

Cambridge Philosophical Society

Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management

Journal:	Biological Reviews
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Hindrikson, Maris; University of Tartu, Department of Zoology Remm, Jaanus; Institute of Ecology and Earth Sciences, University of Tartu, Department of Zoology Pilot, Malgorzata Godinho, Raquel; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Stronen, Astrid Vik Baltrunaite, Laima Czarnomska, Sylwia Leonard, Jennifer Randi, Ettore Nowak, Carsten Akesson, Mikael López-Bao, Jose; Oviedo University, Research Unit of Biodiversity (UO/CSIC/PA) Álvares, Francisco; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Llaneza, Luis Echegaray, Jorge Vila, Carles Ozolins, Janis Rungis, Dainis Aspi, Jouni Paule, Ladislav Skrbinsek, Tomaz Saarma, Urmas; Institute of Ecology and Earth Sciences, University of Tartu, Department of Zoology
Keywords:	Canis lupus, genetic variation, connectivity, large carnivores, microsatellites, mitochondrial DNA, SNP, Y chromosome

SCHOLARONE[™] Manuscripts

2
3
4
4
5
6
7
, Q
0
9
10
11
12
10
13
14
15
16
17
10
18
19
20
21
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $
22
23
24
25
26
20
27
28
29
30
00
31
32
33
34
25
30
36
37
38
30
39 40
41
42
12
11
43 44 45
40
46
47
48
49
50
51
52
52
52 53 54
54
55
56
57 58 59
57
58
59
60

1

1	Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions
2	for conservation and management
3	
4	Maris Hindrikson ¹ , Jaanus Remm ¹ , Malgorzata Pilot ² , Raquel Godinho ^{3,4} , Astrid Vik
5	Stronen ⁵ , Laima Baltrūnaité ⁶ , Sylwia D. Czarnomska ⁷ , Jennifer A. Leonard ⁸ , Ettore Randi ^{5,9} ,
6	Carsten Nowak ¹⁰ , Mikael Åkesson ¹¹ , José Vicente López-Bao ¹² , Francisco Álvares ³ , Luis
7	Llaneza ¹³ , Jorge Echegaray ⁸ , Carles Vilà ⁸ , Janis Ozolins ¹⁴ , Dainis Rungis ¹⁴ , Jouni Aspi ¹⁵ ,
8	Ladislav Paule ¹⁶ , Tomaž Skrbinšek ¹⁷ , and Urmas Saarma ¹ *
9	
10	¹ Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu,
11	Vanemuise 46, 51014 Tartu, Estonia
12	² School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL Lincoln, United
13	Kingdom
14	³ CIBIO/InBio – Centro de Investigação em Biodiversidade e Recursos Genéticos,
15	Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
16	⁴ Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo
17	Alegre s/n. 4169-007 Porto, Portugal
18	⁵ Section of Biology and Environmental Science, Department of Chemistry and Bioscience,
19	Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg Øst, Denmark.
20	⁶ Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
21	⁷ Mammal Research Institute Polish Academy of Sciences, Waszkiewicza 1, 17-230
22	Białowieża, Poland
23	⁸ Conservation and Evolutionary Genetics Group. Department of Integrative Ecology.

24 Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092 Seville, Spain

Biological Reviews

3 4 5 6	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
1/	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
2/	
78910123456789001123456789000000000000000000000000000000000000	
25	
26	
27	
28	
29	
30	
31	
32	
33	
21	
04	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

25	' Laboratorio di	Genetica, Is	stituto Superior	e per la Prote	ezione e la Ricerc	a Ambientale
----	------------------	--------------	------------------	----------------	--------------------	--------------

- (ISPRA), 40064 Ozzano dell'Emilia (BO), Italy
- ¹⁰ Conservation Genetics Group, Senckenberg Research Institute and Natural History
- Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germanv
- ¹¹ Grimsö Wildlife Research Station. Department of Ecology. Swedish University of
- Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden
- ¹² Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, 33600-Mieres, Spain.
- ¹³ ARENA Asesores en Recursos Naturales S.L. c/Perpetuo Socorro, nº 12 Entlo 2B 27003
- Lugo, Spain.
- ¹⁴ State Forest Research Institute "Silava", Rigas iela 111, LV-2169 Salaspils, Latvia
- ¹⁵ Department of Genetics and Physiology, 90014 University of Oulu, Finland
- ¹⁶ Faculty of Forestry, Technical University, T.G. Masarvk str. 24, SK-96053 Zvolen,
- Slovakia.
- ¹⁷ Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000
- Ljubljana, Slovenia

- * Address for correspondence (Tel: +372 7375099; E-mail: Urmas.Saarma@ut.ee).

48 ABSTRACT

> 50 The grey wolf (*Canis lupus*) is an iconic large carnivore that has increasingly been recognized 51 as an apex predator with intrinsic value and a key ecosystem engineer. However, wolves have 52 also long represented a primary source of human-carnivore conflict, which has led to long-53 term persecution of wolves, resulting in a significant decrease in their numbers, genetic 54 diversity and gene flow between populations.

> For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering all major studies from the "pre-genomic era" and the first insights of the "genomics era". We analyse, summarise and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental (autosomal microsatellites and single nucleotide polymorphisms – SNPs). To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite-studies and included also available new data, covering all European countries for which wolf genetic information is available (19): Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away.

Biological Reviews

73	As an important outcome of this synthesis, we discuss the most pressing issues threatening
74	wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions
75	to overcome these limitations, and provide suggestions for science-based wolf conservation
76	and management at regional and Europe-wide scales.
70	and management at regional and Europe-wide seales.
78	
79	<i>Key words: Canis lupus</i> , genetic variation, connectivity, large carnivores, microsatellites,
80	mitochondrial DNA, SNP, Y chromosome.
81	
82	
83	CONTENTS
84	I. INTRODUCTION
85	II. GENETIC PATTERNS OF EUROPEAN WOLF POPULATIONS REVEALED BY DIFFERENT
86	MARKERS
87	(1) Biparental markers
88	(a) Microsatellite loci
89	(b) Single nucleotide polymorphisms (SNPs)
90	(c) Major histocompatibility complex (MHC)20
91	(2) Uniparental markers
92	(a) Maternal lineage: mitochondrial DNA22
93	(b) Paternal lineage: Y chromosome25
94	III. META-ANALYSIS OF GENETIC VARIABILITY IN EUROPEAN WOLVES
95	(1) Materials and methods27
	4

4
5
6
7
8
ğ
10
10
10
12
13
14
15
16
17
18
19
6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 8 7 8 9 10 11 23 4 5 8 7 8 9 10 11 23 4 5 8 7 8 9 10 11 23 4 5 8 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21
22
22
20
24
25
26
27
28
29
30
31
32
202
00
34
35
36
37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
52 53
54
55
55 56
50
57
58
59

00	
60	

96	(2) Results
97	(a) Genetic variation of the European wolf populations
98	(b) Genetic trends in the European wolf populations
99	(c) Regional patterns
100	IV. WOLF GENETIC VARIATION AND ITS IMPLICATIONS
101	(1) Genetic variation in European wolf populations
102	(2) Genetic trends in European wolf populations
103	V. THE MAIN THREATS ON WOLF POPULATIONS IN EUROPE
104	(1) Europe in general
105	(2) Different populations in Europe
106	VI. SIGNIFICANT GAPS IN KNOWLEDGE AND POSSIBLE SOLUTIONS
107	VII. SUGGESTIONS FOR SCIENCE-BASED WOLF CONSERVATION AND MANAGEMENT IN
108	EUROPE
109	XIII. CONCLUSIONS
110	IX. ACKNOWLEDGEMENTS
111	X. REFERENCES
112	XI. SUPPORTING INFORMATION
113	
114	

116

I. INTRODUCTION

1

Biological Reviews

2 3
4 5
6 7
8 9
10 11
12 13
14 15
16 17
18 19
20 21
22 23
24 25
26 27
28 29
30 31
32 33
34 35
36 37
$egin{array}{c} 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 1\ 1\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\$
40 41
42 43
44 45
46 47
48 49 50
50 51 52
52 53 54
55 56
57 58
59 60

117	
118	The grey wolf Canis lupus L. 1758 was historically widespread across Europe, but between
119	the 18 th and 20 th centuries was progressively eradicated from most of the continent. Once
120	viewed primarily as a threat to public safety, livestock and wild "game", the wolf has recently
121	become recognized as an apex predator that plays a key role in ecosystems (Bruskotter et al.,
122	2011). As a result, conservation measures implemented since the second half of the 20 th
123	century and a relaxation of control programs have led to gradual expansion of many wolf
124	populations in Europe (Musiani et al., 2009; Chapron et al., 2014). In addition, ongoing
125	protection of European wilderness zones, socio-economic changes, innovative laws, public
126	and political commitment, recovery of wild ungulate species and wolf dispersal ability have
127	enabled the species to recolonize many parts of its former range in Europe (Boitani, 1992;
128	Musiani et al., 2009, 2010; Randi, 2011; Chapron et al., 2014; Leonard, 2014; Gilroy et al.,
129	2015; López-Bao et al., 2015) (Fig. 1). Currently, ca 12 000 wolves occupy over 800 000
130	square kilometres in 28 European countries (Chapron et al., 2014), with 9 900 of these
131	animals present in 22 countries belonging to the European Union. Several remarkable
132	examples of wolf recovery in Europe have been described: (a) in Scandinavia, the current
133	population, consisting of 49 family groups and 364–598 individuals (Svensson et al., 2015)
134	was founded by a few eastern (Karelian) immigrants in 1982/83 (Vilà et al., 2003a); (b) the
135	Italian peninsular population, which in the 1980s occupied only the southern Apennines
136	mountain range, had by the 1990s recolonized the southwestern Alps (Lucchini et al., 2002;
137	Valière et al., 2003, Fabbri et al., 2007, 2014), in the process growing from fewer than 100
138	individuals in the 1960s to about 1200-1700 individuals in 2009–2013 (Galaverni et al.,
139	2016). The latter expanding population is now coming in contact with the Dinaric-Balkan

population in the eastern Alps (Ražen *et al.*, 2016); (c) the Northwest Iberian population has increased continuously since the 1970s (Kaczensky et al., 2013) to between 254 and 322 breeding packs during 1999–2003 (Álvares *et al.*, 2005); (d) the Central European Lowland population has recently been established in western Poland and eastern Germany via recolonization primarily from northeastern Poland (Czarnomska et al., 2013), with >60 packs established since the first reported reproduction near the German-Polish border in 2000 (Reinhardt et al., 2015). At the same time there are examples of European wolf populations that have recently gone extinct, such as the population in the Alentejo region, southern Portugal, in the 1980s-1990s (Álvares, 2004), or are on the verge of extinction, such as the population in Sierra Morena in southern Spain (López-Bao et al., 2015). Six types of genetic markers have been used to study wolves: (1) autosomal microsatellites, (2) autosomal SNPs, (3) major histocompatibility complex (MHC), (4) mtDNA, (5) Y chromosome microsatellites and (6) Y - SNPs (Fig.'s 2, 3; note that marker types 3 and 6 are not shown in figures). While mitochondrial DNA (mtDNA) was initially the most frequent choice, autosomal microsatellites quickly gained popularity due to their superior power, compared with mtDNA, for identifying individual animals and for assessing population genetic diversity, population structuring and rates of gene flow between populations. Recently, the depth of population analysis has been increased further by large-scale genome-wide SNP data (von Holdt et al., 2011; Stronen et al., 2013; Pilot et al., 2014a). As a general rule in mammals, mtDNA is maternally inherited and cannot alone represent all historical and contemporary processes acting upon populations. Nuclear data derived from biparental autosomal loci and from the paternal Y chromosome are thus required to gain a more complete understanding of evolutionary and contemporary population processes of wolves across Europe. Contrary to mtDNA and SNP data that can be combined between studies to

Page 9 of 89

Biological Reviews

1 2 3 4
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30 21
32 33 34 35 36
37 38 39 40 41
42 43 44 45 46
47 48 49 50 51
52 53 54 55 56
57 58 59 60

165	cover large areas, the use of microsatellite-based investigations has an important shortcoming:
166	the data cannot be easily compared between different studies (De Groot et al., 2016). Thus,
167	many microsatellite data sets represent a specific country or limited region (e.g. Flagstad et
168	al., 2003; Jędrzejewski et al., 2005; Fabbri et al., 2007; Godinho et al., 2011; Jansson et al.,
169	2012, 2014; Hindrikson et al., 2013), with few covering wolf populations from wider areas
170	(Pilot et al., 2006, 2014b; Aspi et al., 2009; Sastre et al., 2011; Fabbri et al., 2014) (Fig. 1).
171	The genetic diversities of wolf populations which have suffered demographic bottlenecks and
172	recoveries have also been investigated at the level of loci encoding proteins for the major
173	histocompatibility complex (MHC) (Seddon & Ellegren, 2004; Arbanasić et al., 2013;
174	Galaverni et al., 2013; Niskanen et al., 2014). In addition to the maternal and biparental
175	markers, investigations of the paternal lineage (Y chromosome) have become also
176	increasingly frequent (Fig. 2), though the majority have focused primarily on wolf-dog
177	hybridization (Sunqvist et al., 2001; Vilà et al., 2003b; Iacolina et al., 2010; Godinho et al.,
178	2011; Hindrikson et al., 2012; Fabbri et al., 2014; Randi et al., 2014).
179	Genetic diversity contributes significantly to the adaptive potential of wolf populations,
180	including the ability to respond adequately to changing environmental conditions and
181	anthropogenic influences, of which climate change, habitat alterations, fluctuations in prey
182	base and emerging infectious diseases are perhaps the most important. In severe cases,
183	diversity loss due to inbreeding depression can lead to significantly decreased fitness within
184	populations (Reed & Frankham, 2003; Frankham, 2005). This makes evaluation of genetic
185	diversity parameters a particularly important goal in conservation biology (Frankham, 2005;
186	Allendorf et al., 2013). On the other hand, the extreme dynamics of population expansion and
187	re-colonization exhibited by European wolves is generating a fast-changing distribution at the
188	level of the continent, reflected in the species' landscape genetics (Randi, 2011). While on
189	one hand the newly established small wolf populations are passing through genetic and

demographic bottlenecks with all the accompanying problems (Frankham, 2005; Allendorf et

2	
2 3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
$egin{array}{c} 3&4&5&6&7\\ 8&9&10&112&3&4&5&6\\ 1&1&1&1&1&1&1&2&2&2&2&2&2&2&2&2&2&2&2&2$	
23	
24	
25	
26	
27	
28	
29	
30	
21	
20	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
52 53 54	
55	
56	
56 57	
57 58	
00 50	
59	
60	

1

190

191	al., 2013), establishment of gene flow between source populations is bringing new
192	opportunities for long-term viability of these emerging populations. Genetic research can
193	provide a deeper understanding of these processes. The approach promises knowledge of both
194	local and large-scale trends in grey wolf genetic composition that is crucial for effective
195	conservation and management of the species and its ecological role throughout Europe.
196	
197	
198	II. GENETIC PATTERNS OF EUROPEAN WOLF POPULATIONS REVEALED BY
199	DIFFERENT MARKERS
200	
201	The introduction of DNA-based methods in the 1980s has significantly advanced our
202	understanding of wildlife populations in Europe and elsewhere. Three types of genetic marker
203	system have been used: biparental (autosomal microsatellites, SNPs and MHC), maternal
204	lineage specific (mtDNA), and paternal lineage specific (Y chromosome microsatellites and
205	SNPs) (Fig.'s 2 and 3). While the biparental markers are particularly well-suited for studying
206	contemporary population processes, the uniparental markers, such as mtDNA and Y
207	chromosome, reflect the contribution of each sex to the history of populations and can explain
208	more ancient events (Vilà et al., 1999; Pilot et al., 2010).
209	Here we provide a systematic review of the studies carried out on European wolf populations
210	using markers with different inheritance modes (Appendix S1).
011	

Biological Reviews

212	(1) Biparental	markers
-----	----------------	---------

(a) Microsatellite loci

Since the early 1990s, when microsatellite markers were first used to study natural populations (Ellegren, 1991), microsatellites have been the marker of choice for a large number of applications in molecular ecology and conservation genetics. Microsatellite loci, also referred to as short tandem repeats (STR) or simple sequence repeats (SSR), are motifs (2-12 bp) repeated adjacently in chromosomes, forming blocks with size up to 100 bp (Strachan & Read, 1999). Microsatellites are abundant and randomly distributed throughout mammalian genomes, and their rapid evolution and high polymorphism (Roy et al., 1994) together with the large numbers of loci characterised in the domestic dog have made them a useful tool in wolf population studies. Microsatellites have been used to analyse genetic diversity, inbreeding, population structure, rates of gene flow between subpopulations, relatedness of individuals, demographic events and hybridization with the domestic dog. Nonetheless, a major drawback of microsatellites is the limited comparability of data produced in different labs, requiring careful calibration to overcome the problem. Another drawback has been the lack of a commonly agreed set of microsatellite loci, which makes the direct comparison of results generated in different studies problematic (De Groot et al., 2016). However, with the advent of the genomic era, massively parallel array-based SNP genotyping and whole-genome sequencing have started to replace microsatellite analysis as the method of choice for many population level questions.

Results based on microsatellite data have been published for many wolf populations in Europe
(Appendix S1; Fig. 2). Below we summarise wolf microsatellite studies at the Europe-wide
scale, and for each of the ten European wolf populations identified by Chapron *et al.* (2014).

236 European scale

237	Genetic differentiation among some European wolf populations has been strongly influenced
238	by spatial discontinuities in the wolf range caused by historical persecution by humans.
239	Lucchini et al. (2004) showed that the isolated Italian population is strongly differentiated
240	from other European populations, with pairwise F_{ST} values ranging between 0.21 and 0.32.
241	They also found the signature of a strong, long-term population decline, suggesting that the
242	Italian wolf population could have been isolated at least for several hundred generations
243	(Lucchini et al., 2004). Sastre et al., (2011) also revealed evidence for a dramatic strong
244	bottleneck in recent times among Iberian wolves. Significant genetic differentiation has also
245	been observed among the relatively well-connected wolf populations in central and eastern
246	Europe, for example between Baltic and Central European Lowland populations, and
247	Carpathian and Dinaric-Balkan populations. Pilot et al. (2006) were the first to detect genetic
248	differentiation in central and east European wolves in the absence of obvious physical barriers
249	to dispersal. They suggested that ecological factors, such as climate and habitat conditions,
250	and variations in wolf diet may have influenced gene flow and led to the observed genetic
251	differentiation among wolf populations. This was further supported by the analysis of stable
252	isotope profiles for a subset of genotyped individuals, which provided a quantifiable proxy
253	measure of individual diet and allowed the authors to assess the relationship between
254	individual foraging behavior and genotype (Pilot et al., 2012). A significant correlation
255	between genetic distances and dietary differentiation was detected even when geographic
256	distance was accounted for as a co-variable, reinforcing the conclusion that dietary
257	preferences and associated habitat choice can influence the genetic structuring of wolf
258	populations (Pilot et al., 2012). This general mechanism of genetic differentiation detected on
259	a large geographical scale can to some extent also drive local-scale genetic differentiation,
260	and may influence the patterns of recolonisation (e.g. Czarnomska et al., 2013, Leonard,
261	2014).

