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Abstract: Ovarian cancers represent the deadliest among gynecologic malignancies and are

characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal

and the capacity to differentiate. The Wnt/β-catenin signaling pathway, known to regulate stemness

in a broad spectrum of stem cell niches including the ovary, is thought to play an important role

in ovarian cancer. Importantly, Wnt activity was shown to correlate with grade, epithelial to

mesenchymal transition, chemotherapy resistance, and poor prognosis in ovarian cancer. This review

will discuss the current knowledge of the role of Wnt signaling in ovarian cancer stemness, epithelial to

mesenchymal transition (EMT), and therapy resistance. In addition, the alleged role of exosomes

in the paracrine activation of Wnt signaling and pre-metastatic niche formation will be reviewed.

Finally, novel potential treatment options based on Wnt inhibition will be highlighted.

Keywords: Ovarian cancer; Wnt signaling; cancer stem cells; tumor progression; therapy resistance;

exosomes

1. Introduction

Epithelial ovarian cancer (EOC) represents the deadliest among gynecologic malignancies [1].

This is mainly due to the fact that up to 80% of ovarian cancer patients present with symptoms and are

subsequently diagnosed only at late disease stages, i.e., when metastases have already spread to pelvic

organs (stage II), the abdomen (stage III), or beyond the peritoneal cavity (stage IV) [2].

EOC is an extremely heterogeneous disease. Multiple (epi)genetic alterations at a broad spectrum

of oncogenes and tumor suppressor genes have been observed in ovarian cancer leading to deregulation

of signal transduction pathways whose functions ranges from DNA repair, cell proliferation, apoptosis,

cell adhesion, and motility. Based on these molecular alterations, ovarian cancer has been subdivided in

two major type I and type II classes of tumors [3]. Type I tumors are slow growing, mostly restricted to the

ovary, and develop from well-established precursor lesions called “borderline” tumors. Type I tumors

comprise of four different subtypes, namely low-grade serous, mucinous, clear cell, and endometrioid

cancers. The histological composition of these four types resemble normal cells present in the

fallopian tube and/or ovarian surface epithelium, endocervix, vagina, and endometrium, respectively,

thus suggesting different cells of origin for the different histotypes [3]. Type I lesions frequently carry

mutations in KRAS, BRAF, PTEN, and CTNNB1 (β-catenin), and often show a relatively stable karyotype.

Type II ovarian cancers include high-grade serous (HGS) and undifferentiated carcinomas, the vast

majority of which characterized by TP53 alterations and pronounced genomic instability [3]. Of note,

inherited and somatic BRCA1 and BRCA2 mutations are usually found in type II tumors. It is under

debate whether HGS ovarian cancers originate from the fimbria of the fallopian tube or from the

ovarian surface epithelium (OSE) [4].
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Ovarian cancers are thought, because of their distinctive progression and recurrence patterns,

to be characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal

and the capacity to differentiate, which continuously fuel the growth of the tumor mass and coexist

with more committed cell types [5,6]. Notably, the Wnt/β-catenin signaling pathway, known to regulate

stemness in a broad spectrum of stem cell niches including the ovary, is thought to play an important

role in ovarian cancer. First, 16–54% of endometrioid ovarian cancers are characterized by mutations

in β-catenin or, though at a considerably less frequency, in other members of the Wnt cascade such as

APC, AXIN1, and AXIN2 [7,8]. Second, other histotypes, and in particular serous ovarian carcinomas

where mutations in Wnt-related genes are relatively uncommon, are characterized by constitutive

Wnt signaling activation as indicated by alterations in β-catenin subcellular localization (i.e., nuclear

and cytoplastic vs. membrane-bound) [9–12]. Importantly, Wnt activity was shown to correlate

with grade [12], epithelial to mesenchymal transition (EMT) [7], chemo-resistance [13], and poor

prognosis [14] in patients with ovarian carcinomas.

Here, we will review the current knowledge of the role of Wnt signaling in ovarian cancer

stemness, EMT, and therapy resistance. The alleged role of exosomes in the paracrine activation of

Wnt signaling, and novel potential treatment options based on Wnt inhibition will also be highlighted.

2. The Wnt/β-Catenin Signaling Pathway

Stem cells are distinguished from other somatic cells by their ability to self-renew and to give rise

to distinct differentiated cell types throughout their lifetime [6]. The canonical Wnt signaling program

plays a central role in controlling the balance between stemness and differentiation in several adult

stem cell niches [15], including the ovary [7]. Accordingly, aberrant Wnt signaling is associated with

pathological conditions like cancer [15].

Wnt proteins comprise a group of evolutionary conserved, lipid-modified glycoproteins [16]

that operate at both short and long distances in order to regulate programs involved in proliferation,

differentiation and stemness [15,17]. In absence of canonical Wnt ligands, intracellular β-catenin

levels are regulated by the formation of a multiprotein “destruction complex” encompassing protein

phosphatase 2A (PP2a), glycogen synthase kinase 3 (GSK3β) and casein kinase 1α (CK1α), and the

scaffold proteins adenomatous polyposis coli (APC), and AXIN1/2. The destruction complex binds

and phosphorylates β-catenin at specific serine and threonine residues, thereby targeting it for

ubiquitination and subsequent degradation by the proteasome (Figure 1a). Instead, in the presence

of Wnt ligands, co-activation of the Frizzled and LRP5/6 (low-density lipoprotein receptor-related

proteins) receptors prevents the formation of the destruction complex, thereby stabilizing intracellular

β-catenin and eventually leading to its translocation from the cytoplasm to the nucleus. Here, β-catenin

interacts with members of the T-cell specific transcription factor/lymphoid enhancer binding factor

(TCF/LEF) family of transcription factors and modulates the expression of a broad spectrum of Wnt

downstream target genes regulating stemness, proliferation, and differentiation [15] (Figure 1b).

