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WODIS: Water Obstacle Detection Network based

on Image Segmentation for Autonomous Surface

Vehicles in Maritime Environments
Xiang Chen, Yuanchang Liu, and Kamalasudhan Achuthan

Abstract—A reliable obstacle detection system is crucial for
Autonomous Surface Vehicles (ASVs) to realise fully autonomous
navigation with no need of human intervention. However, the
current detection methods have particular drawbacks such as
poor detection for small objects, low estimation accuracy caused
by water surface reflection and a high rate of false-positive on
water-sky interference. Therefore, we propose a new encoder-
decoder structured deep semantic segmentation network, which is
Water Obstacle Detection network based on Image Segmentation
(WODIS), to solve above mentioned problems. The first design
feature of WODIS utilises the use of an encoder network to
extract high-level data based on different sampling rates. In order
to improve obstacle detection at sea-sky-line areas, an Attention
Refine Module (ARM) activated by both global average pooling
and max pooling to capture high-level information has been
designed and integrated into WODIS. In addition, a Feature
Fusion Module (FFM) is introduced to help concatenate the
multi-dimensional high-level features in the decoder network.
The WODIS is tested and cross validated using four different
types of maritime datasets with the results demonstrating that
mIoU of WODIS can achieve superior segmentation effects for
sea level obstacles to values as high as 91.3%.

Index Terms—obstacle detection, image segmentation, deep
neural networks, autonomous surface vehicles

I. INTRODUCTION

A
UTONOMOUS vehicles such as drones in the air and

cars on the road will gradually be achieved in the

near future, and such a trend towards realising the autonomy

has been increasingly endorsed by shipping industries and

maritime community [1]. Currently, with the help of advanced

sensors such as vision systems, LiDARs and radars, a wide

applications of marine autonomy have been witnessed in

various domains such as hydrography, oceanography and off-

shore technologies [2]. However, most of these applications

are still using remote control or semi-autonomous navigation.

To enable a fully autonomous capability for marine vehicles,

critical functionalities such as highly intelligent environment

perception is paramount. Currently, many companies and re-

search institutes are working on autonomous marine vehicles,

such as the Rolls Royce [3] and the Kongsberg autonomous

shipping project [4], the Autonomous Waterborne Applications
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(AAWA) research project [5], and the Maritime Unmanned

Navigation through Intelligence in Networks (MUNIN) [6].

These projects are targeted to realise full-size autonomous

ships to replace current cargo vessels or passenger vessel

capabilities. Due to the regulations and technique issues for

these types of autonomous vehicles, it is difficult to achieve

this in short time.

Apart from large-scale vessels described previously, there

has been rapid development of smaller vessels with au-

tonomous control, i.e. Autonomous Surface Vehicles (ASVs),

in recent years [7]. Compared with large-scale autonomous

ships, ASVs have many advantages when exploiting hazardous

environments, conducting long duration missions and carrying

out seabed surveys. In general, ASVs can significantly reduce

human resource costs, improve navigation safety, and expand

operational weather windows to be able to work in poor

conditions.

Accurate perception of the navigational environment with

reliable obstacle detection capability is critical for safe op-

eration of ASV. Typical environment perception uses sensors

such as camera, Light Detection and Range (LiDAR), gyro

compasses and Global Positioning System (GPS) to acquire

substantial information for sensor fusion, which is integrated

into decision-making algorithms. In recent decades, cameras

and LiDAR have been predominantly used on ASVs. In par-

ticular, compared to LiDAR, camera-based detection delivers

higher capability in detecting various obstacles as cameras

can provide more enriched texture information. However,

cameras are also prone to performance failure brought on by

poor environment conditions, e.g. strong sunlight reflection

and impaired sea-sky-line area interference caused by hazy

weather as shown in Fig.1 (a) and (b). Furthermore, small

sized obstacles, as shown in Fig.1 (c), are difficult to detect

using vision systems only, which will eventually result in

unpredictable risks or harmful collisions. Currently, the state-

of-art algorithms on small objects detection are based on pixel-

segmentation. Compared with the object detection algorithms

such as YOLO, mask RCNN [8], [9], there is an increasing

need of computational resources for the image segmentation

methods. Also, it is technically complicated to realise a near

real-time segmentation which is the most important ability for

ASVs when navigating at sea.

Currently, deep convolutional neural networks have a proved

ability in obtaining richer deep features with remarkable

obstacle detection results on practical platforms such as Au-

tonomous Ground Vehicles (AGVs) [10]. Due to different
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Fig. 1. Issues with camera-based detection: (a) water surface reflection intrigued by strong sunlight; (b) compromised sea-sky-line inference; (c) small obstacles
detection.

applied semantic scenarios, these networks are unable to be

directly implemented to an ASV’s segmentation task. When

compared with autonomous road vehicles, the most evident

difference is that an ASV is prone to serve weather conditions

(tide, poor illumination and reflection) at sea. In order to

equip ASVs with strong obstacle detection systems, [11]–[14]

have made attempts on improving the deep neural networks

adopted on AGV or autonomous cars for a full application

on ASVs. A common way for these works is to design a

series of backbone networks to extract deep features from

maritime scene and then transfer the extracted deep features to

a designed upsampling network to output desired segmentation

masks. However, most of these works have been designed

with heavy structures making them infeasible for a real-time

application.

To accommodate these challenges and innovate a new

lightweight vision based obstacle detection system for ASVs,

this paper proposes a novel Water Obstacle Detection network

based on Image Segmentation (WODIS) using an encoder-

decoder architecture. The encoder sub-network is used to

extract deep features from the input image captured by a

camera on an ASV, while the decoder sub-network is used

to produce a desired segmentation mask. The contributions of

our work are summarised as follows:

• A real-time and highly accurate segmentation network

(named as WODIS) has been designed to accelerate

inference speed and improve the segmentation accuracy

for maritime obstacles detection;

• A new attention mechanism and a feature fusion module

are introduced and revised based on ASV segmentation

task requirements to address the issue inherent with sea-

sky-line area detection and reduce false detection for

obstacles at sea;

• Enriched cross validations based on four different mar-

itime datasets are conducted with the results proving that

the proposed WODIS network has a strong generalisation

capability in understanding semantics of environment;

• Obstacle detection performances are validated using a se-

ries of practical maritime datasets with the results show-

ing a high obstacle detection accuracy can be achieved

when using the segmentation generated by the proposed

WODIS network.