Biological Reviews

	262	
	263	Scandinavian population
	264	This population consists of about 460 individuals (90% in Sweden, the rest in Norway or in
I	265	the border area between these countries; Svensson et al., 2015). Exterminated in the 1960s
	266	and naturally recolonised since the 1980s by immigrant wolves from Finland (Karelia)
	267	(Wabakken et al., 2001, Vilà et al., 2003a), the Scandinavian population is growing and is
	268	currently distributed in the central part of Sweden and southeastern Norway. The population
	269	has been continuously monitored with genetic methods (Ellegren et al., 1996, 1999; Flagstad
	270	et al., 2003; Vilà et al., 2003a, b; Seddon et al., 2005, 2006; Hagenblad et al., 2009). It has
	271	been investigated through a period of severe inbreeding depression (inbreeding coefficient F_{IS}
	272	varied from 0–0.42 for wolves born in 1983–2002 in Liberg et al., 2005); followed by a
	273	remarkable genetic recovery thanks to a single immigrant from an eastern (Karelian?) wolf
	274	population that brought new genetic material into the population (Vilà et al., 2003a); and
	275	through a further period of increasing inbreeding; until the recent immigration of four
	276	Finnish/Russian wolves between 2008 and 2013 that rescued the population once again
	277	(Åkesson et al., unpublished). Particular attention has been paid to ongoing immigration from
	278	neighbouring Finnish/Russian (Karelian) wolf population (Flagstad et al., 2003; Vilà et al.,
	279	2003a; Seddon et al., 2006), shown to coincide with episodes of marked population increase
	280	in Russian Karelia (Flagstad et al., 2003), and the identification of four immigrant wolves in
	281	northern Sweden in 2002–2005 from Finland (Seddon et al., 2006).
	282	
	283	Karelian population
	284	The Karelian wolf population is shared between Finland and Russia and consists of 220–245
	285	animals (Natural Resources Institute Finland, 2015). Clear signs of genetic bottlenecks have
	286	also been observed in the allele frequency distributions of this population (Jansson et al.,

2
2 3
4
4
5
6
7
8
0
9
10
11
12
13
1/
15
15
16
17
18
19
20
2U 01
3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20 22 3 22 22 22 20 3 3 23 3 3 3 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22
23
24
25
20
20
27
28
29
30
21
20
32
33
34
35
36
27
37
38
39
40
41
42
42 43
40
44
45
46
47
48
10
49
50
51
52
53
52 53 54
55
55
56
57
58
59
60

1

287 2014). Genetic structure and population processes, including admixture between wolves in the 288 Finnish and Russian parts of the population have been investigated using microsatellites (Aspi 289 et al., 2006, 2009; Jansson et al., 2012). Population size reduction together with the low level 290 of gene flow from the Russian Karelian population (Aspi et al., 2006, 2009) led the Finnish 291 Karelian part of the population into a demographic and genetic crash after 2006, with a 292 significant decline in observed heterozygosity and an increase in inbreeding (Jansson *et al.*, 293 2012). Compared to the historical Finnish wolf population, almost 20% of microsatellite 294 alleles have not been found in the modern population (Jansson et al., 2014). Although the 295 Karelian wolf population (including Russia) is often seen as a single large management unit, it 296 may consist of smaller units (Aspi et al., 2009; Jansson et al., 2012). 297 298 Baltic population 299 The Baltic wolf population is distributed throughout Estonia (200–260), Latvia (200–400), 300 Lithuania (300–400) and northeastern Poland (270–360), comprising 900–1400 animals in 301 total. As in other parts of Europe, the Baltic wolf population experienced near-extermination 302 in the 1970s and 1980s (Jedrzejewski et al., 2005; Baltrūnaitė et al., 2013), leaving signs of 303 genetic bottlenecks in wolves from Estonia, Latvia (Hindrikson et al., 2013; Plumer et al., in 304 prep.) and neighbouring Russia (Sastre *et al.*, 2011). In general, the Baltic population exhibits 305 relatively high levels of heterozygosity compared with many other European wolf populations 306 (Jędrzejewski et al., 2005; Baltrūnaitė et al., 2013; Czarnomska et al., 2013; Hindrikson et al., 307 2013). Moreover, a cryptic genetic structuring has been found in the Estonian-Latvian part of 308 this population (Hindrikson et al., 2013) and the authors proposed that the four genetic groups 309 identified reflect recent population bottlenecks, severe hunting pressure and immigration. The 310 Estonian population is expanding and has recently (in 2011) re-colonized the two largest 311 islands of the country, Saaremaa and Hiiumaa (Plumer et al., in prep.).

Biological Reviews

312	
313	Central European Lowland population
314	The Central European Lowland population is mainly shared between Poland and Germany
315	(each with > 30 packs or 150-200 animals) (Reinhardt et al., 2015), with recent ocurrences in
316	Denmark (Andersen et al., 2015), Czech Republic and the Netherlands (Gravendeel et al.,
317	2013), resulting in a total of 300–400 animals ranging in approximately 24 000 km ² . This
318	population was formed in the late 1990s (Andersen et al., 2015), when a small number of
319	wolves from northeastern Poland (Czarnomska et al., 2013), recolonized the Lusatian border
320	region between Germany and Poland. While the population is steadily expanding (Kaczensky
321	et al., 2013), strong founder effects have likely resulted in a genetic separation between this
322	and the Baltic founder population (Andersen et al., 2015), despite its close relatedness and
323	evidence for gene flow (Czarnomska et al., 2013).
324	
325	Italian peninsular population
326	This population is situated along the Apennine Mountains and consists of approximately 321
327	wolf packs, corresponding to 1212–1711 wolves (Galaverni et al., 2016). Wolves were
328	extirpated from the Alps in the 1920s, and thereafter continued to decline in peninsular Italy
329	until the 1970s, when approximately 100 individuals survived, isolated in two fragmented
330	subpopulations in the central Apennines (Lucchini et al., 2004; Fabbri et al., 2007).
331	Nowadays, the Italian wolf population has a nearly continuous distribution along the
332	Apennines, though three genetic subpopulations (northern Apennines, Central Apennines and
333	Southern Apennines) (Fabbri et al., 2007) persist due to limited gene flow (Scandura et al.,
334	2011). The Italian wolf population (together with the Scandinavian population) is probably
335	one of the most extensively microsatellite-genotyped wolf populations in Europe (Dolf et al.,
336	2000; Fabbri et al., 2007, 2014; Lucchini et al., 2004; Scandura et al., 2011; Randi et al.,

2	
3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
12	
13	
14	
11 12 13 14 15 16	
10	
17 18	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
29	
30	
31	
32	
33	
34	
35	
36	
36 37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
51	
52	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

1

337 2014; Caniglia et al., 2014). It has been demonstrated that Italian wolves have distinct 338 microsatellite allele frequencies that are highly differentiated from other wolf populations 339 typed so far in Europe (Randi et al., 2000; Randi & Lucchini, 2002), except for the Alpine 340 (Fabbri et al., 2014) population and wolves in the Pyrenees in France and Catalonia in Spain 341 (Sastre, 2011).

342

346

343 Alpine population

344 The Alpine wolf population comprises approximately 160 animals and is distributed in the 345 Austrian, French, Italian and Swiss Alps (at least 116 animals in France, present in a

minimum of 36 wolf permanent presence areas (ONCFS wolf winter survey 2014-2015),

347 57-89 animals in Italy (Galaverni et al., 2016), 8 animals in Switzerland and 2-8 animals in

348 Austria). The Western Alps in Italy, Switzerland and France (Lucchini et al., 2002; Valière et

349 al., 2003; Fabbri et al., 2007, 2014) have been recolonized by Italian wolves, while the

350 eastern and the central Alps are being colonized by wolves from both the Italian and Dinaric-

351 Balkan populations (Fabbri et al., 2014; Ražen et al., 2016). On the other hand, wolves from

352 this population have expanded south-west, recently reaching the French Massif Central and

353 the Pyrenees in 1999 and Catalonia in Spain in 2000, carrying a mtDNA haplotype unique to

354 Italian wolves (W4 in Vilà et al., 1997) (Valière et al., 2003; Lampreave et al., 2011; Sastre,

355 2011), though without evidence of reproductive success until now.

356

357 *Carpathian population*

358 The Carpathian population inhabits a large area, including five countries, and consists of 359 ~3000 wolves (2300-2700 in Romania, 340-450 in Slovakia, 209-254 in Poland and small 360 number of individuals in the Czech Republic and Hungary). The population is largely

361 continuous, though with smaller population fragments (for example in the eastern Czech

Biological Reviews

362	Republic and Hungary) scattered in the border areas of the Carpathian population,
363	representing remnants of a previously wider distribution (Boitani, 2000). The Carpathian
364	Mountains represent one of the largest wolf refuge areas in Europe and are regarded as being
365	of particular importance for the long-term survival of the species in Europe because of its size
366	and potential to serve as a link between northern and southern populations (Gula et al., 2009).
367	Genetic studies covering the Carpathian wolf population have largely focused on the northern
368	part of the Carpathians in Poland, Slovakia and west Ukraine (Pilot et al., 2006, 2010;
369	Czarnomska et al., 2013, Bakan & Paule, 2014). Both microsatellite and mtDNA data suggest
370	that the Carpathian wolves are genetically distinct from the neighbouring lowland population
371	(Pilot et al., 2006; Czarnomska et al., 2013) and also from the Dinaric-Balkan population
372	(Bakan & Paule, 2014).
373	
374	Dinaric-Balkan population
375	The Dinaric-Balkan population consists of ~3900 wolves in eight countries: Albania
376	(200-250 individuals), Bulgaria (700-800), Bosnia and Herzegovina (650), Croatia
377	(168–219), Greece (700), Former Yugoslav Republic of Macedonia (466), Serbia (750–850)
378	and Slovenia (32-43) (Chapron et al., 2014). From Slovenia to northern Greece, the wolf
379	range shows substantial continuity along the Dinaric and Balkan Mountains (Musiani et al.,
380	2009; Gomerčić et al., 2010), and Bakan & Paule (2014) also identified gene flow between
381	Serbia and Bulgaria (Fig. 1; see also Appendix S2). Of all European wolf populations, this
382	one spans the largest number of national borders, and is consequently being subject to the
383	most diverse array of monitoring and management approaches (Kaczensky et al., 2013). The
384	Bulgarian (Lucchini et al., 2004; Bakan & Paule 2014; Moura et al., 2014; Pilot et al.,
385	2014b), Greek (Moura et al., 2014), Serbian (Bakan & Paule, 2014), Croatian (Gomerčić et
386	al., 2010) and Slovenian (Majić-Skrbinšek, 2014) wolves have been studied with

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20 01	
2 I 20	
22	
2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 7 18 9 20 12 22 3 4 25 26 7 8 9 10 11 21 3 14 5 16 7 18 9 20 12 22 3 24 5 26 7 8 9 30 13 23 33 4 35 36 37 8 9 30 10 10 10 10 10 10 10 10 10 10 10 10 10	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
40	
41 42	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59 60	
00	

1

387	microsatellite markers (Appendix S1). Both Bulgarian and Croatian wolves are in the process
388	of recovering from a severe bottleneck that started in the 19 th century and lasted up to the
389	1970s-1980s (Gomerčić et al., 2010; Moura et al., 2014). The Dinaric-Balkan wolf
390	population is a valuable source of genetic diversity for neighbouring populations, as indicated
391	by ongoing recolonization of the eastern and central Alps by Dinaric-Balkan wolves (Fabbri
392	et al., 2014, Ražen et al., 2016), and by the considerable level of gene flow between the
393	Caucasus and the Balkans (Bulgaria) through intermediary populations (Pilot et al., 2014b).
394	The population, however, shows genetic substructuring already at relatively local scales
395	(Fabbri et al., 2014), indicating the need for further research to understand the population's
396	internal genetic and demographic connectivity and delineate conservation and management
397	units.

398

399 North-West Iberian population

400 The North-West Iberian population is shared by Spain and Portugal. The population 401 approximately 254 breeding packs and about 2000 individuals, of which approximately 80% 402 occur in Spain and 20% in Portugal (Álvares et al., 2005; Blanco & Cortés, 2012). The 403 population is concentrated in the northwestern region of the Iberian Peninsula and in a small 404 isolated subpopulation south of river Douro in Central Portugal (Álvares, 2004; Blanco et al., 2005). At the beginning of the 20^{th} century, Iberian wolves were distributed throughout the 405 peninsula (Rico & Torrente, 2000). However, as in other European wolf populations, in the 406 middle of the 20th century, the Iberian population disappeared from most of its former range 407 408 and was reduced to an all-time low in the 1970s (Valverde, 1971; Grande del Brío, 1984; Blanco et al., 1990). As a consequence of a severe demographic bottleneck in the 20th 409 century, genetic studies have revealed a low effective population size (N_E = 43.2 to 53.8 in 410

Biological Reviews

3	
4	
5	
6	
4 5 6 7	
, Q	
0	
, 8 9 10 1 12 3 4 15 6 7 8 9 10 1 12 3 4 15 6 7 8 9 10 1 12 3 4 15 6 7 8 9 20 12 2 3 2 2 2 2 2 2 2 3 3 2 3 3 3 3 3 3	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
25	
00	
30	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

411 Sastre *et al.*, 2011) and indicated inbreeding ($F_{IS} = 0.153$ in Ramirez *et al.*, 2006 and $F_{IS} =$ 412 0.177 in Sastre *et al.*, 2011).

413

414 Sierra-Morena population

415 The Sierra-Morena population is isolated and critically endangered, and according to

416 Andalusian government reports, consists of perhaps no more than a single pack (Blanco &

417 Cortés, 2012; López-Bao et al., 2015). Ferrand et al. (2005) conducted a microsatellite study

418 (21 autosomal and 4 Y-chromosome) and mtDNA analysis, but based on a rather small

419 sample size. The authors did not report evidence of hybridization, though it represents a high

420 risk factor for very small populations (Leonard *et al.*, 2014).

421

422 *(b) Single nucleotide polymorphisms (SNPs)*

423 SNPs represent a widespread source of genetic variation and their abundance throughout the 424 genome makes them highly suitable for population genetic analysis. Whereas earlier studies 425 with microsatellites typically examined <20 markers, SNPs allow simultaneous typing of 426 thousands of loci and thereby increase the statistical power to resolve population structure and 427 processes (e.g. Stronen et al., 2013). In comparison with microsatellites, which have rapid mutation rates per generation (the order of 10^{-4}), SNPs show lower mutation rates ($10^{-8}-10^{-9}$) 428 429 and simpler mutation patterns that result in relatively low levels of homoplasy (Brumfield et 430 al., 2003). Another great advantage is that SNP data are universally comparable and do not 431 require standardisation, while microsatellite data produced in different laboratories have 432 inconsistencies in allele size length that prevent their direct comparison unless meticulous 433 standardisation procedures are applied. Moreover, SNPs can potentially provide a better 434 means of genotyping degraded DNA compared to microsatellites (Kraus *et al.*, 2015). On the 435 other hand, microsatellite markers may have some advantages over SNPs, for example in

$\begin{array}{c} 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	1 2 3 4	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	5 6 7 8	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	9 10 11 12 13	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	14 15 16 17 18	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	19 20 21 22	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	23 24 25 26 27	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	28 29 30 31 32	
39 40 41 42 43 44 45 46 47 48 49 51 52 34 55 57 58 59	33 34 35 36	
43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59	39 40 41	
47 48 49 50 51 52 53 54 55 56 57 58 59	43 44 45	
52 53 54 55 56 57 58 59	47 48 49 50	
56 57 58 59	52 53 54	
	56 57 58 59	

436	identifying recent events such as new barriers to gene flow or changes in population structure
437	(see Stronen et al., 2013). Using ten microsatellite markers, Aspi et al. (2009) showed that
438	Finnish wolves have recently differentiated from Arkhangelsk and Karelian wolves in Russia.
439	However, in a study with 67 000 SNPs (Stronen et al., 2013), wolves in Finland appeared
440	well-connected to populations in Russia, despite the geographic distance.
441	Seddon et al. (2005) found that 22 out of 24 SNP loci were sufficiently variable in the
442	Scandinavian population, providing the level of accuracy in individual identification
443	equivalent to 12 variable microsatellites genotyped in the same population. Recently, SNPs
444	have been used in population genetics studies on a regional-scale in Polish and German
445	(Czarnomska et al., 2013) and Italian (Fabbri et al., 2012) populations, in large-scale
446	European studies (vonHoldt et al., 2011; Stronen et al., 2013, Pilot et al., 2014a), for the
447	identification of wolf-dog hybrids (vonHoldt et al., 2013; Randi et al., 2014; Godinho et al.,
448	2014) and in genetic analysis of non-invasively collected samples (Valière et al., 2003; Fabbri
449	et al., 2012; Caniglia et al., 2014; Godinho et al., 2014).
450	Among the large-scale studies, vonHoldt et al. (2011) conducted an analysis with the canine
451	SNP genotyping array (47 000 SNPs) and found that wolf populations in Italy, Spain, and
452	Eastern/Northern Europe comprise distinct units. These results were later supported by a
453	study using 61 000 SNPs, where Italian, Iberian and Eastern European (including Dinaric-
454	Balkan population) wolf clusters were identified (Pilot et al., 2014a). The Italian and Iberian
455	populations had lower heterozygosity and stronger linkage disequilibrium compared to East-
456	European populations, indicating that the former have experienced long-term isolation and/or
457	bottlenecks (Pilot et al., 2014a). This results of this study suggested that genetic drift due to
458	spatial isolation and bottlenecks is a major evolutionary force behind genetic differentiation of
459	European populations. Moreover, a number of loci showing a signature of diversifying
460	selection were identified, including the loci flanking the platelet-derived growth factor gene,

Biological Reviews

_			
3			
Δ			
-			
3 4 5			
6			
6 7 8 9 1 1			
ſ			
R			
2			
9			
1	0		
ż	2		
1	1		
1	2		
÷.	~		
1	3		
1	4		
	5		
1	6 7		
1	7		
I	1		
1	8		
	0		
1	J		
2	0		
2	1		
<u> </u>	1		
2	2		
2	R		
<u>د</u>	2		
2	4		
2	5		
~	2		
2	6		
2	7		
_	<u>_</u>		
2	8		
2	9		
~	~		
3	υ		
3	1		
ñ	ò		
3	2		
3	3		
ĥ	7		
5	4		
3	5		
o.	ĉ		
J	0		
3	7		
°,	o		
J	o		
3	9		
1	n		
+	J		
4	1		
4			
4			
4	4		
4			
4	6		
4			
4	8		
4	J		
5	0		
Ē	-		
5	1		
5	2		
5 5	ი		
5	J		
5	4		
5	5		
5	5		
5	6		
5 5 5 5 5 5 5	7		
2	' ~		
5	8		
5	a		
6	2		

461	which may influence differences in body size between wolf populations (Pilot et al., 2014a).
462	Stronen et al. (2013) evaluated genetic structure in 11 countries (177 wolves, Iberian samples
463	not included) using more than 67 000 SNPs, and besides the Italian population, they found the
464	Dinaric-Balkan population and certain clusters in central and northern Europe to be
465	genetically distinct. In a more recent study by Stronen et al. (2015), the results indicated
466	differences between northern Europe, southern Europe, the Carpathian Mountain and
467	Ukrainian Steppe population clusters for a number of SNP loci (353 candidate loci out of 67
468	000 SNPs) and neighbouring genes with known or assumed functions.
469	A major concern regarding conclusions based on SNPs is that none of the studies has included
470	all European wolf populations. The largest geographical coverage in Europe to date is
471	represented in vonHoldt et al. (2011) (Fig. 3), and although Stronen et al. (2013) used a larger
472	number of samples per country, several important populations were missing from the analysis.
473	To achieve the Europe-wide resolution, significantly improved sampling is required,
474	especially for Alpine, Dinaric-Balkan, Baltic, Karelian (as well as from other areas of Russia),
475	Scandinavian and Iberian populations. Moreover, the consolidation of data derived from
476	different genotyping platforms can be a challenge. While Illumina's Canine HD chip was
477	used in Stronen et al. (2013), vonHoldt et al. (2011) and Pilot et al. (2014a) used the
478	Affymetrix Canine SNP Genome Mapping Array.
479	

(c) Major histocompatibility complex (MHC)

Another way of investigating the genetic diversity of wolves is at the level of loci encoding
proteins for the major histocompatibility complex (MHC). MHC is a set of cell surface
molecules encoded by a large gene family which controls a major part of the immune system
in vertebrates. MHC diversity is shaped by various factors, the most prominent among them
being the pathogens that are a key selective force in wild animal populations (e.g. Radwan *et*

al., 2010). The high variability of MHC markers may be especially informative in studies of populations that are suspected of having suffered demographic bottlenecks. European wolf populations have maintained relatively high levels of MHC diversity, as shown for Karelian (the number of MHC alleles n=22, Seddon & Ellegren, 2004; n=27, Niskanen et al., 2014), Italian peninsular and Alpine populations (n=23, Galaverni et al., 2013), and Dinaric-Balkan population (n=31, Arbanasić *et al.*, 2013). The only known exception is the isolated Scandinavian wolf population, where the MHC variation is considerably lower than in other populations (n=13, Seddon & Ellegren, 2004).