An illustrative example of the relevance of a tightly controlled Wnt signal regulation is provided

by the intestinal stem cell niche, i.e., the crypt of Lieberkühn. At the bottom of the crypt, where the

highly proliferative intestinal stem cells (ISC) reside, Wnt signaling is highly active due to signals from

the surrounding stromal compartment [18], as also shown by nuclear β-catenin localization in both ISCs

and the intercalating Paneth cells. Moving up along the crypt-villus axis, Wnt becomes progressively

less active, following a signaling gradient inversely proportional to the differentiation grade of the

epithelial lining [19]. In accordance with the central role played by this Wnt gradient, loss of function

mutations at the tumor suppressor gene APC or gain of function mutations in the β-catenin (CTNNB1)

oncogene leading to ligand-independent (i.e., constitutive) Wnt activation represent the main initiating

events in the vast majority of sporadic colon cancer cases. Hence, the disruption of the homeostatic

equilibrium among stemness, differentiation, and proliferation along the crypt-villus axis brought

about by constitutive Wnt activation is sufficient to trigger colon cancer development [20].
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The functional relevance of the Wnt pathway in controlling stemness, proliferation,

and differentiation in organ-specific adult stem cell niches other than the intestinal tract is reflected by

the broad spectrum of cancer where its deregulation contributes to tumor initiation and/or progression.

Accordingly, there is ample evidence from the scientific literature supporting an important role for

Wnt signaling in both the onset and progression of ovarian cancer [7].
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Figure 1. The Wnt/β-catenin signal transduction pathway in homeostasis. (a) In the absence of

Wnt ligands, intracellular β-catenin levels are controlled by a destruction complex encompassing

protein phosphatase 2A (PP2a), glycogen synthase kinase 3 (GSK3β) and casein kinase 1α (CK1α),

adenomatous polyposis coli (APC), and AXIN1/2. This complex binds and phosphorylates β-catenin

at serine and threonine residues, thereby targeting it for ubiquitination and proteolytic degradation

by the proteasome. (b) In presence of Wnt, co-activation of the Frizzled and low-density lipoprotein

receptor-related protein 5/6 (LRP5/6) (low-density lipoprotein receptor-related proteins) receptors

prevents the formation of the destruction complex leading to the stabilization and consequent

translocation of β-catenin from the cytoplasm to the nucleus. Here, β-catenin interacts with members

of the T-cell specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) family of

transcription factors and modulates the expression of a broad spectrum of Wnt downstream target

genes. DVL – disheveled. Adapted from [21].

3. Wnt Signaling in Ovarian Development and Tissue Homeostasis

Mammalian sex determination is a developmental process consisting of two distinct antagonistic

genetic pathways allowing XX or XY undifferentiated gonads to differentiate into two different organs,

namely the testis and the ovary [22]. The SRY-SOX9-FGF9 pathway supports testis development,

while the RSPO1-Wnt-β-catenin-FOXL2 network promotes ovarian determination [22] (Figure 2).

Before sex determination, the undifferentiated gonad is composed of the coelomic epithelium,

together with germ and mesenchymal cells. Here, both the Wnt signaling activators Wnt4 and

R-spondin 1 (RPSO1) are important regulators of proliferation of the coelomic epithelium, as indicated

by ablation of both Rspo1 and Wnt4 leading to reduced numbers of coelomic epithelial cells in XX and

XY gonads and, consequently, to hypoplastic testis in XY mutant gonads [23].

During XY sex determination, the transcription factor sex-determining region Y (SRY) together with

Splicing factor 1 (SF1) upregulate SRY-Box 9 (SOX9) gene expression. Subsequently, SOX9 upregulation

leads to the differentiation of coelomic epithelium into anti-Müllerian hormone producing Sertoli cells,

thereby stimulating testis development [24]. Sertoli cells also secrete FGF9 (Fibroblast Growth Factor

9) thus inhibiting the pro-ovarian Wnt signaling pathway [25]. Furthermore, WT1 (Wilms Tumor 1)

and ZNFR3 (Zinc Finger 3) also have been shown to downregulate Wnt signaling during male sexual
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differentiation [26,27]. Accordingly, genetic ablation of Znrf3 leads to ectopic Wnt signaling in XY

gonads and consequentially in the presentation of a female phenotype [27].

In females, both granulosa cells and ovarian surface epithelium (OSE) are derived from the

coelomic epithelium. During fetal stages, Rspo1 is expressed in the mesothelial lining of the coelomic

cavity and within the fetal ovary [28], whereas Wnt4 expression is localized to the gonad medulla and

mesonephros between the gonad and the Müllerian duct [29]. Wnt4 and RSPO1 are essential for ovarian

differentiation and oogenesis as they suppress Sox9 expression, stimulate granulosa cell differentiation,

and promote female sexual development by sustaining Müllerian duct differentiation [28,30,31].

Genetic ablation of Wnt4, Rspo1, or Ctnnb1 in XX gonads lead to premature differentiation of granulosa

cells in fetal stages and consequentially to the abrogation of ovary development at perinatal stages [32].

 

 

Figure 2. Schematic view of sex determination. In the undifferentiated gonad both Wnt4 and RSPO1

(R-spondin 1) are important regulators in particular for the proliferation of the coelomic epithelium.

In XX gonads, expression of Wnt4, and RSPO1 leads to ovarian differentiation and oogenesis as

they suppress Sox9 expression, stimulate granulosa cell differentiation, and promote female sexual

development by sustaining Müllerian duct differentiation. In XY gonads male reproductive organs

are determined by the expression of sex-determining region Y (SRY) together with Splicing factor 1

(SF1) leading to upregulation of Sox9 gene expression. In addition, Fibroblast Growth Factor 9 (FGF9),

Wilms Tumor 1 (WT1), and Zinc Finger 3 (ZNFR3) inhibit the pro-ovarian Wnt signaling pathway.

Also, anti-Müllerian hormone (AMH) prevents the development of the Müllerian duct into female

reproductive organs.

Ng et al. (2014) [33] provided additional evidence highlighting the significance of the role played

by Wnt during ovarian development and tissue maintenance and regeneration in adulthood. In this

study, Lgr5, the marker of the above-mentioned and Wnt-driven intestinal stem cells, was shown to be

broadly expressed during ovarian organogenesis, whereas it was restricted to the OSE in neonatal life.

Using in vivo lineage tracing, Lgr5+ cells were identified as stem or progenitor cells, able to contribute

to the development of the OSE cell lineage, the mesovarian ligament, and the fimbriae. In adult ovaries,

Lgr5+ cells were restricted to the proliferative regions of the OSE and the mesovarian-fimbria junctional

epithelium. In the OSE, Lgr5+ cells are thought to preserve homeostasis and to underlie repair of

the epithelial damage after ovulation [33]. Indeed, using a Wnt-reporter mouse model, the complete

coelomic epithelium overlying the undifferentiated gonad displayed β-catenin/Tcf mediated LacZ

expression gradually reduced to smaller populations during postnatal, pre-puberal, and adult life [34].

