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Abstract

Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at

the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk

with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch,

control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and

progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-

signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling

components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-

mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput

genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s)

that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links

among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer,

thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated

with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics

approaches.
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Background

The Wnt pathway is a highly regulated signalling path-

way that controls numerous stages of animal develop-

ment and tissue homeostasis. The Wnt proteins

comprise a highly conserved and diverse family of genes

found in humans, mice, Xenopus, Zebrafish and Dros-

ophila [1] The pathway is closely regulated at both

transcriptional-level regulations to post-translational

modification; thus aberrant Wnt activity often results in

developmental disorders and diseases including but not

limited to cancer [2–4]. For example, during metastatic

processes, epithelial cancer cells require certain charac-

teristics such as elevated expression of mesenchymal

markers as well as other alterations in their microenviron-

ment to enable invasion of adjacent tissues and progres-

sion to metastatic high-grade tumours. Inappropriate Wnt

signals coupled with a loss of E-cadherin promotes an in-

crease in cytoplasmic and nuclear β-catenin levels where

it interacts with the epithelial-mesenchymal transition

(EMT) regulators, such as E-cadherin repressors: Snail,

twists and Zebs [5, 6]. MicroRNAs (miRNAs) are com-

posed of ~22 nucleotide sequences in length and belongs

to the class of non-coding endogenous small RNAs that

are integral post-transcriptional regulators of the gene

expression via direct interaction with the 3’un-translated

region (UTR) of the target messenger RNAs [7]. Recent

advances in biomedical research have allowed experimen-

tal and bioinformatics approaches to identify short non-

coding RNAs such as microRNAs (miRNAs) as regulators

of components of the Wnt-signalling pathways and vice

versa. Thus, both miRNAs and Wnt-signalling pathways

form a network involved in the regulation of key biological

processes.

Main text

Canonical Wnt-signalling

The canonical Wnt-signalling cascade refers to the

transduction of series of signals mediated via the inter-

action of specific Wnt ligands with their target receptor

resulting in the accumulation of β-catenin (Fig. 1a).

Amassment of β-catenin plays a crucial role as the cen-

tral transducer in the activation of downstream factors

[8]. The cytoplasmic stability of β-catenin is usually

maintained at a minimal level by the destruction com-

plex composed of a scaffold combination of tumour

suppressor protein adenomatous polyposis coli (APC),

Axin2, casein kinase1 (CK1) and glycogen synthase kin-

ase 3β (GSK-3β) [9]. Aberrant Wnt/β-catenin signalling

Fig. 1 a Representation of Canonical Wnt/β-catenin pathway. OFF- State: β-catenin is regulated by the destruction complex in the absence of

Wnt ligands. GSK-3β and CK1 facilitates the phosphorylation of β-catenin at specific serine and threonine sites rendering it a target for proteoso-

mal degradation by β-TRCP. As a result of this degradation, β-catenin is prevented from translocating into the nucleus prompting Groucho

(co-repressor) to be bound to TCF thereby repressing gene transcription. ON- State: Once binding of Wnt ligand to Fzd and LRP5/6 co-receptors

occurs, Dvl-fzd complex is formed resulting to the phosphorylation of LRP5/6 by GSK-3β and triggering the recruitment of Axin2 from the

destruction complex. The disassembly of the complex promotes stabilization and accumulation of cytoplasmic β-catenin which eventually

translocate to the nucleus where Groucho is dislodged and TCF is converted into a transcription factor ensuring the transcription of many genes

including c-Myc, Ascl2, cyclin D1 which are essential stem cell regulators as well as mediators of proliferation and differentiation. b Schematic of

Non-Canonical Wnt pathway. In the PCP pathway, Fz activates Dvl through G-proteins in the absence of LRP receptors. Subsequent activation of

the Rho GTPases, Rho and Rac results to the induction of cytoskeletal changes. In the Wnt/Calcium pathway, Dvl activates protein kinase C (PKC)

and the release of intracellular calcium and calcium/calmodulin-dependent protein kinase II (CaMKII) which in turn activates the release of NFAT

and NFkB. NFAT and NFkB subsequently translocate into the nucleus to transcribe regulatory genes that govern cell migration. It is still unclear

whether G-proteins are involved in this particular pathway. Adapted from [209]
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is a common hallmark of malignant CRC cells hence,

mutations in any of the components of the destruction

complex can potentially result to cytosolic β-catenin ac-

cumulation and subsequent activation of Wnt target

genes that drive proliferation [10, 11].

In the absence of Wnt ligand interaction (OFF-state),

the membrane receptor complex is inactivated, thereby

preventing the clustering of a trimeric complex com-

posed of Wnt ligand/Fzd/LRP receptors and eventually

results to β-catenin ubiquitination and degradation

(Fig. 1a) [11]. Although the Wnt/Fzd/LRP complex

model is widely accepted, the precise mechanism of for-

mation is yet to be fully understood. The current and

widely accepted model suggests that CK1 and GSK-3β

kinases target β-catenin by phosphorylating a set of con-

served threonine and serine residues located in the

amino acid terminus [10, 12]. This phosphorylation oc-

curs simultaneously at specific sites, with Serine 45

(Ser45) N-terminus of β-catenin phosphorylated by CK1

while phosphorylation at Threonine 41 (Thr41), Ser33

and Ser37 sites is carried out by GSK-3β [8, 13]. The

consequence of these series of phosphorylation activities

results in the recruitment of APC to the destruction

complex. The APC protein forms a synergy with other

components of the destruction complex and mediates

the degradation of cytoplasmic β-catenin. APC serves a

very important role in the destruction complex due to

its tumour suppressor properties [9, 14], as numerous

scientific evidences show mutations in the APC gene are

not only responsible for familial adenomatous polyposis

(FAP), but also plays a significant rate-limiting role in

the initial stages of majority of sporadic colorectal

cancers [14, 15]. Subsequently, the phosphorylated

regions of β-catenin are exposed to the F-box/WD

repeat protein which is a component of E3 ubiquitin lig-

ase complex β-transducin repeat-containing protein (β-

TRCP) which mediates the ubiquitination and the pro-

teasomal degradation of β-catenin [1]. Once β-catenin is

degraded Wnt target genes fails to be transcribed. This

process keeps the cytoplasmic β-catenin level low

thereby preventing the translocation of β-catenin into

the nucleus.