495 Comparison with other large carnivore populations in Europe, and the main challenges for
496 future investigations

497 Microsatellites have also been used to study brown bear (Ursus arctos; e.g. Taberlet et al.,

498 1997; Manel et al., 2004; Tammeleht et al., 2010; Kopatz et al., 2012; Straka et al., 2012),

499 Eurasian lynx (Lynx lynx; Schmidt et al., 2009; Davoli et al., 2013; Rueness et al., 2014), and

500 wolverine (Gulo gulo; Dalerum et al., 2007; Hedmark et al., 2007) in Europe. Even though

501 microsatellites have been proven to be useful markers for studies on all large carnivores, the

502 lack of a common set of universally comparable microsatellite markers between studies has

503 prohibited the analysis of microsatellite data across Europe. Therefore, Europe-wide genetic

504 patterns such as differences in genetic diversity, population structure and connectivity are still

505 missing for all large carnivores.

506 SNP analyses that have proven to be a way forward in large-scale wolf studies are scarce for

507 other large carnivore species in Europe (Norman et al., 2013), largely because of the lack of a

- 508 domesticated analogue. Rapid advancements in high-throughput and genome-wide
- 509 sequencing methods are likely to reduce the usage of SNP-chips in the future, depending on
- 510 the scientific questions asked. Next generation sequencing (NGS) methods are highly

Biological Reviews

2 3	511	promising since they can provide unbiased data for whole genomes, allowing a wider range of
4 5 6	512	research questions to be addressed, in comparison with SNPs.
7 8	513	However, until whole-genome sequencing becomes considerably cheaper, SNP arrays remain
9 10	514	more economical for many purposes, including identification of individuals, detection of
11 12	515	wolf-dog hybrids and analysis of population structure and gene flow.
13 14 15	516	
15 16 17 18	517	(2) Uniparental markers
19 20	518	(a) Maternal lineage: mitochondrial DNA
21 22	519	Maternal inheritance, lack of recombination, high mutation rate and high copy-number have
23 24	520	made mitochondrial DNA an appealing molecular tool in evolutionary biology, conservation
25 26 27	521	genetics and phylogeography for many mammal species, including canids (e.g. Savolainen et
28 29	522	al., 2004; Hailer & Leonard, 2008). Unlike nuclear DNA, non-recombining maternal mtDNA
30 31	523	has been widely used not only in phylogeographic studies, but also to study wolf
32 33	524	domestication (Vilà et al., 1997; Savolainen et al., 2002; Boyko et al., 2009; Pang et al.,
34 35 36	525	2009; Oskarsson et al., 2012), and wolf-dog hybridization in Scandinavian (Vilà et al., 1997),
37 38	526	Baltic (Andersone et al., 2002; Hindrikson et al., 2012), Italian peninsular (Randi & Lucchini,
39 40	527	2002; Vilà et al., 2003b; Verardi et al., 2006; Iacolina et al., 2010; Caniglia et al., 2013;
41 42	528	Randi et al., 2014), NW Iberian (Godinho et al., 2011, 2014) and Dinaric-Balkan (Moura et
43 44	529	al., 2014) wolf populations.
45 46 47	530	The hypervariable control region of mtDNA has been sequenced in the majority of studies,
48 49	531	either partially (e.g. Vilà & Wayne, 1999; Flagstad et al., 2003; Valière et al., 2003; Ramirez
50 51	532	et al., 2006; Seddon et al., 2006; Sastre et al., 2011) or fully (Randi et al., 2000; Lucchini et
52 53	533	al., 2004; Hindrikson et al., 2012). Control region sequence data has facilitated the definition
54 55 56	534	of a set of mtDNA haplotypes that differ from dog haplotypes in the majority of European
57 58	535	wolf populations. However, the separation is not complete and "dog haplotypes" have also

536	been found in wolves (Vilà et al., 1997, 1999; Randi et al., 2000; Pilot et al., 2010). One of
537	the pioneering mtDNA studies involving both wolves and dogs described ten mtDNA
538	haplotypes in 13 European countries and suggested that European wolves, though restricted to
539	a small fraction of their former range, had been able to preserve a relatively high degree of
540	mtDNA polymorphism (Vilà et al., 1997). Pilot et al. (2006) found that wolf populations from
541	Eastern Europe had multiple mtDNA haplotypes that were widely distributed. In a more
542	recent large-scale study, Pilot et al. (2010) analysed phylogenetic relationships and
543	geographical distribution of mtDNA haplotypes of 947 contemporary European wolves. The
544	authors found that haplotypes representing two main haplogroups (1 and 2) overlap
545	geographically, but differ significantly in frequency between populations from southwestern
546	and eastern Europe (see Fig. 1 in Pilot et al., 2010). Haplogroup 1 predominated in Eastern
547	Europe and was fixed in the Iberian Peninsula. These populations shared a common
548	haplotype, suggesting past gene flow via extinct intermediate populations from central and
549	western Europe. In the Italian population, haplogroup 2 was fixed and was represented by a
550	single haplotype. The unique mtDNA control region haplotype specific to wolves in Italy has
551	neither been found in other wolf populations world-wide, nor in dogs (named as haplotype
552	W4 in Vilà et al., 1997; W14 in Randi et al., 2000 and W22 Pilot et al., 2010). Low mtDNA
553	variability in wolves has also been found in earlier studies in Iberia (Vilà et al., 1999; Sastre
554	et al., 2011), suggesting that these peninsular wolf populations in Southern Europe have been
555	isolated for a long time and possibly have lost much of their mitochondrial diversity due to
556	genetic drift, although the possible effect of historic bottlenecks on genetic diversity has not
557	been tested.
558	Compared with other European populations, wolves in the Dinaric-Balkan population exhibit
559	higher mtDNA control region variability, and the population probably retains a significant
560	proportion of the genetic diversity present in the formerly widespread and continuous

Page 25 of 89

1

Biological Reviews

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 59	
58 59	
59 60	
00	

561	European wolf population, as suggested from studies involving Bulgarian (Randi et al., 2000;
562	Moura et al., 2014; Pilot et al., 2014b), Croatian (Gomerčić et al., 2010; Fabbri et al., 2014),
563	and other populations in the Balkans (Pilot et al., 2010; Djan et al., 2014).
564	In a study comparing the modern and historical Scandinavian population, Vilà et al. (2003a)
565	found that the original historical gene pool did not survive the bottleneck and that the present
566	gene pool is made up of new haplotypes brought by founders – immigrants from eastern
567	populations (Finland and northwest Russia).
568	The Finnish part of Karelian wolf population has experienced a significant reduction in
569	mtDNA haplotype diversity: only three out of eight lineages found in the historic Karelian
570	wolf population before 1920 have survived (Jansson et al., 2014).
571	To date, wolf mtDNA sequences have been characterised from 26 out of the 28 countries in
572	which the species currently occurs. To analyse genetic relationships between different
573	mtDNA haplotypes across Europe, we found that a 609 bp mtDNA control region fragment
574	provides the best balance between marker size and geographical coverage. Using a median-
575	joining approach (Bandelt et al., 1999) implemented in program Network 4.510, we
576	constructed a minimum spanning network based on 160 publicly available 609 bp-sequences
577	covering all wolf populations in Europe and geographically close populations in West Asia.
578	According to this analysis, European wolves are divided into seven haplogroups (Fig. 4), of
579	which most are of mixed origin, including sequences from several different European wolf
580	populations, though some are more region-specific. The largest haplogroup includes wolves
581	from the Scandinavian and NE-European populations and Greece. Iberian samples were
582	divided between two haplogroups, one specific haplogroup and one mixed haplogroup with
583	samples from Iberia, Balkans (Bulgaria) and NE Europe. However, the representation of
584	sequences across Europe is still poor and phylogenetic resolution low due to the relatively
585	short mtDNA sequences (see Appendix S3 for haplotype division).

586	
587	MtDNA studies in other large carnivore populations in Europe, and the main challenges for
588	future mtDNA investigations
589	MtDNA sequences have also been widely used to study other large carnivore species in
590	Europe: the European lynx (Rueness et al., 2014); wolverine (Zigouris et al., 2013); and
591	especially for brown bear (e.g. Randi et al., 1994; Taberlet & Bouvet, 1994; Kohn et al.,
592	1995; Saarma et al., 2007; Saarma & Kojola, 2007; Korsten et al., 2009; Davison et al.,
593	2011), including analyses based on complete mitogenomes (Keis et al., 2013; Hirata et al.,
594	2013).
595	MtDNA has been and will remain an important genetic marker to study evolutionary
596	processes driven by the female lineages. One of the main drawbacks in wolf mtDNA studies
597	has been the use of short sequences. The analysis of complete mitochondrial genomes of
598	brown bear by Keis et al. (2013) clearly demonstrated the advantage of using such data,
599	which revealed spatio-temporal population processes that had not previously been detected
600	using shorter mtDNA sequences. Analysis of genetic diversity and evolutionary trajectories of
601	wolf maternal lineages in Europe is likely to benefit significantly in the future from
602	mitogenome sequencing.
603	
604	(b) Paternal lineage: Y chromosome
605	Studies using uniparentally inherited Y chromosome loci are scarce compared to biparental

606 markers and mtDNA, primarily due to the shortage of available polymorphic loci. Paternal

607 inheritance and a lack of recombination (except the pseudoautosomal regions) have made the

- 608 Y chromosome a useful tool for studying uniquely male-inherited lineages, providing an
- 609 essential complement to maternally inherited mtDNA and biparentally inherited microsatellite
- 610 or SNP data. When compared with mtDNA, variation in Y-linked loci allows detection of

1
2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
234567891112341567890112222242567890132334567890
20
21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
37 20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

611	contrasting patterns of male and female population processes (e.g. Bidon et al., 2014). A
612	limited set of paternal Y chromosome microsatellite markers have been used in wolf
613	population genetics to investigate colonization patterns (Sundqvist et al., 2001; Caniglia et al.,
614	2014; Fabbri et al., 2014), population structure and kin relationships (Grewal et al., 2004),
615	hybridization with dogs (Vilà et al., 2003b; Iacolina et al., 2010; Godinho et al., 2011,
616	Hindrikson et al., 2012; Caniglia et al., 2013; Randi et al., 2014) and sex-biased genetic
617	diversity (Sastre et al., 2011).
618	As with mtDNA, Y chromosome heterogeneity is low in Scandinavian (two haplotypes in
619	Sundqvist et al., 2001; Vilà et al., 2003a) and Iberian (four haplotypes in Sastre et al., 2011
620	and six in Godinho et al., 2011) wolf populations, but significantly higher in western Russia
621	(nine to ten haplotypes in Sundqvist et al., 2001 and Sastre et al., 2011) and the Balkan region
622	(11 haplotypes in Croatian wolves in Fabbri et al., 2014). In contrast to the pattern of mtDNA
623	variation, Y chromosome variation in Italian wolves is significantly higher (four haplotypes;
624	Iacolina et al., 2010; Fabbri et al., 2014; Caniglia et al., 2014), suggesting male-biased gene
625	flow between Italy and neighbouring populations.
626	
627	Y chromosome studies in other large carnivore populations in Europe, and the main
628	challenges for future patrilineal investigations
629	Y chromosome investigations are rare in other large carnivores and, besides wolves, have
630	only been used to investigate brown bear populations (Bidon et al., 2014; Schregel et al.,
631	2015). The main drawback of wolf Y chromosome studies is the limited number of
632	polymorphic Y chromosome markers available. Paternal studies would greatly benefit from
633	using a larger number of Y chromosome specific loci, possibly combining paternal
634	microsatellite and SNP data if neither of them provides sufficient resolution on its own; see

for example a study on canids (dingoes and dogs) by Sacks *et al.* (2013) and a human study
by Rootsi *et al.* (2013).

639 III. META-ANALYSIS OF GENETIC VARIABILITY IN EUROPEAN WOLVES

640 (1) Materials and methods

Meta-analyses of genetic diversity from microsatellites are usually composed of data sets that vary greatly in the identity and number of markers used, and this applies to the data available on European wolves. This complicates the comparison of heterozygosity parameters between studies. One option to overcome this limitation was presented by Skrbinšek et al. (2012) who used the reference population approach with a simple solution of scaling the genetic diversity of each considered population relative to the genetic diversity of a single well-studied population, using the reference population as a calibration 'yardstick'. By calibrating previously incompatible studies through comparisons with a reference population, they were able to compare the neutral genetic diversity of brown bears from many previously studied populations. However, such a calibration method could not be applied to wolf studies as the number of overlapping loci analysed in different studies is too small (in several instances only three out of 16 loci were identical; Appendix S4, see also De Groot et al., 2016). Nevertheless, as the number of microsatellite loci analysed in different studies is relatively large, we consider the heterozygosity parameters sufficiently robust. To describe general large-scale trends and patterns of genetic variation in European wolf populations, we analysed the results of previous microsatellite studies and included new data, which altogether covered nine European wolf populations in 19 countries: Russia, Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Germany, Czech Republic, Slovakia, Belarus, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal

Biological Reviews

660 (Appendix S4; Fig. 5) (note that the Sierra-Morena population is missing due to a lack of data, 661 while data for Russian populations are included). Observed and expected heterozygosities 662 (H_O , H_E), inbreeding coefficient (F_{IS}), allelic richness (R_A) that uses a rarefaction on the 663 minimum number of samples per populations in the study, and the number of alleles per locus 664 (N_A) were extracted. If the inbreeding coefficient was presented only for subgroups, it was 665 calculated for the whole population according to the sample size weighted heterozygosities as 666 $F_{IS} = 1 - H_O/H_E$ (Hartl & Clark, 1997).

Linear trend surface analysis was applied to each variable to determine the presence and direction of a gradient (Fortin & Dale, 2005), followed by a test of the spatial trend. The analysis calculated spatial autocorrelation (SAC) structure via variogram modelling and spatial weighting. We used R function gls with spherical SAC structure in package nlme (Pinheiro et al., 2013) with rotated geographic coordinates along the gradient direction. The Lambert conic conformal coordinate system was used to determine the constant azimuthal direction of the trend over the large area analyzed. The coordinate system was rotated around the spatial centre of the sample points and coordinates used for testing the trend's significance were measured as relative to the centre. Due to a relatively small number of data-points, we focused on general patterns and did not test non-linear effects, but analysed the pattern in the ten European populations separately. After the trend surface analysis, the presence of residual spatial autocorrelation was tested using Moran's autocorrelation index (I) and the compatible test of significance in the R package ape (Paradis et al., 2004).

681 (2) Results

(a) Genetic variation of the European wolf populations

683 We compared four indices of genetic diversity for ten wolf populations in Europe (Table 1;

684 Fig. 5; Appendix S4). Averaged genetic diversity was lowest in the isolated populations in

685 Iberia and Italy. The Iberian population was also characterised by the lowest allelic richness.

686 The highest heterozygosity was observed in the largest population (Dinaric-Balkan, see Table

1).

None of the variables were correlated with the size of the distribution area of analysed populations. The sample size was negatively correlated with two of the genetic indices (H_E : R^2 = 0.32, p = 0.025; R_A : $R^2 = 0.31$, p = 0.03). However, the observed heterozygosity and inbreeding coefficient had no correlation with sample size (H_O : $R^2 < 0.01$, p = 0.71; F_{IS} : $R^2 =$ 0.02, p = 0.70). Sample size itself had no trend in Europe and was not affected by spatial autocorrelation.

696 (b) Genetic trends in the European wolf populations

There was a global spatial trend of heterozygosities (H_0 and H_E) in the European wolf population. Heterozygosity values were considerably higher towards the north-east and lower in south-western populations (Table 2a; Fig. 6). The average range of connectedness of populations suggested that the mean size of wolf functional subunits is about 770 km, as indicated by the extent of significance of spatial autocorrelation on trend model residual values of H_O (650 km), H_E (800 km), and F_{IS} (850 km), (Table 2b). The reliability of the detected patterns was indicated by zero or near zero nugget effects of the variogram models. A small nugget effect indicates low variance among independent estimations (different studies) in the same geographic area, and, by extension, a robust pattern in the observed variable, and good repeatability of measured values. Allelic richness was distributed relatively evenly over Europe, having only a weak signal of spatial pattern and strong nugget effect of the variogram.

Biological Reviews

2
3
4
5
6
0
1
8
9
10
14
11
12
13
14
15
16
10
17
18
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 10 11 12 10 11 11 11 11 11 11 11 11 11 11 11 11
20
21
20 21 22 23 24 25 26 27 28 9 30 32 33 45 36 37 89 0
22
23
24
25
26
27
21
28
29
30
31
32
33
00
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
40
49
50
51
52
53
54
55
56
57
58
59

60

710 (c) Regional patterns

711	Various genetic diversity patterns were detected within the two large distinct regions of the
712	wolf European range - Southern Europe (Iberia, Alps, Italy, Dinaric-Balkan), and North-East
713	Europe (Russia, Karelia, Baltic, Carpathians, Central European Lowland). In the
714	Scandinavian population, only limited data were available and it was not possible to to
715	include this region in the meta-analysis of regional patterns. In southern Europe, a significant
716	gradient of H_0 and H_E is directed toward the north-east (Table 3). In the largest continuous
717	population in north-east Europe, a significant west-east gradient of expected heterozygosity
718	(H_E) was observed (Table 3). The lowest values appeared in Germany and the highest in
719	Estonia and Latvia (Fig. 6). The trend model residuals of the H_E were not spatially
720	autocorrelated (Moran's I = 0.157, p = 0.061). The observed heterozygosity (H_O), inbreeding
721	coefficient (F_{IS}) and allelic richness (R_A) did not exhibit significant spatial trends in north-east
722	Europe, and were significantly autocorrelated in space. The highest genetic variability (H_0
723	and R_A) was found in Estonia and Latvia, and the lowest in Poland. Despite the relatively low
724	heterozygosity in Germany, our results do not indicate significant inbreeding.
725	

726

727 IV. WOLF GENETIC VARIATION AND ITS IMPLICATIONS

728 (1) Genetic variation in European wolf populations

The meta-analysis results are in accordance with recordd population history of wolves in

730 Europe: during the period of demographic decline, larger populations survived in the Balkans

- and Eastern Europe, while small and fragmented populations remained in the Iberian and
- 732 Italian peninsulas, and the species was eradicated from central Europe and Scandinavia.
- 733 Historically, populations in southern Europe have been isolated for long periods of time,
- 734 possibly for several thousands of years in the case of the Italian (Lucchini *et al.*, 2004; Fabbri

2
2
3 1
4 5
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22 77
- 2 3 4 5 6 7 8 9 10 1 12 13 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
24
20
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
43 44
44 45
46
47
48
49
50
51 52 53
52
53
54
55
56
57
58
59
60

1

735	et al., 2007) and Iberian (Sastre et al., 2011) populations. Population decline, long-term
736	geographical isolation and a lack of gene flow into the Italian and Iberian wolf populations
737	explain the low genetic diversity and divergence from other European populations, indicated
738	from microsatellite (Lucchini et al., 2004; Godinho et al. 2011; Sastre et al., 2011), mtDNA
739	(Pilot et al., 2010) and SNP data (vonHoldt et al., 2011; Stronen et al., 2013; Pilot et al.,
740	2014a). Long-term isolation and demographic bottlenecks within these populations have
741	resulted in rather low allelic richness ($R_{A_Iberian}=3.8$; $R_{A_Italian}=4.3$). Low allelic richness (as a
742	proxy for low overall genetic variability) may compromise the long-term survival of a
743	population, as low genetic variability can become a constraining factor when a population is
744	challenged to adapt to changing environmental conditions. The mean number of alleles per
745	locus in the NW Iberian population is somewhat higher, 4.7–6.4 (Appendix S4), though the
746	isolated population in central Portugal has a very low estimate of 3.0 alleles per locus. The
747	most effective conservation strategy would require an increase in heterozygosity through
748	elevated gene flow and population growth. The NW Iberian population has been expanding
749	naturally eastward and southward in Spain (Blanco et al., 1990) but in Portugal there are still
750	no signs of wolf population growth, especially in central Portugal, where the wolf may be on
751	the verge of extinction (Boitani & Ciucci, 2009). On the other hand, wolves from the Alpine
752	population have reached the Iberian Peninsula in the last decade, but they currently remain in
753	the Pyrenees and Catalonia, with no connectivity to the NW Iberian wolf population (Valière
754	et al., 2003; Lampreave et al., 2011; Sastre, 2011). Despite the low levels of genetic
755	variability in Italian wolves, this population has active internal gene flow between
756	subpopulations, in large part directed from the Apennines to the Alps (Fabbri et al., 2007).
757	This population has colonized the Alps, forming a new Alpine wolf population that is now
758	coming in contact with wolves of Dinaric-Balkan origin in the east (Fabbri et al., 2014; Ražen

Biological Reviews

et al., 2016), which may result in natural gene flow between the Alpine and Dinaric Balkanpopulations in future.