Of note, the LacZ+ OSE cells were enriched in SP (side population) positive cells, a sub-population of

stem-like cells identified by their capacity to efflux the dye Hoechst 33342 by ATP-binding cassette
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super-family G member 2 (ABCG2) transporter pumps [34], a clinically relevant feature acquired by

chemotherapy resistant ovarian CSCs.

Apart from its role during embryonic development of the ovary, Wnt signaling was also shown

to be an essential regulator of ovarian homeostasis, fertility, and tumorigenesis. Knock-out of APC2,

a homologue of the APC tumor suppressor gene [35], resulted in the activation of ovarian Wnt signaling

and in sub-fertility. The latter was due to disturbed follicular growth and the consequent reduced

ovulation rate and corpora lutea formation [36]. Notably, aged APC2-/- mice developed granulosa

cell tumors (GCT) with comparable histological features and molecular signatures to those of the

corresponding human GCTs [36].

Overall, the central role played by Wnt in regulating the delicate balance between stemness,

proliferation, and differentiation to ensure ovarian tissue homeostasis is reflected by its causal

association with ovarian cancer onset and/or progression as discussed in the next section.

4. Wnt Signaling in Ovarian Cancer

As mentioned above, CTNNB1 (β-catenin) mutations are found in 16–54% of endometrioid ovarian

cancer cases. Likewise, genetic alterations in other members of the Wnt cascade, such as APC, AXIN1,

and AXIN2, have also been detected in this specific ovarian cancer histotype [7,8]. In a conditional APC

knock-out mouse model, it was shown that constitutive activation of Wnt/β-signaling in Müllerian

duct-derived organs (i.e., fallopian tubes, uterus, cervix, and the upper two thirds of the vagina) results

in the formation of endometrioid tumors in the oviduct, reminiscent of the corresponding histotype in

man. Of note, in the same study the ovarian surface epithelium was unaffected, thus suggesting that

the oviduct, rather than the OSE, encompasses the cell of origin of (endometrioid) ovarian cancer [37].

In addition to endometrioid ovarian carcinomas, mutations in CTNNB1 are also found in rare cases

of mucinous ovarian cancer [38]. Moreover, both CTNNB1 and APC mutations have also been detected

in non-epithelial microcystic stromal tumors (MSTs) of the ovary [39–41]. Accordingly, an increased

incidence of MSTs has also been reported among patients affected by familial adenomatous polyposis

(FAP) due to germline mutations in APC [40,41]

Yet, it should be clearly stated that endometrioid tumors represent a notable exception as mutations

in Wnt-related genes are in general extremely rare in any other ovarian cancer histotype [7]. However,

even in the absence of specific mutations, Wnt signaling has been reported to be frequently activated

in the more common serous histotype as indicated by nuclear and cytoplasmic β-catenin subcellular

localization [9–12]. In addition, expression profiling data have confirmed the frequent activation of

Wnt signaling in ovarian cancer at large [42,43]. In particular, transcriptome analysis of ascites-derived

ovarian cancer cells and tumor-associated macrophages (TAMs) has revealed that both canonical and

non-canonical Wnt ligands (i.e., WNT7A, WNT2A, WNT5A, WNT9A) are expressed in tumor cells,

whereas LRP and FZD are common to both tumor cells and TAMs [43].

Pangon et al. (2016) took advantage of the Cancer Genome Atlas (TCGA) to show that the

oncogene JRK (jerky) is overexpressed in 15% of ovarian cancers in association with increased

expression of canonical Wnt target genes [44]. JRK directly interacts with the β-catenin transcriptional

complex, thereby stabilizing the β-catenin/TCF complex and ultimately resulting in increased β-catenin

transcriptional activity and cell proliferation. Consistent with this, depletion of JRK in cancer cell lines

repressed expression of β-catenin target genes and reduced cell proliferation [44].

More recently, noncoding RNAs (ncRNAs) have emerged as important post-translational regulators

of Wnt-associated gene expression in ovarian cancer (Table 1). By using orthotopic mouse models of

ovarian cancer, it was demonstrated that β-catenin plays a key role in the formation of metastasis by

controlling the endoribonuclease Dicer, a key component of the microRNA (miR)-processing machinery.

β-catenin directly targets Dicer, thereby downregulating multiple miRNAs including the miR-29 family

known for its role as a negative EMT regulator. Silencing of β-catenin or overexpression of Dicer or

mi-R29 in metastatic ovarian cancer cells reduced their migratory capacity, and attenuated metastasis
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formation upon β-catenin knockdown in orthotopic mouse models [45]. Of note, reduced expression of

miR-29 is associated with ovarian cancer progression and strongly correlated with poor survival [46].

Several other miRs have been demonstrated to impact migration, invasion, and cancer progression

via Wnt signaling in ovarian cancer [47–59]. Interestingly, miR-939 has been suggested to function as a

tumor promotor by regulating Wnt signaling through direct suppression of the previously discussed

APC2 tumor suppressor [48].

Next to miRs, several long non-coding RNAs (lncRNAs) have been described to play a causative

role in Wnt-associated cell proliferation, EMT, and chemotherapy resistance in ovarian cancer [60–65].

Table 1 summarizes the data relative to gene and non-coding RNA alterations leading to Wnt signaling

activation in ovarian cancer.

Table 1. Gene and non-coding RNA alterations leading to Wnt signaling activation in ovarian cancers.

Gene/ncRNA Ovarian Cancer Histotype* Mechanism/Target Reference

CTNNB1 Endometrioid. Oncogenic activation. [8,38,66–70]
CTNNB1 Mucinous. Oncogenic activation. [38]
CTNNB1 Microcystic Stromal Tumors (MST). Oncogenic activation. [39]
APC Endometrioid. Loss of tumor suppressor function. [8]
APC Microcystic Stromal Tumors (MST). Loss of tumor suppressor function. [40,41]
AXIN1 Endometrioid. Loss of tumor suppressor function. [8]
AXIN2 Endometrioid. Loss of tumor suppressor function. [8]

microRNA (miR)-10a) Granulosa cell tumor.
miR-10a targets PTEN and indirectly activates Wnt (and AKT)
signaling. Oncogenic activation.