The organisation of this paper is as follow: Section II

reviews related studies. Section III presents WODIS network

structure, introduces the attention mechanism and feature

fusion module, and discusses the design of loss functions and

object detection algorithm. Experimental results are presented

in Section IV with conclusions provided in Section V.

II. RELATED WORK

Fast and accurate obstacle detection is crucial for ASVs’

safe operation. With the advance of deep learning techniques,

object detection based upon image segmentation using var-

ious deep neural networks has been extensively studied by

the research community specialising in autonomous systems

across various domains. Hence, the review of related work is

centred on two aspects: 1) image segmentation methods for

autonomous vehicles and 2) obstacle detection for ASVs in

maritime environments.

A. Image Segmentation methods for autonomous vehicles

Image segmentation is a subset of semantic segmentation

in computer vision with the aim being to generate high

accuracy prediction masks under a set of conditions. With

the development of the deep convolutional neural network in

recent years, a series of image segmentation algorithms have

been designed for practical purposes. For example, SegNet

[15] uses a small encoder-decoder architecture and pooling

indices strategy to reduce the network complexity. However,

the disadvantage of SegNet is that feature extraction accuracy

is highly related with the number of layers. When there is

a large increase in the number of layers, the computational

memories and processing time will increase with a significant

degree making the network difficult to be trained for large

dataset containing complex semantic segmentation scenes.

DeepLab [11], [16], [17] technique is another important ap-

proach in image segmentation with the focus on increasing

the dimension of receptive fields and not compromising the

resolution of images. Atrous Spatial Pyramid Pooling (ASPP)

has been widely used in the DeepLab methods to solve the

problem associated with heavy backbones. Similarly, Xception

network [18] has been designed with both depth-wise and

point-wise convolutions to reduce the computational burden.
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Note that due to the associated computational efficiency, Xcep-

tion network has been implemented in the proposed WODIS

network to speed up training and inference processes with the

details explained in the next section.

Following the success of DeepLab, a large number of recent

networks have been designed using the ASPP module. Among

them, ESPNet [19] designs a new spatial pyramid module to

improve the computational efficiency. BiSeNet [13] introduces

a spatial path and a context path to reduce calculation com-

plexity. Both ESPNet and BiSeNet rely only on one branch to

produce features extraction with the rest of decoder network

used for upsampling to recover image dimensions. Note that a

problem exists that the feature extraction may not be sufficient

in the encoder sub-network resulting a compromised output

mask. Therefore, DFANet [14] has been proposed with an

argument that with the layers of the encoder being deeper,

the aggregation may be even worse than high-level feature

maps. The solution to such an aggregation problem is to

repeat the feature extraction procedures in the encoder sub-

network several times. Based upon the discussion on these

most recent networks, it should be emphasised that the trend

of image segmentation algorithms has been diverted from

focusing on the effect of segmentation to the acceleration

of the segmentation speed. Such a trend is accompanied by

designing the backbones of the feature extraction network

from using heavy-weight networks such as VGG [20], ResNet

(18, 34, 50, 101, 152) [21] to light-weight networks such as

Xception [18], MobileNet [22].

At this juncture, it is important to summarise the variations

of image segmentation networks. As detailed in Fig. 2, it

can be observed that the network structure evolved from

a multi-branch (Fig. 2 (a)) structure to a spatial pyramid

pooling architecture (Fig. 2 (b)) and finally to a feature

reusing principle (Fig. 2 (c)). In terms of building deep

neural networks for image segmentation for ASVs, following

aspects should be considered. When an ASV is navigating,

the most significant aspects in its surrounding environments

are sea and sky resulting a background that is simpler than

the road scene. However, the difficulty is the sea-sky-line

area detection, especially in unfavourable weather conditions,

which can generate false positive obstacle detection around

sea-sky-line areas as shown in Fig. 1(b).

B. Obstacle detection for ASV in maritime environments

The success of an accurate and efficient obstacle detection

algorithm relies on three aspects: (1) a multi-sensor system to

perceive an ASV’s surrounding environments, (2) a fast and

accurate algorithm to process the acquired data, (3) a dataset

that is rich in scenarios for algorithms training.

For a safe navigation in maritime environments, a variety

of types and modes of sensors are deployed to capture various

information, including Automatic Identification System (AIS)

[23], radar [24], camera, LiDAR, sonar [25] and speed log

[26]. Of these sensors, the dominant equipment is the AIS,

which is used in maritime navigation for broadcasting each

ship’s position, heading and speed to help inform correct

situational awareness. Although AIS brings several benefits for

the environment perception, it can be easily affected by severe

weather conditions when being used for a short-range detec-

tion [27], [28]. Therefore, for small sized autonomous ships,

AIS may not be the first option for collecting perceptional

data. With the advance in sensors development for maritime

environments, new sensors such as LiDAR, camera and etc.

are being introduced and mounted onboard. [29] uses three

dimensional point cloud produced by LiDAR to detect objects.

Similarly, [30] uses LiDAR to generate a stable navigable

region for ASVs.

Based on these developments of sensor technology, the

associated efficient and robust obstacle detection algorithms

are also being innovated rapidly. Before deep learning methods

became the dominant methodology, one of the traditional

paradigms was to first use feature extraction algorithms such

as the Hough transformation method to detect sea-sky-line [31]

and then, based on different grey scale values in the sea-sky-

line area, the Otsu threshold method is used to detect obstacle

edges [32]. These methods need substantial computational

resources and the shape of an obstacle may not be easily iden-

tified due to the noises generated by sea wave. Consequently,

disadvantages associated with such a paradigm include a high

rate of false positive and a compromised capability when

deployed in practical environments.