The relatively high heterozygosity in north-eastern populations (Fig. 6) can largely be explained by their demographic connectivity to the large metapopulation in western Russia. which has long served as an important source of immigrants. Due to gene flow between different countries, the Baltic population shows medium to high levels of genetic diversity (Jędrzejewski et al., 2005; Czarnomska et al., 2013; Hindrikson et al., 2013), despite strong hunting pressure (Jedrzejewski *et al.*, 2005; Hindrikson *et al.*, 2013) (Fig. 7). The low H_{Ω} (0.45-0.58) and high F_{IS} in Polish and German wolves in Central European Lowland population (Czarnomska et al., 2013) are indications of inbreeding, but this is most likely counterbalanced in a size-limited population by occasional gene flow from the Baltic population. It was suggested that wolves colonizing western Poland and eastern Germany primarily originate from northeastern Poland (Czarnomska et al., 2013). Despite the relatively high levels of heterozygosity, in our meta-analysis we found signs of inbreeding in north-eastern European wolf populations (Table 1). Recent inbreeding has also previously been found in eastern European wolf populations by Pilot et al. (2014a). Inbreeding may increase under strong hunting pressure, which decreases population size and disrupts wolf social structure (Valdmann et al., 2004; Jedrzejewski et al., 2005, Moura et al. 2014), potentially reducing the quality of traits that define apex predators (Ordiz et al., 2013).

779 (2) Genetic trends in European wolf populations

We found a global spatial trend of heterozygosity with lower values in south-western
populations and higher in northeastern (Table 2a). Such a trend is probably the result of
several factors: recent population demographic history (hunting pressure and bottlenecks),

783 connectivity (isolation in peripheral areas of the wolf distribution in Europe) and

environmental variables. As environmental gradients in Europe have existed for a long period
of time, they most likely have had an impact on genetic variability. For example, it is known
that long-term human impact on wildlife forest habitats has been higher in areas where wolf
heterozygosity parameters have low values (for example Iberia and Italy) (Kaplan *et al.*,
2009). The higher levels of heterozygosity in north-eastern Europe may be due to gene flow
between northern and eastern European and Russian wolf populations (Aspi *et al.*, 2009; Pilot *et al.*, 2006).

The range of spatial influence (based on analysis of three parameters of genetic diversity) is 650–850 km (Table 2), i.e. the genetic diversity of a wolf population in a certain location is influenced by populations up to 850 km distant. This is, for example, the approximate distance from Tartu (Estonia) to Białowieźa (Poland) – indeed, it is likely that the gene flow extends from Estonia to northern Poland as wolves in Europe are know for their long-distance dispersal of 800 km and more (Wabakken et al., 2007; Andersen et al., 2015; Ražen *et al.*, 2016). Despite this, recent findings suggest that gene flow can be restricted even in less humanized areas, due to prey and habitat specialization (Pilot et al., 2006) and human built obstacles (Aspi et al., 2009). Radiotracking of wolves has also suggested that few individuals in northern Europe disperse more than 400 km (Kojola et al., 2009) - half of the genetic distance of spatial influence found in our results. Furthermore, few of the dispersal events contribute to gene flow because of human caused mortality (f. e. Kojola et al., 2009; Liberg *et al.*, 2012). In this sense, those considerations should be taken into account for scenarios dominated by anthropogenic landscapes to avoid significant drawbacks at smaller and more fragmented Europe's wolf populations (Delibes, 1990; Hindrikson et al., 2013), particularly in southern regions (Randi, 2011).

Biological Reviews

808 V. THE MAIN THREATS ON WOLF POPULATIONS IN EUROPE

809 (1) Europe in general

Common threats to almost all wolf populations in Europe are overharvesting (incl. poaching), low public acceptance and conflicts due to livestock depredation (Table 4), resulting most likely from a lack of knowledge and poor management structure, but also from livestock damage and deep fears of wolf attacks on humans and dogs. However, other threats, such as habitat destruction and large fluctuations in prey base, are also relevant to the majority of populations. Thus, various human-related factors are undoubtedly the main source of threats to wolf populations in Europe, and the generally negative human attitude toward wolves has been and remains the primary threat to wolf populations. Historically, even infectious diseases (e.g. rabies, sarcoptic mange) have not had such a devastating impact on wolf numbers as negative human attitudes, resulting in severe hunting pressure (legal and illegal), which in many areas in Europe led to wolf eradication in the past and continues to threaten small endangered populations (e.g. in Sierra Morena). Large carnivores can coexist with humans if a favourable management policy is applied (Linnell *et al.*, 2008), but their role as apex predators is reduced if they don't reach ecological functionality (Estes et al., 2011; Ordiz et al., 2013, and references therein). Nevertheless, there is a pressing need to mitigate conflicts in ways that are both effective and acceptable (Sillero-Zubiri & Laurenson, 2001). Two large international legislation systems currently direct wolf management in Europe: "Convention on the Conservation of European Wildlife and Natural Habitats" (the Bern Convention), and the "Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora" (the Habitats Directive) (Trouwborst, 2010). Although these international agreements seek to standardise conservation actions across Europe, both the Bern Convention and the Habitats Directive have allowed some countries to make national or local modifications to the status of wolves under the legislation. However, the conservation actions

taken to date have apparently not been sufficient to protect all wolf populations under threat,

e.g. in case of wolf populations in Sierra Morena (see below).

To handle the threats and conservation/management issues in European wolf populations in a
systematic manner, we first identify the main gaps in current knowledge and suggest solutions
to overcome these limitations and eventually provide suggestions for efficient science-based
wolf conservation and management in Europe.

- 840 (2) Different populations in Europe

841 Scandinavian population

By 1966 wolves were functionally extinct on the Scandinavian Peninsula (Wabakken *et al.*,
2001). Since their re-establishment in 1983, wolves in Scandinavia have been subject to long-

844 term monitoring. Due to the very limited number of founders, major conservation issues have

845 been inbreeding depression, low genetic variability and low-level gene flow with other

846 populations (Vilà et al., 2003a, Liberg et al., 2005; Bensch et al., 2006). Inbreeding has

847 caused strong reductions in two fitness components: winter litter size (Liberg et al., 2005) and

848 recruitment of individuals to breeding (Bensch *et al.*, 2006). Poaching (Table 4; Fig. 9) has

849 been another major threat, accounting for approximately half of the total mortality in Sweden

850 with more than two-thirds of total poaching remaining undetected by conventional methods

851 (Liberg *et al.*, 2012).

Norway culled some wolves in 2001, claiming the population had already spread too far. In

853 2010, Sweden licensed the hunting of wolves to keep the population down to 210 individuals,

a temporary goal set by the country's parliament decree. The wolf hunt and its effect on the

855 conservation and management issues has however been highly debated.

856 The Swedish Society for Nature Conservation has been critical, claiming that culling is

857 against EU legislation as the Swedish wolf population had not reached a healthy status. The

Biological Reviews

858	issue eventually reached the European Commission (EC): the Union biodiversity legislation
859	requires all member states to follow the "favourable conservation status". As a result of the
860	complaints, EC sent a reasoned opinion (in June 2015) requesting Sweden to amend its policy
861	to protect the endangered wolf population in the country. This included the request for
862	Sweden to bring wolf hunting into line with the EU legislation, thus guaranteeing that the
863	species reach favorable conservation status. A recent report suggests that a long-term goal for
864	the Scandinavian wolf population should be 500 wolves (Kaczensky et al., 2013). Based on
865	another report by commissioned expert statements, the Swedish Envirnmental Protection
866	Agency decided (in October 2015) that, given that the Scandinavian wolves is a part of a
867	larger northern European population by gene flow (including minimum one effective
868	immigrant per generation into the Scandinavian population), the Swedish population needs to
869	consist of at least 300 wolves to be considered to have favorable conservation status.
870	
871	Karelian population
872	The primary threat to Finnish wolves is illegal killing. The current (Finnish) Karelian
873	population is not only small in size, but also significantly more inbred than before, and the
874	observed heterozygosities significantly lower than among wolves born at the end of the 1990s
875	(Jansson et al., 2012). Additonally, gene flow between Russian Karelian and Finnish
876	populations seems to be low (Aspi et al., 2009; Jansson et al., 2012). In order to maintain a

877 genetically healthy and viable wolf population in the long-term, the ultimate management

878 goal is to facilitate gene flow between Finnish and Russian parts of Karelian population

879 (Jansson et al., 2014) and to decrease the hunting pressure. This goal is especially difficult to

- 880 achieve in the reindeer husbandry area, which is very large (approximately half of Finland),
- 881 where wolves are eliminated or driven away within days of arrival. The wolf became
- 882 protected in Finland outside the reindeer husbandry area in 1973, but until 1995 it was listed

1
2
3
4
5
6
7
8
9
10
11
12
12
1/
14
10
16
1/
18
2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
50
51
52
53
54
55
56
57
58
58 59
59 60
60

1

883	as a normal game species, and the population was controlled by hunting (Bisi et al., 2007).
884	Following EU membership in 1995, Finland had to tighten its own legislation concerning the
885	conservation status of the wolf. According to the EC Habitats Directive the wolf is listed in
886	Appendix IV (strictly protected) with an exception in the Finnish reindeer herding area, where
887	the wolf is listed in Appendix V (hunting is possible). The Ministry of Agriculture and
888	Forestry annually grants a restricted number of licenses to kill wolves. The number of animals
889	killed per year (including animals killed in car accidents) has ranged between 5 and 27 in
890	years 2000–2005 (Bisi et al., 2007). In the Management Plan of the Wolf Population Finland
891	(Ministry of Agriculture and Forestry 11b/2005) from year 2005 it was recommended that
892	Finland should have at least 20 breeding pairs. However, this goal was achieved (between
893	2005–2014) only in 2006 when there were 25 breeding pairs in Finland. A new management
894	plan for wolves was accepted in Finland in 2015 and "population management" hunting was a
895	part of this new plan. Accordingly, the Finnish Wildlife Agency licensed the hunting of 24
896	wolves in 2015 and an additional ten wolves can be killed per year based on damages or close
897	encounters. The rationale of the "population management" hunting has been hotly debated in
898	Finland.

899

900 Baltic population

Low public acceptance due to livestock depredation, especially in islands in western Estonia (Plumer *et al.*, in prep.), diseases and human-caused mortality, including illegal killing, are the biggest threats the Baltic wolf population is facing (Table 4; Fig's. 7, 9). However, large infrastructure developments and fragmentation of suitable habitats by intensive forestry and an increase in agricultural land can also pose a significant threat. These problems are expected to remain, if not increase in the future, e.g. the forthcoming construction of Rail Baltic and new highways. Moreover, the new fence currently being built at the Estonian-Russian border

Biological Reviews

will probably decrease gene flow between the wolf populations between the countries, though complete isolation is unlikely as wolves can cross Lake Peipus during wintertime. Although gene flow occurs between Latvia and Estonia (Hindrikson *et al.*, 2013), there is no information on the extent of gene flow in the whole Baltic population. Similarly, there is a lack of knowledge on gene flow with neighbouring populations. Hybridization with dogs has been identified in Latvia, Estonia and northern Poland (Andersone et al., 2002; Hindrikson et al., 2012; Stronen et al., 2013), but not in Lithuania (Baltrūnaitė et al., 2013). However, the rate of introgressive hybridization has not yet been determined; if high, it can pose a treat to wolf long-term adaptive potential (Table 4).

918 Central European Lowland population

In the expanding Central European Lowland population the main threats are the road mortality, high human population density and illegal killing. In western Poland the loss of any individual has been thought to influence the survival of the pack or interrupt colonization of adjacent areas (Jedrzejewski et al., 2008). Species distribution modeling has found that human factors, especially road density and culling might limit the further spread of the species in Germany (Fechter & Storch, 2014) (Table 4). The connectivity of the Central European Lowland population with neighbouring populations is still weak and currently restricted to occasional gene flow from the Baltic population and interbreeding between closely related animals can occur (Kaczensky et al., 2013). However, the population shows a continuous increase, suggesting that the capacity limit of this poplations has not been reached yet. *Italian populations (includes both Italian peninsular and Alpine populations)*

931 The current wolf population expansion on the Italian peninsula is increasing conflicts with

932 humans, especially in areas where free-grazing on open pastures is widespread (Meriggi et al.,

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
39 40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58 59
09
60

1

933	2011; Milanesi et al., 2012). Both Italian peninsular and Alpine populations face threats that
934	are mainly related to low public acceptance, poor management structure, lack of knowledge,
935	persecution, accidental mortality, etc. (Table 4; Fig. 9). Of these, illegal killing through
936	poisoning remains the most important cause of mortality (Marucco et al., 2009; Marucco &
937	McIntyre, 2010). Hybridization with dogs in areas of the central Apennines has also become a
938	serious concern (Randi, 2008). The genetic diversity of these populations is one of the lowest
939	in Europe (see Table 1) but there are signs of improved connectivity with other European
940	populations: on one hand the Alpine population is incorporating animals from the Dinaric-
941	Balkan population (Fabbri et al., 2014; Ražen et al., 2016); on the other hand, wolves from
942	the Alpine population have expanded south-west, recently reaching the French Massif
943	Central, the Pyrenees and Catalonia in Spain (Valière et al., 2003; Lampreave et al., 2011;
944	Sastre, 2011) (see also Fig. 1). In general, administrative fragmentation and the obvious
945	absence of any national authority responsible for wolf management can be considered as
946	important threats that need to be urgently addressed through a renewed effort by the Ministry
947	of Environment, the key agency coordinating the regional governments in implementing
948	national and EU laws.

949

950 Carpathian population

In Poland, Slovakia and Romania the main problems are connected to livestock depredation
(Kaczensky *et al.*, 2013) (Table 4; Fig. 9). For example in Slovakia where depredation on
livestock is commonplace, the current overlap of wolf habitats with sheep farming is ~90%
(Rigg, 2004). In some areas of the Carpathian population range, overhunting and poaching are
the main threats (Kaczensky *et al.*, 2013) (Fig's. 7, 9). Nevertheless, the population range and
wolf numbers have increased in Slovakia despite hunting over the last 70 years: for example,
during the last 20 years the population range has increased by 10% (=1264 km²) (L. Paule

Biological Reviews

3	
1	
4 5 6	
5	
6	
7 8 9 10 11 12 13 14 15 16 17 18 19	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 89 0	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
04 05	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
54	
55	
56	
57	
58	
59	
60	

pers. comm). Similarly, there is a general lack of data on gene flow and impact of wolf
hunting in Ukraine on the number of wolves in neighbouring Poland, Slovakia and Romania.

960

961 Dinaric-Balkan population

962 In general, low acceptance (for example in Bulgaria, Slovenia, Bosnia and Herzegovina and 963 The Former Yugoslav Republic of Macedonia) due to overharvesting of wild ungulate 964 populations and therefore conflicts with hunters (mainly Greece, Bulgaria) or farmers 965 (livestock conflicts in Bulgaria, Slovenia) are common causes for human persecution 966 (Kaczensky et al., 2013) (Table 4; Fig. 7, 9). In several countries (Serbia, Bosnia and 967 Herzegovina, Bulgaria and The Former Yugoslav Republic of Macedonia) the main threats 968 are the limited knowledge of wolf ecology and population trends and poor management 969 structure (Kaczensky et al., 2013) (Table 4; Fig. 9). The population appears to be more or less 970 continuous throughout the Dinaric-Balkan range and is one of the genetically most 971 heterogeneous in Europe (Table 1), having connections with the Alpine (Fabbri et al., 2014) 972 population (Fig. 1). In general, there is a need to clarify the distribution and populational sub-973 structuring within this large population. In some countries such as Albania, Greece and 974 Southern Croatia (Dalmatia), hybridization with dogs might pose a potential risk (Kaczensky 975 et al., 2013; Stronen et al., 2013; Majić-Skrbinšek, 2014). In Bulgaria, a recent genetic study 976 found hybridization of wolves with domestic dogs and possibly also with golden jackals 977 (Moura et al., 2014), while in Greece, an animal with dog ancestry was identified (Stronen et 978 al., 2013).

979

980 *NW Iberian population*

This Wolf population is considered by the IUCN as "Near Threatened (NT)" because of the
fragmentation in management regimes, the lack of a population level management plan and

2 3	983	the occurrence of largely unpredictable events (human reactions against wolves) that may
4 5 6	984	threaten the population at the local level (IUCN, 2007). In fact, the lack of coordination
5 6 7 8	985	between authorities in the two countries and within the various autonomous regions of Spain,
9 10	986	together with the separation between science and management, are considered critical issues
11 12	987	for the NW Iberian population (Kaczensky et al., 2013). Additionally, there is no genetic
13 14	988	assessement considered for management planning (but see Godinho et al., 2014).
15 16	989	The lack of updated population information due to non-standardized census methods and the
17 18 19	990	unreliable breeding wolf pack estimations in several regions are a major source of concern
20 21	991	given the fact that wolves are exposed to hunting or to regional administration culls, except in
22 23	992	Portugal, where they are fully protected (Kaczensky et al., 2013).
24 25	993	An important threat is the low acceptance of the species by rural people due to wolf damage
26 27	994	to livestock, leading to high rates of illegal killings, both in Spain and in Portugal (Blanco et
28 29 30	995	al., 1990; Álvares 2004; Blanco & Cortés, 2009; Table 4). Other threats include human-
31 32	996	related disturbance and loss of habitat quality (non natural fires, infrastructure development
33 34	997	and lack of wild prey, particularly in Portugal; Santos <i>et al.</i> , 2007).
35 36	998	In addition, hybridization with dogs is another possible threat in some areas, depending on
37 38	999	wolf distribution and human perturbance (i.e. Leonard <i>et al.</i> , 2014): in a recent genetic survey
39 40	1000	of the Iberian population, 4% of the sampled individuals were hybrids (Godinho <i>et al.</i> , 2011).
41 42		
43 44	1001	On the other hand, genetic heterozygosity (Table 1) is the lowest in Europe and connection
45 46	1002	with other wolf populations is non-existent, as indicated by the high inbreeding coefficient
47 48	1003	$(F_{IS}=0.142).$
49 50	1004	
51 52	1005	Sierra Morena population
53 54 55	1006	The population is located in Sierra Morena, southern Spain (Andalusia and Castilla-La
56 57	1007	Mancha Autonomous Regions), is isolated and critically endangered despite nearly 30 years

1

Biological Reviews

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
11	
15	
10	
10	
17	
18	
19	
20	
21	
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1$	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	
111	

1008 of legal protection. The population was estimated to contain 6-10 packs in 1988 (Blanco et 1009 al., 1990). However, in the following years the breeding population has reduced drastically, 1010 perhaps to one pack, according to the Andalusian regional government wolf monitoring 1011 program (see also López-Bao et al., 2015). Proable causes are illegal killing to reduce 1012 competition for game species and avoid damage to livestock. Unless effective measures are 1013 implemented, the Sierra-Morena wolf population will be the first to become extinct in Europe during the 21st century (López-Bao et al., 2015). 1014 1015 1016 1017 VI. SIGNIFICANT GAPS IN KNOWLEDGE AND POSSIBLE SOLUTIONS 1018 Although numerous wolf population genetic and other studies have been published, several 1019 significant gaps can be highlighted: 1020 1021 Gap 1. There is a lack of Europe-wide genetic studies covering all European wolf 1022 populations. In their recent publication, Chapron et al., (2014) divided wolves in Europe into 1023 ten populations, based largely on wolf distribution data. However, for an accurate definition 1024 of management units, such information should be coupled with a deeper understanding of 1025 wolf dispersal (gene flow) and population genetic structure. Knowledge about levels of gene 1026 flow within and between different wolf populations in Europe, and with neighbouring 1027 populations in West Asia and countries out of EU (e.g. in Caucasus, Russia, Belarus, Ukraine 1028 and Albania) is limited.