[54]

miR-15b Epithelial ovarian cancer *.
miR-15b targets WNT7A 3’-untranslated region (3’-UTR) and
thus inhibits Wnt signaling. Loss of tumor suppressor
function.

[50]

miR-16 Epithelial ovarian cancer *.
miR-16 target(s) yet unknown; it inhibits Wnt signaling. Loss
of tumor suppressor function.

[56]

miR-21 Epithelial ovarian cancer *.
miR-21 target(s) yet unknown; it activates Wnt signaling.
Oncogenic activation.

[57]

miR-27a Epithelial ovarian cancer *.
mir-27 targets the Wnt antagonist FOXO1. Oncogenic
activation.

[55]

miR-29
Serous, mucinous, and clear cell
ovarian cancer.

miR-29 target(s) yet unknown; it activates Wnt signaling.
Oncogenic activation.

[45,46]

miR-92a-1 Epithelial ovarian cancer *.
miR-92a-1 targets the Wnt antagonist Dickkopf 1 (DKK1).
Oncogenic activation.

[51]

miR-200c Epithelial ovarian cancer *.
miR-200c target(s) yet unknown; it inhibits Wnt signaling.
Loss of tumor suppressor function.

[47]

miR-214 Epithelial ovarian cancer *.
miR-214 target(s) yet unknown; it inhibits Wnt signaling. Loss
of tumor suppressor function.

[53]

miR-219-5p Epithelial ovarian cancer *.
miR-219-5p targets the EMT transcription factor TWIST and
inhibits Wnt signaling. Loss of tumor suppressor function.

[52]

miR-654-5p Epithelial ovarian cancer *.
miR-654-5p targets CDCP1 and PLAGL2. Loss of tumor
suppressor function.

[58]

miR-939 Epithelial ovarian cancer *. miR-939 targets APC2. Loss of tumor suppressor function. [48]
miR-1180 Epithelial ovarian cancer *. miR-1180 targets SFRP1. Loss of tumor suppressor function. [59]

miR-1207 Epithelial ovarian cancer *
miR-1207 targets SFRP1, AXIN2, and ICAT. Loss of tumor
suppressor function.

[49]

HOTAIR 1 Epithelial ovarian cancer *.
HOTAIR target(s) unknown; Wnt agonist. Oncogenic
activation.

[60]

SNHG20 2 Epithelial ovarian cancer *.
SNHG20 target(s) unknown; Wnt agonist. Oncogenic
activation.

[61]

HOXD-AS1 3 Epithelial ovarian cancer *.
HOXD-AS1 targets the Wnt antagonist miR-133a-3p.
Oncogenic activation.

[62]

CCAT2 4 Epithelial ovarian cancer *.
Targets unknown; EMT and Wnt agonist. Oncogenic
activation.

[63]

MALAT1 5 Epithelial ovarian cancer *. Targets unknown; Wnt agonist. Oncogenic activation. [64]

AWPPH 6 Epithelial ovarian cancer *. Targets unknown; Wnt agonist. Oncogenic activation. [65]

HOXB-AS3 7 Serous ovarian cancer samples;
other histotypes.

Targets unknown; Wnt agonist. Oncogenic activation. [71]

*, histotype not characterized; 1, HOTAIR—HOX antisense intergenic RNA; 2, SNHG20—small nucleolar RNA
host gene 20; 3, HOXD-AS1—HOXD cluster antisense RNA 1; 4, CCAT2—colon cancer-associated transcript
2; 5, MALAT1—metastasis associated lung adenocarcinoma 1; 6, AWPPH—associated with poor prognosis of
hepatocellular carcinoma; 7, HOXB-AS3—HOXD cluster antisense RNA 3.

Apart from the above alterations in genes and non-coding RNAs, Wnt signaling activation in

ovarian cancer might result from additional alternative epigenetic mechanisms, either cell-autonomous

or induced by the tumor microenvironment. Epigenetic alterations leading to autocrine overexpression

of Wnt ligands [72,73], receptors [74], and/or of other Wnt agonists like FRAT1 [12] or PYGO2 [75],

or to the inhibition of antagonists such as the secreted frizzled receptors proteins (sFRP) and Dickkopf

(DKK1) [14,76–78] have been reported in the literature. Likewise, paracrine secretion of Wnt-activating
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cues was observed from either the stroma surrounding the primary ovarian cancer, or from ascites in

the case of late-stage disease. Several components of ovarian cancer ascites, known to be associated

with shorter progression free survival [79,80], have been previously implicated in promoting Wnt

signaling: leptin [81,82], urokinase-type plasminogen activator receptor (uPAR) [83], and macrophage

migrating inhibitory factor (MIF) [84]. These soluble factors may act by activating the Wnt pathway

in disseminated ovarian cancer cells present in ascites. Two additional ascites factors, namely

osteoprotegerin (OPG) [85] and interleukin 8 (IL-8) [86], are in fact downstream Wnt targets and could

serve as markers of Wnt signaling activity in ascites. In addition, β-1 integrin-mediated adhesion to

the peritoneal mesothelium, a key step in the route to ovarian cancer metastasis, activates β-catenin

signaling [87]. Of note, it has recently been shown that extracellular vesicles such as exosomes play a

critical role in long-distance transmission of morphogens and in particular in Wnt signaling [88]. In the

context of ovarian cancer ascites, exosomes may represent a stable source of paracrine Wnt signals [89].

The role of exosomes will be discussed at more length later on in this review.

5. Wnt Signaling in Ovarian Cancer Stem Cells, EMT, and Therapy Resistance

After diagnosis, tumor debulking surgery followed by carboplatin- and paclitaxel-based

chemotherapy represent the standard first line therapy for high grade serous ovarian cancer patients.

Although at this stage the primary response to chemotherapy is extremely efficient, most patients relapse

and develop metastases locally and at distant organ sites [90]. This is mainly due to sub-populations

of tumor cells likely to have acquired stem cell features (CSCs) through EMT and, consequently,

the EMT-associated chemo-resistance [5]. In 2005, it was shown for the first time that the aggressiveness

of human ovarian cancer results from alterations in stem and progenitor-like cells in the ovary [91].

