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Wnt signaling in triple-negative breast cancer
SÖ-G Pohl1,2,3, N Brook1,2,3, M Agostino1,2,3,4, F Arfuso1,2,3, AP Kumar2,3,5,6,7 and A Dharmarajan1,2,3

Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency.
Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast
cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators
of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We
review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment
of this disease.
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INTRODUCTION

Breast cancer represents one of the most significant disease burdens
of any cancer worldwide. Today, women have a one in eight chance
of developing breast cancer over their lifetime, a risk that is
significantly increased if they have inherited harmful mutations in
BRCA1 or BRCA2.1 However, breast cancer is a complex, hetero-
geneous disease characterized by a great multitude of aberrations at
the genomic and molecular level, which can manifest in dysregulated
signaling pathways. A hallmark of many cancers is aberrant regulation
of the Wnt signaling pathway, and breast cancer is no exception.2

Triple-negative breast cancer (TNBC), an aggressive subtype of
breast cancer with a poor prognosis,3 is characterized by tumors
that do not express estrogen receptors (ERs) or progesterone
receptors (PRs), nor display an overexpression of human
epidermal growth factor receptor 2 (HER2).4 Therapies targeted
against HER2-positive breast cancers, such as trastuzumab
(Herceptin),5 and those targeted against ER-positive breast
cancers, such as tamoxifen,6 have no therapeutic benefit to
individuals with the TNBC subtype. Surgical intervention and
chemotherapy have been the major treatment avenues for TNBC;
however, recently developed small molecules and
immunotherapeutics7 are showing promise. In this review, we
will summarize the involvement of dysregulated Wnt signaling in
the progression of TNBC and TNBC stem cells, as well as the
emerging therapies that are currently under investigation.

THE WNT SIGNALING PATHWAY

The Wnt/β-catenin pathway (canonical pathway)

There are currently two models of canonical Wnt/β-catenin
signaling. In the classical model, the destruction complex remains
intact in the absence of Wnt stimulation (Figure 1a). Casein kinase 1
(CK1) primes β-catenin for destruction by phosphorylating Ser45,
which then allows activated Glycogen synthase kinase 3 (GSK3) to

phosphorylate β-catenin at Ser33, Ser37 and Thr41.8 The phos-
phorylated residues of β-catenin interact with the β-propeller
domain of the E3 ubiquitin ligase β-TrCP, which then ubiquitinates
β-catenin, thus targeting it for proteosomal degradation.9

Wnt/β-catenin signaling is initiated by Wnt ligands binding to a
Frizzled receptor (FZD), as well as the co-receptors low-density
lipoproteins 5/6 (LRP5/6). This results in activation of FZD,
permitting binding of Dishevelled (Dvl)10 and phosphorylation of
one or more cytoplasmic motifs of LRP5/6. A single phosphorylated
motif is sufficient to activate Wnt signaling.11 Phosphorylated
LRP5/6 can then interact with Axin. This interaction destabilizes the
β-catenin destruction complex, which requires Axin as a scaffold
and contains Dvl, the serine–threonine kinases casein kinase 1α/β
(CK1), glycogen synthase kinase 3α/β (GSK3) and adenomatous
polyposis coli (APC).12 Destabilizing the destruction complex
prevents phosphorylation of β-catenin, which then accumulates in
the cytosol before translocating to the nucleus. Once there, it binds
to Transcription factor/lymphoid enhancer-binding factor (TCF/LEF)
transcription factors and displaces transcriptional repressor Groucho
to initiate the transcription of Wnt target genes (Figure 1b).13 In the
new model,14–16 the destruction complex is stabilized by Axin in
both the presence and absence (Figure 1c) of Wnt activation, and
β-catenin is degraded through phosphorylation-mediated
recognition by β-TrCP in the intact complex. This allows newly
synthesized β-catenin to accumulate in the cytosol before nuclear
translocation (Figure 1d). This was demonstrated through
co-immunoprecipitation, whereby β-catenin phosphorylated at
Ser33/Ser37/Thr41 was shown to interact with the destruction
complex upon Wnt activation, which also disrupted the interaction
of β-TrCP with the Axin1-β–catenin complex.15 It has also been
proposed that GSK3 inhibition, and thus β-catenin translocation
after Wnt activation, is mediated through the sequestration of GSK3
inside multivesicular endosomes.17 This further demonstrates the
complexity of Wnt signaling.

1Stem Cell and Cancer Biology Laboratory, Perth, WA, Australia; 2School of Biomedical Sciences, Curtin University, Perth, WA, Australia; 3Curtin Health Innovation Research
Institute, Curtin University, Perth, WA, Australia; 4Curtin Institute for Computation, Curtin University, Perth, WA, Australia; 5Cancer Science Institute of Singapore, National
University of Singapore, Singapore, Singapore; 6Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational
Medicine, Singapore, Singapore and 7Department of Biological Sciences, University of North Texas, Denton, TX, USA. Correspondence: Dr AP Kumar, Department of
Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
E-mail: csiapk@nus.edu.sg
or Professor A Dharmarajan, School of Biomedical Sciences, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia.
E-mail: a.dharmarajan@curtin.edu.au
Received 11 November 2016; revised 9 January 2017; accepted 24 January 2017

Citation: Oncogenesis (2017) 6, e310; doi:10.1038/oncsis.2017.14

www.nature.com/oncsis

http://dx.doi.org/10.1038/oncsis.2017.14
mailto:csiapk@nus.edu.sg
mailto:a.dharmarajan@curtin.edu.au
http://dx.doi.org/10.1038/oncsis.2017.14
http://www.nature.com/oncsis


