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Abstract: The Wingless (Wnt)/β-catenin pathway has long been associated with tumorigenesis, tumor

plasticity, and tumor-initiating cells called cancer stem cells (CSCs). Wnt signaling has recently been

implicated in the metabolic reprogramming of cancer cells. Aberrant Wnt signaling is considered

to be a driver of metabolic alterations of glycolysis, glutaminolysis, and lipogenesis, processes

essential to the survival of bulk and CSC populations. Over the past decade, the Wnt pathway has

also been shown to regulate the tumor microenvironment (TME) and anti-cancer immunity. Wnt

ligands released by tumor cells in the TME facilitate the immune evasion of cancer cells and hamper

immunotherapy. In this review, we illustrate the role of the canonical Wnt/β-catenin pathway in

cancer metabolism and immunity to explore the potential therapeutic approach of targeting Wnt

signaling from a metabolic and immunological perspective.

Keywords: Wnt; cancer; glycolysis; glutaminolysis; lipogenesis; metabolic negative feedback;

dendritic cells; T cells; cancer immunotherapy

1. Introduction

The highly conserved Wingless (Wnt) signaling pathway is important in embryonic development,

stem cell maintenance, and wound healing [1]. Wnt signaling pathways have been characterized into the

canonical or β-catenin dependent pathway, and the non-canonical or β-catenin independent pathway.

Although these two pathways converge, the non-canonical is relatively less characterized, and more

focus has been placed on the canonical pathway, where the primary effector is the protein, β-catenin.

Wnt proteins regulate different cellular processes including, but not limited to, cell proliferation, cell

fate determination, motility, and stem cell renewal. This pathway is predominant and significant and

requires tight regulation as any change could cause pleiotropic human disorders [1,2]. Indeed, aberrant

Wnt signaling has been implicated in tumorigenesis and cancer progression in many cancers, such as

breast cancer [3,4], colorectal cancer [5], thyroid cancer and others [6].

Wnt ligands are cysteine-rich secreted glycoproteins that are released into the extracellular milieu

and act in a paracrine and an autocrine manner. Wnt binding to the Frizzled (Fzd) receptor and
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low-density lipoprotein receptor-related protein (LRP) co-receptors triggers a series of events that

inhibit the β-catenin destruction complex. The destruction complex is composed of adenomatosis

polyposis coli (APC), glycogen synthase kinase 3 (GSK3) and Axin2, and is inactivated through the

recruitment of a modular protein called Disheveled (Dvl). The destruction complex is in its active form

phosphorylates β-catenin and tags it for ubiquitination and degradation by E3 ligase. Therefore, Wnt

binding and subsequent pathway activation allows β-catenin to accumulate in the cytoplasm and

translocate to the nucleus where it interacts with T cell factor/lymphoid enhancer factors (TCF/LEF,

transcription factors), coactivators CREB-binding protein (CBP) and P300. As a result, it induces the

transcription of extensive target genes, and is involved in a wide range of biological processes [1,7–9].

Although Wnt activation is highlighted in many cancers [7], it has also been found to suppress

other cancers [10–12]. It has been well established that Wnt activation induces the expression of

stemness genes c-Myc (a regulator gene and proto-oncogene), Nanog (a transcription factor sustaining

pluripotency of embryonic stem cells), Oct4 (octamer-binding transcription factor 4), Sox2 (sex determining

region Y-box 2), and cancer stem cell-associated genes CD44 (cluster of differentiation 44), Snai1 (a zinc

finger protein regulating epithelial to mesenchymal transition), Twist (a basic helix-loop-helix transcription

factor). Wnt pathway is upregulated in most patients with breast cancer and has been associated with

poor survival [13,14]. Therefore, the Wnt pathway is considered as an attractive therapeutic target to

reduce tumor progression and growth [7,15]. Targeted therapies directly or indirectly against different

Wnt pathway components have shown pre-clinical success and are currently being tested in the clinic

trials (Table 1).

Table 1. Clinical trials using drugs that are known to reduce Wingless (Wnt) signaling.

