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Abstract: We study the collision of a kink and an antikink in the double sine-Gordon

model with and without the excited vibrational mode. In the latter case, we find that

there is a limited range of the parameters where the resonance windows exist, despite the

existence of a vibrational mode. Still, when the vibrational mode is initially excited, its

energy can turn into translational energy after the collision. This creates one-bounce as

well as a rich structure of higher-bounce resonance windows that depend on the wobbling

phase being in or out of phase at the collision and the wobbling amplitude being sufficiently

large. When the vibrational mode is excited, the modified structure of one-bounce windows

is observed in the whole range of the model’s parameters, and the resonant interval with

higher-bounce windows gradually increases with the wobbling amplitude. We estimated

the center of the one-bounce windows using a simple analytical approximation for the

wobbling evolution. The kinks’ final wobbling frequency is Lorentz contracted, which is

simply derived from our equations. We also report that the maximum energy density value

always has a smooth behavior in the resonance windows.
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1 Introduction

Solitons, instantons and monopoles for instance, are important solutions of field theories

that appear when the configuration of the system at the boundary is topologically non-

trivial [1, 2]. In particular, soliton solutions of relativistic scalar field theories in (1 + 1)

dimensions are called kink and antikink. The degeneracy of the potential is essential for

their existence. These solutions appear in the description of many physical systems such

as polyacetylene [3], Josephson junctions [4], graphene deformations [5], domain walls in

ferromagnets [6] and Helium-3 [7].

Two of the most studied models in the field are the sine-Gordon and the φ4. The

sine-Gordon is integrable, giving rise to what is called a true soliton. The φ4, on the other

hand, is non-integrable and exhibits a much wider variety of outcomes. In the former,

the collision between the kinks is always elastic, and the only effect of the interaction is

a phase shift in the kinks propagation. In the latter, the constituents in a kink-antikink

collision may instead reflect inelastically or annihilate. Moreover, it may also happen that

the solitons separate after more than one-bounce in what is called resonance windows.

This interesting phenomenon has been extensively studied for a few decades and had no

compelling quantitative explanation until recently [8, 9].

Historically, the pioneering works about kink-antikink collisions include Sugiyama [10],

Campbell et al. [11–13]. and Anninos et al. [14]. In [10], the author observed that, after

the collision, a kink and an antikink annihilate or reflect after a critical velocity. Moreover,

the author proposed a reduced model describing the system using collective coordinates.

Unfortunately, one of the equations had a typo that propagated in the literature for many

years. In the triplet of papers [11–13] the authors computed the resonance windows for the

φ4 model, a modified sine-Gordon model, and the double sine-Gordon with high precision.

Moreover, they argued that the resonance windows occur due to a resonant energy exchange

mechanism between the kink’s translational and vibrational modes. Thus, they found an-

alytical expressions for the windows’ location and shape and conjectured that higher-order
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resonance windows exist at the border of the lower-order ones. In [14] the authors showed

that resonance windows form a fractal structure, both numerically and using the reduced

system proposed by Sugiyama. Unfortunately, when the typo in the reduced equations was

corrected, the qualitative similarity between the reduced and full systems disappeared [15].

To remedy that, the authors of [15] tried to integrate the reduced equations without any

approximation but faced a singularity in the equations. Finally, in two recent works, this

singularity problem was corrected with a clever choice of collective coordinates [8], and

then the reduced equations could reproduce the resonance structure [9].

There has been a great number of works discussing kink-antikink interactions in various

scenarios in the literature. Some of these include the investigation of quasinormal modes in

kink-antikink collisions [16, 17], models with BPS preserving defects [18–23], interactions of

kinks with fermions [24–28], collisions between kinks with long-range tails [29–34], collision

of kinks with boundaries [35–37], multikink scattering [38–41] and collision between kinks

in two-component scalar field theories [42–44].