Conversely, the ON-state of canonical Wnt-signalling

is activated by the binding of Wnt ligands, (secreted

mainly by myofibroblasts beneath the base of the crypts

in the small intestine), to Frizzled and LRP 5/6 co-

receptors at the cell surface [16, 17]. Additionally, stud-

ies show that cancer associated fibroblasts (CAF) is asso-

ciated with the canonical Wnt-signalling pathway [18],

with stromal fibroblasts also implicated in the secretion

of pro-tumourigenic factors that promote skin squamous

cell carcinomas [19]. Formation of this receptor complex

triggers the activation of Dsh/Dvl, a cytoplasmic scaf-

folding protein crucial for Wnt-induced LRP6

phosphorylation [20, 21], which proceeds to inhibit

GSK-3β enzyme activity, triggering a complex series of

events that prevents the phosphorylation and subse-

quent degradation of β-catenin resulting to its conse-

quent stabilization and accumulation in the cytoplasm.

Accumulated cytoplasmic β-catenin then translocate to

the nucleus, where it displaces Groucho (a co-repressor

transcriptional factor) due to its stronger affinity to en-

gage TCF/LEF transcription factors [22, 23] to activate

transcription of target Wnt genes such as c-myc, c-jun,

Axin2, EphB/ephrin-B and CyclinD1. These target genes

all play crucial roles in the regulation of a plethora of

cellular processes including but not restricted to cell

proliferation, cell division, stem cell maintenance as well

as regulation of various stages of embryogenesis [24],

hence a major consequence of dysregulation of β-

catenin could result to maintenance of cancer phenotype

[16, 25–27]. Interestingly, the progression of tumours to

invasive cancers and metastatic disease may also involve

the switch from canonical to non-canonical Wnt-

signalling [28–31].

Non-canonical Wnt-signalling

Apart from the canonical Wnt-pathway, specific Wnt-

ligands can also trigger non-canonical pathways which

are also referred to as β-catenin independent pathways

(Fig. 1b). As earlier mentioned, the Wnt ligands consists

of a large family of 19 secreted glycoproteins that are

cysteine-rich and highly hydrophobic. It is not entirely

understood which particular Wnt ligand participates in

either of the Wnt-pathways, however, some Wnts (such as

Wnt5a and Wnt11) initiate the β-catenin-independent

pathways in a cell-specific independent manner [32]. The

non-canonical Wnt pathways are further divided into

three other distinct branches namely, the Wnt/Ca2+, the

Wnt/JNK and the Wnt/planar cell polarity (PCP) path-

ways (Fig. 1b). The mechanisms of downstream signal

transduction through these pathways is less understood,

although scientific evidences suggest the 3 branches of the

non-canonical pathway function dependently of each

other [13].

Interestingly, the non-canonical Wnt-signalling has

been reported to antagonize the β-catenin-dependent

Wnt-signalling pathway by either or both CaMKII path-

way and NFAT-mediated transcriptional regulation [33],

however, other studies suggest that the PCP pathways

can also antagonize the canonical Wnt cascade [34, 35].

The CaMKII pathway suppresses β-catenin-TCF-

dependent transcription through phosphorylation of

TCF transcription factors [36], while NFAT is reported

to inhibit β-catenin-dependent transcription [37]. All

these findings simply highlight the possible crosstalk

among various types of Wnt-signalling, in addition to

other multiple cell signalling cascades.
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Recent advances to date has strongly cemented the

fact that Wnt-signalling plays crucial roles in normal

biological functions [26, 38]. Supporting scientific evi-

dences over the past decade have successfully identified

various signalling components that have contributed im-

mensely to the establishment of a molecular framework

for the understanding of the different branches of the

Wnt signal transduction pathway, thereby enabling the

correlation and causative relationships between human

diseases and aberrant Wnt-signalling [38–40].

Deregulation of Wnt-signalling activity via genetic

mutations in cancer cells

Generally, cancerous genetic mutations on any gene that

participates in the Wnt/β-catenin signalling cascade

inappropriately reactivate the pathway, leading to

abnormal ON-state activity. In effect, the activity of

Wnt-signalling in the cell is no longer governed by the

presence of Wnt ligands. Therefore, Wnt-signalling may

be switched into the ON-state even in the absence of

Wnt ligand–receptor interaction, leading to the charac-

teristic sequence of ON-state activity: disassembly of the

destruction complex, loss of phosphorylation and deg-

radation of β-catenin and activation of Wnt-induced

gene transcription, which all contributes to cancer pro-

gression. Mutations in CTNNB1, the gene for β-catenin,

have been implicated in colon cancer, gastric cancer, me-

dulloblastoma, melanoma, ovarian cancer, pancreatic

cancer, and prostate cancer [41, 42]. Mutations in APC

gene have frequently been identified in colon cancer as

well, while mutations in AXIN1, the gene for Axin1,

have been identified in hepatocellular carcinoma [43]

and medulloblastoma [44]. Thus, there is considerable

evidence for abnormalities in the Wnt-signalling path-

way in tumorigenesis.

A major consequence of mutations in APC, Axin,

GSK-3β and β-catenin genes is the increased nuclear β-

catenin levels which has already been proven as a hall-

mark of intestinal tumorigenesis. Consequently, mutant

APC protein becomes unable to form a proper destruc-

tion complex with GSK-3β which inevitably impairs the

phosphorylation of β-catenin on specific sites. Similarly,

mutations resulting to amino acid substitutions in the

phosphorylated residues of β-catenin may hinder phos-

phorylation and recognition by the E3 ligase ubiquitin

system thereby prompting the cytoplasmic stabilization

and nuclear translocation of β-catenin [45]. Either form

of disruption eventually promotes nuclear β-catenin ac-

cumulation which ultimately causes abnormal propaga-

tion of Wnt-signalling pathway. In addition, mutation in

β-catenin gene CTNNB1 can ultimately instigate a gain

of function mutation which activates β-catenin, increas-

ing its transcriptional activity and enabling the protein

to evade phosphorylation and subsequent degradation

[46, 47]. Furthermore, mutations also occur in Frizzled

genes resulting in loss of the functional Wnt-receptor

interaction responsible for the initiation of the Wnt-

signalling cascade. These genetic mutations ultimately

prevent the initiation of both canonical and non-

canonical signalling cascade, thus compromising the in-

tegrity of the intestinal epithelium particularly the crypt

base region [48, 49].

