gene expression by
recruiting corepressors (Fig. 5). TCFs can

bind TLE/Groucho/Grg family corepressors

(Cavallo et al. 1998; Daniels and Weis 2005;
Roose et al. 1998). Flies only contain one

family member (Groucho), which clearly con-

tributes to silencing in the absence of Wnt
signaling (Cavallo et al. 1998; Fang et al. 2006;

Mieszczanek et al. 2008). TLE and bcat

compete for binding to TCF (Daniels and
Weis 2005). Consistent with this, TLE1 can

occupy Wnt target gene chromatin in a recip-

rocal manner as bcat (Sierra et al. 2006). Like

TLEs, mouse myeloid translocation gene
related-1 (Mtgr1) was recently reported to

bind to TCF4 and contribute to target gene

silencing (Moore et al. 2008).
In addition to this corepressor mechanism,

other factors contribute to silencing Wnt target

genes in flies by acting in parallel to TCF
(Fig. 5). CtBP is required for silencing Wnt

targets, and is at WREs in a pattern similar to

fly TCF (Fang et al. 2006). However, depleting
TCF by RNAi had no effect on CtBP occupancy

and CtBP appears to repress target gene

expression in parallel to TCF/Groucho (Fang
et al. 2006). The DNA-dependent ATPase

ISWI, part of the ACF chromatin remodeling

complex, is required for repression of Wnt
targets in flies (Liu et al. 2008). Like CtBP, it is

found at WREs and its localization is TCF-

independent (Liu et al. 2008). Presumably,
ISWI silences Wnt targets by repositioning

nucleosomes at WREs. Intriguingly, although

ISWI is localized to WREs, the ACF1 subunit
of ACF is broadly distributed across Wnt

target loci (Liu et al. 2008) (Fig. 5).

Repression of Wnt targets is relieved when
sufficient bcat enters nuclei and binds TCF.

TCF’s amino terminus directly binds bcat’s

Arm repeats in vitro (Daniels and Weis 2002;
Graham et al. 2000), but several other factors

regulate this association in cells. Chibby and

ICAT bind to bcat’s carboxy-terminal region,
preventing TCF-bcat interaction (Tago et al.

2000; Takemaru et al. 2003). Sox 9 can

also compete with TCFs for bcat binding
(Akiyama et al. 2004), and a complex of APC

and CtBP can bind nuclear bcat and divert it

from TCF binding (Hamada and Bienz 2004).
These proteins act as TCF-bcat “buffers,” ensur-

ing the proper threshold of bcat is achieved

before it complexes with TCFs (Fig. 5).
In addition to proteins antagonizing TCF–

bcat interactions, recent reports identified

factors required to stabilize the complex on
target gene chromatin. The related transducin

beta-like proteins TBL1 and TBLR1 are req-

uired to stabilize TCF-bcat on target genes in
mammalian and fly cell culture. They appear
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to do so through direct interactions with both

TCF and bcat (Li andWang 2008). In mamma-

lian cells and zebrafish embryos, nuclear Dvl
and c-Jun form a complex with TCF and bcat

to promote target gene expression (Gan et al.

2008). These studies suggest that TCF-bcat inter-
action on its own is not sufficient under physio-

logical conditions, and needs additional protein-

protein contacts to remain on target chromatin
long enough to activate gene expression.

After recruitment to TCFs at target gene

loci, bcat/Arm acts as a platform for recruiting
additional coactivators (Fig. 5). Many bcat-

binding factors are implicated in activating

Wnt targets (reviewed in Parker et al. 2007;
Stadeli et al. 2006; Willert and Jones 2006).

Many, such as the histone acetyltransferases

CBP and p300 (Hecht et al. 2000; Li et al.
2007b; Sun et al. 2000; Takemaru and Moon

2000) and Parafibromin/Hyrax (Mosimann

et al. 2006), bind the last two Arm repeats and
carboxyl terminus of bcat and promote target

gene activation. In addition, the amino-

terminal portion of bcat/Arm recruits Legless
(Lgl) in flies (Hoffmans and Basler 2004;

Kramps et al. 2002) and BCL9 or BCL9-2 in ver-

tebrates (Brembeck et al. 2004; Hoffmans and
Basler 2007; Kramps et al. 2002; Sustmann

et al. 2008). Lgl/BCL9 in turn recruits the

PHD-finger protein Pygopus (Pygo) to the acti-
vation complex (Kramps et al. 2002; Stadeli and

Basler 2005). These studies suggest that bcat/
Arm’s amino and carboxyl termini are both
required to recruit distinct coactivators for acti-

vation of Wnt targets.