The double sine-Gordon model is a compelling non-integrable model which becomes

integrable in some limits. Therefore, it is possible to study a gradual transition from

integrability to non-integrability. Early works of the double sine-Gordon model studied

it as a perturbation of the sine-Gordon model via the inverse scattering method [45–47].

However, to leading order, a conservative perturbation to the sine-Gordon model still has

a trivial kink-antikink collision [47]. Other important works about kink collisions in this

model include [13, 41, 48–50]. An important feature that appears in these works is that

the kinks have an inner structure, i.e., it consists of two subkinks, which may be exchanged

at collision and form subkink bound states. This phenomenon was also observed in other

systems with the kinks with inner structures [51]. Curiously, the double sine-Gordon model

may effectively describe some physical systems such as gold dislocations [52], optical pulses

and spin waves [53], pseudo 1-D ferromagnets [54] and Josephson structures [55]. Despite

all that, it has not been sufficiently explored in the literature. It was only recently that

the dependence of the critical velocity on the model parameter R was calculated [49].

Recently Alonso-Izquierdo et al. studied a fascinating problem for kink-antikink inter-

actions [56]. They considered collisions between wobbling kinks, meaning that the kinks

have their vibrational mode excited at the collision. A single wobbling kink’s behavior has

already been studied for the φ4 model [57–59]. In particular, it is well known that the

wobbling amplitude decreases due to coupling to radiation via the first harmonic [57] or,

for some other models, via higher harmonics [60]. The collision between wobbling kinks

is important because the successive bounces in resonance windows may be seen as an it-

eration of such events. Interestingly, the authors showed in [56] that there appear many

separate one-bounce windows due to the wobbling. Here, we study collisions between wob-

bling double sine-Gordon kink and antikink. Interestingly, when the wobbling is turned

off, the model does not exhibit resonance windows near its integrable limits, despite hav-

ing a vibrational mode. This seems to be an exception to the resonant energy exchange

mechanism. However, when the wobbling is turned on, the resonant structure is gradu-

ally recovered. We show that the double sine-Gordon shares many similar features with

the φ4 model, such as one-bounce resonance windows. We are able to approximate the
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Figure 1. (a) Potential, (b) kink profile, and (c) linearized potential for the double sine-Gordon

model with different values of the parameter R.

locations of these windows using the simplified analysis of the resonance windows structure

of Campbell et al. Furthermore, this can also be visualized by plotting the maximum value

of the energy densities similar to the analysis in [41, 61]. The structure of the paper is as

follows. In section 2 we give a brief review of the double sine-Gordon models. In section 3

we show and compare the numerical results of our simulations of kink-antikink collisions

with and without wobbling. Finally, in the last section, we give our concluding remarks.

2 Model

Let us consider the double sine-Gordon model described by the following Lagrangian in

(1 + 1) dimensions

L =
1

2
(∂µφ)2 − VR(φ), (2.1)

where φ is a scalar field and the potential term is given by [13]

VR(φ) = tanh2R(1 − cosφ) +
4

cosh2R

(

1 + cos
φ

2

)

. (2.2)

The potential is periodic and is shown in figure 1(a) for some values of R. It is clear from

eq. (2.2) that for R = 0 and in the limit R → ∞ the potential approaches the sine-Gordon

one with periods 4π and 2π, respectively. For sinh−1(1) ≤ R ≤ 0, the potential has only one

maximum per period, as in the sine-Gordon model. On the other hand, for R > sinh−1(1),

a local minimum appears, which approaches zero in the large R limit.

Solving the equation of motion of the system gives the following kink and antikink

solutions (see figure 1(b))

φk(k̄) = 4πn± 4 tan−1
(

sinh x

coshR

)

, (2.3)

when the scalar field is static. If we write the sine-Gordon kink solution as φSG =

4 tan−1 exp(x), this becomes

φk(k̄) = 4πn± [φSG(x+R) − φSG(R− x)]. (2.4)

– 3 –
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Figure 2. Spectrum of the linearized equation around a kink solution. The solid line is the vibra-

tional mode, and the dashed line is the zero mode. The blue region represents the continuum region.