Overview of miRNAs biogenesis

MicroRNAs (miRNAs) are composed of ~22 nucleotide

sequences in length and belong to the class of non-

coding endogenous small RNAs. The functions of miR-

NAs in posttranslational gene regulation involves the

direct interaction of miRNA with the 3’ un-translated re-

gion (UTR) of the target messenger RNAs [7, 50]. In

mammals, impartial base pairing between the miRNA

and the target mRNA or gene also results in transla-

tional repression of the target gene [51]. To date, more

than 2500 miRNAs have been identified in the human

genome [52, 53]. The miRNA biogenesis is primarily

mediated by the microprocessor complex composed of

two RNase III endonucleases; Drosha and DGCR8 [52,

54]. In the first step of miRNA biogenesis, miRNAs are

initially transcribed by RNA polymerase II resulting in

the production of primary miRNA (pri-miRNA). Shortly

after transcription and prior to translocation from the

nucleus into the cytoplasm, the pri-miRNA undergoes

modifications and transformation to a ~60–100 nucleo-

tide hairpin structure precursor miRNA (pre-miRNA)

via the activity of Drosha. Once the pre-miRNA is

transported to the cytoplasm by Exportin-5 [7], it

undergoes further modifications by Dicer, a multi-

domain ribonuclease III enzyme. The cleavage event

carried out by Dicer results to final product consisting

of a 22 nucleotide double-stranded miRNA composed

of a mature miRNA strand and its complementary

miRNA strand [55].

Additionally, apart from the canonical miRNA biogen-

esis pathways described above, alternative mechanisms,

particularly through mRNA splicing [56], have been dis-

covered to generate miRNAs or other non-coding RNAs

[57, 58]. The revelation of unconventional miRNA bio-

genesis has been made possible via deep sequencing of

small RNAs from cells deficient in Drosha, Dgcr8 or

Dicer which can be produced in a Dicer-independent or

microprocessor-independent manner.

Alterations of miRNAs/Wnt/β-catenin signalling in cancer

Numerous scientific evidences have implicated miRNAs

as regulators of the Wnt-signalling pathway in the con-

text of embryonic [59], osteoblast differentiation and

bone formation [60, 61] and cardiac development [62,

63]. Bone metastasis occurs due to migration of cancer
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cells from the primary tumours cite to the bone causing

bone alterations such as osteolysis and bone fracture

[64]. Studies have implicated lung, prostate and breast

cancer as the most frequent site of origin of metastatic

cancer accumulation in bone [65, 66]. CXCR4, which is

expressed in malignant breast tumours and human

breast cancer cells have been shown to play a major role

in site-specific metastasis of breast cancers to the bone.

Interestingly, CXCR4 ligand CXCL12/SDF-1α is promin-

ent in bone marrow stromal cells with studies showing

that CXCR4 cooperatively with other factors such as IL-

11, CTGF and OPN facilitate osteolytic bone metastasis

in breast cancer MDA-MB-231 cells [67, 68]. Epithelial-

mesenchymal transition (EMT) is a pathological event

largely associated with tumour metastasis with studies

demonstrating Wnt-signalling through Snail1 and Zeb1

regulates bone metastasis in lung cancer [65]. Addition-

ally, miRNAs such as miR410 have been implicated in

promoting growth, migration and invasion of NSCLC

cells by activating the canonical Wnt-signalling in-vitro

[69]. The network involving both miRNAs and Wnt-

signalling pathway have been implicated in regulating tu-

morigeneses in brain cancer [70], colorectal cancer [59,

71], breast cancer [72], liver cancer [73] and other forms

of cancer [74–78]. For instance, studies carried out on

miR-374a via the use of immunofluorescence staining

technique and subcellular fractionation showed that

miR-374a overexpression resulted in the stabilization

and accumulation of nuclear β-catenin in 4 T1 and

MCF7 breast cancer cell lines [79]. This result suggests

that miR-374a may be responsible for the degradation of

APC or one of the other components of the destruction

complex, hence leading to the translocation of β-catenin

to the nucleus thereby enhancing the transcriptional ac-

tivity of LEF/TCF4 [80].

Another miRNA, miR-200a, has been identified as a

potential negative regulator of the Wnt/β-catenin signal-

ling pathway. This miRNA targets mRNAs of Zeb1 and

Zeb2 which are repressors of E-cadherin. Therefore, by

degrading Zeb1 and Zeb2 mRNA, E-cadherin becomes

abundant and available for binding with β-catenin

thereby forming E-cadherin-β-catenin complex which

promotes cell-cell adhesion [77]. The recruitment of β-

catenin in the formation of this complex is beneficial to-

wards reducing cytoplasmic β-catenin amassment which

would eventually translocate to the nucleus and trigger

the transcription of Wnt target genes [81]. Additionally,

activation of Lin28 has been shown to be necessary for

Wnt-β-catenin pathway mediated let-7 repression and

cell proliferation [82]. Interestingly, let-7 miRNAs have

also been implicated as a potential regulator β-catenin in

cancer cells as overexpression of let-7a in Wnt activated

MDA-MB-231 cells was observed to inhibit β-catenin-

activated cell growth and colony formation, thus

emphasising the significance of let-7 miRNAs as down-

stream regulators of Wnt-β-catenin pathway in the regu-

lation of cell proliferation [83]. Furthermore, miR-34 has

been discovered to attenuate the canonical Wnt-

signalling via corporation with p53 in A549 and MCF-7

carcinoma cell lines. Knockdown and/or deletion of

functional miR-34a gene resulted in the increased ex-

pression of WNT1, LRP6 and β-catenin mRNA in these

cells [84]. The significance of the above findings is that

β-catenin deregulation is a major hallmark of cancer.