Clinical Trial Cancer Type Phase Component Targeted References

NCT02950259 Breast cancer I β-catenin [16]

NCT02807805 Prostate cancer II Dvl & β-catenin [17,18]

NCT02675946 GI cancer I Wnt ligands [19]

NCT03090165 TNBC II β-catenin [20,21]

NCT02513472 Breast cancer I β-catenin [22]

NCT03355066 Advanced solid tumors I Unknown [23]

NCT01351103 Lung cancer, colorectal cancer, TNBC... etc. I Wnt ligands [24]

NCT02429427 Breast cancer III GSK3 [25]

NCT02346032 Biliary Tract Cancer II Wnt3 & LRP6 [26]

NCT02005315 Pancreatic Cancer I FZD [27]

NCT01302405 Advanced solid tumors I β-catenin/CBP [28]

NCT02402764 Breast cancer II APC [29]

NCT02426723 Multiple myeloma I β-catenin NCT02426723

NCT02852564 Bladder cancer I LEF-1/βcatenin [30]

Note: Current clinical trials exploring the effects of inhibition of the Wnt/β-catenin pathway in cancers. LRP:
Low-density lipoprotein receptor-related protein. DVL2: disheveled. FZD: frizzled receptor. CBP: CREB-binding
protein. GSK3: glycogen synthase kinase 3. TNBC: Triple negative breast cancer. GI: gastrointestinal.

In recent years, the Wnt pathway has been linked to cancer metabolism and cancer immunotherapy.

Although the role of Wnt/β-catenin in liver metabolism [31] and intestinal homeostasis [32] is well

established, its role in the reprogramming of cancer cell metabolism has been the subject of inquiry

over the last decade. Here, we outline cancer cell reliance on metabolic alterations, highlighting the

significance of the Wnt pathway in cancer metabolism. Furthermore, we summarize recent studies

regarding Wnt signaling and cancer immunotherapy and their potential applications.
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2. Wnt Signaling in Cancer Glycolysis

Normal cellular metabolism involves the conversion of glucose to pyruvate for minimal ATP

production in a process known as glycolysis. Pyruvate is subsequently converted into acetyl CoA

which undergoes a series of reactions in the citric acid cycle (TCA) of the mitochondria. Throughout

the TCA process, NADH (nicotinamide-adenine dinucleotide, reduced) and FADH2 (a flavin adenine

dinucleotide) are produced to undergo oxidative phosphorylation in the electron transport chain (ETC),

generating the majority of the ATP. Pioneering research into the redirected metabolism of cancer cells

was carried out by Warburg in the early 1900s. He observed that cancer cells underwent glycolysis

instead of oxidative phosphorylation to sustain their energy demand even in the presence of adequate

supplies of oxygen, in the phenomenon known as aerobic glycolysis or the “Warburg effect” [33].

The reliance on glucose metabolism and low dependence on mitochondrial activity was deemed

characteristic of cancer cells. It is thought that mitochondrial dysfunction in cancer cells is one of

the many reasons that drives the cancer cell preferences to a more glycolytic phenotype, favoring an

increased uptake of glucose and conversion of pyruvate into lactate to generate energy [34]. Lactate

production results in the acidification of the microenvironment which further helps tumor migration

and invasion. It is also well established that a glycolytic switch in cancers and increased glucose uptake

correlates with a poorer prognosis and more aggressive phenotypes [35]. As such, more research has

investigated the distinct mechanisms and key players responsible for this metabolic switch in cancer

cells, implicating Wnt/β-catenin signaling in these changes (Figure 1).
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Figure 1. Overview of the role of the canonical Wnt/β-catenin pathway in cancer metabolism. Activation

of Wnt signaling requires the binding of Wnt glycoproteins to the frizzled (Fzd) receptor and the

low-density lipoprotein receptor-related protein (LRP5/6) co-receptor. Receptor activation leads to the

inhibition of the destruction complex, Axin2/APC/GSK3 through the recruitment of disheveled (Dvl).

β-catenin can then accumulate in cytoplasm and translocate to the nucleus where the TCF/LEF family

of transcriptional factors activate a wide range of Wnt target genes. Through c-MYC, Wnt controls the

increased aerobic glycolysis, glutamine transporter ASCT2 levels and subsequent glutathione (GSH)

production, which is implicated in cancer chemoresistance and cancer stem cell (CSC) survival via the

inhibition of reactive oxygen species (ROS). Wnt also upregulates stearoyl-CoA desaturase-1 (SCD), in

particular SCD1, which has been considered as the hallmark for CSC enrichment.