Therefore, one may interpret the double sine-Gordon kink as a superposition of two sine-

Gordon kinks separated by a distance of 2R.

We are interested in collisions between double sine-Gordon kinks that are vibrating.

This is important to gain a deeper insight into the vibrational or shape modes’ role in

the resonance windows. Therefore, we look for these modes in the stability equation of

the kink solution. Writing φ = φk + ψeiωt, where ψ is a small perturbation, leads to the

Schrödinger-like equation

− ψ′′ + URψ = ω2ψ, (2.5)

where the linearized stability potential is given by [49]

UR =
8 tanh2R

(1 + sech2R sinh2 x)2
+

2(3 − 4 cosh2R)

cosh2R(1 + sech2R sinh2 x)
+ 1. (2.6)

The potential is shown in figure 1(c) for several values of R. For large R, it clearly splits

into two sine-Gordon wells.

The spectrum of the linearized equation as a function of R is shown in figure 2. It

contains a zero mode, as required by translational invariance, and a single vibrational

mode. The normalized profile of the shape mode is denoted by ψD with eigenvalue ω2
D.

It is simple to show that the energy stored in the shape mode with amplitude A is equal

to ED = 1
2ω

2
DA

2. There is also a continuum of states starting at ω2 = 1. For R = 0

the vibrational mode disappears in the continuum, as the kink solution becomes the sine-

Gordon one. For R ≫ 1 the value of ω2
D approaches zero as the kink tends to two well-

separated sine-Gordon kinks.

Before delving into the kink-antikink collision, let us first discuss the behavior of a

single wobbling kink. We start with a single excited kink at the origin, and we integrate

the equations of motion as described in appendix A. It is known that a vibrating kink decays

through the coupling to radiation, due to higher-order terms of the wobbling amplitude
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Figure 3. Evolution of the (a) amplitude and (b) frequency of oscillation of the shape mode at

∆x = 1.465. (c)-(f) Absolute value of the Fourier transform of the data from (a) and (b), considering

t > 1000. The purple line corresponds to the shape mode vibration at x = ∆x and the gray line to

the far-field vibration at x = 25.0. The initial amplitude is A = 1.0.

in the equations of motion, via the harmonics of the wobbling frequency. In the double

sine-Gordon model, the decay also follows the Manton-Merabet pattern [57] as shown in

figure 3 for R = 0.5 and R = 1.0. However, interestingly, the decay for R = 0.5 is much

less pronounced, and this phenomenon becomes more evident approaching the integrable

limit. Moving to higher values of R, we reach a point where the shape mode frequency

becomes lower than the half-threshold value. In this case, the decay occurs through higher

harmonics [60], as can be seen in the right panels. There, we take the Fourier transform

S(ω) of the field time series near the wobbling kink and far from it and plot its absolute

value. We see that the far-field spectrum, which corresponds to the emitted radiation, has

peaked in the harmonics of the vibration frequency above the continuum threshold. For

R = 1.8 and R = 2.1, the decay occurs mainly through the second and third harmonic,

respectively, and, therefore, the perturbation is much more stable [60], as can be seen in

the amplitude evolution.

3 Collision simulations

To initialize the collision we take the following configuration

φ = φk (ξ+) − φk (ξ−) − 2π +A sin(ωDτ+)ψD (ξ+) −A sin(ωDτ−)ψD (ξ−) , (3.1)

evaluated at t = 0. For the time evolution we defined the boosted coordinates ξ± =

γ(x ± x0 ∓ vit) and τ± = γ(t ∓ vix),1 where γ = 1/
√

1 − v2
i . It consists of a kink and an

antikink separated by a distance 2x0, fixed at the value 2x0 = 30. They approach each

1It is a common mistake to only impose the boost on x coordinate and neglect it in the time coordinate.
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Figure 4. (a) Final velocity as a function of the initial velocity for kink-antikink collisions, con-

sidering R = 1.0. (b) Number of bounces before escape for kink-antikink collisions as a function of

the initial velocity vi and R. For both diagrams, we set A = 0.0.

other with velocity vi and −vi, respectively, and at the same time, they wobble with the

bound frequency ω2
D and amplitude A. For A = 0, this leads to the usual kink-antikink

collision [13]. The technical details of the simulations are described in appendix A.