Moreover, this study demonstrated that the small subpopulation of stem-like, tumor-propagating

ovarian cancer cells were earmarked by expression of cluster of differentiation 44 (CD44) and other

stem cell and EMT markers such as KIT (CD117), SCF (stem cell factor), SLUG (SNAIL2), and VIM

(vimentin) [91]. After this initial report, several cell surface antigen markers have been identified which

allow enrichment of ovarian CSCs from immortalized cell lines, primary tumors, and ascitic fluids:

CD133, CD24, CD44, CD177, aldehyde dehydrogenase 1 (ALDH1), and SP [5]. Notably, active Wnt

signaling has been shown to play a key role in the regulation and maintenance of ovarian cancer

stemness [51,92,93].

Ovarian cancer follows a unique pattern of metastasis formation where, unlike many other cancer

types, no anatomical barrier exists between the primary site and the abdominal cavity, thus greatly

facilitating the dissemination of exfoliated malignant cells. In particular, disseminated ovarian cancer

cells secrete vascular permeability factors and can block lymphatic drainage leading to accumulation

of ascites fluid within the peritoneal cavity [94]. These malignant ascites provide a favorable tumor

microenvironment (TME) enriched in secreted inflammatory cytokines [79], growth factors [95],

and extracellular macromolecules (collagen, fibronectin, and laminin) [96]. In this environment, tumor

cells form multicellular aggregates enriched in cancer stem/progenitor cells, the so-called ‘spheroids’,

which eventually implant on the mesothelial lining of the peritoneum [97] (Figure 3). The attachment

of these floating spheroids to the peritoneal lining and associated organs represents the major route for

metastasis formation in ovarian cancer [98] where, as observed in other epithelial cancers, EMT was

shown to play a key role [99]. Interestingly, although hematogenous spread is generally thought to play

a relatively minor role in metastasis formation in ovarian cancer, it has recently been demonstrated in a

parabiosis mouse model [100]. In this study, two mice, one of which intraperitoneal transplanted with

ovarian cancer cells, were surgically connected to share blood supply. The development of ovarian

cancer in the cancer-free animal likely results from hematogenous spread [100]. Likewise, circulating

tumor cells have been identified in peripheral blood from ovarian cancer patients [101].

Overall, the naturally occurring spheroids in ascites are likely to underlie metastatic disease in

ovarian cancer patients. In the next sections, we will discuss the current experimental evidence on the

role of Wnt signaling in eliciting EMT and chemo-resistance in high grade serous ovarian cancer.



J. Clin. Med. 2019, 8, 1658 8 of 22

 

  

β β
β β

β

Figure 3. Model for peritoneal metastasis formation in ovarian cancer. Ovarian cancer follows a unique

pattern of metastasis formation, where no anatomical barrier exists between the primary site and the

abdominal cavity. Multicellular aggregates enriched in cancer stem/progenitor cells, the so-called

spheroids, detach from the primary tumor and eventually implant on the mesothelial lining of the

peritoneum. EMT was shown to play a key role facilitating the acquisition of stem-like features,

anoikis resistance, and increased migration and invasion. The establishment of premetastatic niches

composed of several cell populations, including tumor-associated neutrophils, is thought to be required

for disseminating carcinoma cells to engraft at the distant site. Exosomes in ovarian cancer ascites

have been proposed as a putative mechanism to facilitate long-range distance cell–cell communication

thereby establishing both pre-metastatic niches in the peritoneal cavity and preserving stemness in

disseminated cancer cells. CAFs: cancer associated fibroblasts; MSCs: mesenchymal stem cells.

5.1. Wnt Signaling and EMT in Ovarian Cancer

EMT is a reversible developmental program exploited by cancer cells to reversibly switch from an

epithelial phenotype with apical-basal polarity and cell–cell adhesions, to a more motile mesenchymal

state with spindle like morphology and front-back-end polarity [102]. Next to the motility and invasive

features characteristic of the mesenchymal state, EMT is functionally associated with the acquirement

of stem-like features, resistance to therapy, and immune suppression [103–105]. Last, the capacity of

cells undergoing EMT to revert to an epithelial state by mesenchymal-to-epithelial transition (MET)

is rate-limiting to allow the stem- and mesenchymal-like migrating CSCs to regain proliferative and

epithelial features essential to colonize the metastatic site [102,106]. Various signaling pathways

are involved in EMT, including transforming growth factor β (TGF-β), Notch, and Wnt/β-catenin.

Activation of the Wnt/β-catenin pathway has been shown to be an important regulator of EMT in

many different types of cancers [106–108], including ovarian cancer [109–112]. In this context, ovarian

cancer cell lines with a high SNAIL to E-cadherin ratio, are characterized by enhanced CSC-like, motile,

and therapy-resistant features when compared with epithelial ovarian cancer cell lines. Accordingly,

SNAIL knockdown reversed the malignant properties and tumor burden of the more mesenchymal

ovarian cancer cell lines in xenograft models [111]. SNAIL and other EMT transcription factors

(EMT-TFs) have been shown to activate expression of the GOLPH3 (Golgi phosphoprotein 3) gene,

encoding for an oncoprotein frequently upregulated in ovarian cancer tissues and cell lines, through

Wnt/β-catenin signaling activation [112]. Induction of EMT and the consequent acquisition of migratory

and invasive cellular features downstream of Wnt activation have also been demonstrated in ovarian

carcinomas where IQGAP2, a Wnt antagonist, is frequently silenced by DNA methylation [110]. Last,

cyclin G2, an unconventional cyclin that opposes cell cycle progression and inhibits EMT, acts as a

tumor suppressor in ovarian cancer by inhibiting Wnt/β-catenin signaling [109].
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More recently, it has been suggested that, rather than being a binary process with fully opposing

epithelial and mesenchymal phenotypes, EMT generates hybrid E/M cancer cells displaying both

epithelial and mesenchymal characteristics [113,114]. Indeed, similar to the normal ovarian surface

epithelial (OSE) cells previously shown to display both epithelial and mesenchymal characteristics

and a remarkable phenotypic plasticity during post-ovulatory repair, double positive E-cadherin and

vimentin cells have been observed in ovarian cancers [115]. Accordingly, different intermediate EMT

states have been identified in ovarian cancer cell lines [116] and ascites-derived spheroids [117]. Here,

ovarian cancer cells in hybrid E/M states were shown to exhibit stem-like features, anoikis resistance,

and increased migration and invasion when compared with the fully epithelial and mesenchymal

states [116–118].

Overall, it is yet unclear whether the hybrid E/M cells represent a ‘metastable’ cell population or

are cells captured in a time frame during the transition between the epithelial to mesenchymal states.