Intensive study of fly Pygo offers a glimpse
of the complexities of transcriptional acti-

vation. In addition to Pygo’s PHD domain,

which binds Lgs, Pygo also contains a conserved
amino-terminal homology domain (NHD).

This is proposed to promote Wnt target acti-

vation by binding the mediator complex sub-
units Med12 and Med13 (Fig. 5) (Carrera

et al. 2008), as well as the TFIID complex

subunit TAF4 (Wright and Tjian 2009). In
addition, Pygo’s PHD domain can bind

histone H3 methylated at lysine 4 (H3K4me).

This is dependent on Lgs and is important for
Pygo function in vivo (Fiedler et al. 2008).

In addition to a direct role in connecting the

TCF-Arm-Lgs complex to Mediator and basal

transcription machinery, Pygo and Lgs are
also reported to regulate Armnuclear transloca-

tion (Townsley et al. 2004). Furthermore, Pygo

is found at WREs in the absence of signaling
(de la Roche and Bienz 2007) and functions

as an antirepressor, counteracting Groucho

(Mieszczanek et al. 2008). Thus, Pygo acts at
multiple levels to promote activation of Wnt

target genes in flies.

Given the several roles it plays inWnt signal-
ing, it is perhaps not surprising that Pygo is

required for Wnt signaling throughout fly

development (Belenkaya et al. 2002; Kramps
et al. 2002; Parker et al. 2002; Thompson et al.

2002). However, even though Pygo’s biochemi-

cal properties are conserved in mammalian
Pygo1 and Pygo2 (Fiedler et al. 2008; Kramps

et al. 2002), pygo1, pygo2 or double knockouts

in mice have a surprisingly mild decrease in
Wnt signaling (Li et al. 2007a; Schwab et al.

2007; Song et al. 2007). Perhaps this is because

mouse BCL9 contains its own transactivation
domain (Sustmann et al. 2008). As the field

becomes more sophisticated in understanding

how Wnt target genes are activated, discrepan-
cies between different phyla may become more

commonplace.

Although extensive protein–protein inter-
actions are clearly critical for TCF-bcat to

activate target gene expression, chromatin

modifications also play a key role. Several stud-
ies in mammals showed an increase in acety-

lation of the histone H3 and H4 N-termini

at WREs in response to pathway activation
(Fig. 5) (Feng et al. 2003; Kioussi et al. 2002;

Sierra et al. 2006), consistent with correlation

between histone acetylation and gene activation
(Grewal and Moazed 2003; Robyr et al. 2002).

Increased H3 and H4 acetylation was also

observed in fly cells, but here the increase was
observed over the entire target gene, up to 30

kB away from the WREs (Parker et al. 2008).

This increased histone acetylation still occurred
when transcription was blocked, but was de-

pendent on CBP. Interestingly, CBP histone

acetyltransferase was restricted to the WRE
(Parker et al. 2008). The purpose of widespread
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histone acetylation is not clear, though it

appears to be needed to displace ACF1, which

is broadly distributed across silenced Wnt tar-
gets (Liu et al. 2008).

Finally, TCF-bcat can also directly repress

transcription (Hoverter and Waterman 2008);
targets include decapentaplegic in fly imaginal

discs (Theisen et al. 2007), E-cadherin in

mouse keratinocytes (Jamora et al. 2003), and
p16INK4a in melanomas (Delmas et al. 2007).

In these cases, TCF acts through traditional

sites, but TCF-Arm repression of Ugt36Bc in
fly hemocytes occurs through highly divergent

sites (Blauwkamp et al. 2008). Converting

these divergent sites to classic ones results in
Wnt signaling activating this WRE, arguing

that DNA allosterically regulates the TCF-Arm

complex in a profound manner. The prevalence
of Wnt-mediated direct repression relative to

the more commonly recognized transcriptional

activation is one of many important questions
requiring further study.

CONCLUSIONS

The past 5 years provided dramatic new insights
into the mechanisms of Wnt signaling and its

roles in development and disease. However,

they also raised many new questions that
promise to make the next 5 years equally excit-

ing. For example, the roles of lipid modifi-

cations and the mechanisms of Wnt transport
remain to be clarified. Signaling by Fz and

LRP/Arrow, including possible roles for

G-proteins, the function of Dvl, and the mech-
anisms by which the destruction complex

is inactivated, are active areas of research.

Interesting questions remain about the function
of APC in the destruction complex, the location

at which bcat regulation occurs, and the nature

of the catalytic cycle. Within the nucleus, hot
topics include how TCF selects sites from the

entire genome, how TCF complexes mediate

both activation and repression, and which tran-
scriptional partners are general and which are

target gene or tissue specific. Despite the size

of the Wnt community, we will have our
hands full addressing these issues.
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