From eq. (3.1), it is clear that the wobbling oscillation frequency is Lorentz contracted

in the center of mass frame. If we measure the time evolution of the field at a point moving

with the kink in the form x = vit+ α, the wobbling term becomes

A sin

(

ωD

γ
t− γωDviα

)

ψD(γ(x0 + α)), (3.2)

which oscillates with a Lorentz contracted frequency ωD/γ. This transverse Doppler effect

was also shown to appear in a more detailed description of wobbling kinks investigated

in [58]. We will observe the same effect after the collision, where the frequency is contracted

according to the system’s final velocity.

The double sine-Gordon model with A = 0 exhibits resonance windows in a finite range

of the parameter R. This occurs presumably because, for both very small and very large R,

the model becomes the sine-Gordon one, which is integrable and does not have resonance

windows. We show the final velocity as a function of the initial velocity for a specific value

of R = 1.0 in figure 4(a). This value is in the region where the system exhibits resonance

windows. The fractal structure is similar to the φ4 model. However, there is a significant

difference. Due to the periodicity of the potential, the kink and the antikink may either

cross or reflect. An even number of bounces means that the kinks reflected, while an odd

number means that the kinks crossed.

In figure 4(b), we show the number of bounces as a function of R and vi, the initial

velocity of the incoming kink-antikink. The colors represent the number of bounces as

indicated in figure 4(a). The white region is where the kink and the antikink annihilate. In

the blue region, separation occurs after a single bounce. The interface between white and

blue determines the critical velocity value, which agrees with the non-monotonic behavior

– 6 –
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Figure 5. The value of the field at the center of collision as a function of time and the initial velocity.

reported in [49]. Moreover, the resonance domain with a fractal structure, the region

with dots in red and other colors, is located approximately in the interval 0.52 ≤ R ≤

1.78. This interval translates to a frequency interval 0.437 < ωD < 0.963. Of course, the

actual resonance domain would be slightly larger because the resonance windows become

increasingly narrower and consequently more difficult to locate.

To confirm that the model does not have resonance windows for large and small R,

we plot the time evolution of the field at the collision center as a function of the initial

velocity. This is shown in figure 5 for R = 0.3 and R = 3.0. In both cases, we can

only see false resonance windows, despite the presence of a vibrational mode. It means

that the existence of the vibrational mode does not guarantee the appearance of a fractal

structure. Therefore, the vibrational mode is not sufficient for the resonant energy exchange

mechanism. In [50], the authors obtained a similar result near the integrable limit of a case

of the double sine-Gordon different from what is investigated here and, in [62], the authors

also found false resonance windows near the integrable regime of a deformed sine-Gordon

model. We searched carefully for resonance windows with precision ∆vi = 10−5 and no

resonance windows were found.

Now we would like to see how the result with A 6= 0 compares with the previous

one. We start with a small value of A = 0.1. The final velocity dependence on the initial

one is shown in figure 6(a) for R = 1.0. We observe that the blue crossing curve, which

indicates separation after one-bounce, now oscillates as we vary vi. This occurs because,

for different velocities, the phase of the wobbling at the collision varies. Before the collision,

the wobbling amplitude evolves approximately as

S(t) = A exp

[

i

(

ωD

γ
t+ θ0

)]

, (3.3)

where θ0 is an initial constant. Moreover, the collision occurs approximately at t = x0/vi.

