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Cardiovascular disease is a worldwide epidemic and considered the leading cause of

death globally. Due to its high mortality rates, it is imperative to study the underlying

causes and mechanisms of the disease. Vascular calcification, or the buildup of

hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular

disease. Medial vascular calcification is a predictor of cardiovascular events such as, but

not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle

cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are

hypothesized to undergo a phenotypic switch into bone-forming cells during calcification,

mimicking the manner by which mesenchymal stem cells differentiate into osteoblast

cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast

differentiation and a target gene of the Wnt signaling pathway, has also shown to

be upregulated when calcification is present, implicating that the Wnt cascade may

be a key player in the transdifferentiation of VSMCs. It is important to note that the

phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic

state is necessary in response to the vascular injury surrounding calcification. The

lingering question, however, is if VSMCs acquire this synthetic phenotype through the

Wnt pathway, how and why does this signaling occur? This review seeks to highlight

the potential role of the canonical Wnt signaling pathway within vascular calcification

based on several studies and further discuss the Wnt ligands that specifically aid in

VSMC transdifferentiation.
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INTRODUCTION

Cardiovascular disease (CVD) is a worldwide epidemic. As the leading cause of death across the
world, many researchers are working to better understand the causes and mechanisms resulting
in the disease (1). One of the contributors and predictors of cardiovascular mortalities is vascular
calcification, the buildup of hydroxyapatite deposits within the arterial wall. Themineral deposition
can occur in either the intimal or medial layers of the arteries; the location depends upon the
causative factors and can result in different effects within the body (2). Conditions conducive of
calcification include, but are not limited to, hypercalcemia, hyperphosphatemia, and mechanical
stress which induce changes to the arteries on a cellular level. Medial calcification, which occurs
within the vascular smooth muscle cells (VSMCs) lining the middle layer of the arterial wall, has
been linked to hypertension, stiffness, and increased risk of heart failure (3). A comprehensive
understanding of the various changes within the VSMCs during calcification may help to identify a
key regulator to target with a treatment. VSMCs are derived from mesenchymal stem cells and are
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not terminally differentiated; they are known to maintain
their plasticity and can differentiate into other mesenchymal
cell derivatives (4). During calcification, studies have shown
VSMCs undergo a cellular mediated phenotypic switch into
cells resembling bone forming osteoblasts, characterized by
a loss of smooth muscle markers and an upregulation of
osteogenic markers (5). Runx2, a transcription factor necessary
for osteoblast differentiation, is upregulated within calcifying
VSMCs and may be the cause of this transdifferentiation (6).
Runx2 is a target gene of the Wnt signaling cascade, which
is known to regulate bone development during embryogenesis,
as well as direct bone turnover and remodeling (7). Because
mineral deposition in VSMCs appears to be very similar to bone
formation, many studies have begun investigating Wnt signaling
as a possible mechanism and regulator of vascular calcification.
This mini review seeks to culminate the observations made so far
on VSMC phenotypes and the regulatory role of Wnt in VSMC
plasticity to help construct a holistic but focused view of the
cellular factors influencing vascular calcification.

VSMC PHENOTYPES

Before the 1960s, it was commonly thought that there were
two cell types in the arterial media: smooth muscle cells and
fibroblasts. The reason for this assumption was due to the
presence of connective tissue within the middle layer, like that
formed by fibroblasts. However, in the early 1960s, studies began
providing evidence for only one cell type, smooth muscle cells,
within the arterial media (8, 9). In 1967, Wissler suggested that
the medial cells are a multifunctional mesenchyme cell type
capable of both contracting and fabricating connective tissue.
Wissler was one of the first to realize smoothmuscle cell plasticity
and that the once thought fibroblasts are really a dedifferentiated
smooth muscle cell (10). Over the next few decades, much
more was learned about the range of VSMC phenotypes. The
principal function of VSMCs within the body is to maintain
blood pressure. To achieve this function, the cells primarily
maintain a contractile phenotype that is characterized by slow
proliferation, response to neurotransmitters, and expression of
cellular markers such as α-smooth muscle actin, smooth muscle
myosin heavy chains 1 and 2, calponin, and smoothelin (4).
When in the contractile state, the cell has a spindle shape
with many focal adhesions and integrin receptors to connect
the cell to the ECM and allow for contraction. The cytoplasm
contains primarily myofilaments, with a low number of other
organelles such as rough endoplasmic reticulum, Golgi, and free
ribosomes (11). In response to a necessary change in function,
such as the need for increased proliferation, VSMCs may display
a dedifferentiated phenotype commonly referred to as synthetic.
The synthetic state is characterized primarily by proliferation,
migration, and extracellular matrix production, so the cytoplasm
of the cells contains a greater amount of rough endoplasmic
reticulum, Golgi, and free ribosomes and a smaller number of
myofilaments (11). The distinctions between the contractile and
synthetic phenotypes can be seen in Figure 1 (12). The need for

greater proliferation as seen in the synthetic state can arise in
various circumstances but has been particularly characterized in
response to vascular injury.