A study by Lee et al. in 2012 showed that Wnt/β-catenin signaling induced an increase in

glucose uptake and suppressed mitochondrial respiration [36]. They further revealed a Wnt-induced

upregulation of pyruvate carboxylase, an enzyme that converts pyruvate to oxaloacetate to support
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cell proliferation [36]. Pate et al. then showed that Wnt pathway disruption led to decreased reliance

on aerobic glycolysis by cancer cells [37]. They suggested that this effect was at least in part due to Wnt

controlled pyruvate dehydrogenase kinase (PDK1), an enzyme that inhibits mitochondrial oxidative

phosphorylation (OXPHOS) by reducing the conversion of pyruvate into acetyl-coA and thereby

maintaining the glycolysis dependent nature of tumor cells (Figure 2) [37]. In triple negative breast

cancer (TNBC, an aggressive subtype of breast cancer), the Wnt ligand, Wnt5B was shown to suppress

mitochondrial function through the Wnt/β-catenin target gene c-MYC [38]. Immunohistochemistry

of 142 breast tumor tissue samples revealed a positive correlation between MYC and mitochondrial

regulator MCL1 [38,39]. C-MYC, known as a regulator of aerobic glycolysis, in turn acts as a

transcription factor to mediate Wnt/β-catenin in the control of cancer cell metabolism (Figure 1) [37,40].
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Figure 2. Wnt signaling in the metabolic reprogramming of cancer cells. The Wnt pathway

upregulates aerobic glycolysis in part through its control of pyruvate carboxylase and pyruvate

dehydrogenase kinase, enzymes that shift the metabolic requirement away from the mitochondrial

oxidative phosphorylation (OXPHOS).

Aerobic glycolysis also contributes to the maintenance of stemness in cancer stem cells (CSCs),

which has been linked to Wnt signaling. The production of reactive oxygen species (ROS) as a result

of mitochondrial respiration impairs the self-renewal ability of stem cells, and explains the shift

to aerobic glycolysis undertaken by CSCs. Indeed, poorly differentiated cancer cells rely more on

increased glucose uptake than their differentiated counterparts. A study by Peng et al. showed that

PDK1, which was regulated by Wnt signaling [37], was crucial in maintaining CSC populations in

breast cancer [41]. While Wnt/β-catenin signaling is crucial in CSC self-renewal, it remains poorly

understood whether Wnt-mediated regulation of cancer metabolism plays a key role in maintaining

CSC population. However, a recent study by Deshmukh et al. suggested that the Wnt antagonist,

secreted frizzled-related protein 4 (sFRP4) regulates CSC metabolism, where glucose-mediated increase

in CSC viability was diminished by sFRP4 treatment [42]. Whether this CSC metabolism was controlled

solely through Wnt signaling and whether there are other players involved in downstream or upstream

of the Wnt pathway remains elusive. As c-MYC is also a key regulator of CSCs [43], the exact role of

Wnt upstream/downstream c-MYC gene expression in CSC metabolism remains to be explored.

3. Wnt Signaling in Cancer Glutaminolysis

In addition to a shift to aerobic glycolysis, cancer cells rely on the provision bulk quantities of amino

acids as essential precursors required for cell survival and growth, and to replete the TCA cycle [44].

Indeed, increased glutamine uptake is well documented in many different cancers including breast

cancer [45,46]. However, this seems to be cancer-subtype dependent. For example, triple-negative

breast tumors are more heavily dependent on glutamine and therapeutic approaches comprising

glutamine-targeting therapies may be most effective [47]. Glutamine plays significant roles in cell
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proliferation, survival and migration [48,49]. In particular, glutamine undergoes glutaminolysis, a

process by which it is converted to glutamate and α-ketoglutarate to replenish the TCA cycle, support

protein synthesis and produce glutathione (GSH). α-ketoglutarate could also supplement aerobic

glycolysis as it can be converted to malate and then to pyruvate [50]. As such, glutaminolysis is

considered a metabolic adaptation strategy undertaken by cancer cells to supply nitrogen to sustain

their rapid division and energy requirement [51].