Therefore, the dependence of the phase θ at the collision on vi can be estimated as

θ =
√

1 − v2
i

ωDx0

vi
+ θ0. (3.4)
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Figure 6. (a) Final velocity as a function of the initial velocity for kink-antikink collisions, con-

sidering R = 1.0. (b) Number of bounces before escape for kink-antikink collisions as a function of

the initial velocity vi and R. For both diagrams, we set A = 0.1.

Crossing after one bounce always occurs after a critical velocity. However, the oscillation in

the amplitude, shown in eq. (3.3), causes the one-bounce crossing curve to split, creating

one or more isolated one-bounce windows. Near these windows, there appears a nested

structure of higher-bounce windows. The gap between the two one-bounce regions occurs

because, in this region, the wobbling is out of phase at the collision time. Similarly, it is also

possible to see oscillating behavior in some two-bounce windows. This novel phenomenon

was also observed in the collision between wobbling kinks of the φ4 model [56].

In figure 6(b), we summarize the behavior of the system for both dependences on R

and vi. One important detail is that in contrast with the case of A = 0, for small R it

becomes difficult to find the shape mode profile numerically with enough precision as it

approaches the continuum. That is the reason we have shown the figure starting with a

small nonzero R. It is possible to see that the one-bounce crossing region oscillates with

many spines in double sine-Gordon model, similar to what was described in [62].2 These

spines originate from the formation of one-bounce resonance windows as explained in detail

in [62]. In short, the formation of spines can be pictured by tracking how the one-bounce

windows appear, move and connect as we change R. Another interesting point is that the

wobbling energy is enough to create one-bounce windows even for the values of R where

there was no fractal structure in the absence of wobbling, A = 0.

For A = 0.1, the wobbling effect is small, while if we increase A, it becomes more

pronounced. Figure 7(a) shows the system’s behavior for a large wobbling amplitude

A = 0.8. As one can see, there is an oscillating pattern in the curve of vf as a function of

vi, as well as many isolated one-bounce resonance windows. This occurs in two ways. The

first one is the process we described before. The one-bounce crossing curve is split in a

region where the wobbling phase is such that the translational energy is lost at the collision.

The second way is that a one-bounce window appears in a place where previously there

was not any window. These windows show up because the energy transferred from the

2The term spine was coined in [62].
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the initial velocity vi and R. For both diagrams, we set A = 0.8.

wobbling at the collision is now high enough, letting the kinks separate. This phenomenon

was also reported in [56] for the φ4 model. Interestingly, near the boundary of a one-bounce

window, there is a nested structure of higher-bounce windows. Furthermore, two essential

features should be noticed. First, as we decrease vi, the one-bounce resonance windows

disappear, we see a pattern of two-bounce resonance windows that continues all the way

down to zero initial velocity. Second, the final velocity may become higher than the initial

one in some regions. Both features occur because the vibrational energy is considerable

and, therefore, there is a large amount of energy available that may turn into translational

energy at the collision.

The system’s behavior for both dependences on R and vi, although now with a larger

wobbling amplitude A = 0.8, is summarized in figure 7(b). The figure shows an intricate

structure of one-bounce resonance windows with many spines in the blue region. This

pattern shows that many one-bounce resonance windows appear for large values of A in

the two ways previously described. In particular, we observe that the critical velocity after

which one-bounce crossing always occurs is larger than the case with a smaller value of A.

Due to the large amplitude of wobbling, when it is out of phase, there appear annihilation

windows even for initial velocities as large as vi = 0.35. These annihilation windows with

large initial velocities are precisely where the final velocity curve for one-bounce crossing

splits. Interestingly, we observe that one-bounce resonance windows spines appear in the

whole region of R that we considered.

Now, let us investigate the existence of higher-bounce windows for small and large R

when the wobbling is turned on. The result is shown in figure 8, where we fix again R = 0.3

and R = 3.0. In the upper panels, we plot the final velocity as a function of the initial one.