Most recent studies in marine obstacle detection are using

machine learning algorithms, which can significantly improve

the detection results. For example, [33] assumes that ASVs

are always navigating in a diverse environment and in order to

achieve a continuous obstacle detection using vision systems

only, a robust generative graphical model based upon Markov

random field framework has been proposed. The model is

trained using the expectationmaximisation (EM) method, and

by leveraging the inherent fast inference capability, a real-

time obstacle detection under fast frame-per-second (fps) can

be achieved. Following the same paradigm, [34], [35] further

improve the work to have a higher detection accuracy rate by

using stereo visions.

When an ASV is travelling at sea, its motion states are

prone to adverse weather conditions such as high waves or

strong winds, which can cause onboard cameras failing to track

certain obstacles. Also, under high wave conditions, the sea-

sky-line area detection is no longer accurate. To address these

issues, information from Inertia Measurement Unit (IMU)

has been integrated with the image in the work of [36]

and [37]. The ablation study shows that it is effective to

mitigate external influences. Also, [38] designs a background

subtraction algorithm and directly detects objects from the

subtracted background. However, the result shows that it has

a higher false positive rate on obstacles. At the same time,

the work indicates that it needs a pixel-based segmentation

method to subtract the objects from background in order to

maintain a high true positive rate.

Apart from methods and sensors, another important factor

when aiming to produce accurate detection results is the

availability of training datasets of maritime environments.

Currently there are only a limited number of publicly available

datasets. For example, the MaSTr1325 [39] is collected for

ASVs’ object detection. The Multi-modal Marine Obstacle
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Fig. 2. Image segmentation network evolution, (a) Multi-branch downsampling by manual scaling; (b) Atrous Spatial pyramid pooling; (c) Feature reusing
with encoder decoder architecture.

Detection Dataset 2 (MODD2) [36] has been intensively used

for cross-validation due to the enriched scenes included. The

Singapore Maritime Dataset (SMD) [40] is another maritime

dataset collected from offshore Singapore and the background

in most scenes does not contain any onshore buildings or

obstructions. Finally, the Marine Image Dataset (MID) [41]

contains a range of marine obstacles such as buoys and floating

objects. In order to validate the generalisation of our proposed

method, all these four datasets have been used in this paper.

III. WODIS NETWORK FOR A RELIABLE IMAGE

SEGMENTATION

The overview of WODIS network is described in Section

III-A, the Attention Refine Module (ARM) and Feature Fusion

Module (FFM) are explained in Section III-B and the sea-

sky-line enhancing mechanism is presented in Section III-C.

Finally, the post processing algorithm will be discussed in

Section III-D.

A. Network Architecture Overview

Based on recent studies on the semantic segmentation

[13], [14], the encoder-decoder network has become the

mainstream to replace other architectures such as the multi-

scale information structure or the spatial pyramid network.

The encoder network is commonly composed of backbones

(using networks including VGG, ResNet, Xception and etc.),

which are well pre-trained using large datasets (ImageNet,

COCO, PASCAL VOC etc.). These backbones have a strong

generalisation ability for feature extraction but are normally

heavy in parameters making them difficult to be applied for

real-time segmentation. Such a drawback is especially acute

for ASVs’ obstacle detection, which requires a lightweight

backbone model to speed up inference while maintaining a

high accuracy for obstacle segmentation.

To address these issues, the WODIS has been proposed

to have a U-Net encoder-decoder structure with two sub-

networks as shown in Fig. 3. The aim of the encoder sub-

network is to extract deep features from input images, while

the decoder is to fuse high-level features (global specifications

of objects, such as positions and shapes) and low-level features

(local specifications of objects, such as edges, corners and

texture) from the encoder sub-network to generate an object

segmentation mask.

Within the WODIS, the encoder sub-network consists of

separable convolutions that are derived from Xception network

[18]. The benefit of the Xception network is that it uses

the depth-wise separable convolutions (short for ’Sep conv’)

replacing traditional convolutions to reduce the computing

parameters, which makes it an ideal structure for a lightweight

network design. By referring to the network design of the

entry flow within the Xception, parameters of our WODIS

are shown in Table I. Each ’Sep conv’ is stacked by three

separable convolutional layers. Kernel sizes for all ’Sep conv’

are configured to be ’3 x 3’ with the stride number being

2 for all layers, while the only difference between different

’Sep conv’ is the channel number. The repeating times in

Table I represents how many each ’Sep conv’ layer is repeated.

For example, ’Sep conv2 x’ with x = 4 means the separable

convolutional layer should be repeated 4 times.

The backbone for our WODIS encoder sub-network follows

the flow of conv1 → Sep conv2 x → Sep conv3 x →
Sep conv4 x, which consists of a sub-stage in our network

as shown by the red dashed box in Fig. 3. Because a single

sub-stage is not able to fully fuse the high-level and low-

level feature maps, it is necessary to repeat the backbone

for several times and in the WODIS (as shown in Fig. 3),

the backbone is repeated three times (the reason of such

a design will be presented in Section IV-C). At the end

of the backbone, we introduce an Attention Refine Module

(ARM) to adjust the high-level feature weight. A detailed

explanation of the ARM as well as its advantages will be

provided in Section III-B. The decoder in our network is

primarily consisting of several Feature Fusion Modules (FFM)

with the aim being to fuse feature maps coming from multiple

levels of the encoder. Therefore, apart from being connected to

the Attention Refine Module within the third sub-stage, FFMs

also process information from other layers from the encoder

that can be possibly in different dimensions. The working

mechanism of the FFM will be explained in Section III-B.
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Fig. 3. The architecture of the Water Obstacle Detection network based on Image Segmentation (WODIS). The network consists of an encoder and a decoder
network. Blocks in yellow represent networks stacked by a series of separable convolution layers. ’4x’ represents taking an upsampling operation for 4 times.
The dark blue ’Conv1’ block represents the convolutional layer before images are passed into the encoder sub-network. The output of the network is a
segmentation mask which classifies sea, sky and obstacles by pixel. Based on the output mask, all obstacles are able to be labelled by rectangles.