It has long been established that the Wnt/β-catenin pathway plays an important role in glutamine

metabolism. Cadoret et al. showed that β-catenin activated genes were involved in glutamine uptake

and metabolism [52]. While the exact mechanism by which Wnt/β-catenin influences glutaminolysis is

still incompletely understood, c-MYC seems to play a crucial role [53]. C-MYC has been shown to

induce the expression of genes involved in glutamine metabolism, such as the glutamine transporter

ASCT2 (or SLC1A1) and glutaminase [48,49,53]. Furthermore, Wu et al. identified β-catenin in the

MYC–mediated control of glutamine metabolism and glutaminolysis [54]. Although NF-κB (nuclear

factor kappa-light-chain-enhancer of activated B cells) was suggested as a regulator of glutaminolysis

in transformed fibroblasts and breast cancer cells [49], the role of Wnt signaling in this regulation

remains unexplored.

Glutathione (GSH), a product of glutamine metabolism, plays a role in the chemoresistance of

cancer cells [55] and CSCs [56], which has also been associated with Wnt signaling [57]. The role of

GSH seems to be especially important in CSC chemoresistance, as it was shown that CD44+, a CSC

surface marker, associates with glutamine-cysteine transporter and promotes the synthesis of GSH [56].

GSH, in turn, helps protect the cells against oxidative stress by neutralizing ROS as well as activating

cell survival pathways [58]. This served as preliminary evidence, suggesting that GSH plays a role

in the maintenance of the CSC population in a tumor. Recently, an interesting study by Miran et al.

found that the depletion of GSH resensitized the CSC population to therapy in breast cancer [59].

Pre-treatment with a GSH inhibitor led to decreased tumor growth in an in vivo mouse model [59].

Indeed, preclinical investigation of drugs targeting glutaminolysis and glutamine metabolism have

garnered success as metabolic therapies in breast cancer, and some have moved to clinical trials [60].

A study by Liao et al. found that glutamine deprivation in CSCs resulted in decreased GSH and

increased β-catenin phosphorylation and sequestration in addition to decreased Wnt signaling activity.

Glutamine’s regulation of stem-like cancer cells was shown to partially occur through ROS-mediated

β-catenin phosphorylation and degradation [57]. This suggests that targeting GSH production could

also inhibit the CSC population by downregulating Wnt/β-catenin activity. Interestingly, c-MYC levels

were unaffected upon glutamine withdrawal in these cancer stem cells, indicating no feedback loop

in c-MYC regulation of glutamine metabolism [57]. The above studies together suggest that Wnt

signaling and GSH production regulate each other and their co-inhibition would be the most effective

as it would alter glutamine’s regulation of CSCs and reduce GSH production, thereby sensitizing the

cells to chemotherapeutic agents.

4. Wnt Signaling in Cancer Lipogenesis

Wnt signaling has also been associated with cancer lipogenesis. Glutamine could alternatively be

pushed towards reductive carboxylation, where it is converted to α-ketoglutarate for the provision of

acetyl-CoA for de novo lipogenesis. De novo lipogenesis supplies the growing cells with high energy

levels as well as building blocks for essential cellular components [61]. Abnormal levels of lipids in

cells correlate with cancer progression in a multitude of different tumors. For example, in breast cancer,

there is a higher accumulation of cholesterol esters, free fatty acids, and phospholipids, which have

been shown to promote tumorigenicity and cancer cell invasion [62,63]. Cholesterol ester-rich tumors

were associated with increased breast tumor proliferation and necrosis [62]. Furthermore, linoleic

acid was shown to induce breast cancer cell migration through plasminogen activator inhibitor-1

(PAI-1) and SMAD4 [63]. In a recent study, Yao et al. found that canonical Wnt signaling through

MYC promotes the conversion of triacylglycerol to phospholipid and increases unsaturated fatty
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acyl groups in phospholipids [64]. This lipid metabolism remodeling is extensively used by cancer

cells as unsaturated fatty acids are crucial for the cell membrane maintenance, energy storage and

signaling [65]. Additionally, unsaturated fatty acids are linked to the stem-like characteristics in ovarian

cancer [66]. β-catenin knockdown in breast cancer cells was also shown to result in a reduction in key

lipogenic enzymes such as citrate carrier, acetyl-CoA carboxylase and fatty acid synthase [67], which

emphasizes the role of Wnt/β-catenin signaling in de novo lipid synthesis.