For R = 0.3, the wobbling frequency is large and the critical velocity is small. In this case,

we can see from eq. (3.4) that the wobbling phase varies much faster with vi and many

one-bounce windows appear because the phase quickly alternates between constructive and

destructive energy exchange. Moreover, there are many higher-bounce resonance windows

– 9 –
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Figure 8. (a) and (b) Final velocity as a function of the initial velocity for kink-antikink collisions.

(c) and (d) Value of the field at the center of collision as a function of time and the initial velocity.

at the border of these windows, contrary to the A = 0 case for the same value of R. For

R = 3.0, there are much fewer one-bounce windows because the wobbling frequency is much

smaller than the R = 0.3 case. We still find two-bounce windows in the neighborhood of

the one-bounce ones, albeit not as many as the R = 0.3 case. It can be justified by the fact

that the wobbling energy is proportional to ω2
D, making it much smaller for R = 3.0. As for

both small and large R the resonance is recovered for sufficiently large amplitude A, one

could argue that the system possesses a hidden resonance structure before the wobbling is

turned on.

We also plot the field at the center of the collision as a function of the initial velocity in

the lower panels of figure 8, for comparison. One can clearly see the structure of one-bounce

resonance windows, but it is not possible to see higher-bounce ones in the resolution of the

figure because they are extremely narrow. Due to the near threshold wobbling frequency

of the R = 0.3 case, it could be a good candidate for exhibiting the spectral phenomenon

reported in [19, 23]. However, we did not find this phenomenon for double sine-Gordon

model. We think this is due to the fact that the interkink attractive force is larger than

the potential spectral wall making it impossible to isolate the effect.
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Figure 9. (a) Final velocity as a function of the initial velocity for kink-antikink collisions for

different values of A. We fix R = 1.0. (b) Number of bounces before escape for kink-antikink

collisions as a function of the initial velocity vi and A.

The one-bounce windows’ behavior for the range 0 ≤ A ≤ 1 and fixed value of R = 1.0

is summarized in figure 9(a). This is the best way to visualize the two processes of the

creation of one-bounce windows. It is possible to see that gradually, as A is increased,

the initial one-bounce curve splits, and new ones start to emerge. If A is large enough,

whenever the vibration is in phase at collision, there are one-bounce resonance windows,

while there are annihilation windows otherwise. A more detailed structure of n-bounce

windows as a function of the system’s relevant parameters is shown in figure 9(b). As one

can see, the critical velocity and the number of isolated one-bounce windows increase as

the amplitude of oscillation increases, consistent with figure 9(a) along with our arguments

before. Moreover, the figure shows that the system also exhibits higher-bounce windows.

However, the higher-bounce windows pattern is rather scarce because the higher-bounce

resonance windows are narrow for the double sine-Gordon model. Nevertheless, it is also

possible to see some higher-bounce resonance windows near the boundary of one-bounce

resonance windows and in the region where A is large and vi is small. In fact, it is easier

to visualize this phenomenon in figure 7 for A = 0.8 where higher-order bounce windows

accumulate in these two regions. Furthermore, the alternation between one-bounce and

annihilation windows is clearly shown in figure 9(b) when A is large. This alternation

depends on the wobbling phase right before the first collision, given by eq. (3.4).

We can find an approximate expression for the location of the one-bounce windows

using the method proposed by Campbell et al. [11, 13]. Assuming that the amplitude is

small and the system is invariant under time reversal, the authors found that the wobbling

amplitude after the collision S′ is approximately given by

S′ = −
ρ

ρ∗
S + ρ, (3.5)

where ρ is a complex constant that depends on the critical velocity. The center of the

one-bounce windows should be located approximately at the point where the amplitude of

wobbling is minimum. Plugging eq. (3.4) in eq. (3.5) we find

S′ = −A exp

[

i

(

√

1 − v2
i

ωDx0

vi
+ θ0 + 2θρ

)]

+ |ρ| exp(iθρ), (3.6)
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Figure 10. One-bounce windows center vn as a function of the integer n for R = 1.0. The solid

curve is a fit of the type given in eq. (3.9).