These results all suggest that miR-34, miR-320, miR-200

and Let-7 could be exploited for the development of

therapeutic agents with specific focus on targeting the

canonical Wnt-signalling pathway in cancer.

Wnt/miRNA network in the regulation of cancer stem cells

The controversial cancer stem cell (CSC) theory is based

on the phenomenon that cancer cells may be derived

from a rare population of cells possessing stem cell

properties [85–87]. Experimental evidence from multiple

studies suggests that CSCs possess a variety of biological

properties similar to normal somatic stem cells such as

the self-renewal capability, an integral program for tissue

renewal and regeneration. The Wnt pathway plays cru-

cial roles in the regulation of stem cell/progenitors, cell

self-renewal and maintenance in a plethora of systems

[10]. A major similarity between normal stem cell and

CSCs is the fact that they both function via common sig-

nalling pathways such as Wnt & Notch pathways that

aids in the maintenance of proliferation of stem cells

[86]. In contrast, CSCs are distinctive due to the posses-

sion of several pro-cancer characteristics such as chemo-

resistance and tumourigenic and metastatic activities

that are not exhibited by their normal stem cell counter-

parts (Fig. 2).

Recent studies have established the importance and

significant roles played by the canonical Wnt-signalling

in stem cell self-renewal activities in various tissues and

cell types [88]. For instance, Wnt3a was shown to foster

the formation of embryonic stem cell (ESC)-like colonies

[89]. Canonical Wnt pathway activation was shown to

augment alkaline phosphatase and Cbfa1/Runx2 expres-

sion thereby facilitating mesenchymal stem cells (MSCs)

osteogenic differentiation [90, 91]. Canonical Wnt-

signalling is also crucial for differentiation and mainten-

ance of the intestine as several scientific evidence have

identified the expression of Wnt receptors and ligands

such as LRP5, SFRP5, Wnt3/6, Fzd4/6/7 in epithelial

cells located at the intestinal crypt base [88, 92].

The role of miRNA in the regulation of stemness of

CSCs is another aspect of miRNA activity currently

under investigation. Reports suggest that miR-193a ex-

pression inhibits tumourigenicity and invasiveness by

directly targeting KRAS and plasminogen activator
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urokinase (PLAU), respectively, with these two factors

highly expressed in human colon adenocarcinomas [93].

Also, miR-451 appears to be another regulator of CSC

properties such as drug resistance, self-renewal and

tumourigenicity. Experiments carried out in spheroid

cell cultures, showed reduced expression of miR-451,

triggering the up-regulation of macrophage migration

inhibitory factor (MIF) and COX-2 which are involved

in deregulation of canonical Wnt pathway in CSCs [94,

95]. Another miRNA, miR-34a inhibits Notch signalling

by directly targeting Notch receptors [96], resulting in

an impaired Notch signalling generation of daughter

cells (non-CSCs), whereas low miR-34a levels enhances

Notch signalling and in turn promotes maintenance of

CSCs. Members of the miR-34 family of miRNAs which

have also been implicated as direct targets of p53, act as

tumour suppressors by governing reprogramming

through the suppression of pluripotency genes including

Sox2, Nanog and N-myc [97, 98]. Additionally, the let-7

family, also a negative regulator of β-catenin, is another

crucial modulator of ESC differentiation [99] (Fig. 2).

Cancer-related miRNA modulation of Wnt-signalling

cascade

As critical biological modulators, it is no more news that

miRNAs acts to suppress or facilitate cancer and tumour

development by interacting with targets of the Wnt-

signalling pathway. A summarized description showing

the alterations of miRNAs/Wnt/β-catenin signalling in

cancer has been provided (Table 1). A more detailed ex-

planation on the Wnt/miRNA network in carcinogenesis

has been provided in recent studies [100, 101].

Bioinformatics approaches to study Wnt pathway-

regulated miRNAs and their targets

Following the initial discovery of the association of miRNA

with cancer over more than a decade ago, technological ad-

vances that have produced multiple high-throughput

Fig. 2 Importance of Wnt/miRNA network in the regulation of cancer stem-like cells. The Wnt-signalling (canonical & non-canonical) pathway

governs the activity of some stem cell-specific miRNAs which plays crucial roles in tumour initiation and development. Aberrant Wnt-signalling

could activate oncogenic miRNA expression which in-turn enhances the self-renewal potential of CSCs with subsequent expansion of the CSC

pool which gives rise to cancer cells that possess self-renewing ability, resistance to drug therapy and ability to instigate new tumour growth
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bioinformatics methods designed for profiling miRNA ex-

pression and identification of miRNA targets involved in a

plethora of pathways that regulate normal physiology and

various diseases have being established [53]. Compared

with other nucleic acids, miRNA analysis tends to be intri-

cate due to several factors ranging from their short length,

ability to discriminate between primary and mature forms

and highly conserved sequences within family members.

Notwithstanding, the evolution of Next-generation sequen-

cing (NGS) platforms which allows for the simultaneous

discovery of new miRNAs and confirmation of known miR-

NAs, overcome the limitations presented by microarrays

and other traditional methods used for miRNA profiling

[102, 103]. NGS effectively reduces the burden of genome

sequencing by enabling the identification of characteristic

expression level and splicing variants within the transcrip-

tome [104, 105], characterization of DNA-protein inter-

action [106, 107] and understanding the role epigenetics

plays in normal and diseased state [108, 109].