The elucidation of the complex network of intrinsic and extrinsic mechanisms underlying EMT during

metastasis formation and the role of Wnt signaling therein represents an important future research

challenge. In the next section, the current knowledge on the role of Wnt signaling in resistance to

chemotherapy in ovarian cancer will be discussed.

5.2. Wnt Signaling and Therapy Resistance in Ovarian Cancer

As mentioned above, chemotherapy is extremely efficient in the first-line treatment of primary

ovarian cancers although it inevitably leaves behind chemo-resistant CSCs likely to underlie relapse

and metastasis in distant organ sites [90]. Wnt signaling has been associated with resistance to

chemotherapy in different tumor types including ovarian cancer [119].

Chemo-resistance can be acquired through a broad spectrum of molecular and cellular mechanisms

such as the upregulation of ATP-binding cassette (ABC) transporter pumps, the activation of EMT,

and the exosome-mediated transport of molecules controlling a broad spectrum of pathways underlying

drug resistance [120]. ABC transporters have indeed been shown to be expressed in ovarian cancer

usually in association with cancer stemness and poor prognosis [121,122]. Notably, upregulation of

the ABCG2 transporter pump and Wnt signaling activation downstream of cKIT mediate the onset of

resistance to cisplatin and paclitaxel in ovarian CSCs [13]. In the same study, ABCG2 expression and

chemo-resistance to both cisplatin and paclitaxel could be reversed by β-catenin siRNA knockdown,

once again highlighting the central role of Wnt signaling in these processes [13].

Another well-established mechanism underlying therapy resistance in ovarian cancer, as also

mentioned in the previous section, is represented by EMT [99]. Su et al. (2010) showed that

SFRP5 (secreted frizzled-related protein 5), a well-known Wnt and EMT antagonist, is frequently

downregulated in ovarian cancer by epigenetic silencing through promoter hypermethylation [123].

Accordingly, restoration of SFRP5 expression inhibits Wnt signaling and EMT thus sensitizing ovarian

cancer cells to chemotherapy. Activation of the EMT-TF TWIST and of AKT2 signaling play key roles

downstream of SFRP5 silencing [123].

In addition to the above-mentioned cell-autonomous mechanisms, ascites also forms a unique

tumor microenvironment likely to contribute to therapy resistance [124]. Malignant ascites provides a

favorable tumor microenvironment consisting of cellular and non-cellular components, each likely to

play a role in the development of resistance to carboplatin- and paclitaxel-based therapy. Among these,

cancer associated fibroblasts (CAFs) represent an important component of ovarian cancer ascites [124].

CAFs are a subpopulation of fibroblasts capable of affecting tumor progression, dissemination,

and therapy response through signaling to tumor cells and/or remodeling of the extracellular matrix

(ECM) [125]. Recently, Ferrari et al. (2019) demonstrated that Dickkopf-3 (DKK3), the stromal expression

of which is strongly associated with aggressive ovarian cancer, promotes CAFs’ aggressive behavior

by enhancing Yes-associtated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ)

activity through Wnt/β-catenin signaling [126]. From a mechanistic perspective, DKK3 destabilizes the

Wnt-antagonist Kremen, leading to increased LRP6 localization at the cell membrane. This in turn
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stabilizes YAP/TAZ and β-catenin levels leading to more global gene expression changes enhancing

cancer stemness, malignant progression, and metastasis [126]. Other ascites cellular components such

as macrophages have also been shown to take part in tumor progression and the development of

therapy resistance. Ragahvan et al. (2019) showed that Wnt signaling participates in a bidirectional

ovarian CSC-macrophage interaction [92]. By taking advantage of hetero-spheroids composed of

macrophages and ovarian cancer cells in close contact with each other, it was shown that Wnt signaling,

activated by secretion of the Wnt5b ligand from macrophages, led to an increase of the ovarian CSC

compartment (ALDH+) and to the enhancement of the immune-suppressive characteristics of the

macrophages. Likewise, Wnt5b knockdown in macrophages resulted in a loss of the ALDH+ ovarian

CSC fraction. Most importantly, the hetero-spheroids were less sensitive to chemotherapeutics and

were more invasive in in vitro assays [92]. Hence, macrophage-initiated Wnt activation is likely to play

a central role in ovarian cancer stemness maintenance and in therapy resistance.

Notwithstanding more recent advances in chemotherapy (e.g., intraperitoneal delivery of cytotoxic

drugs and the introduction of novel, more targeted agents such as bevacizumab and imatinib) [127–129],

less than 30% of advanced ovarian cancer patients survive longer than five years after diagnosis [1].

Therefore, there is urgent need for novel therapeutic strategies based on improved understanding of

the molecular and cellular mechanisms underlying dissemination and metastasis formation by ovarian

cancer cells in the peritoneal cavity and their acquisition of dormant and chemo-resistant properties.

Recently, the role played by extracellular vesicles and in particular by exosomes in tumor progression,

dissemination, and resistance to therapy has opened new avenues in basic and translational cancer

research. In the next section we will present and discuss the current knowledge on exosomes in ovarian

cancer, especially in the context of intra-abdominal ascites and of long-range Wnt signaling activation.

6. Exosomes and Wnt Signaling in Ovarian Cancer Ascites

Malignant ascites provides a favorable tumor microenvironment and consists of a heterogeneous

mixture of cells and secreted factors that modulate cancer cell behavior during tumor progression,

metastasis formation, and acquirement of chemo-resistance. As mentioned, Wnt ligands are modified

lipids and are therefore highly hydrophobic, thereby limiting their ability for extracellular diffusion [16].

Recently however, studies have shown that Wnts can be transported across tissues by exosomes [88,130].

In the following paragraphs we will highlight the current knowledge on the role played by exosomes

in ovarian cancer ascites as a putative mechanism to activate Wnt signaling over long-range distances

both in establishing pre-metastatic niches in the peritoneal cavity and in preserving stemness in

disseminated cancer cells.

6.1. Exosomes

Exosomes are small extracellular vesicles ranging in diameter from 30 to 100 nm that are secreted

by most eukaryotic cells. Secreted exosomes are important mediators in cell–cell communication as they

carry molecules such as microRNAs, mRNAs, and both membrane-bound and secreted proteins [131].