Planar cell polarity pathway

The planar cell polarity pathway (Figure 1e) is a non-canonical,
β-catenin-independent pathway that regulates cellular organization
and polarity, partly through cytoskeletal organization.18 Wnt ligands,
such as Wnt5a, bind to FZD receptors and co-receptors, including

ROR,19 Ryk20 and PTK.21 Dvl interacts with Rac122 and Dvl-associated
activator of morphogenesis 1 (DAAM1). Rac1 activates c-Jun
N-terminal kinase, leading to actin polymerization,22 while DAAM1
activates Rho, which in turn activates Rho-associated kinase (ROCK)
to regulate cellular cytoskeletal arrangements.23

Figure 1. Classical and new Wnt/β-catenin pathway canonical and non-canonical pathways. (a) Overview of the ‘classical’ model of
Wnt/β-catenin signaling in OFF state with no ligand bound to FZD receptor. (b) Overview of the ‘classical’ model of Wnt/β-catenin signaling
pathway in ON state where Wnt ligand is bound to FZD receptor. (c) Overview of ‘new’model of Wnt/β-catenin signaling in OFF state with no
ligand bound to FZD receptor. (d) Overview of the ‘new’model of Wnt/β-catenin signaling in ON state with Wnt ligand bound to FZD receptor.
(e) Overview of Wnt planar cell polarity (PCP) pathway in ON state. Wnt binds multiple receptors including FZD and co-receptors ROR and Ryk.
This activates Rho and Rac, which activate ROCK and c-Jun N-terminal kinase (JNK), respectively, leading to actin polymerization and
regulates cytoskeletal arrangements. (f) Overview of Wnt/Ca2+ pathway in ON state. Wnt is able to bind FZD, Ryk to initiate signal
transduction, which is effected through Dvl and G proteins (α, β, γ). Gene transcription is induced through proteins PKC, CaMKII and
Cn (Calcineurin)-activating transcription factors.
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The Wnt/Ca2+ pathway

The Wnt/Ca2+ pathway (Figure 1f) is activated through Wnt
binding to FZD, which interacts with G proteins and Dvl.24 These
interactions can activate cGMP-specific phosphodiesterase or
phospholipase C, resulting in a release of intracellular calcium.
This results in the activation of downstream signaling proteins
PKC, calcineurin and CaMKII.25 CaMKII activates nuclear factor of
activated T-cells, which can regulate cell adhesion and
migration.26 Wnt5a induces activation of CaMKII-dependent
Wnt/Ca2+ signaling. CaMKII phosphorylates transforming growth
factor β-activated kinase, which activates Nemo-like kinase.27 This

cascade antagonizes canonical Wnt/β-catenin signaling by Nemo-
like kinase phosphorylation of TCF4 and prevents the β-catenin–
TCF4 complex from binding to DNA.28

Wnt ligands

To date, 19 members of the Wnt family have been identified in
mammals, all ranging between 350 and 400 amino acids in length
and characterized by a conserved fold containing a conserved
motif of 24 cysteine residues (Figure 2a).29 Wnt ligands are
modified by lipidation, specifically, the addition of a palmitoleyl
group to a conserved serine by the membrane-bound

Figure 2. Molecular structures of the key Wnt signaling proteins and interactions. (a) X-ray crystal structure of the Xenopus Wnt8 complex with
the mouse FZD8 cysteine-rich domain (PDB 4F0A). The key structural regions of the Wnt fold are highlighted, as are the major Wnt-interacting
regions of the CRD. (b) X-ray crystal structure of the Smoothened receptor (PDB 5L7D), a Class F G protein-coupled receptor, related to FZD.
The key structural regions of Smo are highlighted, as well as helix 8, which is of relevance for Dishevelled binding by FZD. (c) Schematic
representation of the location of the DIX, PDZ and DEP domains within Dvl. (d) X-ray crystal structure of the DIX homodimer (PDB 4WIP).
(e) X-ray crystal structure of the PDZ domain bound to a peptide (red; PDB 3CBX). The peptide-binding site is shown in yellow. (f) X-ray crystal
structure of a DEP homodimer (PDB 5LNP), highlighting residues known to affect Wnt signaling (shown in red). (g) Model of the LRP6
ectodomain generated by molecular dynamics flexible fitting of the crystal structures of the P1E1–P2E2 domains (PDB 3S94) and P3E3–P4E4
domains (PDB 4A0P), and a homology model of the LDL-R type A domains (generated in Prime, based on the crystal structure of the LDL
receptor ectodomain (PDB 1N7D)) to the electron microscopy structure (EMDatabank accession 1964). Gaps in the crystal structures and
between the various components modeled using Prime. (h) X-ray crystal structure complex of the cysteine-rich domain 2 of Dickkopf with
Kremen and the LRP6 P3E4–P4E4 domains (PDB 5FWW).
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O-acyltransferase Porcupine.30 Wnt lipidation is crucial for secre-
tion from the endoplasmic reticulum31 and essential for Wnt
function. Wnt lipidation was initially suggested to occur at Cys77
of Wnt3a (cysteine 3 of the Wnt fold);32 however, lipidation at this
cysteine has been conclusively disproven by crystallographic,33

mutational31 and imaging studies.30

FZD receptors

FZD receptors are a group of 10 membrane proteins featuring
an extracellular cysteine-rich domain (CRD) and a seven-
transmembrane domain.34 Along with the Smoothened receptor
(Smo), the FZDs comprise the family of Class F G protein-coupled
receptors. The crystal structure of XWnt8 in complex with the
mouse FZD8 CRD33 revealed an unusual interaction involving the
direct binding of the Wnt lipid to a binding site on one side of
the CRD (the ‘thumb’ region), as well as the binding of the region
from cysteines 19 to 22 of XWnt8 to the other side of the CRD
(the ‘index finger’ region; Figure 2a).35 Although no complete
structures are available for any FZD, several structures of Smo
are known,36–38 most recently including both the CRD and
seven-transmembrane regions (Figure 2b),39 which are suggestive
of the likely structure of FZD.