The challenging enormity of tumour heterogeneity,

both in the primary tumour and metastasis has become

explicit. Although, individual interactions between com-

ponents of the canonical Wnt pathway and miRNAs in

normal and cancer state have already been established

[59, 71, 110, 111], we have simply just began to compre-

hend the role of miRNAs, not only in normal human de-

velopment but also in tumour progression mediated by

the canonical Wnt-signalling and vice-versa especially

due to the fact that multiple components are involved in

this complex network. Therefore, more efforts are re-

quired to identify the mechanism that controls miRNA/

canonical Wnt-signalling network. As a result, bioinfor-

matics strategies that provide a comprehensive, genome-

wide identification of Wnt/β-catenin-regulated miRNAs

and their associated target genes as well as other tran-

scription factors that cross-talk with the pathway must

be employed. The bioinformatics strategy adopted to

execute this approach involves the identification of Wnt/

β-catenin-regulated miRNAs or vice-versa and the

identification of down-stream target mRNAs of the

Wnt/β-catenin-regulated miRNAs undertaken via gene

sequence complementarity. At the moment, numerous

pilot projects comprising of cancer genomes have being

undertaken using NGS in clinical research, mainly with

the aim of identifying oncogenic mutations that can be

exploited by mutation-specific drugs which would be

useful for personalized medicine [112].

In the following section we will briefly describe the dif-

ferent bioinformatics approaches that have been utilized

in recent advances to identify and characterize Wnt/β-

catenin-regulated miRNAs and their associated targets

as well as the experimental strategies equally used for

the validation of bioinformatics data (Fig. 3).

ChIP-sequencing

Recent advances in next-generation DNA sequencing

combined with chromatin immuno-precipitation (ChIP-

Seq) have provided methods ideal for identification of

transcription factor binding sites (TFBSs) with excep-

tional sensitivity as well as predicting mRNA targets of

miRNA [113]. ChIP has a reputation for being the gold

standard technique for the identification of a target gene

of various transcription factors [114, 115]. Technological

advancement in ChIP studies allows investigators the

luxury to utilize ChIP assay for the recognition and

characterization of the entire binding sites for a particu-

lar transcription factor (Fig. 4). For instance, using the

ChIP-Seq approaches, recent studies have identified

Table 1 Alterations of miRNAs/Wnt/β-catenin signalling in cancer

Cancer type miRNA Wnt-signalling target(s) Inhibits/activates carcinogenesis References

Colorectal miR-224 cdc42 Inhibits [100]

Colorectal miR-574-5p Qki6/7, p27, β-catenin Activates [214]

Colorectal miR-7,miR-34 Ying Yang Activates [215, 216]

Colorectal miR-29b BCL9 Inhibits [217]

Liver miR-155, miR-106b APC Activates [218, 219]

Liver miR-148b, miR-122 Wnt1 Inhibits [220, 221]

Liver miR-139 TCF4 Inhibits [222]

Breast miR-31, miR145 RhoA, β-catenin, c-myc Inhibits [223, 224]

Breast miR-142 APC Activates [164]

Prostate miR320 β-catenin Inhibits [225]

Lung miR-191 Wnt1 Activates [226]

Thyroid miR-146b-5p ZNRF3 Activates [227]

Ovarian miR-181a VNGL1 Activates [228]

Oesophageal miR-141 SOX17 Activates [229]
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1250 overlapping putative target genes co-regulated by

both TCF4 and STAT3 in gliomas [116]. TCF4, a

member of the Tcf/Lef family and ubiquitously expressed in

the colon epithelium, forms a complex with β-catenin with

subsequent binding to promoter regions of specific genes

that trigger processes crucial for normal development and

in abnormal conditions, drive tumour progression [117,

118]. In recent times, miRNAs have been identified as one

of the factors that possess the ability to modulate biological

networks, including Wnt/β-catenin/TCF4 signalling. For

instance, using IEC-6 cell nuclear extracts, putative binding

sequences within the miR-30e promoter region were

Fig. 3 Bioinformatics pathway for the characterization of Wnt-signalling regulated miRNAs and their targets. Summary of a proposed stepwise

bioinformatics approach for the characterization of Wnt-regulated miRNAs. Due to the fact that canonical Wnt pathway is driven by several

components; key components such as β-catenin can be utilized to identify potential miRNA regulators. Programmes and tools such as Benjamin-Hochberg

[210], iCLIP [211], miRDeep [212] have all been used to perform bioinformatics analysis for different experiments. Image adapted from [213]. Note: β-

catenin is a major transducer in the canonical Wnt-signalling pathway hence; the proposed stepwise bioinformatics approach can be applied to the

study of network of miRNA and other key components of either the canonical or non-canonical signalling pathway

Fig. 4 Flow chart illustrating the steps involved in the ChIP-Seq procedure
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discovered, via ChIP assay, to actively bind beta-catenin/

TCF4 with experiments suggesting miR-30e as a potential

downstream target for the β-catenin/TCF4-mediated intes-

tinal cell differentiation [119]. Further characterization

using miRBase Sequence Database identified the conserved

sequence of 5′-UGUAAACAUCCUUGACUGGAAG-3′ in

mature miR-30e sequences derived from human, mouse,

and rat. Additionally, the binding properties of β-catenin/

TCF4 with miR-30e were validated and confirmed by per-

forming EMSA and super-shift assay.

Similarly, ChIP experiments carried out in mESCs and

P19 cells showed that Tcf3 binds directly to the miR-302

promoter regions to repress the transcription of the miR-

302 gene [120], thus suggesting miR-302 gene is transcrip-

tionally regulated via the Wnt/β-catenin pathway. Tcf3, a

member of the Tcf/Lef family comprised of Tcf1, Tcf3,

Tcf4 and Lef1 transcription factors mainly acts as a tran-

scriptional repressor of the canonical Wnt-signalling by

competing for β-catenin binding sites [121].

As previous studies have implicated mutations of APC,

CTNNB1 and TCF4 genes and other components of the

Wnt-signalling pathway as key oncogenic drivers in dif-

ferent forms of cancers [122, 123], applications of ChIP-

Seq would be beneficial in providing a genome-wide

binding profile of components of this pathway in other

to identify potential miRNA genes that may be co-

regulated by the Wnt-signalling pathway and exploited

for therapeutic purposes [124]. Importantly, in the field

of epigenetics, utilization of ChIP-Seq can also provide a

platform with which epigenetic profiles through the

study of primary cells and tissues can also be generated

via identification of genome-wide profiles of DNA

methylation, nucleosome positioning and histone modi-

fications. This would provide a better understanding to

the epigenetic machinery and alterations in the epigen-

etic landscape that occur in cancer compared with nor-

mal cells, the roles of these changes in cancer initiation,

progression, metastasis and the potential use of this

awareness in designing more effective therapeutic treat-

ment strategies [125].