where θρ is the argument of ρ. The amplitude S′ has a minimum absolute value for initial

velocities vn such that
√

1 − v2
n

ωDx0

vn
+ θ0 + 2θρ = 2πn+ θρ (3.7)

for some integer n. More explicitly we have

vn =
ωDx0

√

(2πn− δ)2 + ω2
Dx

2
0

, (3.8)

where δ ≡ θρ + θ0. Notice that the location of the centers is almost independent of the

amplitude A, as can be observed in figure 9. Therefore, we choose A = 1.0 to measure the

center of the one-bounce windows because there are more windows for this value. Figure 10

shows the centers of the one-bounce windows as a function of an integer n for R = 1.0.

Fitting a curve of the type

vn =
a

√

(2πn− b)2 + a2
, (3.9)

where a and b are fitting parameters, we find a ≃ 9.22, which should be compared to

the theoretical value ωDx0 ≃ 11.80. The agreement is not remarkable, which is expected

given all the approximations in the equations. However, the above analysis gives a correct

qualitative picture of the exact, within the numerical precision, numerical simulations.

Let us also study the maximum energy densities as a function of the system’s param-

eters as reported in [41, 51]. The energy density is given by e = k + u+ p where the three

terms in this expression are the kinetic k = 1
2(∂tφ)2, gradient u = 1

2(∂xφ)2 and potential

p = V (φ) energy densities, respectively. During the collision, each of them will reach a

maximum value, which we denote by a subscript max, at some position in spacetime. Fig-

ure 11 shows the maximum energy densities as a function of vi and R in both scenarios

with and without wobbling. In all the figures, we observe that, interestingly, the maximum

energy densities vary smoothly inside the resonance windows, as shown in the highlighted

one-bounce and two-bounce regions. This behavior is in clear contrast with erratic behav-

ior in most points outside the resonance windows related to the bion formation, which is
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Figure 11. Maximum energy densities as a function of (a) vi taking R = 1.0 (b) R taking vi = 0.2,

both for A = 0.0. (c) and (d) same quantities now with A = 0.5. The marked regions consist of

one-bounce and two-bounce resonance windows.

known to evolve chaotically [14]. The result in figure 11(b) matches the analogous figure

in reference [41]. The double sine-Gordon is well known to form long-lived bound states,

called oscillons, between the sine-Gordon subkinks. As far as we checked, the dependence

of the maximum energy density on the initial velocity is also smooth in the regions where

there is oscillon formation.

Finally, we would like to conclude with the measurement of the final wobbling frequency

ωf , the wobbling frequency of the system after the collision. We measure the final frequency

by taking the field’s value at a distance from the center, where the amplitude of wobbling

has a maximum theoretical value. Then we subtract the kink contribution from the field

and take the Fast Fourier Transform of the evolution of this value. The frequency with the

largest amplitude in the power spectrum is plotted in figure 12. In the figure, we divide the

obtained frequency by
√

1 − v2
f to compensate the Lorentz contraction factor and change

to the frame where the kink is at rest, as explained before. It is clear from the figure that,

in this frame, the kink indeed wobbles at the shape mode’s theoretical frequency ωD. This

result serves as a nice consistency check and is similar to what was obtained in [56] for

the φ4 model. Moreover, higher-order effects in the amplitude can change the wobbling

frequency from the lowest order value ωD [58]. However, this effect is negligible compared

with the Lorentz contraction one, consistent with the results in figure 12.

4 Conclusion

In this paper, we started with a subset of the double sine-Gordon model that depends on

the parameter R. This model is well-known and coincides with the sine-Gordon model

for R = 0 and in the limit R → ∞. The model has at maximum one shape mode in the

whole range of parameters, which is important for the appearance of resonance windows.