Disheveled

Three Dvl homologs are known (Dvl1/2/3), sharing high overall
sequence similarity.40 Dvl consists of three structurally defined
domains: the DIX, PDZ and DEP domains. These three domains are
separated by large insertions of unknown structure (Figure 2c);
however, some functional significance has been ascribed to
conserved sequences within the unstructured regions.41

Dvl polymerizes via the head-to-tail interaction of its DIX
domain (Figure 2d). The DIX domain also mediates interaction
with Axin.42 Mutations (V67A, K68A, Y27D) in the polymerization
interface of the DIX domain strongly suppress Wnt signaling.43 The
PDZ domain of Dvl (Figure 2e) interacts with a conserved motif in
the FZD C-terminal (KTxxxW).24 The PDZ–FZD interaction is
relatively weak, and is likely supplanted by interactions of the
DEP domain with FZD. Greater insight in the role of the DEP
domain in Wnt signaling was recently revealed, with this domain
shown to bind as a monomer to FZD, then undergo subsequent
domain swapping to assemble Wnt signalosomes. Furthermore,
upon Wnt stimulation, DEP domain swapping initiates
DIX-dependent Dvl and Axin polymerization, leading to the
inhibition of GSK3 and Wnt signal transduction. Mutants (E499G,
D460K, G436P, K438M, D449I and D452I) in the DEP domain
strongly diminish Wnt signaling upon Wnt stimulation
(Figure 2f).44,45 Dvl has also been shown to promote ubiquitina-
tion-mediated FZD degradation by RNF43.46 This finding suggests
a dual agonist/antagonist role for Dvl in Wnt signaling.

Low-density lipoprotein receptor 5/6

The extracellular domain of LRPs consists of four β-propeller
repeats interspersed with epidermal growth factor repeats,
followed by three LRP type A repeats (Figure 2g).10 The majority
of Wnts bind to the first β-propeller/epidermal growth factor
repeat (P1E1–P2E2), although Wnt3 and Wnt 3a preferentially
bind to the second repeat (P3E3–P3E4).47 Wnt3 and Wnt3a
binding to LRPs is competitively inhibited by Dickkopf binding to
LRP (Figure 2h).48–50 The intracellular action of LRP5/6 is less
clearly understood, although it is known that Wnt activation
initiates phosphorylation of the intracellular PPPSPxP motifs of
LRP5/6 by GSK3 and CK1, allowing the recruitment of Axin.51

Importantly, it has also been shown that without the FZD–Dvl
interaction, Wnt is unable to induce phosphorylation of
LRP6, reinforcing the complex interplay of proteins involved in
Wnt signaling.24,51

ROR family receptor tyrosine kinases

The ROR family of receptor tyrosine kinases consists of two
evolutionarily conserved members, ROR1 and ROR2.52 The ROR
ectodomains feature a FZD-type CRD most closely related to that
of the skeletal muscle receptor tyrosine-protein kinase.53 ROR2 is
involved in Wnt5a-mediated signaling; Wnt5a binding to ROR2
initiates ROR2 homodimerization, stimulating autophosphoryla-
tion at Tyr646.54 It has been demonstrated that Wnt5a and Wnt3a
bind to ROR2; however, only Wnt5a is able to initiate the
activation of the ROR2 signaling cascade.55 Recently, high
expression of ROR1 has been demonstrated in TNBC cell lines,
where it interacts with CK1ε to promote tumor survival and
growth after stimulation with Wnt5a to activate phosphoinositide
3-kinase (PI3K)/AKT signaling.56

DEAD-box helicases

DEAD-box helicases (DDXs), named for a conserved amino-acid
sequence in their ATP-binding domain (Asp-Glu-Ala-Asp), belong
to a highly conserved family of ATP-dependent DNA/RNA
helicases.57 They consist of a highly conserved helicase core
with two domains, displaying high similarity to the recA bacterial
DNA recombination protein (Figure 3).58 These multifunctional
proteins have roles in translation initiation, pre- and post-
translational modifications, DNA repair, microRNA (miR) proces-
sing, ribosome biogenesis and RNA decay.59–61 Furthermore,
DDXs have been recently implicated in breast tumorigenesis
and activation of cancer stem cell (CSC) stemness through
various pathways, including Wnt.62,63 DDXs can be regulated by
β-catenin/TCF-driven transcription and have also been shown to
regulate upstream Wnt signaling. The role of DDXs is discussed in
further detail later in the section titled ‘DDXs, Wnt and TNBC’.