There have been several recent papers detailing ChIP-

Seq limitations, for examples difficulty in transferring

and maintaining data due to the large file sizes [126],

and identifying regions enriched in the sample through

the use of peak callers [127] that appears to be due to

the presence of three types of regions namely, sharp,

broad, and mixed. These shortcomings, can however be

abolished by the development of more user-friendly soft-

ware analysis tools in the near future.

miRNA expression profiling

The comprehensive and efficient study of miRNA ex-

pression profiling has been made convenient via the evo-

lution of next generation sequencing technologies. Our

understanding of the regulatory roles of miRNAs in gene

expression, and association with diseases triggering mul-

tiple changes in gene expression levels facilitating cancer

and tumour progression has been improved upon by ad-

vances in miRNA expression profiling research [128],

which could also be derived from miRNA seq (Fig. 3).

Although high-throughput platforms such as microarray

hybridization and real-time reverse transcription PCR

have shown to be authentic tools and are still applicable

in current research, next generation sequencing (NGS)

technology has established itself as the most preferred

and efficient platform for miRNA expression study as it

possesses the ability to identify novel miRNAs that are

beyond the capabilities of traditional methods [129].

Identification of Wnt-regulated miRNAs through ex-

pression profiling methods can be achieved by enforced

expression of the Wnt ligand which consequently results

to the subsequent activation of both or either canonical or

non-canonical Wnt-signalling pathways depending on the

type of Wnt ligand. Specifically, expression levels of indi-

vidual components that are crucial to the progression of

the cascade such as APC, β-catenin and Tcf4 transcription

factors can be matched with different miRNAs with the

aim of observing patterns of miRNAs regulated by the

Wnt pathway. For instance, characterization of non-

coding transcriptomes of tissues derived from six normal

pancreas and pancreatic cancer (PDAC) tissues using

high-throughput NGS-based technology algorithms such

as small RNA-sequencing (sRNA-Seq) and Massive Ana-

lysis of cDNA Ends (MACE) identified miR-802 as a nega-

tive regulator of TCF4 [130], which upon binding to β-

catenin triggers the expression of Wnt target genes. Inter-

estingly, using omiRas [131], TCF4 was observed to con-

tain three mir-802 binding sites in its 3′ UTR with

additional validation experiments revealing a significant

correlation with Zeb1 and miR-21. Several studies have

also confirmed Zeb1 as a key Wnt target [132, 133] as well

as identification of miR-802 as a potential tumour sup-

pressor via NGS techniques [134]. Some other popular

NGS miRNA databases that can be beneficial in carrying

out miRNA expression profiling for identification of Wnt

target genes includes, but not restricted to: deepBase

[135], miRGen 2.0 [136], miRBase [137], miRExpress

[138] and CLIPseqtools [139].

Notwithstanding, traditional platforms for the execu-

tion of miRNA expression profiling have also been use-

ful in identifying miRNA targets of the Wnt-signalling

pathway and vice-versa. In colorectal cancer, global

miRNA expression profiling carried out on 13 cancer

and adjacent normal samples showed a significant

down-regulation of 61 and up-regulation of 42 miRNAs

with enrichment in pathways promoting tumour pro-

gression such as the Wnt pathway in addition to TGF-β

and MAPK pathways [140]. Also, following differential
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miRNA expression profiling of HepG2 under varying

conditions and validations performed by RT-PCR, 9

miRNAs, including miR-34a was observed to be differ-

entially expressed following AFB1 treatment [141].

Aflatoxin-B1 (AFB1) is a hepato-carcinogenic mycotoxin

that induces hepatocellular carcinoma [142–144]. Mean-

while, separate studies have implicated miR-34a as a

tumour suppressor and negative regulator of the Wnt-

signalling pathway [59, 145, 146].

A major limitation/complication of miRNA expression

profiling includes the recent discovery of isomiRNAs

that tend to display sequence variations by shortening or

lengthening of the 3’ end [147, 148]. Unfortunately, re-

cent studies have identified over 3300 miRNA variants

with the most abundant miRNA sequence different from

the miRBase sequence [149]. Additionally, miRNA end

heterogeneity can influence the accuracy and consistency

of quantifying miRNA expression levels. Due to the

heavy reliance of qPCR and microarrays on the accuracy

and availability of miRBase sequences for probe and pri-

mer design, mutations may contribute to difficulty in

miRNA detection [148].

CLIP/miRNA sequencing

Crosslinking and immunoprecipitation sequencing (CLIP-

Seq) offers the luxury of analysing RNA/protein inter-

action. This approach is similar to RIP-Seq, however,

stabilization of protein-RNA complexes are achieved by

ultra-violet (UV) crosslinking. UV crosslinking is used as

an ideal crosslinking agent in RNA studies due to the in-

ability for UV crosslinks to form between proteins. miR-

NAs are subsequently reverse transcribed to cDNA and

analysed with sequencing (RNA-Seq) for mapping of

miRNA binding sites on their target mRNAs with high

confidence [150]. These sets of sequenced miRNA target

and pathway genes are subsequently screened to identify

its associated biological pathways for a comprehensive un-

derstanding of their biological function.

CLIP-Seq and target prediction studies effectively

identify individual mRNAs regulated by multiple miR-

NAs, therefore proving that the transcriptional regula-

tion of a single gene may be dependent on the combined

effect of multiple miRNAs. Next-generation sequencing

of RNA (RNA-Seq) allows for the generation of tissue-

specific gene expression profile data which can be useful

in developing a novel pathway analysis methodology for

the prediction of miRNA function. Some web applica-

tions used for the identification of miRNA-regulated

pathways in a tissue specific manner include miTALOS

v2 [150], ToppMir [151] and miRGator [152].