VSMC TRANSDIFFERENTIATION

Following injury and for vascular repair to occur, the VSMCs
revert to the synthetic state explained above. However, as
the synthetic phenotype occurs as a dedifferentiated state,
the cells can then further differentiate into other cell types
depending on environmental cues. VSMCs have been shown
to downregulate contractile proteins and display characteristics
of other mesenchymal lineage cell types, including those
of osteoblasts, chondrocytes, and adipocytes (13). In pro-
calcifying conditions, such as high levels of serum phosphate,
VSMCs begin to express osteogenic markers including Runx2,
Sp7, osteopontin, osteocalcin, alkaline phosphatase, Sox9, and
collagen types II and X (4). A study done by Patel et al. sought to
evaluate the similarity between bone formation and calcification
by comparing mouse osteoblast with control and calcifying
VSMCs (14). The quantity of calcium deposition between
osteoblasts and calcifying VSMCs was similar, but osteoblasts
formed many large bone nodules whereas calcifying VSMCs
formed small discrete regions of calcification. Calcifying VSMCs
saw a 6-fold increase in early osteoblast markers Runx2 and Sp7
compared to control VSMCs but still a 3-fold lower amount
compared to the osteoblasts. The study concluded that calcifying
VSMCs take on a transitional phenotype between but distinct
from that of healthy VSMCs and bone-forming osteoblasts
(14). Many other studies have also noted the increase and
possible requirement of Runx2 expression, a transcription factor
necessary for osteoblast differentiation, in calcifying VSMCs (15–
18). Though it is well understood that Runx2 is at least partially
responsible for the osteogenic switch, it is necessary to determine
why the transcription factor is being upregulated in the cells.
Gaur et al. determined the Runx2 gene is directly targeted by
the canonical Wnt signaling pathway which activates the gene
and regulates bone production during development and in adults
(19). Because of the governing role of Runx2 in osteoblast
differentiation and vascular calcification, studies are investigating
Wnt signaling as a possible mechanism of calcification.

THE WNT SIGNALING CASCADE

A family of 19 secreted glycoproteins, Wnt signaling is conserved
among metazoan animals to regulate many cellular functions
during development including cell fate determination, migration,
polarity, primary axis formation, organogenesis, and stem cell
renewal (20). Wnt ligands each consist of 350-400 amino
acids including 22–24 conserved cysteine residues (7). The
signaling cascade is activated when one of the extracellular
Wnt ligands binds to a Frizzled (Fz) receptor. Fz is a family
of 10 different seven-member transmembrane proteins. A Wnt
signal binds to the cysteine-rich extracellular N-terminal of a Fz
receptor associated with co-receptors such as LRP5 and LRP6
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FIGURE 1 | Depiction of the differences between the contractile and synthetic VSMC phenotypes. Most VSMCs exist in the contractile state on the right to maintain

blood pressure, but they can dedifferentiate into the synthetic phenotype on the left as necessary for proliferation and tissue repair (12).

of the low-density lipoprotein receptor family (20). LRP5 and
LRP6 are transmembrane proteins that help Fz to induce the
canonical Wnt pathway (7). After Wnt binds to Fz, the signal
recruits the cytoplasmic phosphoprotein Disheveled (Dsh) to the
plasma membrane. At this point, the signaling pathway diverges
into three separate branches: Canonical (β-catenin dependent),
Planar Cell Polarity, and Wnt/Ca2+ (20). The canonical branch
has been most widely studied and is the segment hypothesized to
play a role in vascular calcification. Dsh aids in the recruitment
of an Axin and GSK3 complex (21). Under normal, non-
activated Wnt conditions, Axin is the scaffolding protein of
a β-catenin destruction complex. The destruction complex is
made up of Axin, glycogen synthase kinase 3 (GSK-3), casein
kinase 1 (CK1), adenomatous polyposis coli (APC) protein,
and the E3-ubiquitin ligase β-TrCP (22). The complex typically
phosphorylates and proteolytically degrades any accumulation
of β-catenin in the cytoplasm. When Axin is recruited to the
plasma membrane because of Wnt signaling, the destruction
complex is disassembled, resulting in an upregulation of β-
catenin (21). β-catenin then translocates to the nucleus and
forms a transcriptional complex with LEF-1/TCF DNA-binding
transcription factors. The complex associates to the promoter
of Wnt target genes that results in the upregulation of those
genes (20). In summary, during canonical Wnt signaling, the
binding of Wnt ligands to the cell membrane inhibits the β-
catenin destruction complex resulting in the translocation of β-
catenin to the nucleus where the transcription of Wnt target
genes is induced, as shown in Figure 2 (20).