BREAST CANCER SUBTYPES

Breast cancer is a diverse and complex disease, broadly
characterized by four molecularly distinct subtypes, including
luminal A, luminal B, HER2-overexpressed and triple-negative
breast cancer (TNBC).64 The luminal A subtype is characterized as
ER/PR-positive and HER2-negative, expressing Bcl-2, cytokeratin
8/18 and low Ki67.65 Luminal B subtypes are more aggressive ER+

breast tumors, characterized as HER2− with high Ki67, or HER2+,
PR− and ER+,66 with cyclin B1 overexpression.67 The HER2 subtype
is characterized by amplification of the ERBB2/HER2 gene.68

TNBC, including basal-like and claudin-low subtypes, accounts
for 10–20% of breast cancers and is characterized by a lack of PR,
ER and HER2 overexpression.69 TNBC patients present with higher

Figure 3. X-ray crystal structure of the ATP-binding and C-terminal
helicase domains of the DEAD-box helicase DDX3 (PDB 5E7M).
AMP-PNP, a non-hydrolyzable ATP analog, is shown in spheres in the
ATP-binding site.
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incidence of distant disease recurrence within 3 years of diagnosis,
with a high frequency of visceral metastases.70 The prognosis for
patients diagnosed with TNBC is poor, with patients who respond
poorly to adjuvant treatment exhibiting worse outcomes.4

TNBC subtypes

TNBC has been categorized into a number of distinct molecular
subtypes; however, there remains much intertumoral mutational
and transcriptional heterogeneity within these subtypes. The
molecular heterogeneity of TNBC confounds the clinical approach
to TNBC treatment. TNBCs are characterized by high clonal
frequencies of single gene mutations in the key tumorigenesis
driver genes, including TP53, PIK3CA and PTEN, indicating that
clonal evolution of these mutated genes is an early event in TNBC
development.71 However, mutation frequencies within these
genes are not uniform among TNBC cases.71,72

Lehmann et al.73 determined gene expression signatures in
587 TNBC cases from 21 breast cancer data sets and identified
six molecularly distinct TNBC subtypes. These include basal-like 1,
basal-like 2, immunomodulatory, mesenchymal (M), mesenchymal
stem-like (MSL), and luminal androgen receptor (LAR). These
subtypes, various gene ontology pathways and associated Wnt
genes are described in Table 1. Recent RNA profiling performed by
Burstein et al.92 showed overlap of LAR and MES subtypes based
on Lehmann’s gene expression profiling, but was unable to
reproduce all observations.92 The findings of both of these studies
indicate the presence of at least four molecularly distinct and
stable TNBC subtypes, defined as LAR, mesenchymal (MES), basal-
like immune-suppressed (BLIS) and basal-like immune-activated
(BLIA).92 Furthermore, these studies suggest molecular targets for
the development of therapeutics specific to the treatment
of TNBC.

LAR subtype

The LAR subtype accounts for ∼ 10% of TNBCs, whereby tumor
cells exhibit positive staining for androgen receptors (ARs) and are
driven by AR signaling.69,73 The LAR subtype of TNBC displays
genomic amplification of CCND1, a gene regulated by the
Wnt/β-catenin pathway.92 There is some discordance within the
literature in regards to the prognostic utility of AR status, with
studies indicating no significant effect on survival rates associated
with AR expression,93 although AR+ TNBC individuals have been
shown to have a positive clinical response to the nonsteroidal
antiandrogen, bilcautamide.94,95 In a study designed to test the
benefit of tamoxifen on ER− and TNBC patients, it was found that
expression of AR+ versus AR− individuals predicted a decreased
recurrence rate and treatment benefit with AR+ patients;96

this is a result of tamoxifen exhibiting agonist activity on
AR-expressing cells.97

MES subtype

The MES subtype, encompassing Lehmann’s M, MSL and
claudin-low subtypes, is characterized by the overexpression of
genes associated with cellular motility, proliferation and growth
signaling pathways.73,92 MES subtypes have high expression of
platelet-derived growth factor, insulin-like growth factor 1 and
c-kit.92 MES tumors express mesenchymal stem cell markers,
including the breast stem cell marker ALDH1A1, and are enriched
in genes associated with epithelial–mesenchymal transition (EMT)
and other stem-like properties.73,98 Within Lehmann’s M and MSL
subtypes, there are a number of enriched genes associated with
EMT that are also modulated by Wnt signaling, including MMP2,
TWIST, SNAI2 and TCF4.77 A gene set involved in Wnt/β-catenin
signaling in the M and MSL subtypes, including CTNNB1

(β-catenin), DKK2, DKK3, SFRP4, TCF4, TCF7L2 and FZD4, was also
found to be enriched.73 MES tumors are associated with a poorer
distant metastasis-free survival at 5 years compared to other
subtypes, likely associated with increased expression of cellular
motility genes leading to increased metastasis.73

BLIS subtype

BLIS is characterized as an immune-suppressed TNBC subtype
with downregulated immune signaling pathways and reduced
expression of immune function genes.92,99 BLIS tumors exhibit
enhanced expression of mitotic and cell cycle pathway genes,
with overexpression of proliferative genes, including CENPF, BUB1
and PRC1,99 Sry-related HMG box (SOX) transcription factors, and
the immune-regulatory molecule V-domain-containing T-cell
activation inhibitor.92 SOX transcription factors share a closely
related consensus binding sequence to TCF/LEF transcription
factors100 and are known modulators of Wnt/β-catenin
signaling.101 Survival analysis shows that patients with the BLIS
subtype TNBC experience lower rates of recurrence-free survival
compared to other TNBC subtypes.99

BLIA subtype

The BLIA subtype is characterized by upregulation of immune
activating pathways, with overexpression of STAT transcription
factors and cytotoxic T-lymphocyte-associated protein 4.92