Increasing evidence has highlighted the role of lipid metabolism in CSC survival and maintenance.

There are subtle differences in the lipid metabolism alterations between CSC and non-CSC populations.

In breast cancer, the fatty acid β-oxidation enzyme, carnitine palmitoyltransferase I (CPT1), is shown

to be elevated in the CSC population more than the non-CSC population [68]. In these CSCs, the key

player between Wnt signaling and lipid metabolism could be stearoyl-CoA desaturases (SCDs). SCDs

catalyze lipid desaturation and growing evidence identifies SCDs as a hallmark of CSCs [69–71]. The

connection between the Wnt pathway and SCDs has been well established, where β-catenin was found

to increase the sterol regulatory element binding protein 1 (SREBP-1)-mediated expression of the major

forms of SCD (i.e., SCD1 and SCD2) in CSCs. SCD silencing upregulated the expression levels of

β-catenin, which was overcome after the addition of the product of the SCDs, monounsaturated fatty

acids (MUFAs) [71]. In a different study, MUFAs were deemed to be crucial in Wnt ligand production

and secretion [72]. Lastly, SCD1 was shown to regulate the Hippo/YAP pathway, a key CSC-associated

oncogenic pathway, at least, in part, through Wnt signaling [73]. Dual inhibition of Wnt and YAP has

been shown to delay the growth of triple-negative breast cancer in both mesenchymal and epithelial

states [74]. The above studies together suggest that both Wnt and YAP pathways could contribute

to lipid metabolic reprogramming in cancer cells, and inhibition of both could be more effective for

targeting CSCs.

5. Wnt Signaling in A Metabolic Negative Feedback Loop

The existence of a negative feedback loop adds a layer of complexity to the role of Wnt/β-catenin in

the regulation of metabolism. The electron transport chain enzyme, succinate dehydrogenase suppresses

Wnt induced tumor progression by activating glycogen synthase kinase-3β (GSK3B), promoting the

destruction complex formation and thereby preventing β-catenin driven transcription [75]. The key

gluconeogenesis enzyme, Fructose-1,6-bisphosphatase (FBP1), was found to decrease glucose uptake and

lactate production as well as increase mitochondrial OXPHOS in a β-catenin dependent manner in breast

cancer cells [76]. Similarly, a nuclear protein called Chibby was discovered as a β-catenin-associated

antagonist that inhibits β-catenin-mediated transcriptional activation by competing with its binding to

LEF-1 in the nucleus [77]. Chibby was shown to suppress aerobic glycolysis by downregulating the

Wnt induced PDK1 upregulation [78]. Inducing these natural metabolic Wnt antagonists could be a

potential therapeutic avenue to counteract metabolic reprograming in cancer cells.

The effect of mitochondrial OXPHOS on cancer cells and Wnt signaling has been highly debated.

A recent study has shown that mitochondrial function promotes tumorigenesis in colon cancer through

hypoxia-inducible factors-1 (HIF-1) and Wnt signaling. Inhibition of mitochondrial function led to an

increase in the level of TCA intermediate, α-ketoglutarate, which was subsequently identified as a

key player that suppresses Wnt signaling [79]. ROS formation after FBP1 knockdown was shown to

interfere with nuclear activity of β-catenin, reducing tumorigenesis and the cancer stem cell population

in TNBC [79]. However, the opposite effect was seen with luminal subtypes of breast cancer where

FBP1 knockdown increased CSC enrichment [76]. Similarly, in lung cancer, ROS production as a

result of glutamine deprivation seems to increase β-catenin phosphorylation and thus, downregulates

its transcriptional activity [57]. Therefore, the effect of mitochondrial OXPHOS on Wnt/β-catenin

signaling is likely tumor and subtype dependent, warranting further studies.