1029 Solution: Europe-wide population genetic project, also engaging researchers from West Asia1030 and non-EU countries.

2
$\begin{smallmatrix} 2 & 3 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \\ 9 & 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 01 \\ 32 \\ 33 \\ 45 \\ 67 \\ 89 \\ 33 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 32 \\ 34 \\ 35 \\ 67 \\ 89 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 3$
5 6
7
8 9
10
12
13 14
15
16 17
18 19
20
21 22
23 24
24 25
26 27
28
29 30
31 32
33
34 35
36 37
38
40
41 42
43
44 45
46 47
48
49 50
51 52
53
54 55
55 56 57
58 59
59 60

1032	Gap 2. Sampling schemes are not always adequate in terms of sample numbers and
1033	geographical coverage. Moreover, analyses are often based on dead individuals (that are not
1034	part of the population any longer); ideally, one should be able to obtain a real-time picture of
1035	a wolf population and track the fate of animals for a longer period of time to understand
1036	ongoing population processes, at least in problem areas (see Godinho et al., 2014). To this
1037	end, non-invasive sampling (e.g. based on scats) is highly appropriate.
1038	Solution: Develop unified sampling protocols and encourage the use of non-invasive sampling
1039	methods.
1040	
1041	Gap 3. There is a lack of common methods and sets of genetic markers that are universally
1042	comparable between studies.
1043	Solution: The rapidly developing field of genomics holds great promise for wolf population
1044	analysis. However, it is not yet clear which methods will be most appropriate to adopt in
1045	terms of data quality and cost.
1046	For analysis of the maternal lineage, the focus in the future should be on sequencing complete
1047	mitochondrial genomes, which has already demonstrated its advantages for example in brown
1048	bears (e.g. Keis et al., 2013). For the paternal lineage, there is an urgent need to develop a
1049	panel consisting of a large number of polymorphic Y chromosome specific loci (SNPs,
1050	microsatellites). For the analysis of autosomal biparental markers, there are three main
1051	options: (1) to use low-coverage whole-genome sequencing; (2) to use SNP-chips; or (3) to
1052	use NGS-based microsatellite genotyping. For population analysis, the second and third
1053	options are currently more economical, but the advantages of whole-genome sequencing are
1054	apparent: it provides more comprehensive data, enabling coverage of autosomes, the
1055	mitogenome and the Y chromosome. The main problem associated with whole-genome
1056	sequencing is its cost. If only individual identification is required, e.g. for cost-effective and

	1057	long-term genetic monitoring of wolves across Europe (preferably based on non-invasive
	1058	samples), then nanofluidic SNP genotyping technology based on 96 SNP loci (Kraus et al.,
	1059	2015) and the commercially available multiplex kit for 19 microsatellite loci are perhaps the
I	1060	best options available at the moment, but the latter requires standardization to compare data
	1061	produced by different groups. The standardization has recently been highlighted also by De
	1062	Groot <i>et al.</i> (2016).
	1063	
1	1064	Gap 4. Lack of Europe-wide genetic studies to analyse hybridization between wolves and
	1065	dogs and the level of introgression of dog genes into wolf populations.
	1066	Solution: to develop a Europe-wide hybridization project. All three types of parental markers
	1067	should be used to evaluate the level of hybridization and introgression, and also their
	1068	directionality.
1	1069	
	1070	Gap 5. Limited knowledge of wolf depredation on livestock. Since public attitudes and
	1071	management measures are largely dependent on rates of wolf depredation, it is necessary to
	1072	have accurate measures of depredation rates. As livestock can be killed not only by wolves,
1	1073	but also by domestic dogs and other predators, genetic methods should be used to identify the
	1074	involvement of wolves and other predator species in livestock depredation (Sundqvist et al.,
	1075	2008; Echegaray & Vilà 2010; Caniglia et al., 2013; Milanesi et al., 2015; Plumer et al., in
	1076	prep.). The impact of certain management actions on livestock predation should also be
	1077	studied, as it has recently been shown that culling actually increases attacks on livestock in
1	1078	North America (Wielgus & Peebles, 2014).
	1079	Solution: establish a unified genetic methodology to analyse the proportion of livestock killed
	1080	by wolves, and a unified management reporting system.
	1081	
1		

1082	
1083	VII. SUGGESTIONS FOR SCIENCE-BASED WOLF CONSERVATION AND
1084	MANAGEMENT IN EUROPE
1085	For the long-term survival of European wolves and to achieve favourable conservation status
1086	(mandatory by EU rules), there is a need to increase the overall population size and favour
1087	wolf dispersal and connectivity between and within populations. It is therefore important to
1088	evaluate the effective size of entire meta-population to establish scientifically based
1089	demographic and genetic targets.
1090	There are several outstanding issues to be solved in order to warrant the most efficient
1091	science-based wolf conservation and management (Table 5, Table 6; Fig. 8).
1092	
1093	1) Wolf populations should ideally be managed according to biological units, i.e. a
1094	population should include areas connected with moderate to high gene flow. Further
1095	genetic analysis covering all wolf populations in Europe will be necessary to define
1096	the exact number and spatial distribution of populations.
1097	2) A European Union Wolf Scientific Committee (EU-WSC) involving scientists from
1098	all EU countries containing wild wolf populations should be established to guarantee
1099	evidence-based scientific decision making. Representatives of government officials,
1100	major stakeholders and scientists from neighbouring wolf-countries should also be
1101	invited to take part when necessary.
1102	3) For better implementation of EU legislation and strengtening the evidence-based
1103	scientific decision making, we suggest establishing a European Union Reference
1104	Laboratory of Wolf Studies (EURL-Wolf) (Table 5; Fig. 8). The aim of EURL-Wolf
1105	is to coordinate a network of national reference laboratories, train laboratory staff and
1106	provide reference methods and services to countries without a national reference
	45

Page 47 of 89

1

Biological Reviews

1		
2 3 4	1107	laboratory. It is important to note that the priority to conduct scientific research would
5 6	1108	remain with national laboratories, whereas the role of the reference laboratory would
7 8	1109	be to help develop and adapt reference methods, organise services to those countries
9 10	1110	without a reference laboratory, and coordinate Europe-wide data analysis and data
11 12	1111	sharing. Thus, EURL-Wolf would support the creation of a well performing network
13 14 15	1112	of laboratories throughout the European Union, strengthen science-based decision
16 17	1113	making in wolf conservation and management in the EU, stimulate innovation through
18 19	1114	developing and adapting new methods, tools and standards, and share its know-how
20 21	1115	with the Member States, the scientific community and international partners.
22 23	1116	
24 25 26	1117	Under EURL-Wolf, several dedicated reference laboratories could be established, responsible
27 28	1118	for various scientific analyses that are necessary to provide adequate information on wolf
29 30	1119	populations across Europe. Two such dedicated reference laboratories are perhaps most
31 32	1120	urgently required: (a) wolf population genetics (EURL-Wolf-Gen), and (b) wolf diet and
33 34	1121	pathogens (EURL-Wolf-DP).
35 36 37	1122	EURL-Wolf-Gen would coordinate genetic research, provide standardization and regularly
38 39	1123	analyse samples from different countries in Europe (and beyond) for various wolf-monitoring
40 41	1124	and scientific purposes. A platform for direct exchange of genetic and other data should be
42 43	1125	established to facilitate effective information exchange, while guaranteeing intellectual
44 45 46	1126	property rights.
40 47 48	1127	EURL-Wolf-DP would coordinate research, provide standardization and regularly analyse
49 50	1128	samples connected with analysis of wolf food habits and pathogens across Europe. Studies on
51 52	1129	food habits provide essential data for the wolf prey-base in different regions in Europe (e.g.
53 54	1130	Valdmann et al., 2005; Zlatanova et al., 2014), the ratio of wild prey/livestock in wolf diet,
55 56	1131	etc. Knowledge on wolf food habits is crucial for reducing conflicts with various stakeholders
57 58 59		
60		46

13456789111234156789012222222222222333333333444234456789012234567890	2 3
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	5
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	7
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	8 9
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	10 11
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	12 13
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	14 15
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	16 17
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	18 19
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	20 21
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	22 23
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	24 25
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	26 27
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	28 29
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	30 31
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	32
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	34 25
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	36 37
41 42 43 44 45 46 47 49 50 52 54 55 57 58 59	37 38
42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59	39 40
44 45 46 47 48 49 50 51 52 53 55 56 57 58 59	42
46 47 48 49 50 51 52 53 55 56 57 58 59	44
48 49 50 51 52 53 54 55 56 57 58 59	46
50 51 52 53 54 55 56 57 58 59	48
52 53 54 55 56 57 58 59	50
54 55 56 57 58 59	52
56 57 58 59	54
58 59	56
59 60	58
	59 60

1 2

1132	and envisaging appropriate conservation-management plans. Although a large number of local
1133	studies have been performed, the overall level of knowledge about wolf diet is poor.
1134	Wolf pathogens should also be studied on a regular basis to understand their role in wolf
1135	mortality and potential transmission of pathogens between wolves and free-ranging dogs and
1136	from them to humans. Wolves are well known to transmit rabies, but they can also transmit
1137	other hazardous zoonootic pathogens (parasites, viruses, etc.), for example tapeworms
1138	Echinococcus granulosus and E. multilocularis (e.g. Moks et al., 2006; Marcinkute et al.,
1139	2015) that are the cause of life-threatening diseses: cystic and alveolar echinococcosis,
1140	respectively.
1141	4) Using questionnaires, regular European-wide studies should be initiated to
1142	investigate public attitudes. Based on these and other available data, significant effort
1143	should be made to improve the knowledge of problems related to wolves and their
1144	mitigation. A "European Union Wolf Web-page" should be established to provide up-to-
1145	date information on wolves in Europe (scientific results in popular format, changes in
1146	legislation, population data, etc.).
1147	5) A tradition of biannual European wolf conferences should be established. Such
1148	conferences would serve as a main meeting place for wolf experts and other interested
1149	parties to present new results and discuss and share ideas to improve wolf research,
1150	protection, management, public awareness, etc.
1151	
1152	
1153	XIII. CONCLUSIONS
1154	(1) Ongoing protection of European wilderness zones, socio-economic changes and recovery
1151	of wild ungulates has enabled wolves to recolonize many parts of its former range in Europe.
1155	Currently, ca 12 000 wolves occupy over 800 000 square kilometres in 28 European countries

Biological Reviews

2	
3 4	
4	
5	
6	
/ 8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
$\begin{array}{c} 7 \\ 8 \\ 9 \\ 101 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 23 \\ 34 \\ 35 \\ 67 \\ 38 \\ 37 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 3$	
30	
31	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
57	
58	
59	
60	

1157 with 9 900 of these animals present in 22 countries belonging to the European Union. Several 1158 remarkable examples of wolf recovery in Europe have been described, e.g. in Scandinavia and 1159 Italy. At the same time there are examples of populations that have recently gone extinct, such 1160 as in the Alentejo region (Portugal), or are on the verge of extinction, such as in Sierra 1161 Morena (Spain). 1162 1163 (2) A Europe-wide meta-analysis was conducted based on the results of available and new 1164 microsatellite- data. As a result, the range of spatial autocorrelation was 650–850 km, 1165 suggesting that the genetic diversity of a given wolf population can be influenced by 1166 populations up to 850 km away. 1167 1168 (3) As an important outcome of this synthesis, we have discussed the most pressing issues 1169 threatening wolf populations in Europe, highlighted important gaps in current knowledge, 1170 suggested solutions to overcome these limitations, and provided suggestions for science-based 1171 wolf conservation and management at regional and Europe-wide scales. Among these the 1172 most significant are: 1) wolf populations should ideally be managed according to biological 1173 units, which requires additional genetic analysis covering all wolf populations in Europe to 1174 define the exact number and spatial distribution of populations; 2) to establish a European 1175 Union Wolf Scientific Committee; 3) to establish a European Union Reference Laboratory of 1176 Wolf Studies. 1177 1178 1179 **IX. ACKNOWLEDGEMENTS** 1180 We wish to thank Verena Harms and John Davison for their generous help. This work was 1181 supported by institutional research funding (IUT20-32 and ESF-8525) of the Estonian

2	
3	
4	
5	
6	
7	
8	
9 10 11 12 13 14 15 16 17 18 19	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
20	
20	
21 22 23 24 25 26 27 28 29 30	
28	
29	
30	
31	
32	
33	
33 34 35 36 37	
35	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1182	Ministry of Education and Research; the European Union through the European Regional
1183	Development Fund (Centre of Excellence FIBIR); the European Commission's project No.
1184	PIRSES-GA-2009-247652 (BIOGEAST); the Estonian Doctoral School of Ecology and
1185	Environmental Sciences; the European Commission through the LIFE programme (LIFE
1186	SloWolf LIFE08 NAT/SLO/244); the European Social Fund
1187	(2014/0002/1DP/1.1.1.2.0/13/APIA/VIAA/053); A.V. Stronen received funding from the
1188	Danish Natural Science Research Council (postdoctoral grant 1337-00007). A fellowship
1189	from the Spanish National Research Council (CSIC) JAE Program supported J. Echegaray. R.
1190	Godinho was supported by a research contract from the Portuguese Foundation for Science
1191	and Technology (IF/564/2012). J. V. López-Bao was supported by a 'Juan de la Cierva'
1192	research contract (JCI-2012-13066) from the Spanish Ministry of Economy and
1193	Competitiveness.
1194	
1195	Competitiveness. X. REFERENCES
1196	X. REFERENCES
1197	
1198	ALLENDORF, F.W., LUIKART, G. & AITKEN, S.N. (2013). Conservation and the Genetics of
1199	Populations (2 nd edn). Wiley-Blackwell.
1200	ÁLVARES, F. (2004). Status and conservation of the Iberian wolf in Portugal. Wolf Print 20,
1201	4-6.
1202	ÁLVARES, F., BARROSO, I., BLANCO J.C., CORREIA, J., CORTÉS, Y., COSTA, G., LLANEZA, L.,
1203	Moreira, L., Nascimento, J., Palacios, P., Petrucci-Fonseca, P., Pimenta, V.,
1204	ROQUE, S. & SANTOS, E. (2005). Wolf status and conservation in the Iberian Peninsula.
1205	Abstracts Conference "Frontiers of Wolf Recovery: Southwestern U. S. and the World".
1206	Colorado Springs, EUA. Pp. 76-77.

2 3	1207	ANDERSEN, L.W., HARMS, V., CANIGILIA, R., CZARNOMSKA, S.D., FABBRI, E.,
4 5 6	1208	Jęndrzejewska, B., Kluth, G., Madsen, A.B., Nowak, C., Pertoldi, C., Randi, E.,
7 8	1209	REINHARDT, I. & STRONEN, A.V. (2015). Long-distance dispersal of a wolf, Canis lupus,
9 10	1210	in northwestern Europe. Mammal Research 60, 163-168.
11 12	1211	ANDERSONE, Z., LUCCHINI, V., RANDI, E. & OZOLINS, J. (2002). Hybridization between
13 14	1212	wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA
15 16 17	1213	markers. Mammalian Biology 67, 79–90.
17 18 19	1214	Arbanasić, H., Huber, D., Kusak, J., Gomerčić, T., Hrenović, J. & Galov, A. (2013).
20 21	1215	Extensive polymorphism and evidence of selection pressure on major histocompatibility
22 23	1216	complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. Tissue
24 25	1217	Antigens 81, 19–27.
26 27 28	1218	Aspi, J., Roininen, E., Kiiskilä, J., Ruokonen, M., Kojola, I., Bljudnik, L., Danilov, P.,
29 30	1219	HEIKKINEN, S. & PULLIAINEN, E. (2009). Genetic structure of the northwestern Russian
31 32	1220	wolf populations and gene flow between Russia and Finland. Conservation Genetics 10,
33 34	1221	815–826.
35 36 37	1222	ASPI, J., ROININEN, E., RUOKONEN, M., KOJOLA, I. & VILÀ, C. (2006). Genetic diversity,
38 39	1223	population structure, effective population size, and demographic history of the Finnish
40 41	1224	wolf population. <i>Molecular Ecology</i> 15 , 1561–1576.
42 43	1225	BAKAN, J. & PAULE, L. (2014). Genetic differentiation of grey wolf population (Canis lupus
44 45	1226	L.) from Balkan and Carpathians. Balkan Journal of Wildlife Research 1, 87-93.
46 47 48	1227	BALTRŪNAITĖ, L., BALČIAUSKAS, L. & ÅKESSON, M. (2013). The genetic structure of the
49 50	1228	Lithuanian wolf population. Central European Journal of Biology 8, 440–447.
51 52	1229	BANDELT, HJ., FORSTER, P. & RÖHL, A. (1999). Median-joining networks for inferring
53 54	1230	intraspecific phylogenies. Molecular Biology and Evolution 16, 37-48.
55 56 57		
57 58 59		
60		50

2 3	1231	BENSCH, S., ANDRÉN, H., HANSSON, B., PEDERSEN, H.C., SAND, H., SEJBERG, D.,
4 5 6	1232	WABAKKEN, P., ÁKESSON, M. & LIBERG, O. (2006). Selection for heterozygosity gives
7 8	1233	hope to a wild population of inbred wolves. PLoS ONE 1, e72.
9 10	1234	BIDON, T., JANKE, A., FAIN, S.R., EIKEN, H.G., HAGEN, S.B., SAARMA, U., HALLSTRÖM,
11 12	1235	B.M., LECOMTE, N. & HAILER, F. (2014). Brown and polar bear Y chromosomes reveal
13 14 15	1236	extensive male-biased gene flow within brother lineages. Molecular Biology and
16 17	1237	<i>Evolution</i> 31 , 1353–1363.
18 19	1238	BISI, J., KURKI, S., SVENSBERG, M. & LIUKKONEN, T. (2007). Human dimensions of wolf
20 21	1239	(Canis lupus) conflicts in Finland. European Journal of Wildlife Research 53, 304–314.
22 23 24	1240	BLANCO, J.C. & CORTÉS, Y. (2009). Ecological and social constraints of wolf recovery in
24 25 26	1241	Spain. Pp.41-66. In: Musiani, M., Boitani, L., Paquet, P.C. (Eds.). A New Era for
27 28	1242	Wolves and People: Wolf Recovery, Human Attitudes and Policy. University of
29 30	1243	Calgary Press, Calgary, Alberta.
31 32	1244	BLANCO, J.C. & CORTÉS, Y. (2012). Surveying wolves without snow: a critical review of
33 34 35	1245	the methods used in Spain. Hystrix, the Italian Journal of Mammalogy 23, 35-48.
36 37	1246	BOITANI, L. (1992). Wolf research and conservation in Italy. <i>Biological Conservation</i> 61,
38 39	1247	125-132.
40 41	1248	BLANCO, J.C., CORTÉS, Y. & VIRGÓS, E. (2005). Wolf response to two kinds of barriers in
42 43 44	1249	an agricultural habitat in Spain. Canadian Journal of Zoology 83, 312-323.
45 46	1250	BLANCO, J.C., CUESTA, L. & REIG, S. (1990). El lobo en España: una visión global. Pp. 69-
47 48	1251	94. In: Blanco, J. C., Cuesta, L., Reig, S. (Eds.). El lobo (Canis lupus) en España.
49 50	1252	Situación, problemática y apuntes sobre su ecología. ICONA, Colección Técnica,
51 52 53 54 55 56 57 58	1253	Madrid.