Although experimental studies focused specifically on

the identification of miRNAs that regulate the Wnt-

signalling pathway are scarce, pathway analysis using

CLIP-Seq of the miR-200 cluster family (miR-200b/c/

miR-429 and miR-200a/miR-141) which has been estab-

lished to be involved in cell migration and EMT, was

able to identify a connection between miR-200b/c/miR-

429 and the Wnt-signalling pathway in hepatocellular

carcinoma (HCC) and liver fibrosis tissue samples [150].

Additionally, miR-199a/b-3p was also implicated to be

involved in EMT, cell migration and metastasis through

cytoskeletal re-organization. Interestingly, this was in

agreement with previous studies describing the involve-

ment of miR-199 in EMT [153, 154].

A major limitation of CLIP-Seq however is the inabil-

ity to reduce background noise/signals due to the nature

of high-throughput sequencing. For instance, Matthew

et al. [155] reported the difficulties in eliminating cross-

linked background containing T > C conversions by bio-

informatics analysis. Another bottleneck is the low RNA

output efficiency inevitably due to the loss of RNA con-

tent and low cross-linking efficiency during the experi-

mental process [156].

Validation and follow-up experiments

Following the elucidation of Wnt-mediated regulation of

miRNAs or vice versa, potential candidate targets are

confirmed and validated by additional experimental ana-

lyses that interrogate the pathological and physiological

implications of the discovered regulations. These valida-

tions can be performed via two conventional strategies:

an approach involving the exposure of a tumour tissue/

sample to genetically altered oncogenic candidates, or an

approach which involves the systematic manipulation of

oncogenic candidates into becoming wild-type tissues

[157]. The latter can be further modified by introducing

the oncogenic or tumour suppressor candidate into a

different mouse model (immunocompetent of immuno-

compromised) for the purpose of gain of function and

loss of function studies on a potential miRNA target.

CRISPR/Cas9 System

Gain-and-loss-of-function studies are one of the most

efficient approaches employed to validate the oncogenic/

tumour suppressor potential of a target gene following

NGS methodologies. However, in comparison to the

relative potency of numerous overexpression strategies,

the methodologies developed for miRNA downregula-

tion appear to be less robust [158, 159]. More recently,

the CRISPR (clustered regularly interspaced short palin-

dromic repeats) became a well-recognized genome edit-

ing tool, referred to as CRISPR-associated endonuclease

(Cas9) system [160]. CRISPR consists of short palin-

dromic repeat sequences interspacing with spacers

adjacent to associated endonucleases, such as Cas9.

Considering the difficulties in contemporary methodolo-

gies in miRNA silencing versus the versatility and flexi-

bility of CRISPR/cas9 system in gene editing, CRISPR/
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cas9 should easily be an unorthodox strategy in the

regulation of miRNA expression [159].

For instance, using HT29 and HCT116 CRC cells trans-

fected CRISPR/cas9 vectors were able to reduce the ex-

pression levels of mature miR-200c as well as miR-141

and miR-17 by 96 % [159], with recent evidences implicat-

ing miR200 as a key modulator of canonical Wnt-

signalling [70, 161, 162]. This supports the hypothesis that

CRISPR/cas9 system can be a suitable tool for miRNA

loss-of-function validation studies following bioinformat-

ics analysis. Furthermore, following transcriptional profil-

ing of MV4-11 B-myelomonocytic leukaemia cell lines

using RNA sequencing, CRISPR/cas9 technologies en-

abled the validation of miR-150 as a bonafide oncogenic

promoter of leukemic cell proliferation and growth

through targeting of p53 [163]. This is also consistent with

previous studies suggesting that the activation of canonical

Wnt-signalling pathway and miR-150 in human breast

cancer stem cells (BCSCs) is modulated by miR-142 [164].

Similarly, microRNA profiling analyses in conjunction

with CRISPR/Cas9 systems have been utilized to validate

candidate novel transcription factors including miR-199

which was revealed as an oncogenic activator involved in

Pancreatic ductal adenocarcinoma (PDAC) pathogenesis

[165]. Here in, analysis of miR-199 functional significance

in pancreatic cancer further showed induction in migra-

tion, invasion and proliferation triggered by miR-199 in-

hibition of FOXA2. This is also in agreement with

previous study suggesting miR-199 targets several key dif-

ferentiation and cell proliferation regulatory factors gov-

erning the Wnt-signalling pathway, such as fzd4 [166]. All

the above mentioned examples are a testament to the ever

increasing relevance of the CRISPR/Cas9 system in the

validation of specific miRNAs involved in, but not re-

stricted to the Wnt-signalling pathway in cancer and

tumour progression.

Despite the outstanding potential of CRISPR/Cas9 in

transcription regulation, genome editing and gene therapy,

some important issues, such as off-target mutations [167],

PAM dependence [168] and gRNA production [169], all

provides a bottleneck to the efficiency of system. Several

miRNAs reside in the introns of their pre-mRNA host

genes and share common regulatory elements, primary

transcripts, resulting to similar expression profile patterns.

This makes it difficult to distinguish the functional effects

arising from both the miRNA silencing and host gene si-

lencing. Nevertheless, alteration of the first 20 nucleotide

sequences of the gRNA to hybridize to target DNA se-

quence can be utilized to distinguish the functional ef-

fects of miRNA genes transcribed from their own

promoters [170]. Although DNA and RNA injection-

based techniques such as inoculation of CRISPR

components as RNA and plasmids expressing gRNA

and Cas9 is possible, more attention should still be

focussed on development of novel robust delivery

methods for CRISPR/Cas9 system [171].

Genetically engineered mouse models (GEMMs)

The use of genetically engineered mouse models

(GEMMs) can also provide an avenue for the validation of

miRNAs involved in the regulation of Wnt-signalling

pathway following bioinformatics analysis. Although there

exist some differences between humans and mice, new

models possess the ability to accurately mimic erratic hu-

man malignancies and tumour development, thus enab-

ling efficient tracking of both primary and metastatic

tumour progression from initial stages than hitherto pos-

sible [172]. These mouse models have particularly im-

proved our knowledge of cancer initiation, metastasis, and

invasion, tumour angiogenesis as well as the importance

of the myriad of molecular networks observed in human

cancers. The study of loss-of gene function is also applic-

able in mouse models by performing mouse conditional

gene mutation [173], mouse gene knock-outs (KO) [174,

175], mouse single cell knock-outs [176] and mouse

models for RNA interference [177, 178]. Similarly, gain of

gene function studies in mouse models have been success-

fully performed [172], however for the purpose of this re-

view we will specifically focus on mouse models for RNA

interference studies.