It has recently been shown that the essential amino acid methionine plays a crucial role in

regulating the Wnt endolysosomal activity through 1 carbon (1-C) metabolism, a metabolic process

that transfers methyl groups to various substrates. Inhibition of 1-C metabolism is suggested to halt
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Wnt-driven cancers. The chemotherapeutic agent, methotrexate, inhibits protein arginine methyl

transferase 1 (PRMT1) and Wnt-induced endolysosomal activity. PRMT1 is crucial in stem cell activity

and highly expressed in the Wnt dependent stem cells of the intestines [80], suggesting a potential role

of Wnt signaling in PRMT1 and CSC metabolism.

6. Wnt Signaling in Cancer Immunotherapy

The tumor microenvironment (TME) is composed of tumor cells, fibroblasts, stromal cells,

vasculature, immune cells and extracellular matrix [81]. The infiltration of immune cells plays

multiple roles in either the promotion or delay of tumor progression. Anticancer immunity is largely

dependent on CD8+ cytotoxic T lymphocytes, which were first shown to recognize tumor antigens

in melanoma [82]. Active CD8+ T cells produce cytokines, cytotoxic perforins and granzymes,

which target tumor cells mainly by promoting cell apoptosis. As such, tumors with a higher T-cell

infiltration typically have a favorable prognosis and better response to treatment [83,84]. Dendritic

cells (DCs) are the primary antigen presenting cells (APCs) of the immune system. DCs uptake and

present tumor antigens after which, they activate CD8+ T cells and/or CD4+ T cells. DCs present

tumor antigens to CD8+ T cells to elicit their cytotoxic effect [85]. On the other hand, DCs in a

regulatory state could stimulate regulatory CD4+ T-cells known as Tregs (T regulatory cells), which

mediate immune suppression in tumors [86]. Cancer cells create an inhibitory TME to evade immune

surveillance by downregulating tumor antigenicity, suppressing cytokines and factors, and increasing

the Treg population.

Recent research attempts to find new therapeutic approaches to eliciting anti-tumor immune

responses due to the limited success for considerable cancers in the clinic. Wnt/ β-catenin signaling is

implicated in cancer immunotherapy as well. Wnt activation influences anti-tumor immunity. Indeed,

a plethora of evidence has implicated Wnt/β-catenin signaling, as it seems to play an important role in

cancer immunotherapy. Aberrant Wnt signaling is well documented in immune evasion, and tumors

with high Wnt signaling displayed lower immune cell infiltration [87].

Immunosuppression in cancer is aided by dysfunctional DC cells in the TME. It has been well

established that Wnt signaling regulates DC development and function. Wnt ligands released by tumor

cells promote the expression of β-catenin in DC cells to activate Tregs, ablate CD8+ T-cell function and

suppress anticancer immunity [88,89]. Hong et al. showed that DCs expressed Wnt co-receptors LRP5

and LRP6, and the specific deletion of LRP5/6 on DC cells delayed tumor growth and enhanced the

antitumor immunity [90]. Furthermore, a recent study showed that the Wnt ligand, Wnt1, induced a

tolerogenic response in lung cancer. Wnt signaling led to T-cell attenuation by suppressing the CC and

CXC motif chemokine transcription in DCs through the downregulation of their transcription factor,

Cebpb [91]. Therefore, DCs exposed to high levels of Wnt1 displayed reduced chemokine expression

that was crucial for T-cell priming and activation (Figure 3). The administration of RNAi against Wnt

was able to increase the cytotoxic T cell population and reduce tumor burden [91].

The effect of Wnt signaling on Tregs is controversial with mixed evidence. In the context of

inflammation and autoimmune disease, Loosdregt et al. showed that the activation of Wnt signaling

reduced Tregs by reducing FOXP3 transcriptional activity [92]. On the other hand, Keerthivasan et al.

found that the activation of β-catenin in colon cancer induced the expression of RORγt (Retinoic-acid-

receptor-related orphan nuclear receptor gamma) in Treg cells and promoted cancer [93]. Furthermore,

in a recent study in colorectal cancer, they identified a set of peptides that inhibit the activity of

β-catenin and suppress cancer cell growth. In vivo, these peptides exhibited anti-tumor effects with

minimal toxicities by promoting intratumoral infiltration of cytotoxic T cells and reducing Tregs [94].