Exosomes are thought to facilitate tumor survival and progression by stimulating angiogenesis and

tumor growth, suppressing immune responses, remodeling of the extracellular matrix, promoting

metastasis formation either directly and/or through the establishment of premetastatic niches [131]

(Figure 3). Numerous studies have demonstrated the presence of exosomes in ovarian cancer cell line

cultures, and in patient-derived serum and ascites [132–135]. Notably, it has been shown that active

Wg (Wingless) and Wnt3a ligands are membrane-bound in exosomes from Drosophila and human

cells, respectively [88]. Moreover, macrophage-derived and exosome-packaged Wnts are rate-limiting

for the regenerative response of intestine intestinal stem cells after radiation [130]. In relation to

cancer, fibroblast-derived exosomes carrying Wnt ligands increase cell migration and metastasis

formation in breast cancer [136]. Hu et al. (2019) recently found that exosomes derived from stromal

fibroblasts contain Wnt ligands capable of eliciting the de-differentiation of colon cancer cells into

therapy resistant CSCs [137]. Alternatively, activation of Wnt signaling in target cells has been shown
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to occur by exosomes encompassing β-catenin in their cargo. Here, both 14-3-3 proteins and β-catenin

were encompassed in the extracellular vesicles. 14-3-3 proteins bind to dishevelled segment polarity

protein 2 (Dvl-2) and GSK3β thereby interfering with β-catenin phosphorylation and stimulating Wnt

signaling [138].

Although to date no evidence has been presented supporting the presence of exosomes

encompassing active Wnt ligands in ovarian cancer ascites, differential expression analysis of ovarian

cancer exosomes compared with those from normal OSE cells indicate a potential involvement of

miRNAs known to target the Wnt signal transduction pathway [139]. Moreover, recently it has been

demonstrated that exosomes isolated from a highly invasive ovarian cancer cell line promote metastasis

in vivo compared to exosomes from cells with low invasive capacity [140]. Quantitative proteomic

analysis of tumor tissues of the mice treated with exosomes derived from these two different cell

lines revealed a potential role for Wnt signaling in the role played by exosomes in tumor growth

and metastasis in vivo [140]. Also, as discussed here below, ovarian cancer exosomes containing the

Wnt target and transmembrane protein CD44 have been shown to participate in the formation of

pre-metastatic niches [141].

6.2. Pre-Metastatic Niche

Ovarian carcinomas spread through the shedding of clusters of tumor cells from the primary lesion

into the peritoneal cavity. In this context, the key event in metastatic seeding is the mesothelial adhesion

of ovarian cancer cells in the intraperitoneal cavity. The establishment of premetastatic niches is thought

to be required for disseminating cancer cells to engraft at the distant site [142]. Premetastatic niches

comprise of a specialized and favorable micro-environment that facilitates colonization and promotes

survival and outgrowth of disseminated tumor cells [142] (Figure 3). The relevance of the formation of

pre-metastatic niches in ovarian cancer has been proposed by several studies [141,143]. Lee et al. (2019)

demonstrated that inflammatory factors secreted by ovarian cancer cells mobilize neutrophils and

stimulate them to create chromatin webs called ‘neutrophil extracellular traps’ (NETs) in the omentum

in both tumor-bearing mice (before metastasis occurs) and in early-stage ovarian cancer patients.

The NETs can sequentially capture ovarian cancer cells and thereby promote metastasis formation.

Reversely, inhibiting NET formation abrogated omental colonization [143].

Next to NETs, ovarian cancer exosomes have also been shown to participate in the establishment of

a pre-metastatic niche by alternative mechanisms. First, MMP1 mRNA has been found in extracellular

vesicles derived from ovarian cancer cell lines and ascites from ovarian cancer patients that promotes

apoptotic cell death of the mesothelial cells, thus resulting in the destruction of the peritoneal

barrier [144]. In addition, ovarian cancer cells’ exosomes encompassing the cell-surface glycoprotein

CD44 can transfer it to peritoneal mesothelial cells and induce their reprogramming by EMT activation.

The modified mesothelium facilitates ovarian cancer invasion and metastasis formation [141]. Of note,

CD44 is a major Wnt target gene in the intestinal epithelium [145] and is essential for Wnt induction

during colon cancer progression [146], thus suggesting yet another functional link between Wnt

signaling and ovarian cancer exosomes in pre-metastatic niche formation.

To interfere with the interaction between disseminated ovarian cancer cells and the

exosome-receiving mesothelial cells, De la Fuente et al. (2015) developed a metastatic trap (M-Trap) [147].

By embedding exosomes purified from ovarian cancer patient ascites on a 3D scaffold, the authors

showed that the M-Trap device was able to capture ovarian cancer cells in a mouse model of ovarian

cancer. This led to a more focalized disease and an increase in survival rate [147]. These results lay

the foundation for future clinical approaches to improve treatment of ovarian cancer patients with

malignant ascites [147].

Overall, notwithstanding that treatment of advanced stage ovarian cancer patients still represents

a major clinical challenge, recent advances in our understanding of the mechanisms underlying ovarian

cancer ascites formation and the role they play in metastasis formation in the peritoneal cavity are of

good auspices for the future. Exosomes in particular, may represent powerful tools in early diagnosis
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and treatment [135]. As for the latter, targeted exosome ablation or inhibition of exosome secretion may

affect tumor progression or therapy resistance (Figure 4). In this scenario, the Wnt signaling pathway

may also represent a relevant therapeutic target. In the next paragraph, treatment options based on

targeting of Wnt signaling in ovarian cancer will be discussed.

 

 

β
β

β

β

β
β

Figure 4. Therapeutic targets for the inhibition of Wnt signaling. (a–c) Wnt soluble receptors,

anti-R-spondin antibodies, and antibodies directed against Frizzled receptors impair the ligand/receptor

interaction and prevent downstream signaling. (d) Disheveled inhibitors block Wnt signaling by

interfering with the Frizzled/Disheveled interaction. (e) Tankyrase activates Axin through PARsylation.

Tankyrase inhibition increases Axin levels thus stimulating the formation of the β-catenin destruction

complex and reducing the intracellular β-catenin pool. (f) cyclooxygenase (COX) inhibitors increase

ubiquitination and proteasomal degradation of β-catenin. Next, COX2 inhibition leads to reduced levels

of prostaglandin E2 (PGE2) known to positively affect Wnt signaling. (g) Disruption of its interaction

with TCF inhibits β-catenin-mediated transcriptional activity. CREB-binding protein (CBP) inhibitors

instead interfere with the interaction between TCF/LEF and CBP thereby reducing transcriptional

activity. (h) PORCN-inhibitors hamper the palmitoylation of Wnt before its extracellular release.