The shape mode decays into radiation through the first or higher harmonics depending

on the value of the oscillating frequency and is more stable in the latter case. Then,
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Figure 12. Final wobbling frequency as a function of the initial velocity for A = 0.0 (top) and

A = 0.1 (bottom) with R = 1.0. The frequency was measured in the reference frame with the kink

at rest, where the Lorentz contraction factor is compensated. The dashed line is the theoretical

frequency of the shape mode ωD ≃ 0.7867. The color scheme represents the number of bounces as

in previous figures.

we investigated collisions between the kink and antikink in this model. The collisions

exhibit the familiar fractal structure of resonance windows. However, it only exists when

the system is far from the integrable limits, despite having a shape mode. It implies

that the existence of a shape mode is not a sufficient condition for the resonance energy

exchange mechanism. Furthermore, we observed the previously reported non-monotonic

critical velocity dependence on R.

Next, we added wobbling to the kink and antikink and studied collisions again. We

found that the final velocity depends on the wobbling phase in an oscillatory way. If the

wobbling is in phase in the first collision, we may observe a one-bounce crossing. This

gives rise to separation after a critical velocity and also to isolated one-bounce windows,

which do not occur in the absence of wobbling. On the other hand, if the wobbling is out

of phase, it causes annihilation or the formation of higher-bounce resonance windows. This

phenomenon is even more pronounced for larger wobbling amplitudes, where we clearly see

an alternating structure of these two behaviors. This result is similar to what was reported

in [56] for the φ4 model. We found one-bounce windows in the whole range of R, which

appears as an intricate structure of spines in the reflection region. Interestingly, we found

that when the wobbling is turned on, the fractal structure is gradually recovered in the

region with small and large R.

In the double sine-Gordon model, every bounce corresponds to the kink-antikink cross-

ing instead of reflecting, in contrast with the φ4 model. We could show that the one-bounce

windows’ peak has a simple dependence on the wobbling phase. It can be found approxi-

mately considering a linear relation between the wobbling amplitude before and after the

collision. We also measured the wobbling frequency of the kinks after the collision and

found that indeed the kink wobbles at the theoretical value of the frequency ωD once you

change to the frame where the kink is at rest. This Lorentz contraction is manifest in our

equation for a boosted wobbling kink.
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The maximum energy density in the kinks collisions is an interesting way of studying

the fractal structure of resonance windows [41, 51]. Curiously, we were able to show that

it also works for our system. The energy density shows smooth behavior in the windows,

independent of the system’s parameters, despite the chaotic structure of the collision. As

far as we understand, the erratic behavior outside the windows is related to the bion

formation. Moreover, in some of the smooth regions outside the resonance windows, we

observed oscillon formation. However, to conclude that this is indeed the case whenever

there is an oscillon formation needs a more thorough investigation.

This study may shed light on the mechanism of resonance windows formation, which

is approximately described by the energy exchange mechanism of Campbel et al. This

mechanism has finally received a compelling quantitative confirmation in a recent work [9],

where the authors found appropriate moduli space coordinates [8]. It would be interesting

to see if the reduced model with collective coordinates can reproduce the wobbling kink

novel results in a future work. Moreover, our work clearly shows that the regions close to

integrable limits in the double sine-Gordon model are not well understood and should be

more carefully investigated, possibly with some perturbative method.

A Numerical technique

To solve the equations of motion numerically, we discretize the space in the interval

−100.0 < x < 100.0 using N = 2048 gridpoints and periodic boundary conditions. The

space derivative is done using a Fourier spectral method [63] and the time evolution inte-

grated using a 5th order Runge-Kutta method with error control [64] implemented with

the odeint package in C++ [65]. We evolve the system until the time t = 1400.0. Hence,

we cannot find resonance windows for very small velocities since there is not enough time

for the kinks to separate. The radiation at the boundaries was absorbed by including a

damping term in the region x < −80 and x > 80.0. The damping is proportional to a

bump function with a maximum value of 5 and is exactly zero outside this region [33]. A

larger box was used to compute the final wobbling frequency to allow for a longer time

series and obtain a more precise frequency measurement. The profile of the shape mode

ψD(x) was computed using the NDEigensystem method in Mathematica.
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