To elucidate the importance of miR-184 in modulating

Wnt-signalling in the retina, delivery of formulated

nanoparticle-derived miR-184 in the retina of oxygen-

induced retinopathy (OIR) mice significantly inhibited

Wnt-signalling [179]. OIR is an established model for the

study of vascular pathology in the retina [180, 181]. Add-

itionally, a more recent study utilized the generation of an

endothelial-specific miR-17 ~ 92 cluster knock-out mice by

crossing mice possessing a floxed miR-17 ∼ 92 allele trans-

genic mice expressing Cre-recombinase under the control

of a tamoxifen-inducible CDH5 (VE-cadherin) promoter

[182, 183]. This model enabled the identification of Fzd4

and LRP6 receptors as functionally pertinent miR-19 target

genes with further studies on 17 ∼ 92 KO mice suggesting

miR-17 ~ 92 cluster antagonizes the canonical Wnt-

signalling cascade [183]. In separate studies, the existence

of a let-7/Lin28/Wnt-β-catenin signalling network in-vivo

was confirmed using premalignant mammary tissue of

MMTV-Wnt-1transgenic mice [184]. Again, the above

mentioned examples amongst numerous others have high-

lights the relevance of GEMMs as an authentic experimen-

tal approach for the validation of miRNAs as targets of

Wnt-β-catenin signalling pathway following bioinformatics

data analysis.

Intestinal organoid culture

The evolution of tissue engineering have given rise to

organoid culture which is a novel and effective tissue
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stem cell derived three dimensional (3D) model and a

useful tool predominantly for functional study [185,

186]. Basically, glandular organ 3D culture is categorized

into those derived from either a combination of both

mesenchymal and epithelial components from stomach,

colon, liver, lung and small intestines supplemented by

exogenous growth factors [187–189] or specifically from

epithelial cells of gastrointestinal tissue origin [190–192].

Potential applications of organoid models include mainly

functional validation studies such as validation of puta-

tive oncogenic or tumour suppressor genes and cancer

therapeutic validation studies [189, 193, 194]. It is there-

fore not surprising that this model have already been

exploited to validate the Wnt-derived oncogenic and

tumour suppressor properties of miRNAs.

Contextual modelling in APC-deleted colon-derived

organoids overexpressing either miR-483 or Igf2 showed

that enforced miR-483 expression promotes high-grade

dysplasia [193]. Although experimental evidences have

implicated miR-142 as a tumour suppressor in breast

cancer cells in vivo [195, 196], others have suggested

that miR-142 maintains breast cancer stem cells (BCSCs)

by activating the canonical Wnt-signalling pathway

[164]. The ability of miR-142 to modulate organoid for-

mation in BCSCs was further investigated with results

suggesting miR-142-3p as an essential regulator of

organoid formation in murine mammary CSCs [164].

Furthermore, in a separate study, primary mammary

epithelial organoids were derived from axin2/conductin-

lacZ mouse [197] in order to determine whether candi-

date miRs can control Wnt-signalling with results

strongly implicating miR-1 as an inhibitor of Wnt-

signalling pathway in vivo [198]. The relatively rigid

ECM (Matrigel) could serve as a limiting factor by

obstructing drug penetration, thereby hindering the ef-

fectiveness of organoids in drug screens via robust lenti-

viral or miRNA delivery systems. Although organoid

protocols have been established for tissues derived from

various organs [199], more efforts needs to be applied to

the development of organoids culture from tissues

whose niche factors remain poorly understood [200].

Apart from the above mentioned techniques and ex-

perimental designs utilized in the validation of the gene

expression levels and numerous short sequences gener-

ated by NGS platforms, other validation techniques

widely used include quantitative RT-PCR which is often

used for the validation of differentially expressed genes

discovered using microarray and RNA-Seq [201, 202].

Functional validation of novel miRNAs involved in Wnt-

signalling pathway can also be performed via induced

pluripotent stem cells (iPSC) technologies. Although not

used specifically for the validation of miRNA/Wnt-sig-

nalling network in cancer, patient-derived iPSC ap-

proaches [203], have been employed in other studies for

Fig. 5 Schematic overview of benefits of bioinformatics and experimental approaches in understanding miRNA/Wnt-signalling network in cancer
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validation of NGS and other gene sequencing-based

data [204, 205]. Additionally, guidelines for the valid-

ation of clinical data acquired from NGS are also

available to safeguard the standard of clinical NGS

experiments [206–208].

Conclusions

Although the application of bioinformatics in the eluci-

dation of the miRNAs-mediated regulation of Wnt-

signalling is extremely beneficial (Fig. 5), particularly in

the area of cancer research, the significant challenges

that remain still signify the usefulness of experimental

approaches for the analysis and validation of bioinfor-

matics data. The misconception that a dichotomy exists

between bioinformatics and experimental approaches in

cancer research would certainly slow down the rate of

progress in establishing the roles miRNA plays in the

physiology and pathology of the human system. While

bioinformatics strategies may be seen as improvements

to experimental approaches such as the so-called ‘wet

lab experiments’, we cannot deny the fact that experi-

mental approaches are still relevant in modern medicine,

especially in the area of experimental validation. As

already noted in this review, the NGS system still pos-

sesses significant challenges; hence in order to circum-

vent the bottleneck of data storage as well as complex

data analysis, the continual development of methodolo-

gies/algorithms for data analysis and integration is ne-

cessary. Given the ever increasing passion for the

identification of proteomic and genomic biomarkers to

enhance cancer detection at the early stage, utilization of

both bioinformatics and experimental strategies for

miRNA target identification, functional target validation

and their specificity for particular tissues must be

employed. Further investigations of the miRNA/Wnt-

signalling network, in addition to the crosstalk between

miRNAs and other signalling networks implicated in

cancer development must also be performed in order to

boost productive application to improve human health.
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