WNT AND RUNX2 IN OSTEOGENESIS

As stated before, studies have shown that Runx2 is a target
gene of Wnt signaling, and activation of Runx2 by Wnt
stimulates osteoblast differentiation and bone formation (19). In
mesenchymal stem cells, Runx2 regulates the expression of other
bone related proteins, such as osterix, osteocalcin, and sclerostin,
directing the cell to an osteogenic phenotype (6). Expression of
Runx2 begins in uncommitted stem cells, increases in osteoblast
precursors, peaks in immature osteoblast, and decreases once
osteoblasts mature (23). This expression of Runx2 is modulated
by canonical Wnt signaling, resulting in an inhibition of
chondrocyte differentiation in early mesenchymal cells and
directing the progenitors to become osteoblasts (23). The process
occurs during embryonic development when establishing the
body axis and tissue and organ development and functions after
birth in bone maintenance and repair (24).

WNT IN VASCULAR CALCIFICATION

Because Wnt is involved in bone turnover and calcifying smooth
muscle cells resemble osteoblasts, Wnt may play a governing
role in calcification. A recent comprehensive review by Tyson et
al. highlights the role of mechanotransduction, explaining how
the compressive and tensile strains experienced by VSMC under
increased stress may induce bone-like Wnt mediated remodeling
in the arterial wall (25). Interestingly, Wnt ligands and signals are
found in noncalcifying VSMCs and may contribute to normal
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FIGURE 2 | Schematic of the canonical Wnt signaling cascade. Binding of a

Wnt ligand to the cell surface causes the translocation of β-catenin to the

nucleus and the upregulation of Wnt target genes (20).

regulation of the VSMC phenotype, proliferation, and survival,
particularly in response to vascular injury. Studies from the
early 2000s indicate the presence of Wnt proteins in VSMCs. A
study done in 2004 by Wang et al. used a transfection assay to
show that loss of the Wnt coreceptor LRP6 function in VSMCs
inhibited cell cycle progression, demonstrating a role for LRP6
and Wnt in VSMC growth and fate (26). Another study done by
Wang et al. in 2005 noted that Fz1 is highly expressed in VSMC
tissues indicating active Wnt signaling, and they suggest a role
in development and response to environmental stimulus (27). In
agreement with these studies, in 2014 Wu et al. found that a Wnt
ligand influences VSMCmigration and adhesion to collagen type
I (28). A transwell migration and wound healing assay showed
that Wnt3a significantly increased VSMC migration, and an
adhesion assay showed that Wnt3a treated VSMCs were able to
adhere more to collagen type I. The study also used Western blot
analysis to test for several canonical Wnt components, including
β-catenin, GSK-3β, ILK, and β1-integrin. Wnt3a treatment
upregulated phosphorylated β-catenin, phosphorylated GSK-
3β, and ILK and activated β1-integrin in VSMCs, providing
additional evidence of Wnt effecting protein expression and
potential therapeutic targets (28).

Other studies have looked at the involvement of Wnt
particularly in calcifying VSMCs. Mikhaylova et al. found that
Wnt3a induced a 3.5-fold increase in mineralization when used
with hypertrophic chondrocyte conditioned media, suggesting
Wnt paired with other chondrocyte-derived factors, such as
VEGF, may be a positive regulator of calcification (29). Rong et
al. used phosphate and BMP-2 to induce calcification in VSMCs,
and then tested the cultures for various cellular markers (5).
They were able to observe a phenotypic change as SM 22α and
α-SMA were downregulated and osteogenic markers including
Msx2, RunX2, Pit1, and β-catenin were upregulated. When

β-catenin was knocked down using a transfection assay, these
results were reversed, indicating a dependent role of β-catenin
and Wnt signaling in VSMC transdifferentiation (5). In 2016,
Cai et al. also provided strong evidence for the involvement of
Wnt signaling in VSMC transdifferentiation and mineralization
(6). In a pro-calcifying high phosphate environment, RunX2
expression was induced in a time-dependent manner, observed
by Western blot analysis. To determine if the increase in RunX2
expression was caused byWnt signaling, they usedWestern blots
to track β-catenin activity and found that both dephosphorylated
and phosphorylated β-catenin was upregulated. Immunostaining
showed the high phosphate treatment also promoted β-catenin
translocation to the nucleus, a typical cellular response to
Wnt signaling, and they were able to use luciferase reporter
assays to identify two specific TCF binding elements that
mediate the interaction with TCF in response to β-catenin
translocation. Further evidence of Wnt included a positive result
for phosphorylation of LRP6, a Wnt dependent reaction. To
confirm these results, a Wnt inhibitor was used that abolished
RunX2 induction during high phosphate treatment. VSMCs were
then treated with Wnt3a, which successfully induced calcium
deposition and osteocalcin induction. The results from Cai et al.
suggest a specific pathway in whichWnt3a can activate β-catenin
and induce RunX2 and osteocalcin expression and promote
calcification of VSMCs (6).