Furthermore, the BLIA subtype demonstrates amplification of
CDK1, which was recently found to phosphorylate the Wnt
regulator TAZ.92,102 BLIA tumors have increased levels of
lymphocytic infiltration and are thus associated with improved
disease-free survival rates and patient outcomes compared to
other TNBC subtypes, although still associated with a relatively
high risk of recurrence (~20%).92,103

Table 1. Summary of the six molecular subtypes of TNBC characterized by Lehmann et al.73

TNBC subtype Gene ontology pathway (GOP) Genes found in GOPs with Wnt association

Luminal androgen receptor (LAR) Steroid pathway FKBP574

Androgen metabolism SPDEF75

Fatty-acid synthesis FASN76

Mesenchymal (M)/mesenchymal stem-like
(MSL)

EMT MMP2,77 SNAI2,77 TCF4,77 TWIST1,77 ZEB178

Wnt/β-catenin signaling CTNNB1,73 DKK2/3,73 TCF4,73 TCF7L2,73 CCND2,73 FZD4,73 CAV1,73 CAV273

Basal 1 (BL1)/Basal 2 (BL2) DNA damage CHEK1,79 FANCA,80 FANCG,80 MSH2,81 RAD2182

Proliferation/cell cycle AURKB,83 PLK1,84 CENPA,84 BUB1,84 CCNA2,85 PRC1,86 MYC,87 NRAS88

Immunomodulatory (IM) JAK/STAT cytokine pathway CCR2,89 CCR590

IL7 pathway IL791

Abbreviations: EMT, epithelial–mesenchymal transition; IL, interleukin; TNBC, triple-negative breast cancer. Various gene ontology pathways were found to be
enriched in the LAR, MSL, BL1, BL2 and IM subtypes. Analysis of the genes enriched in these pathways identified genes associated with Wnt signaling.
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Wnt dysregulation in TNBC and TNBC stem cells

Aberrant Wnt signaling is a characteristic of TNBC, with
both canonical and non-canonical pathways implicated in
TNBC tumorigenesis104,105 and metastasis.106 Enrichment of
Wnt/β-catenin signaling is evident in TNBC and is associated with
poor clinical outcomes within this subtype.107,108 TNBC patients
displaying dysregulated Wnt/β-catenin signaling are more likely to
develop lung and brain secondary metastases.106 Studies have
shown that nuclear accumulation of β-catenin promotes cell
migration, colony formation, stem-like features and chemoresis-
tance of TNBC cells in vitro and TNBC tumorigenesis in mouse
cancer models, thus suggesting that canonical Wnt signaling is
a major driving force of TNBC tumorigenesis.104 Although the
Wnt/β-catenin pathway is associated with the clinicopathological
features of TNBC, this is not due to CTNBB1 mutations.108 Studies
have also implicated dysregulation of non-canonical Wnt signaling
pathways in the highly metastatic behavior of TNBC cells and
CSCs, specifically through aberrant c-Jun N-terminal kinase
activation.109

CSCs, or cancer stem-like cells, are a small subset of cells within
the heterogeneous tumor bulk that are thought to be responsible
for tumor initiation.110 These cells also have intrinsic mechanisms
for chemoresistance, such as upregulation of drug transporters,
including the breast cancer resistance protein (also known as
ABCG2).111 By evading the standard chemotherapeutic treatments,
it is thought that the CSCs are also responsible for the relapse
experienced in many cancers, especially TNBCs.112 Studies have
also shown that these cells are a main contributor to metastasis,
and are able to initiate solid tumor formation when xenotrans-
planted at low cell densities.113 TNBC stem cells are isolated from
tumors as CD44+ (homing cell adhesion molecule), CD24− (heat
stable antigen), CD49f+ cells.114 CSCs also differ metabolically to
other cancer cells. They are more reliant on mitochondrial
respiration, which is supported by their higher mitochondrial
reactive oxygen species, enhanced oxygen consumption and
higher mitochondrial mass, allowing for features such as
resistance to DNA damage.115

Wnt signaling is essential for normal breast stem cell function
and mammary gland development during embryogenesis,
postnatal development and pregnancy,116 with adult mammary
glands containing Wnt-responsive stem cell populations.117

Studies have shown that aberrant Wnt signaling in breast cancer
stem cells (BCSCs) is a key event in breast tumorigenesis.118

Wnt/β-catenin signaling has been linked to TNBC tumorigenesis
by regulating the key tumor-associated characteristics, including
migration, stemness, proliferation and chemoresistance in
TNBC cells and CSCs.104 A recent study has also demonstrated
that Wnt/β-catenin signaling activity is higher in breast CSCs than
the bulk tumor population, based on β-catenin, TCF4 and LEF1
expression in Aldefluor-positive cells versus Aldefluor-negative
cells.119 Treatment with Wnt3a increased the number of ALDH+

breast CSCs, and knockdown of Wnt1 reduced the tumor-forming
efficiency of breast CSCs in vitro.119

Furthermore, studies have shown that Wnt-derived breast tumors
are maintained by clones capable of re-activating Wnt overexpres-
sion post-Wnt inhibition, indicating that aberrant Wnt activation is a
key driver of breast cancer recurrence and progression.120 A recent
review highlighted the potential importance of Wnt/β-catenin
signaling, along with other developmental signaling pathways,
including Cripto-1 and Notch/CSL, in the regulation of TNBC stem
cells and therapy resistance in TNBC.121 An overview of Wnt signaling
dysregulation is given in Figure 4.