TABLE I
FEATURE EXTRACTION BACKBONE PARAMETERS

Stage

Feature extraction backbone setting

kernel size channel stride repeating times

Conv1 3 x 3 8 2 -

Sep conv2 x

3 x 3 12 2

x=43 x 3 12 2

3 x 3 48 2

Sep conv3 x

3 x 3 24 2

x=63 x 3 24 2

3 x 3 96 2

Sep conv4 x

3 x 3 48 2

x=43 x 3 48 2

3 x 3 192 2

B. Attention Refine Module and Feature Fusion Module

1) Attention Refine Module: It is well known that attentions

play important roles in human perception [42]. The most

important role of the human vision is that rather than attempt-

ing to process a whole scene at once, humans can exploit a

sequence of partial glimpses and selectively focus on salient

parts in order to have a better capture of visual structure [43].

The performance of an ASV’s obstacle detection can be

easily influenced by different situations on water surfaces such

as reflections, obstacle mirroring or sky and sea misdiagnosis,

as depicted in Fig.1. Such a compromised performance can

be further worsened if a segmentation model fails to identify

the sea and sky line area. To avoid a misunderstanding,

segmentation networks need to have an attention ability to

distinguish between general areas and focusing areas, which,

for ASVs, are the sea-sky-line areas.

Based on the state-of-the-art [11], [13], the Attention Re-

fine Module (ARM), an attention mechanism, has been suc-

cessfully introduced to classify an image area into different

weighed parts. ARM is an unique module to optimise each

sub-stage feature characteristics, and uses a global average

pooling to capture global context from feature maps and

calculate an attention vector for feature learning. By an easy

integration of global context information and local feature

information without upsampling, ARM is not only able to en-

hance the image segmentation attention but also to accelerate

the inference speed.

Motivated by ARM component developed in BiSeNet [13],

we propose a revised Attention Refine Module (shown in Fig.

4) specifically for WODIS network with the most evident

difference being the simultaneous use of the max pooling

and global average pooling to process high-level feature maps.

Based on the discussion in [44], the global average pooling

is focused on the spatial information learning and the max

pooling is suited for channel information combination. The

proposed ARM firstly generates two 1-dimension feature maps

by using the average pooling and max pooling operations de-

noted as Favg ∈ R1×1×C and Fmax ∈ R1×1×C , respectively.
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The input feature map of the ARM is from Fin ∈ RH×W×C ,

where H,W and C denote the height, the width and channel

numbers of the high-level feature map. The global average

pooling in the c-th elements of the input feature map is

expressed as:

F c
avg =

1

H ×W

H∑

i=1

W∑

j=1

f c(i, j) (1)

and the max pooling in the c-th elements of the input feature

map is expressed as:

F c
max = Max[f c(i, j)], i ∈ [1, H], j ∈ [1,W ] (2)

where f c(i, j) represents the c-th elements of the input feature

map Fin at position (i, j).

Fig. 4. The architecture of the Attention Refine Module (ARM). H,W,C

denotes the height, width and the number of channels of input feature map.
r is the reduction ratio and is set to 16.

Then, Favg and Fmax are concatenated and the dimension

of the feature becomes (1, 1, 2C). By using a 1×1 convolution,

the output dimension of the feature map can be converted

to (1, 1, C/r). The reduction ratio r is set to be 16 in this

paper to reduce the channel numbers. A batch normalisation

is introduced to reduce the gradient vanish or explosion and

a Sigmoid function is applied to activate the convolution

result to learn a 1-dimension attentive weight vector denoted

as (1, 1, C). The attention weight vector can be used as an

improved feature map and after a multiplication with the input

feature map, the final output, denoted as the refined features

(H,W,C), can be obtained.

Different from the BiSeNet, WODIS not only uses the

global average pooling in the ARM to capture the global

context information of the input feature, but introduces the

max pooling to extract the local discriminative information.

More specifically, for ASVs image segmentation, the global

average pooling can better learn obstacles or background

positions; whereas the max pooling operation can improve

the local feature distinguishing for details such as obstacle

edges and shapes. Therefore, using and integrating such a

revised ARM into the WODIS network, an improved detection

accuracy can be obtained.

2) Feature Fusion Module: Feature maps from different

encoder layers have different dimensional representation. For

example, features extracted from the ARM in ’SuB-stage 3’

mainly contain high-level information; whereas output features

from the ’Sep conv2 x’ or ’Sep conv3 x’ involve low-level

information. Therefore, in order to reduce the gap between the

Fig. 5. The structure of Feature Fusion Module (FFM). H and W represent
the height and width of input feature maps. C1 and C2 denote the different
number of channels in different feature map. r represents reduction ratio and
the number is 16 in this paper.

high-level and low-level feature, the Feature Fusion Module

(FFM) is proposed to improve the fusion efficiency with its

structure shown in Fig.5.

Given the low-level feature Xlow ∈ RH×W×C and the

high-level feature Xhigh ∈ RH×W×C inputs, where H,W
and C denote the height, width and number of channels, the

two features are first concatenated as Xconcat. Next, the global

average pooling is conducted on the Xconcat to generate an

average feature Xavg shown in Eq.3.

Xc
avg =

1

H ×W

H∑

i=1

W∑

j=1

Xc
concat(i, j) (3)

where, Xc
concat denotes the c-th elements of the feature map

Xconcat at position (i, j). Two 1 × 1 convolutions are added

to reduce the dimension of the Xavg . The reduction ratio r
is 16 in the FFM. After reducing the dimensions, the output

dimension WFFM is (1, 1, C) after the Sigmoid activation

function. Finally, we use the element-wise addition to add all

the features as:

XFFM = (Xlow ⊗WFFM )⊕ (Xhigh ⊗WFFM ) (4)

where, ⊗ and ⊕ represent the channel-wise multiplication and

the element-wise addition.

C. Network Implementation to Enhance Sea-sky-line Area

Segmentation

For an image segmentation for ASVs’ sailing environments,

three types of objects, i.e. sky, sea and obstacles, need to be

classified with the most prominent ones being the obstacles

at the sea surfaces. Compared with the labelled sky and sea

objects in training dataset, available labelled obstacles only

occupy a small portion. Using such an unbalanced training

dataset, the segmentation/detection results in the inference

stage will be largely impaired. To solve such an issue, the most

common way is to have well balanced and fine-tuned weights

for loss functions when a network is being trained. Therefore,

in the WODIS, a hybrid training loss function including both

focal and cross entropy loss functions is implemented.