Wnt signaling also plays an important role in T-cell proliferation and differentiation. TCF and LEF

exhibit dynamic expression throughout T-cell maturation and constitutive activation of Wnt/β-catenin

pathway reduced the expansion of mature cytotoxic T cells [95]. Stabilized β-catenin in T cells inhibited

their maturation, differentiation and activation by reducing phospholipase C-γ1 activity and IL-2

production, thus, promoting cancer growth [93,96]. However, increased expression and secretion
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of Wnt antagonist Dickkopf-related protein 2 (DKK2) by tumor cells inhibited T-cell function and

promoted tumor progression in colorectal cancer, independent of β-catenin [97]. This suggests that

inhibition of Wnt pathway in different cells could have differential effects on T-cell function and

anticancer immunity.
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Figure 3. General schematic of Wnt signaling in tumor induced immunosuppression. Wnt ligands

released by the tumor cells in the microenvironment influence dendritic cell (DC) function and

chemokine release, which, in turn, suppresses priming and activation of CD8+ cytotoxic T-cells and

prevents their anti-cancer action. β-catenin in CD8+ T cells decreases phospholipase C-γ1 (PCγ1)

activity which is essential to T-cell activation. However, the activation of Wnt/β-catenin in CD4+

regulator T cells (Tregs) could induce the expression of RORγt and promote cancer to evade host

immunity. Natural killer T (NKT) cells kill tumor cells indirectly by releasing interferon gamma (IFN-γ)

to elicit the response of other immune cells or directly by inducing apoptosis by releasing perforin in a

CD1D-dependent manner. While Wnt signaling upregulates CD1D expression, it has also been shown

to reduce IFN-γ production.

Natural Killer T (NKT) cells are specialized T cells that share properties of both innate Natural

killer (NK) cells and adaptive T cells. Released cytokines from activated NKT cells regulate immune

cells (NK cells, T cells and DCs, etc.) in the TME by releasing IFNγ and IL4, causing various anti-tumor

responses [98]. In addition, NKT cells recognize glycolipid antigens in a CD1D-dependent manner and

can directly kill tumor cells by releasing perforin. Wnt signaling is involved in NKT cell maturity and

LEF-1 is known to regulate CD1D gene expression [99]. Recent evidence has also shown that β-catenin

is essential in NKT development and differentiation as transgenic β-catenin expression increased the

frequency and number of NKT cells that produce more type-2 cytokines [100]. While Wnt/β-catenin

signaling is beneficial and required in NKT maturation in some studies, its aberrant activity has also

been linked to poor terminal differentiation and function of NKT cells [101]. In addition, Kling et al.

found that Wnt ligands and β-catenin activity in NKT cells suppressed IFNγ production [102].

Immune evasion in tumors is also driven by their expression of PD-L1 (programmed death-

ligand 1) [103], which is recognized by inhibitory immune checkpoint receptor PD-1 on activated T

cells. Therapies targeting immune checkpoint inhibitors have garnered recent attention as they were

shown to enhance anti-tumor immunity by restoring CD8+ T cell activity and suppressing Tregs.

Recent work showed that in specific cell lines, PD-L1 expression correlates with CSC markers [104].

A study by Castagnoli et al. showed that TNBC CSCs upregulated PD-L1. Interestingly, they show

that Wnt gene activation was correlated with PD-L1 levels. Through clinical dataset analysis, PD-L1
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overexpression was found in TNBC tumors: the more enriched stem cells, the more active the Wnt

pathway [103,105]. Additionally, a Wnt inhibitor decreased PD-L1 expression while Wnt agonists

were found to enhance PD-L1 at the transcript and protein levels. Lastly, in an in vivo model, PD-L1+

CSCs were shown to interact with immune cells to regulate immune response [103]. This suggests that

targeting Wnt to diminish CSC population could also enhance anti-tumor immune response, however,

the exact mechanism by which Wnt upregulates PD-L1 is still unclear.