FZDs in TNBC

FZD6. FZD6 exhibits increased gene copy number variations and
overexpression in breast cancers. This is more frequent in TNBC
than ER+ tumors. A study by Corda et al.122 determined that FZD6

was involved in the regulation of cell motility, invasion and three-
dimensional (3D) growth, although it did not regulate proliferation
in TNBC. This was confirmed by a significant reduction in distant
metastases detected in various organs in vivo after the injection of
MDA-MB-231 cells depleted of FZD6. Short hairpin RNA directed at
FZD6 in vitro was found to reduce cell invasion through
a reduction in active Rho and the subsequent reduction
in fibronectin fibres. This indicated that FZD6 regulates cell
motility and invasion through non-canonical Wnt signaling. This
study also suggests that FZD6 overexpression in TNBC has a high
prognostic value in determining the risk of metastasis.122

FZD7. Microarray analysis determined that FZD7 expression is
upregulated in TNBC tissue and cell lines, and promotes
tumorigenesis via canonical Wnt signaling pathways.123 Short
hairpin RNA-mediated silencing of FZD7 reduced invasiveness and
colony formation in TNBC cell lines.123 A recent study found that
ΔNp63, an isoform of Transformation-related protein 63 (p63),
enhanced FZD7 expression and increased Wnt signaling in TNBC
tumor tissue and cell lines.124

Aberrant FZD7 expression is implicated in TNBC stem
cell-mediated tumorigenesis. A study recently found that knock-
down of ΔNp63 in TNBC cell lines decreased FZD7 expression and
tumorsphere formation, indicating that ΔNp63/FZD7 upregulation
induced TNBC stem cells and promoted tumor formation in
TNBC.124 The findings of this study highlight the potential clinical
importance of ΔNp63/FZD7-Wnt signaling in TNBC stem cells as
a key driver of tumorigenesis and progression of TNBC.124,125

FZD8. Gene expression studies have recently linked FZD8-driven
Wnt signaling to chemoresistance in TNBC cell lines and TNBC
stem cells. Treatment with cisplatin and tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) in TNBC cell lines

Figure 4. Overview of Wnt signaling regulators contributing to TNBC
progression and their targeted therapies. Canonical and
non-canonical Wnt pathways are activated through Fzd, LRP and
ROR receptors. Blue arrows indicate suppression/inhibition of Wnt
regulators and pathways (with a net result of downregulation of Wnt
target gene transcription, indicated by yellow cross); red arrows
indicate activation of Wnt regulators and pathways.
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resulted in increased FZD8 expression in residual tumors of
xenograft models.126 Furthermore, FZD8 silencing led to increased
Wnt pathway-driven TNBC cell apoptosis in vitro and in vivo.126

The study showed that treatment with TRAIL/cisplatin increased
expression of LEF-1 and TCF-7 in residual TNBC stem cells, thus
implicating upregulation of Wnt signaling components in the
development of chemoresistance.126 An inverse correlation
between FZD8 and miR-100 was shown, where decreased
miR-100 expression was linked to increased FZD8 expression
and Wnt signaling, resulting in increased loco-regional breast
cancer metastasis.126,127 The role of miRs in Wnt signaling and
TNBC is discussed in further detail below. c-Myc overexpression
has been linked to FZD8 overexpression in TNBC cell lines,
associating c-Myc-driven transcription to chemoresistance and
TNBC CSC survival.128

LRP5/6 in TNBC

LRP5/6 are essential for normal mammary development by
regulating breast stem cell activity and are linked to basal-
derived breast tumorigenesis.129–131 Studies in transgenic mice
indicated that LRP5 knockdown led to resistance to Wnt1-induced
tumor formation.130

Gene expression analyses found that LRP6 is overexpressed in
human TNBC.123,131 In vivo studies have shown that LRP6 silencing
inhibited tumor growth in TNBC cell line-derived xenograft
models.132 LRP6 and Wnt target gene SOX9 have been shown
to influence regulation of one another in TNBC cell lines.
LRP6 overexpression led to SOX9 upregulation, while knockdown
of SOX9 reduced LRP6 transcription and decreased cell invasion
and proliferation.133

LRP6 overexpression led to the upregulation of Wnt signaling
and was associated with increased stemness in TNBC cells.134

CD138 (Syndecan-1) is an EMT marker associated with both
development and breast tumorigenesis,135 and has been shown to
modulate TNBC stem cell properties by targeting Wnt signaling.134

Ibrahim et al.134 showed that CD138 modulates Wnt signaling in
TNBC stem cells through LRP6, whereby CD138 silencing resulted
in downregulated LRP6 expression and Wnt signaling.134

RORs in TNBC

Primary breast cancer DNA microarray data set analysis has shown
that ROR1 is expressed on breast cancer cells and absent in
normal breast cells, with high ROR1 expression associated with
poorer survival.136 Furthermore, the study showed that ROR1
silencing in TNBC cell lines increased apoptosis and reduced cell
growth. High ROR1 expression in breast cancer cells is associated
with high expression of EMT gene profiles and high incidences of
disease recurrence and progression.137 ROR1 knockdown in TNBC
cell lines resulted in reduced EMT-associated protein expression,
reduced cell migration and invasion in vitro, and inhibited
metastasis in xenograft models.137 ROR2 expression is present in
both TNBC and non-TNBC, with ROR2+ TNBC patients exhibiting
poorer survival outcomes compared to other subtypes.138 ROR2
knockdown in TNBC cell lines inhibited Wnt signaling and reduced
TCF/LEF transcription.138 These findings indicate the potential
prognostic and therapeutic significance of high ROR1/2 expression
in TNBC.