We denote the ti = {obstacle, sea, sky} as three segmen-

tation types and each type i is expressed by the number from

1 to 3. For example, t1 is obstacle, t2 means sea and t3
represents sky. The focal loss function [45] has been proved
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to be effective to solve the label unbalance problem, and for

our WODIS it is defined as:

Lfocs(pti) = −(1− pti)
γ log(pti) (5)

where, pti is the estimated probability for all three different

types of objects ti and γ is the hyperparameter (γ is set to be

2 during the training process). For example, if labels of sea

(t2) and sky (t3) have a larger proportion than the obstacle

(t1) in the dataset, t2 and t3 become easier to be classified

than t1 and in order to have a more accurate segmentation

for label t1, a higher weight for this label should be assigned

within the loss function making the parameter γ more biased

towards obstacles.

Also, in our image segmentation task, there are three types

of objects to be classified, which can be regarded as a multi-

labels classification problem. We use the cross entropy loss

function to classify different types of objects, as shown in

Eq.6:

Lloss(yti , ŷti) = −(yti log(ŷti) + (1− yti)log(1− ŷti)) (6)

where, yti is the label of three different types and the ŷti is the

estimated output through the network. The total loss function

for WODIS is shown as:

Ltotal = (1− λ) ∗ Lfocs + λ ∗ Lloss (7)

where, λ ∈ (0, 1).

D. Post-processing after getting segmentation masks

The advantage of image segmentation over the object detec-

tion networks is that segmentation methods are based on pixel-

by-pixel classification, which is more refined and accurate than

object detection networks. The output of image segmentation

through WODIS network is a segmentation mask containing

spatial information on sea, sky and obstacles, which can be

further used by post-processing algorithms for reliable obstacle

detection. The post processing using segmentation mask is

to use a minimal enclosing rectangle to highlight the water

surface obstacles, as shown in Fig. 6. The pseudocode of the

minimal enclosing rectangle algorithm used in this study is

shown in Algorithm 1. Note that for ASVs, water surface

obstacles are the most significant while sky-level objects can

be neglected to reduce computational burden.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the dataset and evaluation metrics are first

described in Section IV-A. The data augmentation and training

details are discussed in Section IV-B with the performance of

feature extraction fusion in the encoder sub-network shown

in Section IV-C. The comparison with other state-of-the-art

networks in terms of the speed and accuracy is shown in

Section IV-D and the ablation study for Attention Refine

Module is shown in Section IV-E. The object detection results

on the MaSTr1325, MODD2, MID, SMD dataset are finally

presented in Section IV-F.

Fig. 6. Input image captured by ASV (left), segmentation mask obtained
through our WODIS (middle) and post-processing for object detection (right).
Sea, sky and obstacles are labelled with blue, grey and deep blue, respectively.

Algorithm 1 Minimal enclosing rectangle for obstacles

Input:

The input images, image;

The segmentation mask, mask;

Output:

The labelled rectangle for water surface obstacles,

image output;
1: Grayscale transformation for the input of image and

mask;

output:image gray and mask gray;

2: Setting gray threshold range from (230, 255) for

image gray and mask gray;

3: Based on the contour finding algorithm cv2.findContour
from OpenCV for finding the contours of image gray
and mask gray;

output:contour image and contour mask;

4: Drawing the contour using the red color (255, 0, 0) on the

image;

5: return Output image: raw image output;

A. Dataset and Evaluation Metrics

The WODIS is trained on the MaSTr1325 dataset [39],

which is a new large-scale marine semantic segmentation train-

ing dataset for the development of obstacle detection methods

for small-sized coastal ASVs [37]. The dataset contains 1325

high resolution images taken in realistic conditions and all

images are per-pixel labelled into three types: sea, sky and

obstacles. The MaSTr1325 is used mainly for training of

our model and in order to evaluate our model performance

in various conditions, another three datasets (MODD2, the

Singapore Maritime Dataset (SMD) and the Marine Image

Dataset (MID)) are implemented for testing. The MODD2

contains mostly complex scenes such as sea water reflections,

object mirroring, fog or haze and big waves, making it an ideal

testing dataset to reflect extreme navigation environments.

However, both the MaSTr1325 and MODD2 are captured

around coastal areas and not able to be used for validating

algorithms’ performances in open sea areas. Therefore, we use

additional two datasets, i.e. SMD and MID, which are taken

in open sea areas, to validate the performance of detecting

less silent obstacle features. Examples of the four dataset are
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shown in Fig.7.

To validate the segmentation performance of our proposed

network, evaluation metrics including the precision, recall, F1

score and mean Intersection over Union (mIoU) [46] are used,

which are defined, respectively, as follows:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1 =
2 ∗ precision ∗ recall

precision+ recall
(10)

mIoU =
1

k + 1

Regionx ∩RegionGT

Regionx ∪ReionGT

(11)

where TP represents the number of positive samples that

are predicted correctly, FP denotes the number of negative

samples that are predicted as positive, and FN indicates the

number of positive samples that are predicted as negative

samples. k in Eq. 11 is the total classification types, and k = 3
in this paper as there are three types, i.e. sky, sea and obstacles.

Regionx represents the predicted area and RegionGT means

the ground truth. In addition, the Floating Point Operations

(FLOPs) and network parameters (Params) are used to evaluate

the network complexity. The Frame per Second (fps) is used

for indicating the inference speed.

Fig. 7. Example images of the four dataset, MaSTr1325 (top), MODD2
(second), Marine Image Dataset (MID) (third) and Singapore Maritime
Dataset (SMD) (bottom). The four dataset have different features. MODD2
has various water reflection, glittering and sunrise and sunset. The background
of SMD mostly belongs to the maritime environment, barely including shore
or land scenes. The MID has plentiful marine objects, such as buoys, floating
objects and ships. WODIS is only trained in MaSTr1325 and the other three
dataset are regarded as testing dataset.