(i) Exosome secretion inhibitors reduce the transport of biomolecules like active Wnt ligands, RNAs and

proteases that contribute to angiogenesis, tumor growth, immune response suppression, the remodeling

and degradation of the extracellular matrix (ECM). Additional abbreviatons: RNF43 = RING finger

43; LGR4/5/6 = Leucine-rich repeat-containing G-protein coupled receptor 4/5/6; RSPO = R-spondin;

ZRNF3 = Zinc RING finger 3; GSK3β = glycogen synthase kinase 3β; LRP5/6 = LDL Receptor Related

Protein 5/6; TCF/LEF = T-cell specific transcription factor/lymphoid enhancer binding factor.

7. Targeting Wnt in Ovarian Cancer: Opportunities for Treatment?

During the last decade, the therapeutic response rate of ovarian cancer patients has improved

through optimization of chemotherapy strategies, their intraperitoneal administration, and the

introduction of targeted therapies [127–129]. However, despite these developments, the overall

survival of ovarian cancer patients has not significantly improved [1]. Because of the role played in

cancer stemness and in therapy resistance, the Wnt signaling pathway forms a candidate target for

therapeutic intervention as different segment of this cascade are suitable for therapeutic targeting

(Figure 4; Table 2).

Although R-spondins (RSPO) are unable to initiate Wnt signaling, they can, by binding to

leucine-rich repeat-containing G-protein coupled receptors (LGR) enhance responses to low-dose Wnt

proteins [148]. Functional RSPOs have been found in multiple human tumor types and anti-RSPO

monoclonal antibodies shown to reduce the tumorigenicity of cancer cells in patient-derived tumor

xenograft models of several malignancies including ovarian cancer [149]. Porcupine (PORCN) inhibitors
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form another relevant target to inhibit Wnt signaling. The acetyltransferase PORCN is responsible

for post-translational modifications of Wnt proteins essential for the transport, secretion, and activity

of the ligands. WNT974 is a selective PORCN inhibitor that has been shown to exert cytostatic

effects on ascites-derived ovarian cancer cells as a consequence of Wnt signaling inhibition [150].

When combined with the conventional chemotherapeutic drug carboplatin, WNT974 administration

led to increased cytotoxic effects and cell cycle arrest in ascites samples when compared with single

drug treatments [150].

The FDA (Food and Drug Administration)-approved anti-helminth compound niclosamide

represents yet another powerful Wnt inhibitor shown to repress ovarian CSC growth through

downregulation of both the disheveled protein DVL2 and the surface receptor LRP6 [151]. Next to Wnt,

niclosamide targets additional signaling pathways known to play a role in cancer stemness, including

Notch, mTORC1, and Stat3 [152].

Besides the above mentioned Wnt targets and inhibitory compounds, inhibition of Wnt ligands

secretion, inactivation of the extracellular portion of Frizzled receptors, and interference with the

TCF/β-catenin complex represent additional and presently under investigation strategies [153] (Figure 4;

Table 2).

Currently, different Wnt inhibitors are being evaluated in clinical trials for different cancer types

including ovarian cancer. As a notable example, Ipafricept is a recombinant fusion protein that

competes with the FZD8 receptor for its ligand thereby antagonizing Wnt signaling. Ipafricept reduces

cancer stem cells, promotes differentiation, and synergizes with taxanes in ovarian cancer xenografts.

More recently, a phase 1B trial was conducted with ipafricept in combination with carboplatin and

paclitaxel in patients with recurrent platinum-sensitive ovarian cancer [154]. Unfortunately, although

generally well-tolerated by patients, bone toxicity at efficacy doses limited ipafricept treatment [154].

Nonetheless, other Wnt inhibitors targeting PORCN and β-catenin are now being tested in clinical

trials in different tumor types [155].

Table 2. Wnt inhibitors in ovarian cancer.

Molecular Targets Inhibitors Activity Reference

Extracellular targeting Anti-Rspondin
anti-RSPO monoclonal antibodies reduce tumorigenicity of
cancer cells in patient-derived ovarian tumor
xenograft models.

[149]

Ipafricept (OMP54F28)

Recombinant fusion protein that competes with the
membrane-bound Frizzled 8 (FZD8) receptor for its ligand;
leads to tumor regression in combination with taxane in
ovarian xenograft models; currently under clinical trial.

[154]

LRP6 inactivation Salinomycin
Small molecule blocking Wnt induced LRP6 phosphorylation
and induces its degradation; leads to repression of EMT in
epithelial ovarian cancer.

[156,157]

Dishevelled 3289–8625
Small molecule disrupting the frizzled-disheveled interaction
by targeting the PDZ domain; chemo-sensitizes
paclitaxel-resistant ovarian cancer cells.

[158]

PORCN WNT974
Small molecule inhibitors of Wnt acetyltransferase porcupine;
increases cytostatic effects on ascites-derived ovarian
cancer cells.

[150]

CK1α activation Pyrvinium
Small molecule that selectively potentiates CK1α kinase
activity leading to increased β-catenin phosphorylation;
enhances sensitivity to chemotherapy of ovarian cancer cells.

[159,160]

Non-specific or
overlapping targets

Niclosamide
Small molecule inhibitor promoting FZD1 endocytosis and
suppressing LRP6 expression; inhibits growth and increases
cell death in ovarian cancer.

[161–163]

COX-inhibitors
Aspirin lowers the risk of ovarian cancer development; in case
of ovarian cancer underlying mechanism yet unknown.

[164]

8. Conclusive Remarks

In conclusion, a considerable body of evidence supports the relevance of the role played by Wnt

signaling in ovarian cancer stemness, progression to malignancy, and resistance to chemotherapy.

Notwithstanding the potential and innovative therapeutic strategies currently in development to

specifically target the Wnt pathway, plasticity of cancer cells still represents an escape mechanism
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leading to therapy resistance. Moreover, because of Wnt’s essential role in tissue homeostasis and

regeneration upon damage, its inhibition is likely to result in adverse events. Therefore, the identification

and elucidation of the complex network of intrinsic and extrinsic mechanisms driving ovarian cancer

progression and therapy resistance represent the major future research challenge in the translation of

the fundamental understanding of metastasis and therapy.
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