DDXs, WNT and TNBC

DDX3. DDX3 is a regulator of Wnt/β-catenin signaling, where it
interacts with and increases the kinase activity of casein kinase 1ε
and is required for the phosphorylation of Dvl2.139 It is known to
have an oncogenic role in breast cancer, where non-tumorigenic
MCF10A cell lines overexpressing DDX3 showed increased EMT,
motility and invasiveness.140 The same study demonstrated that
DDX3 expression was positively correlated with a more aggressive

phenotype, and was highly expressed in TNBC cell lines. DDX3
overexpression resulted in E-cadherin downregulation and
subsequent nuclear β-catenin translocation.140 Similarly, DDX3
inhibition by NZ51, a ring-expanded nucleoside analog that is
predicted to bind to the ATP-binding site of DDX3, led to
decreased proliferation, motility and invasiveness in TNBC cell
lines and reduced tumor load and metastatic burden in preclinical
in vivo models.141

DDX5 (p68). DDX5 acts as a co-activator of Wnt/β-catenin signaling
through regulation of TCF4 expression. In turn, β-catenin/TCF4
regulates DDX5 expression, forming a positive feedback loop
associated with increased EMT marker expression in TNBC cells.142

DDX5 is thought to regulate p53-mediated repair of DNA damage,
and DDX5 overexpression contributes to tumorigenesis and
progression in breast cancers.143 DDX5 is highly expressed in
basal-like breast cancers compared to luminal-like, and correlates
with high EGFR and Ki67 expression in TNBC tissue.144 Furthermore,
the study found that DDX5 regulates the expression of miR-21 and
miR-182 in basal breast cancers, and is associated with malignant
disease.

THE ROLES OF MIRS IN WNT SIGNALING AND TNBC

miRs are endogenous, short, non-coding RNA molecules that
regulate cancer-related genes at the post-transcriptional level.145

miRs are differentially expressed in BCSCs and cancer cells,
indicating that breast cancer-specific miRs are important in
maintaining stemness and promoting tumorigenesis in BCSCs.146

Twenty-seven miRs differentially expressed in locally advanced
TNBC have been previously identified, with many of these predicted
to be involved in regulation of Wnt signaling pathway genes.147,148

miR-374a overexpression led to suppression of Wnt pathway
inhibiting components (PTEN and WIF1) and ultimately increased
Wnt-mediated EMT and metastasis in multiple TNBC cell lines.149

miR-340 is downregulated in TNBC cell lines and has been
linked with TNBC tumorigenesis regulation in multiple studies.150

Induction of miR-340 resulted in downregulation of Wnt pathway
target genes (CTNNB1, MYC and ROCK1), decreased proliferation
and increased apoptosis in a metastatic TNBC cell line. The study
showed that miR-340 overexpression reduced cell motility and
invasiveness, indicating that miR-340 has a fundamental role in
regulating breast metastases.151 Another study recently found that
induction of miR-340 in TNBC cell lines led to reduced expression
of SOX2, an oncogene associated with the canonical Wnt signaling
pathway.152

A study by Isobe et al.153 found that miR-142 upregulation is
associated with BCSCs and activates canonical Wnt signaling by
promoting APC breakdown in TNBC cell lines. The study found
that miR-142 expression activated canonical Wnt signaling,
leading to increased miR-150 expression, thereby contributing to
breast tissue hyperproliferation, BCSC proliferation and reducing
apoptosis in TNBC cell lines.153

A recent study has shown that miR-218-5p expression was
significantly increased in TNBC, as well as bone metastases, from
breast cancer patients.154 Anti-miR-218-5p led to a reduction in
cell proliferation in vitro and decreased tumor growth, active
osteoclasts and osteolytic lesions in vivo, while the opposite was
seen with transfection of miR-218-5p. The miR was also shown to
directly modulate Wnt/β-catenin signaling by binding to secreted
FZD-related protein 1 and SOST. Anti-miR-218-5p suppressed
Wnt signaling, which downregulated Parathyroid hormone-related
protein expression, reducing breast cancer-induced osteolytic
disease.154
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CURRENT AND EMERGING THERAPIES FOR TNBC AND TNBC

STEM CELLS

Systemic cytotoxic chemotherapy is clinically indicated in early
TNBC and is associated with a greater treatment benefit than
hormone receptor-positive tumors.155 Numerous early-phase
clinical trials are currently underway, investigating various
targeted molecules and combination therapies for the treatment
of TNBC. In this section, we review current and emerging small
molecule therapeutics for the treatment of TNBC (Figure 4);
immunotherapeutics are reviewed elsewhere.7

Chemotherapy

Anthracycline/taxane-based regimens are currently the standard
of care in the treatment of adjuvant and neoadjuvant TNBC.
However, a recent in vitro study has shown that treatment with
docetaxel or doxorubicin had transient and negligible impact on
cell growth in two TNBC cell lines, respectively. Furthermore, the
study found that docetaxel and doxorubicin treatment resulted in
deregulation of genes associated with stemness in TNBC cells.156