B. Data Augmentation and Training Setup

Data augmentation is one of the important steps to increase

the generalisation capability of models. Before training, the

MaSTr1325 dataset has a total 1325 images and each image

has a resolution of 512 x 384 pixels. To improve the diversity

of the dataset, transformation methods such as mirroring,

rotation and shadow are applied in the MaSTr1325 dataset,

and the overall number of images after data augmentation is

38240.

TABLE II
PARAMETERS OF HARDWARE AND SOFTWARE

Drives Parameters

CPU-inference i7-7600 2.8GHz

CPU-training Xeon 6240 2.6GHz

GPU Nvidia Tesla V100

Deep Learning Network API Pytorch 1.6

Language Python, C++

Image size 512 x 384

Training epochs 100

Optimiser Adam

Learning rate 0.0001, 0.003

Batch size 2, 4

Training images 38240

The network is trained using an Adam optimiser with the

initial learning rate being 10−4. The backbone of the network

is derived from Xception which is trained on the ImageNet

dataset and the network only fetches the Entry Flow weights

from the Xception. The network is trained around 100 epochs

in the training dataset. After 50 epochs of training, the learning

rate is set to be 0.003 for the rest of epochs and the batch size is

2 for each epoch training. WODIS is implemented in Pytorch.

All experiments are undertaken using the High Performance

Computing at UCL with two nodes of NVidia Tesla V100 and

the inference tests are conducted on the Intel Core i7-7600 2.8

GHz CPU with 16 GB RAM. All parameters of hardware and

software are shown in Table II.

C. Encoder Sub-network Backbone Initialisation

The difference of the WODIS with other networks is that

multiple sub-stages are used in the encoder subnetwork to

enhance the feature extraction ability. Although adding more

sub-stages in the encoder sub-network will inevitably help

boosting feature extraction ability, it is also associated with

negative influences for the segmentation. Therefore, in order

to determine an optimal number of sub-stages in the WODIS,

a series of initial setups have been carried out using the

MaSTr1325 training dataset. The experiment has been under-

taken in a way that after each backbone setup is trained for

20 epochs, a testing is carried out using the testing dataset.

The results of backbone initialisation experiments are shown

in Table III. It can be observed that when only one backbone

is used, the mIoU is 79.5% and when the backbone is repeated

for three times, the mIoU is improved from 79.5% to the

peak value of 91.3%, where a highly accurate segmentation
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Fig. 8. Results of the WODIS backbone on MaSTr1325 test dataset. The first column is raw images, and column 2-5 show the output of each backbone
in WODIS. The final column is the ground truth of the raw images. Compared with ground truth, repeating backbone three times in the fourth column gets
more details like the texture and outline of the objects, especially using the second and third input images.

result can be generated. If we continue to repeat backbone

for four times, the accuracy is compromised with the mIoU

been decreased from 91.3% to 85.7%. Based on the backbone

initialisation, we suppose that repeating the backbone three

times is an optimal option for the MaSTr1325 dataset. Also,

we argue that the receptive field of repeating backbone 4

times is larger than the image size (512 x 384). Therefore,

if we continue to increase the number of repetitions of the

backbone, a large number of noises will be generated and

the feature map will become too small to be used as a valid

extraction. Therefore, a proper backbone that fits the input

image size becomes significant. Based on above initialisation

setups, repeating the backbone three times is determined to be

optimal for this training dataset.

TABLE III
PERFORMANCE COMPARISON OF OUR WODIS SUB-STAGES

STRATEGY.

Model FLOPs (MB) Params (MB) mIoU(%)

Backbone 60.8 42.1 79.5

Backbone x21 89.2 60.8 80.3

Backbone x3 105.7 89.5 91.3

Backbone x4 135.3 96.4 85.7

1 ’x N’ means the replication number of backbone.

Fig. 8 displays the segmentation results using backbones

with four different numbers of sub-stages, respectively. It

can be observed that in the second column, where only one

backbone has been implemented, the extraction effectiveness

compared with the ground truth mask is not satisfactory with a

large number of key features missing. Repeating the backbone

for two and three iterations as illustrated in the third and fourth

column of Fig. 8 shows that the outputs become smoother

and more details such as texture and outline of the objects

from input images can be segmented. Comparing the fifth

column with the fourth column, the ability of details extraction

by repeating the backbone three iterations (shown in column

4) is stronger than for four iterations (shown in column 5),

which supports our argument that a continued iterations of the

repetition of backbones does not guarantee an improvement of

feature extraction performance.

TABLE IV
SPEED COMPARISON ON THE MASTR1325 DATASET

Model FLOPs(MB) Time(ms) Frame(fps) mIoU(%)

BiSeNet 68.5 21 45.7 67.9

SegNet 103.6 1286 0.85 81.8

DeepLabV3+ 145.2 3287 0.56 85.4

WODIS 105.7 28 43.2 91.3

TABLE V
RESULTS ON SMD, MODD2 AND MID.

Dataset Model Time(ms) Frame(fps) mIoU(%)

SMD

BiSeNet 19.8 43.2 65.6

SegNet 205.1 0.65 51.3

DeepLabV3+ 112.1 0.43 79.8

WODIS 18.01 45.6 94.2

MODD2

BiSeNet 20.5 41.2 48.5

SegNet 219.5 0.72 60.5

DeepLabV3+ 117.3 0.67 78.3

WODIS 18.95 41.9 89.5

MID

BiSeNet 27.7 39.8 32.1

SegNet 302.5 0.83 70.2

DeepLabV3+ 155.2 0.78 79.1

WODIS 20.5 46.8 91.2
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Fig. 9. Qualitative comparison on the MaSTr1325 testing Dataset. The sea,
sky and obstacle are denoted by blue, grey and deep blue colours, respectively.
Although the BiSeNet has a higher inference speed, the DeepLba3+ and
WODIS have more accurate segmentation results.

D. Comparison with other networks

In this section, the proposed WODIS network has been com-

pared to three other benchmark networks including BiSeNet,

SegNet and DeepLabv3+, The BiSeNet [13] is a lightweight

networks and its inference speed is faster than the other

networks. The SegNet [15] and DeepLabV3+ [16] networks

have strong ability in feature extraction.