2 3	1254	BOITANI, L. (2000). Action plan for the conservation of the wolves (Canis lupus) in Europe.
4 5 6	1255	Nature and environment Series, No. 113 Convention on the Conservation of European
0 7 8	1256	Wildlife and Natural Habitats. Council of Europe, Strasbourg. p 81.
9 10	1257	BOITANI, L. & CIUCCI, P (2009). Wolf management across Europe: Species Conservation
11 12	1258	without Boundaries. In: Musiani, M., Boitani, L., Paquet, P., C. (2009) A New Era for
13 14	1259	Wolves and People: Wolf Recovery, Human Attitudes and Policy. University of
15 16 17	1260	Calgary Press. pp. 15-40.
18 19	1261	BOYKO, A.R., BOYKO, R.H., BOYKO, C.M., PARKER, H.G., CASTELHANO, M., COREY, L.,
20 21	1262	DEGENHARDT, J.D., AUTON, A., HEDIMBI, M., KITYO, R., OSTRANDER, E.A.,
22 23	1263	SCHOENEBECK, J., TODHUNTER, R.J., JONES, P. & BUSTAMANTE, C.D. (2009). Complex
24 25	1264	population structure in African village dogs and its implications for inferring dog
26 27 28	1265	domestication history. Proceedings of the National Academy of Sciences 106, 13903–
20 29 30	1266	13908.
31 32	1267	BRUMFIELD, R.T., BEERLI, P., NICKERSON, D.A. & EDWARDS, S.E. (2003). The utility of
33 34	1268	single nucleotide polymorphisms in inferences of population history. Trends in Ecology
35 36 97	1269	and Evolution 18, 249–256.
37 38 39	1270	BRUSKOTTER, J.T., ENZLER, S.A. & TREVES, A. (2011). Rescuing wolves from politics:
40 41	1271	Wildlife as a public trust resource. <i>Science</i> 333 : 1828–1829.
42 43	1272	CANIGLIA, R., FABBRI, E., GALAVERNI, M., MILANESI, P. & RANDI, E. (2014). Noninvasive
44 45	1273	sampling and genetic variability, pack structure, and dynamics in an expanding wolf
46 47	1274	population. Journal of Mammalogy 95 , 41–59.
48 49 50	1275	CANIGLIA, R., FABBRI, E., MASTROGIUSEPPE, L. & RANDI, E. (2013). Who is who?
50 51 52	1276	Identification of livestock predators using forensic genetic approaches. Forensic Science
53 54 55	1277	International-Genetics 7, 397–404.
56 57 58 59		
59 60		52

2 3	1278	CHAPRON, G., KACZENSKY, P., LINNELL, J.D.C., VON ARX, M., HUBER, D., ANDRÉN, H.,
4 5 6	1279	VICENTE, LÓPEZ-BAO. J.V. et al. (2014). Recovery of large carnivores in Europe's
7 8	1280	modern human-dominated landscapes. Science 346, 1517–1519.
9 10	1281	CZARNOMSKA, D.S., JĘDRZEJEWSKA, B., BOROWIK, T., NIEDZIAŁKOWSKA, M., STRONEN, A.,
11 12	1282	V., NOWAK, S., MYSŁAJEK, R., W., OKARMA, H., KONOPIŃSKI, M., PILOT, M.,
13 14 15	1283	Śmietana, W., Caniglia, R., Fabbri, E., Randi, E., Pertoldi, C. & Jędrzejewski, W.
16 17	1284	(2013). Concordant mitochondrial and microsatellite DNA structuring between Polish
18 19	1285	lowland and Carpathian Mountain wolves. Conservation Genetics 14, 573–588.
20 21	1286	DALERUM, F., LOXTERMAN, J., SHULTS, B., KUNKEL, K. & COOK, J.A. (2007). Sex-specific
22 23 24	1287	dispersal patterns of wolverines: Insights from microsatellite markers. Journal of
25 26	1288	Mammalogy 88 , 793–800.
27 28	1289	DAVISON, J., HO, S.Y.W., BRAY, S., KORSTEN, M., TAMMELEHT, E., HINDRIKSON. M.,
29 30	1290	ØSTBYE, K., ØSTBYE, E., LAURITZEN, SE., AUSTIN, J., COOPER, A. & SAARMA, U.
31 32	1291	(2011). Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a
33 34 35	1292	wild mammal model species. Quaternary Science Reviews 30, 418-430.
36 37	1293	DAVOLI, F., SCHMIDT, K., KOWALCZYK, R. & RANDI, E. (2013). Hair snaring and molecular
38 39	1294	genetic identification for reconstructing the spatial structure of Eurasian lynx
40 41	1295	populations. <i>Mammalian Biology</i> 78 , 118–126.
42 43 44	1296	DE GROOT, G.A., NOWAK. C., SKRBINŠEK, T., ANDERSEN, L.W., ASPI, J., FUMAGALLI, L.,
45 46	1297	GODINHO, R., HARMS, V., JANSMAN, H., A., H., LIBERG. O. MARUCCO, F., MYSŁAJEK,
47 48	1298	R.W., NOWAK, S., PILOT, M., RANDI, E., REINHARDT, I., ŚMIETANA, W., SZEWCZYK, M.,
49 50	1299	TABERLET, P., VILÀ, C. & MUÑOZ-FUENTES, V. (2016). Decades of population genetic
51 52	1300	research call for harmonization of molecular markers: the grey wolf, Canis lupus, as a
53 54 55 56 57 58	1301	case study. <i>Mammal Review</i> , 46 (1) , 44-59.

2 3	1302	DELIBES, M. (1990). Status and conservation needs of the wolf (Canis lupus) in the Council
4 5 6	1303	of Europe member states. Council of Europe. Convention on the Conservation of
6 7 8	1304	European Wildlife and Natural Habitats. Report: 1–46.
9 10	1305	Djan, M., Maletić, V., Trbojević, I. Popović, D., Veličković, N., Burazerović, J. &
11 12	1306	ĆIROVIĆ, D. (2014). Genetic diversity and structuring of the grey wolf population from
13 14	1307	the Central Balkans based on mitochondrial DNA variation. Mammalian Biology 79,
15 16 17	1308	277–282.
18 19	1309	DOLF, G., SCHLÄPFER, J., GAILLARD, C. RANDI, E., LUCCHINI, V., BREITENMOSER, U. &
20 21	1310	STAHLBERGER-SAITBEKOVA, N. (2000). Differentiation of the Italian wolf and the
22 23	1311	domestic dog based on microsatellite analysis. Genetics Selection Evolution 32, 533-
24 25 26	1312	541.
27 28	1313	ECHEGARAY, J. & VILÀ, C. (2010). Noninvasive monitoring of wolves at the edge of their
29 30	1314	distribution and the cost of their conservation Animal Conservation 13, 157-161
31 32	1315	ELLEGREN, H. (1991). DNA typing of museum birds. Nature 354, 113–113.
33 34 35	1316	ELLEGREN, H., SAVOLAINEN, P. & ROSEN, B. (1996). The genetical history of an isolated
36 37	1317	population of the endangered grey wolf Canis lupus: a study of nuclear and
38 39	1318	mitochondrial polymorphisms. Philosophical Transactions of the Royal Society of
40 41	1319	London 351 , 1661–1669.
42 43 44	1320	Estes, J.A. Terborgh, J., Brashares, J.S., Power, M.E., Berger, J. Bond, W. L.,
45 46	1321	CARPENTER, S. R., ESSINGOTN, T. E., HOLT, R. D., JACKSON, J. B. C., MARQUIS, R. J.,
47 48	1322	Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A.,
49 50	1323	Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R. E., Soulé, M. E.,
51 52	1324	VIRTANEN, R. & WARDLE, D., A. (2011). Trophic downgrading of planet earth. Science
53 54 55	1325	333 , 301–306.
56 57		
58 59		
60		54

1		
2 3 4	1326	Fabbri, E., Caniglia, R., Kusak, J., Galov, A., Gomerčić, T., Arbanasić, A., Huber, D.
5 6	1327	& RANDI, E. (2014). Genetic structure of expanding wolf (Canis lupus) populations in
7 8	1328	Italy and Croatia, and the early steps of the recolonization of the Eastern Alps.
9 10	1329	Mammalian Biology 79, 138–148.
11 12	1330	FABBRI, E., CANIGLIA, R., MUCCI, N., THOMSEN H.P., KRAG, K., PERTOLDI, C., LOESCHCKE,
13 14 15	1331	V. & RANDI, E. (2012). Comparison of single nucleotide polymorphisms and
16 17	1332	microsatellites in non-invasive genetic monitoring of a wolf population. Archives
18 19	1333	Biological Science 64, 321-335.
20 21	1334	Fabbri, E., Miquel, C., Lucchini, V., Santini, A., Caniglia, R., Duchamp, C., Weber, J.
22 23	1335	M., Lequette. B., Marucco, F., Boitani, L., Fumagalli, L., Taberlet, P. & Randi,
24 25 26	1336	E. (2007). From the Apennines to the Alps: colonization genetics of the naturally
27 28	1337	expanding Italian wolf (Canis lupus) population. Molecular Ecology 16, 1661–1671.
29 30	1338	FECHTER, D. & STORCH, I. (2014). How many wolves (Canis lupus) fit into Germany? The
31 32	1339	role of assumptions in predictive rule-based habitat models for habitat generalists. PLoS
33 34 35	1340	<i>ONE</i> 9 : e101798.
36 37	1341	Ferrand, N., Godinho, R., Lopes, S., Carrasco, R., Ortega, F., Franco, A. & Blanco,
38 39	1342	J.C. (2005). Análise genética preliminar do isolado populacional de lobo (Canis lupus)
40 41	1343	da Serra Morena (Andaluzia, Espanha): aplicação de microssatélites, DNA-mitocondrial
42 43 44	1344	e marcadores do cromossoma Y. Abstracts II Congresso Luso-Espanol sobre o Lobo
44 45 46	1345	Ibérico, pp 71. Castelo Branco, Portugal.
47 48	1346	FLAGSTAD, Ø., WALKER, C. W., VILÀ, C., SUNDQVIST, AK., FERNHOLM, B., HUFTHAMMER,
49 50	1347	A.K., WIIG, Ø., KOJOLA, I. & ELLEGREN, H. (2003). Two centuries of the Scandinavian
51 52	1348	wolf population: patterns of genetic variability and migration during an era of dramatic
53 54 55	1349	decline. Molecular Ecology 12, 869–880.
56 57		
58 59		
60		55

1		
2 3 4	1350	FORTIN, MJ. & DALE, M.R.T. (2005). Spatial Analysis: A Guide for Ecologists.
5 6	1351	Cambridge University Press.
7 8	1352	FRANKHAM, R. (2005). Genetics and extinction. <i>Biological Conservation</i> 126, 131–140.
9 10	1353	GALAVERNI, M., CANIGLIA, R., FABBRI, E., LAPALOMBELLA, S. & RANDI, E. (2013). MHC
11 12	1354	variability in an isolated wolf population in Italy. Journal of Heredity 104, 601-612.
13 14	1355	GALAVERNI, M., CANIGLIA, R., FABBRI, E., MILANESI, P. & RANDI, E. (2016). One, no one,
15 16 17	1356	or one hundred thousand: how many wolves are there currently in Italy? Mammal
18 19	1357	<i>Research</i> 61 , 13-24.
20 21	1358	GILROY, J.J., ORDIZ, A. & BISCHOF, R. (2015). Carnivore coexistence: value the wilderness.
22 23	1359	Science 347, 82.
24 25 26	1360	GODINHO, R., LLANEZA, L., BLANCO, J.C., LOPES, S., ALVARES, F., GARCÍA, E.J., PALACIOS,
27 28	1361	V., CORTÉS, Y., TALEGÓN, J. & FERRAND, N. (2011). Genetic evidence for multiple
29 30	1362	events of hybridization between wolves and domestic dogs in the Iberian Peninsula.
31 32	1363	Molecular Ecology 20, 5154–5166.
33 34 25	1364	GODINHO, R., LÓPEZ-BAO J.V., CASTRO, D., LLANEZA, L., LOPES, S., SILVA, P. & FERRAND,
35 36 37	1365	N. (2014). Real-time assessment of hybridization between wolves and dogs: combining
38 39	1366	noninvasive samples with ancestry informative markers. Molecular Ecology Resources
40 41	1367	15 , 317–328.
42 43	1368	Gomerčić, T., Sindičić, M., Galov, A., Arbanasić, H., Kusak, J., Đuras Gomerčić, M.
44 45 46	1369	& HUBER, D. (2010). High genetic variability of the grey wolf (Canis lupus L.)
47 48	1370	population from Croatia as revealed by mitochondrial DNA control region sequences.
49 50	1371	Zoological Studies 49, 816–823.
51 52	1372	GRANDE DEL BRÍO, R. (1984). El lobo ibérico. Biología y mitología. Hermann Blume,
53 54	1373	Madrid
55 56 57		
58		
59 60		56

2 3	1374	GRAVENDEEL, B., DE GROOT, A., KIK, M., BEENTJES, K.K., BERGMAN, H., CANIGLIA, R.,
4 5 6	1375	CREMERS, H., FABBRI, E., GROENENBERG, D., GRONE, A., BRUINDERINK, G.G., FONT, L.,
6 7 8	1376	Hakhof, J., Harms, V., Jansman, H., Janssen, R., Lammertsma, D., Laros, I.,
9 10	1377	Linnartz, L., van der Marel, D., Mulder, J.L., van der Mije, S., Nieman, A.M.,
11 12	1378	NOWAK, C., RANDI, E., RIJKS, M., SPEKSNIJDER, A. & VONHOF, H.B. (2013). The first
13 14	1379	wolf found in the Netherlands in 150 years was the victim of a wildlife crime. Lutra 56,
15 16 17	1380	93-109
18 19	1381	GREWAL, S.K., WILSON, P.J., KUNG, T.K., SHAMI, K., THEBERGE, M.T., THEBERGE, J.B. &
20 21	1382	WHITE, B.N. (2004). A genetic assessment of the eastern wolf (Canis lycaon) in
22 23	1383	Algonquin provincial park. Journal of Mammalogy 85, 625-632.
24 25 26	1384	GULA, R., HAUSKNECHT, R. & KUEHN, R. (2009). Evidence of wolf dispersal in
27 28	1385	anthropogenic habitats of the Polish Carpathian Mountains. Biodiversity Conservation
29 30	1386	18 , 2173–2184.
31 32	1387	HAGENBLAD, J., OLSSON, M., PARKER, H.G., OSTRANDER, E.A. & ELLEGREN, H. (2009).
33 34 35	1388	Population genomics of the inbred Scandinavian wolf. Molecular Ecology 18, 1341-
36 37	1389	1351.
38 39	1390	HAILER, F. & LEONARD, J.A. (2008). Hybridization among three native North American
40 41	1391	Canis species in a region of natural sympatry. PLoS ONE 3: e3333.
42 43	1392	HARTL, D.L. & CLARK, A.G. (1997). Principle of Population Genetics. Sinauer Associates.
44 45 46	1393	HEDMARK, E., PERSSON, J., LANDA, A. & SEGERSTRÖM, P. (2007) Paternity and mating
47 48	1394	system in wolverines. Wildlife Biology 3, 13–30.
49 50	1395	HINDRIKSON, M., MÄNNIL, P., OZOLINS, J., KRZYWINSKI, A. & SAARMA, U. (2012). Bucking
51 52	1396	the trend in wolf-dog hybridization: first evidence from Europe of hybridization
53 54 55	1397	between female dogs and male wolves. PLoS ONE 7, e46465.
56 57		
58 59		
60		57

1		
2 3 4	1398	Hindrikson, M., Remm, J., Männil, P., Ozolins, J., Tammeleht, E. & Saarma, U.
5 6	1399	(2013). Spatial genetic analyses reveal cryptic population structure and migration
7 8	1400	patterns in a continuously harvested grey wolf (Canis lupus) population in North-
9 10	1401	Eastern Europe. PLoS ONE 8, e75765.
11 12	1402	HIRATA, D., MANO, T., ABRAMOV, A.V., BARYSHNIKOV, G.F., KOSINTSEV, P.A., VOROBIEV,
13 14 15	1403	A.A., RAICHEV, E.G., TSUNODA, H., KANEKO, Y., MURATA, K., FUKUI, D. & MASUDA,
16 17	1404	R. (2013). Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern
18 19	1405	Asia based on analyses of complete mitochondrial DNA sequences. Molecular Biology
20 21	1406	and Evolution 30 , 1644–1652.
22 23	1407	Iacolina, M., Scandura, M., Gazzola, A., Cappai, N., Capitani, C., Mattioli, L.,
24 25 26	1408	VERCILLO, F. & APOLLONIO, M. (2010). Y chromosome microsatellite variation in
20 27 28	1409	Italian wolves: a contribution to the study of wolf-dog hybridization patterns.
29 30	1410	Mammalian Biology 75 , 341–347.
31 32	1411	IUCN (2007). Canis lupus. The IUCN Red List of Threathened Species.
33 34	1412	http://www.iucnredlist.org/details/full/3746/1
35 36 37	1413	JANSSON, E., HARMOINEN, J., RUOKONEN, M. & ASPI, J. (2014). Living on the edge:
38 39	1414	reconstructing the genetic history of the Finnish wolf population. BMC Evolutionary
40 41	1415	<i>Biology</i> 14 , 64– 84.
42 43	1416	JANSSON, E., RUOKONEN, M., KOJOLA, I. & ASPI, J. (2012). Rise and fall of a wolf
44 45 46	1417	population: genetic diversity and structure during recovery, rapid expansion and drastic
40 47 48	1418	decline. Molecular Ecology 21, 5178–5193.
49 50	1419	Jędrzejewski, W., Branicki, W., Veit, C., Međugorac, I., Pilot, M., Bunevich, A., N.,
51 52	1420	Jędrzejewska, B., Schmidt, K., Theuerkauf, J., Okarma, H., Gula, R., Szymura, L.
53 54	1421	& FÖRSTER, M. (2005). Genetic diversity a nd relatedness within packs in an intensely
55 56 57	1422	hunted population of wolves Canis lupus. Acta Theriologica 50, 3–22.
58 59		
60		58

2 3	1423	Jędrzejewski, W., Jędrzejewska, B., Zawadzka, B., Borowik, T., Nowak, S. &
4 5	1424	MYSŁAJEK, R.W. (2008). Habitat suitability model for Polish wolves based on long-term
6 7 8	1425	national census. Animal Conservation 11, 377-390.
9 10	1426	KACZENSKY, P., CHAPRON, G., VON ARX, M., HUBER, D., ANDRÉN, H., et al., editors (2013).
11 12	1427	Status, management and distribution of large carnivores – bear, lynx, wolf and
13 14	1428	wolverine – in Europe. Large Carnivore Initiative Europe. 272 p.
15 16 17	1429	KAPLAN, J.O., KRUMHARDT, K.M. & ZIMMERMANN, N. (2009). The prehistoric and
18 19	1430	preindustrial deforestation of Europe. Quaternary Science Reviews 28, 3016-3034.
20 21	1431	Keis, M., Remm, J., Ho, S.Y.W., Davison, J., Tammeleht, E., Tumanov, I.L., Saveljev,
22 23	1432	A.P., Männil, P., Kojola, I., Abramov, A.V., Margus, T. & Saarma, U.
24 25 26	1433	(2013). Complete mitochondrial genomes and a novel spatial genetic method reveal
20 27 28	1434	cryptic phylogeographical structure and migration patterns among brown bears in north-
29 30	1435	western Eurasia. Journal of Biogeography 40, 915–927.
31 32	1436	KOHN, M., KNAUER, F., STOFFELLA, A., SCHRÖDER, W. & PÄÄBO, S. (1995). Conservation
33 34 35	1437	genetics of the European brown bear e a study using excremental PCR of nuclear and
36 37	1438	mitochondrial sequences. <i>Molecular Ecology</i> 4 , 95–103.
38 39	1439	KOJOLA, I, KAARTINEN, S., HAKALA, A., HEIKKINEN, S. & VOIPIO, H-M. (2009). Dispersal
40 41	1440	behavior and the connectivity between wolf populations in northern Europe. Journal of
42 43	1441	Wildlife Management 73, 309-313.
44 45 46	1442	KOPATZ, A., EIKEN, H.G., HAGEN, S., RUOKONEN, M., ESPARZA-SALAS, R., SCHREGEL, J.,
40 47 48	1443	KOJOLA, I., SMITH, M.E., WARTIAINEN, I., ASPHOLM, P.E., WIKAN, S., RYKOV, A.M.,
49 50	1444	MAKAROVA, O., POLIKARPOVA, N., TIRRONEN, K.F., DANILOV, P.I. & ASPI, J. (2012).
51 52	1445	Connectivity and population subdivision at the fringe of a large brown bear (Ursus
53 54 55	1446	arctos) population in North Western Europe. Conservation Genetics 13, 681-692.
56 57		
58 59		
60		50