Molecular analysis found that doxorubicin treatment deregulated
stem cell signaling pathways associated with cell growth, renewal
and differentiation, with altered gene expression demonstrated in
components of the Wnt signaling pathway, including FZD2, FZD4,
FZD5, FZD6, FZD7, FZD9, Axin1, Wnt11, Wnt10a and Wnt5a. As
such, the study concluded that docetaxel and doxorubicin induce
stemness in differentiated TNBC cells, which likely accounts for
acquired chemoresistance seen in refractory TNBC tumors.156

Platinum agents

Platinum-based chemotherapeutics are a class of DNA-damaging
agents, including cisplatin, carboplatin and oxaliplatin; these have
established efficacy in breast cancer treatment.157 In vitro studies
have indicated that combining TRAIL and cisplatin significantly
increased BCSC death compared to other standard of care
treatments in TNBC cell lines.158 The study showed that treatment
with TRAIL and cisplatin inhibited Wnt1-mediated signaling
and expression of cyclin D1, as well as the phosphorylation of
β-catenin. Combination treatment with cisplatin and TRAIL also
enhanced apoptosis, and inhibited proliferation and tumorsphere
formation.158

Wnt signaling inhibitors

Treatment with the small molecule β-catenin/TCF inhibitor
CWP232228 inhibited β-catenin-mediated transcription, leading
to inhibition of stem cell proliferation and reduction in tumor bulk
in TNBC cell lines and TNBC patient-derived xenograft models,
respectively.159 PRI-724, a CREB-binding protein inhibitor, and
LGK-974, a Porcupine inhibitor, are two small molecules currently
undergoing clinical development. Both molecules are currently
under investigation for single agent use in ongoing phase I clinical
trials in TNBC patients,160 with interim results yet to be released.
Recent in vitro studies have shown that LGK-974 in combination
with the PI3K/AKT/mTOR inhibitor BKM120 worked synergistically
to decrease cell viability and enhance antitumor efficacy in TNBC
cell lines.161

PARP inhibitors

Poly (ADP-ribose) polymerase (PARP) is an enzyme involved in
DNA repair mechanisms necessary for maintaining BRCA-mutated
cell viability.162,163 Included in the PARP enzyme family are
tankyrase (TNKS)-1 and TNKS2. TNKS1 and TNKS2 are regulators of
Wnt signaling through their interaction with Axin.164,165 TNBCs
share phenotypic characteristics with BRCA-mutated cancers, thus
providing support for the use of PARP inhibitors.166 The small
molecule TNKS1/2 inhibitor XAV939 showed effectiveness in the

destabilization of Axin and reduction of Wnt activity, although
data suggest that a combination approach may be more
beneficial.165 Clinical trials evaluating the oral PARP inhibitor
olaparib in BRCA1/2-positive metastatic breast cancer are currently
underway, with interim results showing efficacy.167 Veliparib is
another PARP inhibitor currently being evaluated in combination
with paclitaxel and carboplatin for metastatic TNBC.168 Data from
Phase I clinical trials of veliparib show acceptable safety, tolerance
and good antineoplastic activity.168

Histone deacetylase inhibitors

Histone deacetylase (HDAC) inhibitors are emerging as promising
anti-TNBC agents because of their multifunctional capacity to
regulate gene expression, cell growth and survival, as well as their
ability to restore cellular aberrations due to epigenetic effects.169

Entinostat is an HDAC inhibitor recently shown to have anti-CSC
effects in TNBC stem cells. An in vivo study found that entinostat
treatment reduced TNBC stem cell populations, tumorsphere
formation and miR-181a expression in TNBC cell lines.170

Furthermore, the study found that entinostat treatment in TNBC
patient-derived xenografts reduced tumor growth and inhibited
the development of lung metastases.170 Further in vivo studies
have shown that triple therapy, combining entinostat, all-trans
retinoic acid and doxorubicin, induced apoptosis of TNBC stem
cells in culture and induced differentiation of TNBC CSCs both
in vitro and in vivo.171 Panobinostat (LBH589) decreased cell
survival and cell cycle progression at the G2/M stage in TNBC cell
lines and in vivo. It also increased acetylation of the histones
H3 (Lys3) and H4 (Lys8).169 Treatment with panobinostat
upregulated cadherin-1 (CDH1) and reversed the M phenotype;
CDH1 has been identified as a Wnt-signaling component in
invasive breast carcinoma.172 An in vivo study found that
salinomycin, a compound that selectively inhibits CSCs,173 in
combination with panobinostat, significantly inhibited the growth
of TNBC stem cells in TNBC patient-derived xenografts. The study
found that salinomycin and panobinostat worked synergistically
to inhibit cell cycle progression, enhance apoptosis and regulate
EMT in TNBC stem cells.173

CONCLUSIONS

The dysregulation of Wnt signaling is synonymous with cancer.
TNBC is an aggressive, highly proliferative phenotype, which is
characteristic of overactive signaling pathways. The accelerated
development of sequencing technologies has allowed us to
characterize the highly heterogeneous molecular landscape of
TNBC with unprecedented detail. These technologies have
allowed the discovery of new potential therapeutic targets, as
well as to suggest where existing drugs may be of therapeutic
value, for instance, in the use of tamoxifen on AR-positive TNBC
patients. Like TNBC, Wnt signaling is highly complex and not yet
fully characterized. The discovery of novel regulators in TNBC, such
as DDXs, adds to the complexity, but also presents exciting new
opportunities for the development of potential therapeutic
targets. Structural knowledge of Wnt pathway proteins and
interactions has expanded in recent years, providing opportunities
for rational/structure-based drug design of novel cancer
therapeutics.
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