All comparison experiments are conducted on Intel Core

i7-7600 2.8 GHz CPU with 16 GB RAM. All input images

are resized into 512 x 384 pixels and data augmentation

methods in the MaSTr1325 test dataset are not applied. The

total number of test images is 40.

Inference speed is a significant factor for ASVs to detect

obstacles and a speed comparison among different networks is

shown in Table IV. From the metric of FLOPS, the BiSeNet

has a smaller amount of parameters than the other three

models and the DeepLabV3+ is the heaviest model in the

MaSTr1325 dataset (the higher the FLOPS, the heavier the

network). However, although the BiSeNet has the smallest

parameters, the mIOU only reaches to 67.9%, which indicates

that the segmentation effectiveness is worse than the other

models. Also, from Table IV, it can be seen that both BiSeNet

and WODIS have very fast processing time whereas SegNet

and DeepLabV3+ are significantly slow. However, although

the DeepLabV3+ and SegNet have relatively slow inference

speeds, their mIoU values are higher than BiSeNet’s but lower

than WODIS’s. The WODIS achieves the highest mIoU around

91.3% compared with the other three networks. Therefore,

for a practical application, if the model is prone to inference

speed, the BiSeNet is the best option but with a significant

compromise in accuracy. If the application considers the trad-

off between speed and inference accuracy, the WODIS is then

the best model.

A further comparison can also indicate the real-time per-

formance of our proposed WODIS. For example, compared

with BiSeNet, the WODIS can almost provide an equivalent

fast processing speed (43 fps of WODIS as opposed to 45

fps of BiSeNet) but with a much higher mIoU value (the

mIoU value of WODIS can reach as high as 91.3% whereas

BiSeNet can only reach a 67.9% of mIoU). This can well

demonstrate that our proposed WODIS has a highly accurate

and efficient segmentation capability, that is well suited for

real-time requirement. Such a capacity can further be proved

by some examples of output masks shown in Fig. 9. It can be

seen that although BiSeNet has a higher inference speed, the

output mask is not as good as the DeepLabv3+ and WODIS.

Also, the output mask of SegNet shows that the sea and sky

can hardly be distinguished.

We also evaluate WODIS on other datasets (MID, MODD2

and SMD). Due to the various sizes in these datasets, the test

images are resized into 512 x 384 pixels and we randomly

select 40 images from these dataset for testing. Other settings

are retained the same as settings within the MaSTr1325 testing.

The results are presented in Table V. Similarly, by retaining

a relatively fast inference speed, the highest mIoU is also

generated by the WODIS in these dataset, which proves that

WODIS makes a good balance between inference speed and

accuracy. In order to have an intuitive qualitative comparison

using in the three dataset, all comparison images and masks are

presented in Fig. 10, 11 and 12, where the best performances

are all provided by our proposed WODIS.

Fig. 10. Visual comparison on the Marine Image Dataset (MID). The MID
has plentiful marine obstacles such as buoys, floating objects and ships with
different sizes. If the segmentation scene becomes more complex, it becomes
difficult for all networks except the WODIS to distinguish the sea, sky and
objects.

E. Ablation Study of Attention Refine Module

Based on the Section III-B, the attention mechanism has

been integrated into the WODIS. The difference between

attention module used in the WODIS and the BiSeNet is that

WODIS uses the global average pooling and max pooling

simultaneously. The ablation study for the attention module

is conducted via a series of experiments to test the effective

of the global average pooling and the max pooling in our

network with the results presented in Table VI. We set four

different comparison experiments: (1) WODIS without ARM;

(2) WODIS without global average pooling; (3) WODIS
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Fig. 11. Visual comparison on the MODD2 Dataset. The MODD2 has rich
semantic scenes including water reflection and sunset or sunrise changing
scenes. Three typical scenes, i.e. areas with foggy situation, areas with strong
sun reflection and areas with water mirroring are selected. BiSeNet and SegNet
have a high false positive rate for obstacles detection. WODIS is almost
unaffected by external environment changing.

Fig. 12. Visual comparison on the Singapore Maritime Dataset. The SMD
has a very pure maritime environment with the large ships being the main
obstacles to be detected.

without max pooling; (4) WODIS with ARM. We evaluate the

four different comparisons using the MaSTr1325, MODD2,

MID and SMD against the mIoU. The result shows that

WODIS with ARM (4) has the highest mIoU for image

segmentation across four different datasets. Without ARM, the

mIoU returns the lowest accuracy of the four experiments.

The reason for this is that the ARM can improve the high-

level feature map diversity. Comparing with the experiments

WODISNOAVG(2) and WODISNOMAX(3), it proves that

adding global average pooling and max pooling into WODIS

in the ARM (WODIS(4)) leads to a significant improvement

in the segmentation accuracy.

F. Object Detection Results

After getting the segmentation masks from WODIS, the

final output for ASVs is to determine the position of obstacles.

The bounding box is used to indicate the position of obstacles.

TABLE VI
ABLATION STUDY RESULTS ON MASTR1325 TESTING DATASET.

Architecture

mIoU(%)

MaSTr1325 MODD2 MID SMD

WODISNOARM (1) 69.2 65.3 66.2 67.3

WODISNOAV G(2) 81.9 82.4 83.6 86.5

WODISNOMAX(3) 81.7 77.5 82.1 82.3

WODIS(4) 91.3 88.2 88.1 93.7

The processes for getting the bounding box are explained in

Algorithm 1 and the results of final bounding boxes are shown

in Fig.13, 14, 15, 16, based on four different dataset.

In general, all the bounding boxes can enclose the obstacles

based on the binary masks. Apart from certain complex

obstacle shapes, as shown in the second figure line in Fig. 13

and Fig.15, respectively, good bounding results can always be

obtained for all small object detection after the network pro-

vides a pixel-by-pixel segmentation. For more salient objects,

reliable detection can be ensured. For example, in Fig.16, ships

can be detected accurately and the bounding boxes provide

precise enclosure when compared to other three Figures.