1		
2 3 4	1447	Korsten, M., Ho, S.Y.W., Davison, J., Pähn, B., Vulla, E., Roht, M., Tumanov, I.L.,
5 6	1448	KOJOLA, I., ANDERSONE-LILLEY, Z., OZOLINS, J., PILOT, M., MERTZANIS, Y.,
7 8	1449	GIANNAKOPOULOS, A., VOROBIEV, A.A., MARKOV, N.I., SAVELJEV, A.P., LYAPUNOVA,
9 10	1450	E.A., Abramov, A.V., Männil, P., Valdmann, H., Pazetnov, S.V., Pazetnov, V.S.,
11 12	1451	RÕKOV, A. & SAARMA, U. (2009). Sudden expansion of a single brown bear lineage in
13 14 15	1452	northern continental Eurasia: a general model for mammals after the last ice age?
16 17	1453	Molecular Ecology 18, 1963–1979.
18 19	1454	KRAUS, R.H.S., VONHOLDT, B., COCCHIARARO, B., HARMS, V., BAYERL, H., KÜHN, R.,
20 21	1455	FÖRSTER, D.W., FICKEL, J., ROOS, C. & NOWAK, C. (2015). A single-nucleotide
22 23	1456	polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in
24 25 26	1457	Europe based on noninvasively collected samples. Molecular Ecology Resources 15,
27 28	1458	295–305.
29 30	1459	LAMPREAVE, G., RUIZ-OLMO, J., GARCÍA-PETIT, J., LÓPEZ-MARTÍN, J.M., BATAILLE, A.,
31 32	1460	FRANCINO, O., SASTRE, N. & RAMÍREZ, O. (2011). El lobo vuelve a cataluña. Historia del
33 34 35	1461	regreso y medidas de conservación. Quercus 302, 16-25
36 37	1462	LEONARD, J.A. (2014). Ecology drives evolution in grey wolves. Evolutionary Ecology
38 39	1463	Research 16, 461-473.
40 41	1464	LEONARD, J.A., ECHEGARAY, J., RANDI, E. & VILÀ, C. (2014). Impact of hybridization on
42 43 44	1465	the conservation of wild canids. Pp: 170-184. In: Gompper, M.E. (Ed). Free ranging
44 45 46	1466	dogs and wildlife conservation. Oxford University Press, Oxford, UK.
47 48	1467	Liberg, O., Andrén, H., Pedersen, H.C., Sand, H., Sejberg, D., Wabakken, P.,
49 50	1468	ÅKESSON, M. & BENSCH, S. (2005). Severe inbreeding depression in a wild wolf Canis
51 52 53	1469	lupus population. Biological Letters 1, 17–20.
54 55		
56 57		
58 59 60		60
00		00

3 4	1470	LIBERG, O., CHAPRON, G., WABAKKEN, P., PEDERSEN, H.C., HOBBS, N.T. & SAND, H.
5 6	1471	(2012). Shoot, shovel and shut up: cryptic poaching slows restoration of a large
7 8	1472	carnivore in Europe. Proceedings of the Royal Biological Society London 279, 910–915.
9 10	1473	LINNELL, J., SALVATORI, V. & BOITANI, L. (2008). Guidelines for population level
11 12	1474	management plans for large carnivores in Europe. A Large Carnivore Initiative for
13 14 15	1475	Europe report prepared for the European Commission (contract
16 17	1476	070501/2005/424162/MAR/B2).
18 19	1477	López-Bao, J.V., Blanco, J.C., Rodrígues Godinho, R., Alvares, F., García, E.J.,
20 21	1478	LLANEZA, L., RICO, M., CORTÉS, Y., PALACIOS, V. & CHAPRON, G. (2015). Toothless
22 23	1479	wildlife protection laws. Biodiversity and Conservation 24, 2105–2108.
24 25 26	1480	Lucchini, V., Fabbri, E., Marucco, F., Ricci, S., Boitani, L. & Randi, E. (2002).
27 28	1481	Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western
29 30	1482	Italian Alps. Molecular Ecology 11, 857–868.
31 32	1483	LUCCHINI, V., GALOV, A. & RANDI, E. (2004). Evidence of genetic distinction and long-
33 34 25	1484	term population decline in wolves (Canis lupus) in the Italian Apennines. Molecular
35 36 37	1485	<i>Ecology</i> 13 , 523–536.
38 39	1486	МАЛĆ-SKRBINŠEK, A. (2014). SloWolf (LIFE 08 NAT/SLO/244): Final Report Covering
40 41	1487	the Project Activities from 01/01/2010 to 31/12/2013. 80 pages. URL:
42 43	1488	http://www.volkovi.si/wp-content/uploads/2014/10/slowolf_final_report.pdf, accessed
44 45 46	1489	2. Nov. 2015.
40 47 48	1490	MANEL, S., BELLEMAIN, E., SWENSON, J.E. & FRANCOIS, O. (2004). Assumed and inferred
49 50	1491	spatial structure of populations: the Scandinavian brown bears revisited. Molecular
51 52	1492	<i>Ecology</i> 13 , 1327–1331.
53 54		
55 56		

1		
2 3 4	1493	Marcinkute, A., Šarkunas, M., Moks, E., Saarma, U., Jokelainen, P., Bagrade, G.,
5 6	1494	LAIVACUMA, S., STRUPAS, K., SOKOLOVAS, V. & DEPLAZES, P. (2015). Echinococcus
7 8	1495	infections in the Baltic region. Veterinary Parasitology 213, 121-131.
9 10	1496	MARUCCO, F. & MCINTIRE, E.J.B. (2010). Predicting spatio-temporal recolonization of
11 12	1497	large carnivore populations and livestock depredation risk: wolves in the Italian Alps.
13 14	1498	Journal of Applied Ecology 47, 789–798.
15 16 17	1499	Marucco, F., Pletscher, D.H., Boitani, L., Schwartz, M.K., Pilgrim, K.L. &
18 19	1500	LEBRETON, J.D. (2009). Wolf survival and population trend using non-invasive CMR
20 21	1501	techniques in the Western Alps. Journal of Applied Ecology 46, 1003–1010.
22 23	1502	MERIGGI, A., BRANGI, A., SCHENONE, L., SIGNORELLI, D. & MILANESI, P. (2011). Changes
24 25	1503	of wolf (<i>Canis lupus</i>) diet in Italy in relation to the increase of wild ungulate abundance.
26 27 28	1504	Ethology, Ecology and Evolution 23, 1–17.
29 30	1505	Milanesi, P., Caniglia, R., Fabbri, E., Galaverni, M., Meriggi, A. & Randi, E. (2015).
31 32	1506	Non-invasive genetic sampling to predict wolf distribution and habitat suitability in the
33 34	1507	Northern Italian Apennines: implications for livestock depredation risk. European
35 36 37	1508	Journal of Wildlife Research 61, 681-689.
37 38 39	1509	MILANESI, P., MERIGGI, A. & MERLI, E. (2012). Selection of wild ungulates by wolves
40 41	1510	Canis lupus (L. 1758) in an area of the Northern Apennines (North Italy). Ethology,
42 43	1511	<i>Ecology and Evol</i> ution 24 , 81–96.
44 45	1512	Moks, E., Jõgisalu, I., Saarma, U., Talvik, H., Järvis, T. & Valdmann, H. (2006).
46 47 48	1513	Helminthological survey of wolf (Canis lupus) in Estonia, with an emphasis on the
49 50	1514	occurrence of Echinococcus granulosus. Journal of Wildlife Diseases 42, 359–365.
51 52	1515	Moura, A.E., Tsingarska, E., Dąbrowski, M.J., Czarnomska, S.D., Jędrzejewska B.
53 54	1516	& PILOT, M. (2014). Unregulated hunting and genetic recovery from a severe population
55 56	1517	decline: the cautionary case of Bulgarian wolves. Conservation Genetics 15, 405–417.
57 58 59		
59 60		62

2 3	1518	MUSIANI, M., BOITANI, L. & PAQUET, P.C. (2009). A New Era for Wolves and People: Wolf
4 5 6	1519	Recovery, Human Attitudes and Policy. University of Calgary Press, Calgary, Alberta.
7 8	1520	MUSIANI, M., BOITANI, L. & PAQUET, P.C. (2010). The World of Wolves. New Perspectives
9 10	1521	on Ecology, Behaviour and Management. University of Calgary Press, Calgary, Alberta.
11 12	1522	NATURAL RESOURCES INSTITUE FINLAND (2015).
13 14 15	1523	http://www.rktl.fi/riista/suurpedot/susi/suden_kanta_arviot/, accessed on 3 Dec 2015
16 17	1524	NISKANEN, A.K. KENNEDY, L.J., RUOKONEN, M., KOJOLA, I., LOHI, H., ISOMURSU, M.,
18 19	1525	JANSSON, E., PYHAJÄRVI, T. & ASPI, J. (2014). Balancing selection and heterozygote
20 21	1526	advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf
22 23	1527	population. <i>Molecular Ecology</i> 23 , 875–889.
24 25 26	1528	ORDIZ, A., BISCHOF, R. & SWENSON J.E. (2013). Saving large carnivores, but losing the
27 28	1529	apex predator? Biological Conservation 168, 128-133.
29 30	1530	NORMAN, A.J., STREET, N.R. & SPONG, G. (2013). De novo SNP Discovery in the
31 32	1531	Scandinavian brown bear (Ursus arctos). PLoS ONE 8: e81012.
33 34 35	1532	OSKARSSON, M.C., KLUTSCH, C.F., BOONYAPRAKOB, U., WILTON, A., TANABE, Y. &
36 37	1533	SAVOLAINEN, P. (2012). Mitochondrial DNA data indicate an introduction through
38 39	1534	Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs.
40 41	1535	Proceedings of the Royal Biological Scociety London B 279 , 967–974.
42 43	1536	Pang, JF., Kluetsch, J., Zou, X-J., Zhang, A-b., Luo, L-Y., Angelby, H., Ardalan, A.,
44 45 46	1537	Ekström, C., Sköllermo, A., Lundeberg, J., Matsumura, S., Leitner, T., Zhang,
47 48	1538	Y-P. & SAVOLAINEN, P. (2009). mtDNA data indicate a single origin for dogs south of
49 50	1539	Yangtze river, less then 16,300 years ago, from numerous wolves. Molecular Biology
51 52	1540	and Evolution 26, 2849–2864.
53 54	1541	PARADIS, E., CLAUDE, J. & STRIMMER, K. (2004). APE: analyses of phylogenetics and
55 56 57	1542	evolution in R language. Bioinformatics 20, 289–290.
58 59		

1		
2 3 4	1543	Pilot, M., Jędrzejewski, W., Branicki, W., Sidorovich, V.E., Jędrzejewska, B.,
5 6	1544	STACHURA, K. & FUNK, S.M. (2006). Ecological factors influence population genetic
7 8	1545	structure of European grey wolves. <i>Molecular Ecology</i> 15, 4533–4553.
9 10	1546	Pilot, M., Branicki, W., Jędrzejewski, W., Goszczyński, J., Jędrzejewska, B., Dykyy,
11 12	1547	I., SHKVYRYA, M. & TSINGARSKA, E. (2010). Phylogeographic history of grey wolves in
13 14 15	1548	Europe. BMC Evolutionary Biology 10, 104.
16 17	1549	Pilot, M., Jędrzejewski, W., Sidorovich, V.E., Meier-Augenstein, W. & Hoelzel,
18 19	1550	A.R. (2012). Dietary differentiation and the evolution of population genetic structure in
20 21	1551	a highly mobile carnivore. PLoS ONE 7, e39341.
22 23	1552	Pilot, M., Greco, C., vonHoldt, B.M., Jędrzejewska, B., Randi, E, Jędrzejewski W.,
24 25 26	1553	SIDOROVICH, V.E., OSTRANDER, E.A. & WAYNE, R.W. (2014a). Genome-wide
20 27 28	1554	signatures of population bottlenecks and diversifying selection in European wolves.
29 30	1555	<i>Heredity</i> 112 , 428–442.
31 32	1556	Pilot, M., Dabrowski, M. J., Hayrapetyan, V., Yavruyan, E.G., Kopaliani, N.,
33 34 25	1557	TSINGARSKA, E., BUJALSKA, B., KAMIŃSKI, S. & BOGDANOWICZ, S. (2014b). Genetic
35 36 37	1558	variability of the grey wolf Canis lupus in the Caucasus in comparison with Europe and
38 39	1559	the Middle East: Distinct or intermediary population? PLoS ONE 9(4), e93828.
40 41	1560	PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D. AND THE R DEVELOPMENT CORE TEAM
42 43	1561	(2013). Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-111.
44 45 46	1562	RADWAN, J., BIEDRZYCKA, A. & BABIK, W. (2010). Does reduced MHC diversity decrease
40 47 48	1563	viability of vertebrate population? Biological Conservation 143, 537-544.
49 50	1564	RAMIREZ, O., ALTET, L., ENSENÃT, C., VILÀ, C., SANCHEZ, A. & RUIZ, A. (2006). Genetic
51 52	1565	assessment of the Iberian wolf Canis lupus signatus captive breeding program.
53 54	1566	Conservation Genetics 7, 861–878.
55 56 57		
58		
59 60		64

2 3	1567	RANDI, E. (2008). Detecting hybridization between wild species and their domesticated
4 5 6	1568	relatives Molecular Ecology 17, 285–293.
7 8	1569	RANDI, E. (2011). Genetics and conservation of wolves Canis lupus in Europe. Mammal
9 10	1570	<i>Review</i> 41 , 99–111.
11 12	1571	RANDI, E., GENTILE, L., BOSCAGLI, G., HUBER, D. & ROTH, H.U. (1994). Mitochondrial-
13 14	1572	DNA sequence divergence among some West-European brown bear (Ursus arctos L.)
15 16 17	1573	populations – lessons for conservation. <i>Heredity</i> 73 , 480–489.
18 19	1574	Randi, E., Hulva, P., Fabbri, E., Galaverni, M., Galov, A., Kusak, J., Bigi, D., Černá,
20 21	1575	BOLFÍKOVÁ, B., SMETANOVÁ, M. & CANIGLIA, R. (2014). Multilocus detection of wolf ×
22 23	1576	dog hybridization in Italy, and guidelines for marker selection. PLoS ONE 9, e86409.
24 25 26	1577	RANDI, E. & LUCCHINI, V. (2002). Detecting rare introgression of domestic dog genes into
20 27 28	1578	wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite
29 30	1579	variation. Conservation Genetics 3, 31–45.
31 32	1580	Randi, E., Lucchini, V., Christensen, M.F., Mucci, N., Funk, S.M., Dolf G. &
33 34 25	1581	LOESCHKE, V. (2000). Mitochondrial DNA variability in Italian and east European
35 36 37	1582	wolves: detecting the consequences of small population size and hybridization.
38 39	1583	Conservation Biology 14, 464–473.
40 41	1584	Ražen, N., Brugnoli, A., Castagna, C., Groff, C., Kaczensky, P., Kljun, F., Knauers,
42 43	1585	F., Kos, I., Krofel, M., Luštrik, R., Majić, A., Rauer, G., Righetti, D. & Potočnik,
44 45 46	1586	H. (2016). Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf
40 47 48	1587	(Canis lupus) populations. European Journal of Wildlife Research 62, 137–142.
49 50	1588	REINHARDT, I., KLUTH, G., NOWAK, S. & MYSŁAJEK, R.W. (2015). Standards for the
51 52	1589	monitoring of the Central European wolf population in Germany and Poland. Federal
53 54	1590	Agency for Nature Conservation, Bonn, 43 pp.
55 56 57		
57 58 59		

Biological Reviews

1		
2 3 4	1591	REED, D.H. & FRANKHAM, R. (2003). Correlation between fitness and genetic diversity.
5 6	1592	Conservation Biology 17, 230–237.
7 8	1593	RICO, M. & TORRENTE, J.P. (2000). Caza y rarificación del lobo en España: investigación
9 10	1594	histórica y conclusiones biológicas. Galemys 12, 163-179.
11 12	1595	RIGG, R. (2004). The Extent of Predation on Livestock by Large Carnivores in Slovakia and
13 14	1596	Mitigating Carnivore-Human Conflict Using Livestock Guarding Dogs. MSc thesis,
15 16 17	1597	University of Aberdeen, Aberdeen, UK.
18 19	1598	Rootsi, S., Behar, D., Järve, M., Lin, A.A., Myres, N.M., Passarelli, B., Poznik, D.,
20 21	1599	Tzu, S., Sahakyan, H., Pathak, A., Metspalu, M., Grugni, V., Semino, O.,
22 23	1600	Metspalu, E., Skorecki, K., Villems, R., Kivisild, T. & Underhill, P. (2013).
24 25 26	1601	Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern
20 27 28	1602	origin of Ashkenazi Levites. Nature Communications 4, 2928.
29 30	1603	ROY, M.S., GEFFEN, E., SMITH, D., OSTRANDER, E.A. & WAYNE, R.K. (1994). Patterns of
31 32	1604	differentiation and hybridization in North American wolflike canids, revealed by
33 34 25	1605	analysis of microsatellite loci. Molecular Biology and Evolution 11, 553-570.
35 36 37	1606	RUENESS, E.K., NADEIKO, S., TROSVIK, P. & STENSETH, N.C. (2014). Large-Scale genetic
38 39	1607	structuring of a widely distributed carnivore – The Eurasian Lynx (Lynx lynx). PLoS
40 41	1608	<i>ONE</i> 9 , e93675.
42 43	1609	SAARMA, U., HO, S.Y.W., PYBUS, O.G., KALJUSTE, M., TUMANOV, I.L., KOJOLA, I.,
44 45 46	1610	VOROBIEV, A.A., MARKOV, N.I., SAVELJEV, A.P., VALDMANN, H., LYAPUNOVA, E.A.,
40 47 48	1611	ABRAMOV, A.V., MÄNNIL. P., KORSTEN, M., VULLA, E., PAZETNOV, S.V., PAZETNOV,
49 50	1612	V.S., PUTCHKOVSKIY, S.V. & RÕKOV, A.M. (2007). Mitogenetic structure of brown
51 52	1613	bears (Ursus arctos L.) in north-eastern Europe and a new time-frame for the formation
53 54	1614	of European brown bear lineages. Molecular Ecology 16, 401–413.
55 56 57		
58 59		