7. Future Directions: Targeting Wnt Signaling to Inhibit Cancer Metabolism and Enhance
Immune Response

Tumor cell metabolism creates an immunosuppressive environment where increased uptake

of nutrients by cancer cells deprives the metabolites required by immune cells in the TME (such

as glutamine and glucose) to sustain their survival and expansion. Indeed, recent studies have

shown that cellular metabolism also plays a key role in supporting immune cell maintenance and

development [106]. Non-specific depletion of nutrients to target metabolic reprogramming of cancer

cells could also negatively affect the immune response in the tumor [107,108]. While targeting of

cancer metabolism through the Wnt pathway is considered an attractive strategy, the dependence

of immune cells on metabolites for their survival and activation could impede clinical application

of anti-metabolism drugs. A strategy targeting the metabolic reprogramming in cancer cells as a

way to halt tumor growth should take into account the effect on the immune system. Furthermore,

different immune cells have different metabolic requirements. For instance, deficiency of the glucose

transporter GLUT1 decreases cytotoxic T-cell expansion and function but has little impact on Treg cells,

negatively impairing anti-tumor immune response [109]. On the other hand, Tregs rely more on fatty

acid oxidation but less on fatty acid synthesis to generate energy [110].

An efficient strategy could therefore be to target cancer metabolism while minimizing the effect

on immune cells. A possible way to achieve this might be by tackling the acidity of the TME. Targeting

increased lactate acid extracellular secretion could potentially boost immune response as the acidity

of the TME has been linked to immunosuppression [111,112]. A potential target could be the lactate

transporter, monocarboxylate transporter 1 (MCT1) which is upregulated in cancer cells. Since MCT1

was identified as a Wnt pathway target gene [113], the inhibition of Wnt would downregulate MCT1,

thereby reducing TME acidity to halt cell migration and metastasis and maintain anti-cancer immunity.

Jones et al. recently found that STAT5 is a key note in the activation of CD4+ T cell by regulation of

their glycolysis and OXPHOS [114]. It is known that STAT5 activation is downregulated by GSK3β, a

component of the destruction complex of β-catenin [115]. As such, inhibition of Wnt effectors β-catenin

(downstream of GSK3β) or TCF/LEF, P300, or CBP would target cancer cells while insignificantly or

not affecting immune cells in the TME. Further studies of the differential effects of these inhibitors

(which are currently in clinical trial for cancer treatment, Table 1) on cancer cells and immune cells may

provide new insights and lead to new therapeutic approaches.

PD-L1 was recently shown to be instrumental in metabolic alterations of cancer and immune

cells. Checkpoint inhibitors against PD-1 and PD-L1 were shown to diminish glycolysis in cancer cells,

thereby restoring glucose in the TME and promoting T-cell function [116]. Inhibition of Wnt signaling

was shown to overcome PD-1 inhibitor resistance in breast cancer and reduced tumor growth in vivo.

Therefore, the combination of checkpoint inhibitor and Wnt antagonist may increase therapeutic

efficacy in the clinic [94].

Amino acid uptake is essential to both tumor progression and immune cell function. While

targeting glutamine uptake was shown to decrease cancer cell growth [117,118], glutamine uptake was

also crucial for T-cell activation and its inhibition could decrease T cell cytotoxicity [119,120]. However,

Wang et al. showed that glutathione released by fibroblasts in the TME contributed to chemoresistance

in ovarian cancer, which was overcome by CD8+ T cells after inhibiting glutathione synthesis. This

suggests that targeting amino acid metabolism through glutaminolysis could sensitize the cells to

chemotherapy and aid in the immune cell response [121].
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8. Conclusions

Tumor initiation and progression is dependent on many factors, including metabolic

reprogramming, immune system evasion and CSC maintenance. While Wnt/β-catenin has been

tightly linked with cancer metabolism, much remains unknown about the exact molecular mechanisms

underlying. A recurring theme seems to be that Wnt-mediated metabolic control is tumor type

dependent. Wnt signaling has also been implicated in immunotherapy. However, due to the

complexities of the Wnt pathway and its vast domain of control over immune cell development,

inhibiting Wnt could be counterproductive. Designing a therapeutic strategy by inhibition of Wnt

signaling to reduce metabolic reprogramming of cancer cell and to increase anti-tumor immunity may

need to take into account the tumor type/subtype, the biochemical and mutational analysis of the

tumor, the Wnt signaling components to be targeted, and the effect of the Wnt inhibition on cancer

cells, CSCs, and the different immune cells.
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