Quantitative analysis is also provided here, and in Table VII,

precision, recall and F1 values are shown. Based on the testing

metrics from the [47], we randomly select 60 images from

three dataset to verify the algorithm’s detection effectiveness.

Since the labelling information is incomplete, we manually get

the object bounding box information for the selected 60 images

with the tool named LabelMe [48]. Table VII shows that the

highest accuracy for the object detection is obtained using the

SMD dataset with the F1 score value being around 92.9%.

The reason for such a performance is that the sea surrounding

in SMD dataset is relative uncluttered thereby less inference

is required for segmentation compared with other two dataset.

It also should be noted that since the MaSTr1325 is mainly

designed for segmentation training for ASVs, limited statistics

are available and hence we only present the obstacle detection

results and do not make any comparison of MaSTr1325 with

the other three datasets. Based on the results in Table VII, this

demonstrates that WODIS can have a good object detection

result on different datasets.

TABLE VII
RESULTS ON SMD, MODD2 AND MID DATASETS FOR

OBJECT DETECTION

Dataset TP FP FN P1(%) R2(%) F1 3(%)

SMD 238 12 24 95.2 90.8 92.9

MODD2 300 50 30 85.7 91.3 88.4

MID 60 12 6 83.1 91.2 86.9

1 ’P’ is the abbreviation of precision.
2 ’R’ means the recall value.
3 ’F1’ indicates the F1 score.
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Fig. 13. Obstacle detection result in MaSTr1325 with segmentation mask,
binary mask and bounding box.

Fig. 14. Obstacle detection result in MODD2 with segmentation mask, binary
mask and bounding box.

Fig. 15. Obstacle detection result in MID with segmentation mask, binary
mask and bounding box.

Fig. 16. Obstacle detection result in SMD with segmentation mask, binary
mask and bounding box.

V. CONCLUSION

In this paper, we propose a new water obstacle detection

network based on image segmentation (WODIS) to achieve

real-time maritime environments semantic segmentation and

object detection for ASVs. Compared with other networks,

the enhancement to the standard encoder-decoder architecture

brought by the WODIS includes to use a lightweight backbone

(Xception) to accelerate inference speed and to reuse the

backbone in the encoder network to extract the features from

different resolutions. The WODIS can make a full use of

both high-level and low-level features. In addition, the decoder

network of the WODIS combines the feature fusion module to

better recover the segmentation masks. Extensive experiments

based upon publicly available maritime datasets (MaSTr1325,

MODD2, SMD and MID) have been conducted. Detailed

analysis and quantitative results demonstrate the effectiveness

of the proposed network in various conditions.

For future work, we recommend that further investigations

should be carried out from the following aspects:

• Although the WODIS has offered good segmentation re-

sults on four datasets, testing on a practical ASV platform

in a water environment is necessary. In particular, the de-

ployment of multi-ASV platforms is vital for future ocean

missions. Coordinated object detection supported by the

coordination of multiple ASVs should be investigated to

achieve a more comprehensive environment perception

capability.

• Additional experiments under extreme weather condi-

tions, e.g. high waves, heavy rain and fog, are required

to ensure that ASVs are able to continue autonomous

operation in poor working environments. This could be

potentially resolved via the improvement in both hard-

ware (more sensors) and software (adding environment

prediction model into networks).

• The investigation of object detection at night can be

carried out, by incorporating additional sensors such as

infrared cameras to capture images. Proper data fusion

algorithms will be adopted for multi-sensor fusion pur-

poses.

• Based on the results presented, it was demonstrated that

WODIS can get the obstacle’s outline or texture from

the background. However, WODIS needs more precise

contour for complex obstacle shapes for post processing.

Therefore, while keeping the segmentation speed, explor-

ing new ways to retain more precise features of obstacles’

contours is a worthy research direction.

APPENDIX A

REAL-TIME SEGMENTATION VIDEO TESTING IN

SINGAPORE MARINE DATASET (SMD)

In order to test the real-time segmentation performance of

our model, we have made a test on the Singapore Maritime

Dataset (SMD). The length of the video is 10 seconds. All the

data and code for this paper are made available: http://github.

com/rechardchen123/ASV Image Segmentation.
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obstacle detection from unmanned surface vehicles,” IEEE transactions

on cybernetics, vol. 46, no. 3, pp. 641–654, 2015.

[34] B. Bovcon and M. Kristan, “Obstacle detection for usvs by joint
stereo-view semantic segmentation,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 5807–5812.

[35] T. Huntsberger, H. Aghazarian, A. Howard, and D. C. Trotz, “Stereo
vision–based navigation for autonomous surface vessels,” Journal of

Field Robotics, vol. 28, no. 1, pp. 3–18, 2011.
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[39] B. Bovcon, J. Muhovič, J. Perš, and M. Kristan, “The mastr1325 dataset
for training deep usv obstacle detection models,” in 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 3431–3438.

[40] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek,
“Video processing from electro-optical sensors for object detection and
tracking in a maritime environment: a survey,” IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 8, pp. 1993–2016, 2017.

[41] J. Liu, H. Li, J. Luo, S. Xie, and Y. Sun, “Efficient obstacle detection
based on prior estimation network and spatially constrained mixture
model for unmanned surface vehicles,” Journal of Field Robotics,
vol. 38, no. 2, pp. 212–228, 2021.

[42] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual at-
tention for rapid scene analysis,” IEEE Transactions on pattern analysis

and machine intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[43] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses
with a third-order boltzmann machine,” Advances in neural information

processing systems, vol. 23, pp. 1243–1251, 2010.



14

[44] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 3–19.
[45] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss

for dense object detection,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 2980–2988.
[46] M. Thoma, “A survey of semantic segmentation,” arXiv preprint

arXiv:1602.06541, 2016.
[47] R. Padilla, W. L. Passos, T. L. Dias, S. L. Netto, and E. A. da Silva,

“A comparative analysis of object detection metrics with a companion
open-source toolkit,” Electronics, vol. 10, no. 3, p. 279, 2021.

[48] K. Wada, “labelme: Image Polygonal Annotation with Python,” https:
//github.com/wkentaro/labelme, 2016.