WHICH WNT?

Though there is surmounting evidence of the involvement of
Wnt in vascular calcification, each study identifies different
inducers, inhibitors, and regulatory proteins relative to Wnt
and even other signaling pathways, such as VEGF and
BMPs mentioned previously. Although they must be studied
independently, it is likely that each of these different processes
may contribute and work together to create an environment
conducive to VSMC transdifferentiation and thus calcification.
As Wnt has been more heavily investigated as a possible
mechanism, some studies have begun testing specific Wnt
ligands to determine if one contributes most significantly toward
calcification. Wnt7b has been shown to play a role in vascular
development and can activate canonical Wnt signaling (27).
Wnt16 is also expressed in VSMCs. In a recent study by
Behrmann et al., in vitro and in vivo studies showed that Wnt16
suppressed the contractile phenotype, supported osteofibrogenic
matrix metabolism, and contributed to aortic stiffening (30).
However, the most studied Wnt ligand in vascular calcification
is Wnt3a. Some of these studies were referenced in the previous
section (6, 28, 29). These studies provide some of the most
convincing support for the Wnt signaling cascade in calcification
indicating that Wnt3a may be the focus of future studies working
toward a treatment.

CONCLUSION

In conclusion, VSMCs display a range of phenotypes within
two key states: contractile and synthetic. When VSMCs exist in
the synthetic state, they exhibit a less differentiated phenotype
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and can be directed down different cell lineages in response to
abnormal environmental cues. A high phosphate environment
can induce calcification in VSMCs and direct them toward an
osteogenic phenotype. This transdifferentiation is characterized
by a loss of VSMC markers and an increase in osteogenic
markers, most notably RunX2. Because of the upregulation of
RunX2, many believe the canonical Wnt signaling pathway
may be the cellular mechanism resulting in the osteogenic
switch of VSMCs. RunX2 is a target gene of Wnt, which also
involves many other proteins, including β-catenin, LRPs, Fzd,
Dsh, and Axin. Wnt has been found to regulate normal VSMC
phenotype and proliferation, and much data has been elucidated
for a role in VSMC transdifferentiation during calcification.
Many studies have used Western blots, PCR, and luciferase
assays to identify various Wnt proteins, notably β-catenin,
and track the Wnt cascade to determine its involvement in
the initiation and regulation of medial vascular calcification.
Future research strategies should focus these methods on
regular time intervals to determine at what point during VSMC
transdifferentiation Wnt is activated. Experiments should also
begin investigating other Wnt proteins in addition to β-catenin
to identify any other major regulatory factors. If a particular fate-
determining time point and feedback loop is identified as the
primary mechanism of action for VSMCS transdifferentiation,
Wnt could be manipulated as a potential therapy for vascular
calcification. Knocking out Wnt, or its regulators, with Wnt
inhibitors, such as sclerostin, and determining the effect will
help determine whether Wnt is a valuable therapeutic target.
Additional studies should be done like McArthur et al. who
found that sclerostin could successfully prevent Wnt proteins
from attaching to their corresponding receptors and ultimately
resulted in reduction of calcification (16). The study illustrates
the potential of manipulating Wnt for calcification treatment,
though much more extensive preclinical trails are necessary.
The most common preclinical disease model for atherosclerosis,
which closely mimics calcification, is Apoe−/− mice (31).
More recently, a model utilizing calcium chloride to induce
calcification has been established (32). Using these models to
further testWnt targeted calcification treatments may be a logical
next step. This literature review has summarized the current
understanding of the role of VSMCs in calcification and helped

to identify ways in which to further study the mechanism of
the disease. However, there are some limitations and current
gaps in knowledge. Though Wnt must be isolated to study
the pathway independently, more than likely the Wnt cascade
operates dependently upon other pathways and external factors.
In addition, to our knowledge there has not yet been significant
investigation into the presence of Wnt ligands under normal
conditions, and it is unclear whether Wnt is always present
within the arterial media. Furthermore, if this is the case,
studies have not explored what activates Wnt signaling leading
to calcification. As the Wnt family consists of extracellular
ligands, cell-to-cell signaling and mechanical stimulus could
be contributors. Thought it appears targeting Wnt could be a
potential treatment, it is yet unclear whether a Wnt therapy
would reverse calcification or only prevent further buildup. Based
on these theories, there remains a need for investigating further
into the typical behavior of Wnt under healthy and disease
conditions, as well as the underlying mechanism behind the
activation of the Wnt cascade. As a result, additional research
may lead to preclinical trials and eventually allow for a targeted
treatment for vascular calcification.
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