1		
2 3 4	1615	SAARMA, U. & KOJOLA, I. (2007). Matrilineal genetic structure of the brown bear
5 6	1616	population in Finland. Ursus 18, 30-37.
7 8	1617	SACKS, B.N., BROWN, S.K., STEPHENS, D., PEDERSEN, N.C., WU, J.T. & BERRY, O. (2013).
9 10	1618	Y chromosome analysis of dingoes and southeast Asian village dogs suggests a
11 12	1619	Neolithic continental expansion from Southeast Asia followed by multiple Austronesian
13 14 15	1620	dispersals. Molecular Biology and Evolution 30, 1103–1118.
16 17	1621	SANTOS, M., VAZ, C., TRAVASSOS, P. & CABRAL J.A. (2007). Simulating the impact of
18 19	1622	socio-economic trends on threatened Iberian wolf populations Canis lupus signatus in
20 21	1623	north-eastern Portugal. Ecological Indicators 7, 649-664.
22 23	1624	SASTRE, N. (2011). Genética de la conservación: el lobo gris (Canis lupus). PhD thesis:
24 25 26	1625	Universitat autonòma de Barcelona.
27 28	1626	SASTRE, N., VILÀ, C., SALINAS, M., BOLOGOV V.V., URIOS, V., SÁNCHEZ, FRANCINO, O. &
29 30	1627	RAMÍREZ, O. (2011). Signatures of demographic bottlenecks in European wolf
31 32	1628	populations. Conservation Genetics 12, 701–712.
33 34 35	1629	SAVOLAINEN, P., LEITNER, T., WILTON, A.N., MATISOO-SMITH, E. & LUNDBERG, J. (2004).
36 37	1630	A detailed picture of the origin of the Australian dingo, obtained from the study of
38 39	1631	mitochondrial DNA. Proceedings of the National Academy of Sciences of the United
40 41	1632	States of America 17, 12387–12390.
42 43	1633	SAVOLAINEN, P., ZHANG, Y-P., LUO, J., LUNDEBERG, J. & LEITNER, T. (2002). Genetic
44 45 46	1634	evidence for an East Asian origin of dogs. Science 298, 1610–1613.
40 47 48	1635	Scandura, M., Iacolina, L., Capitani, C., Gazzola, A., Mattioli, L. & Apollonio, M.
49 50	1636	(2011). Fine-scale genetic structure suggests low levels of short-range gene flow in a
51 52	1637	wolf population of the Italian Apennines. European Journal of Wildlife Research 5,
53 54	1638	949–958.
55 56 57		
58		
59 60		67

2 3	1639	SCHMIDT, K., KOWALCZYK, R., OZOLINS, J. MÄNNIL, P. & FICKEL, J. (2009). Genetic
4 5	1640	structure of the Eurasian lynx population in north-eastern Poland and the Baltic states.
6 7 8	1641	Conservation Genetics 10, 497–501.
9 10	1642	Schregel, J., Eiken, H.G., Grøndahl, F.A., Hailer, F., Aspi, J., Kojola, I., Tirronen,
11 12	1643	K., DANILOV, P., RYKOV, A., POROSHIN, E., JANKE, A., SWENSON, J.E. & HAGEN, S.B.
13 14	1644	(2015). Present and past Y chromosomes reveal the demographic and genetic impact of
15 16	1645	male dispersal during the recovery of the Northern European brown bear (Ursus arctos).
17 18	1646	Molecular Ecology 24, 6041-6060.
19 20 21	1647	SEDDON, J.M. & ELLEGREN, H. (2004). A temporal analysis shows major histocompatibility
22 23	1648	complex loci in the Scandinavian wolf population are consistent with neutral evolution.
24 25	1649	Proceedings of the Royal Society London B 271, 2283–2291.
26 27	1650	Seddon, J. Parker, H.G., Ostrander, E.A. & Ellegren, H. (2005). SNPs in ecological
28 29	1651	and conservation studies: a test in the Scandinavian wolf population. <i>Molecular Ecology</i>
30 31		
32 33	1652	14, 503-511.
34 35	1653	SEDDON, J.M., SUNDQVIST, A.K., BJÖRNERFELDT, S. & ELLEGREN, H. (2006). Genetic
36 37	1654	identification of immigrants to the Scandinavian wolf population. Conservation
38 39	1655	<i>Genetics</i> 7, 225–230.
40 41	1656	SILLERO-ZUBIRI, C. & LAURENSON, M.K. (2001). Interactions between carnivores and local
42 43	1657	communities: Conflict or co-existence? In: Carnivore Conservation Edited by:
44 45	1658	Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, R.K. 282-312 Cambridge
46 47 48	1659	University Press.
49 50	1660	Skrbinšek, T., Jelenčić, M., Waits. L.P., Potočnik, H., Kos, J. & Trontelj, P. (2012).
51 52	1661	Using a reference population yardstick to calibrate and compare genetic diversity
53 54	1662	reported in different studies: an example from the brown bear. <i>Heredity</i> 109 , 299–305.
55 56		
57 58		
59 60		68

3	1663	SUNDQVIST, A., K., ELLEGREN, H. & VILÀ, C. (2008). Wolf or dog? Genetic identification
3 4 5 6 7	1664	of predators from saliva collected around bite wounds on prey. Conservation Genetics
8	1665	9 , 1275–1279.
9 10	1666	SUNDQVIST, A.K., ELLEGREN, H., OLIVIER, M. & VILÀ, C. (2001). Y chromosome
11 12	1667	haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers.
13 14 15	1668	Molecular Ecology 10, 1959–1966.
16 17	1669	STRACHAN, T. & READ, A.P. (1999). Human Molecular Genetics. 2 nd ed. New York: John
18 19	1670	Wiley & Sons.
20 21	1671	STRAKA, M., PAULE, L., IONESCU, O., ŠTOFÍK, J. & ADAMEC, M. (2012). Microsatellite
22 23 24	1672	diversity and structure of Carpathian brown bears (Ursus arctos): consequences of
24 25 26	1673	human caused fragmentation. Conservation Genetics 13, 153–164.
27 28	1674	Stronen, A.V., Jędrzejewska, B., Pertoldi, C., Demontis, D., Randi, E.,
29 30	1675	Niedziałkowska, M., Borowik, T., Sidorovich, V.E., Kusak, J., Kojola, I.,
31 32	1676	KARAMANLIDIS, A.A., OZOLINS, J., DUMENKO, V. & CZARNOMSKA, S.D. (2015).
33 34 35	1677	Genome-wide analyses suggest parallel selection for universal traits may eclipse local
36 37	1678	environmental selection in a highly mobile carnivore. <i>Ecology and Evolution</i> 5,
38 39	1679	4410-4425.
40 41	1680	Stronen, A.V., Jędrzejewska, B., Pertoldi, C., Demontis, D., Randi, E.,
42 43 44	1681	Niedziałkowska, M., Pilot, M., Sidorovich, V.E., Dykyy, I., Kusak, J.,
45 46	1682	TSINGARSKA, E., KOJOLA, I., KARAMANLIDIS, A.A., ORNICANS, A., LOBKOV, V.A.,
47 48	1683	DUMENKO, V. & CZARNOMSKA, S.D. (2013). North-south differentiation and a region of
49 50	1684	high diversity in European wolves (Canis lupus). PLoS ONE 8, e76454.
51 52	1685	Svensson, L., Wabakken, P., Maartmann, E., Åkesson, M. & Flagstad, Ø. (2015).
53 54 55	1686	Inventering av varg vintern 2014-15. Rovdata och Viltskadecenter, SLU. Report, 52 pp.
56 57		
58 59		

2 3	1687	TABERLET, P. & BOUVET, J. (1994). Mitochondrial DNA polymorphism, phylogeography,
4 5 6	1688	and conservation genetics of the brown bear Ursus arctos in Europe. Proceedings of the
0 7 8	1689	Royal Society of London Series B – Biological Sciences 255, 195–200.
9 10	1690	TABERLET, P, CAMARRA, J.J., GRIFFEN, S., UHRES, E., HANOTTE, O., WAITS, L.P., DUBOIS-
11 12	1691	PAGANON, C., BURKE, T. & BOUVET, J. (1997). Noninvasive genetic tracking of the
13 14 15	1692	endangered Pyrenean brown bear population. <i>Molecular Ecology</i> 6, 869–876.
16 17	1693	TAMMELEHT, E., REMM, J., KORSTEN, M., DAVISON, J., TUMANOV, A., SAVELJEV, P.,
18 19	1694	MÄNNIL, P., KOJOLA, I. & SAARMA, U. (2010). Genetic structure in large, continuous
20 21	1695	mammal populations: the example of brown bears in northwestern Eurasia. Molecular
22 23 24	1696	<i>Ecology</i> 19 , 5359–5370.
25 26	1697	TROUWBORST, A. (2010). Managing the carnivore comeback: International and EU species
27 28	1698	protection law and the return of lynx, wolf and bear to Western Europe. Journal of
29 30	1699	Environmental Law 22, 347–372.
31 32 33	1700	VALDMANN, H., ANDERSONE, Z., KOPPA, O., OZOLINS, J. & BAGRADE, G. (2005). Analyses
34 35	1701	of winter diets of wolf Canis lupus and lynx Lynx lynx in Estonia and Latvia. Acta
36 37	1702	<i>Theriologica</i> 50 , 521–527.
38 39	1703	VALDMANN, H., LAANETU, N. & KORSTEN, M. (2004). Group size changes and age/sex
40 41	1704	composition of harvested wolves (<i>Canis lupus</i>) in Estonia. <i>Baltic Forestry</i> 10 , 83–86.
42 43 44	1705	Valière, N., Fumagalli, L., Gielly, L., Miquel, C., Lequette, B., Poulle, ML.,
45 46	1706	WEBER, JM., ARLETTAZ, R. & TABERLET, P. (2003). Long distance wolf recolonization
47 48	1707	of France and Switzerland inferred from noninvasive genetic sampling over a period of
49 50	1708	10 years. Animal Conservation 6, 83-92.
51 52 53 54 55 56	1709	VALVERDE, J.A. (1971). El lobo español. Montes 159, 228-241.
57 58		
59 60		70

1		
2 3 4	1710	VERARDI, A., LUCCHINI, V. & RANDI, E. (2006). Detecting introgressive hybridisation
4 5 6	1711	between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture
7 8	1712	linkage disequilibrium analysis. <i>Molecular Ecology</i> 15 , 2845–2855.
9 10	1713	Vilà, C., Amorim, I.R., Leonard, J.A., Posada, D., Castroviejo, J., Petrucci-Fonseca,
11 12	1714	F., CRANDALL, K.A., ELLEGREN, H. & WAYNE, R.K. (1999). Mitochondrial DNA
13 14	1715	phylogeography and population history of the grey wolf Canis lupus. Molecular
15 16 17	1716	<i>Ecology</i> 8 , 2089–2103.
18 19	1717	VILÀ, C. & WAYNE, R.K. (1999). Hybridization between wolves and dogs. Conservation
20 21	1718	<i>Biology</i> 13 , 195–198.
22 23	1719	VILÀ, C., SAVOLAINEN, P., MALDONADO, J.E., AMORIM, I.R., RICE, J.E., HONEYCUTT, R.L.,
24 25 26	1720	CRANDALL, K.A., LUNDEBERG, J. & WAYNE, R.K. (1997). Multiple and ancient origins
27 28	1721	of the domestic dog. Science 276, 1687–1689.
29 30	1722	Vilà, C., Sundqvist, AK., Flagstad, Ø., Seddon, J., Björnerfeldt, S., Kojola, I.,
31 32	1723	CASULLI, A., SAND, H., WABAKKEN, P. & ELLEGREN, H. (2003a). Rescue of a severely
33 34 35	1724	bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings of the
36 37	1725	Royal Biological Society London 270, 91–97.
38 39	1726	VILÀ, C., WALKER, C., SUNDQVIST, AK., ANDERSONE, L., CASULLI, A., KOJOLA, I.,
40 41	1727	VALDMANN, H., HALVERSON, J. & ELLEGREN, H. (2003b). Combined use of maternal,
42 43	1728	paternal and bi-parental genetic markers for the identification of wolf-dog hybrids.
44 45 46	1729	<i>Heredity</i> 90 , 17–24.
47 48	1730	VONHOLDT, B.M., POLLINGER, J.P., EARL, D.A., KNOWLES, J.C., BOYKO, A.R., PARKER, H.,
49 50	1731	Geffen, E., Pilot, M., JĘdrzejewski, W., Jedrzejewska, B., Sidorovich, V., Greco,
51 52	1732	C., RANDI, E., MUSIANI, M., KAYS, R., BUSTAMANTE, C.D., OSTRANDER, E.A.,
53 54 55	1733	NOVEMBRE, J. & WAYNE, R.K. (2011). A genome-wide perspective on the evolutionary
56 57	1734	history of enigmatic wolf-like canids. Genome Research 21, 1294-1305.
58 59		
60		71

1		
2 3 4	1735	VONHOLDT, B.M., POLLINGER, J.P., EARL, D.A., PARKER, H.G., OSTRANDER, E.A. &
5 6	1736	WAYNE, R.K. (2013). Identification of recent hybridization between gray wolves and
7 8	1737	domesticated dogs by SNP genotyping. Mammalian Genome 24, 80-88.
9 10	1738	WABAKKEN, P., SAND, H., KOJOLA, I., ZIMMERMANN, B., ARNEMO, J.M., PEDERSEN, H.C. &
11 12	1739	LIBERG, O. (2007). Multi-stage, long-range dispersal by a GPS-collared Scandinavian
13 14	1740	wolf. Journal of Wildlife Management 71, 1631–1634.
15 16 17	1741	WABAKKEN, P., SAND, H., LIBERG, O. & BJÄRVALL, A. (2001). The recovery, distribution,
18 19	1742	and population dynamics of wolves on the Scandinavian peninsula, 1978–98. Canadian
20 21	1743	Journal of Zoology 79, 710–725.
22 23	1744	WIELGUS, R.B. & PEEBLES, K.A. (2014). Effects of Wolf Mortality on Livestock
24 25	1745	Depredations. PLoS ONE 9, e113505.
26 27 28	1746	ZIGOURIS, J., SCHAEFER, J.A., FORTIN, C. & KYLE, C.J. (2013). Phylogeography and post-
29 30	1747	glacial recolonization in wolverines (Gulo gulo) from across their circumpolar
31 32	1748	distribution. PLoS ONE 8, e83837.
33 34	1749	ZLATANOVA, D., ATIDJE, A., ALBENA, V. & GENOV, P. (2014). Adaptive diet strategy of the
35 36 27	1750	wolf (Canis lupus L.) in Europe: a review. Acta Zoologica Bulgarica 66, 439–452.
37 38 39	1751	
40 41	1752	
42		
43 44 45	1753	XI. SUPPORTING INFORMATION
46 47	1754	Additional supporting information may be found in the online version of this article.
48 49	1755	Appendix S1. Different genetic markers used in analyses of the ten European wolf
50 51	1756	populations.
52 53	1757	Appendix S2. Confirmed dispersal between and inside wolf populations in Europe.
54 55	1758	Appendix S3. MtDNA haplotypes.
56 57 58	1759	Appendix S4. Wolf populations in Europe included in the meta-analysis.
59 60		72

1		
2 3	1760	
4 5 6	1761	
7 8	1762	Figure Legends
9	1763	
10 11	1764	Figure 1. Wolf distribution and directions of gene flow in Europe. Green indicates wolf
12 13	1765	permanent occurrence, and dark grey sporadic occurrence (modified from Chapron et al.,
14	1766	2014). Wolf occurrence in Russia, Ukraine and Belarus is not marked on the map.
15 16	1767	Confirmed dispersal between and inside wolf populations is indicated by red arrows (see
17 18	1768	also Appendix S1 for additional information and references).
19	1769	
20 21	1770	Figure 2. Different genetic markers used in studies of European wolf populations
22	1771	(according to Table S1). Yellow: autosomal microsatellites (biparental); Orange:
23 24	1772	mitochondrial DNA (maternal); Red: Y-chromosome microsatellites (paternal).
25 26	1773	
27	1774	Figure 3. Wolf autosomal SNP genotyping studies in Europe. Countries marked as (1) Red
28 29	1775	represents sampling locations from vonHoldt et al. (2011; 47 000 SNPs); (2) Orange
30 31	1776	represents sampling locations from Stronen et al. (2013; 67 000 SNPs); (3) Yellow
32	1777	represents sampling locations from Pilot et al. (2014a; 61 000 SNPs).
33 34	1778	
35 36	1779	Figure 4. Median joining network of mtDNA control region sequences (609 bp) of 160
37	1780	wolves from Europe and adjacent populations. Filled circles represent median vectors
38 39	1781	(haplotypes not sampled or extinct). Additional data for haplotypes are in Appendix S3.
40 41	1782	
42 43	1783	Figure 5. The geographic location of wolf microsatellite studies included in the meta-
44	1784	analysis. Colours represent populations according to Chapron et al., (2014). The Sierra-
45 46	1785	Morena population is missing due to lack of data, while data for Russian populations are
47 48	1786	included. The numbers in circles represent ID's according to Appendix S4.
49	1787	
50 51	1788	Figure 6. Spatial trends of observed (H_O) and expected (H_E) heterozygosities in European
52 53	1789	wolf populations. Significant spatial trends were observed along the slope direction for both
54	1790	H_O and H_E (see Table 2 for trend model parameters). The arrow represents the direction of a
55 56 57 58	1791	gradient (x-axis of the graphs). The numbers correspond to populations according to
59 60		73

Biological Reviews

2 3	1792	Appendix S4. Colour codes on the maps (left) correspond to the level of heterozygosity,
4 5	1793	whereas colours on graphs (right) correspond to populations according to Fig. 5.
6	1794	
7 8	1795	Figure 7. The levels of legal hunting pressure in European wolf populations. Red – high
9 10	1796	hunting pressure (>35% of population size); Orange – medium hunting pressure (10-35%);
11	1797	Yellow - low hunting pressure (<10%; including countries where wolves are protected).
12 13	1798	Note that in Italy and Portugal, where wolf hunting is illegal, the level of hunting pressure
14 15	1799	comes from poaching that is estimated to remove ca 20% and <10% of total wolf
16 17	1800	population per year, respectively. For other countries only legal hunting pressure is
18	1801	illustrated on the map.
19 20	1802	
21	1803	Figure 8. Science-based wolf conservation and management in Europe, coordinated by an
22 23	1804	international scientific committee and two reference laboratories. Above are six major
24 25	1805	Europe-wide scientific focus areas to promote effective wolf conservation and management
26 27	1806	in Europe. * Projects that include genetic analysis. See also Tables 5, 6.
28	1807	
29 30	1808	Figure 9. Threats to wolves in Europe. Threat points are calculated according to Table 4:
31 32	1809	"-" – 0 points; "?" – 0 points; "+/-" – 1 point; "y" – 2 points). Yellow: 1–6 points; Orange:
33	1810	7-12 points; Red: 13 points. Grey cells indicate sporadic occurrence (from Chapron et
34 35	1811	al., 2014). Wolf occurrence in Russia, Ukraine and Belarus is not marked on the map.
36 37		
38		
39 40		
41 42		
43		
44 45		
46		
47 48		

Table 1 . Mean values \pm standard deviation for observed (H_O) and expected (H_E) heterozygosity,
inbreeding coefficient (F_{IS}) and allelic richness (R_A) on the largest four European wolf
populations. *includes Baltic, Scandinavian, Finnish and Russian wolves.

Region	Sample size (N)	H _o	H_E	F _{IS}	R _A
Northern and eastern Europe*	869	0.606 ± 0.095	0.677 ± 0.055	0.123 ± 0.111	6.08 ± 1.25
South-Europe, including:	2448				
Dinaric-Balkan Italy (Italian	338	0.658 ± 0.033	0.700 ± 0.027	0.062 ± 0.018	6.10 ± 0.59
peninsular and Alpine populations)	1622	0.551 ± 0.061	0.568 ± 0.048	0.032 ± 0.036	4.34 ± 0.81
NW Iberia	488	0.526 ± 0.018	0.621 ± 0.021	0.142 ± 0.035	3.76 ± 2.50
Total		0.590 ± 0.085	0.648 ± 0.067	0.098 ± 0.097	5.44 ± 1.53

0.590 ± 0.08.

Table 2. Spatial trends (a) and local autocorrelation pattern (b) of four genetic diversity indices. A spherical variogram model was used. The variogram nugget is measured as relative to maximal modelled semivariance.

Index		a. Spatia	l trend		b. Local pattern				
	Azimuth of	R ²	df _{residuals}	P _{sp.}	Variogram	Variogram	Moran's <i>I</i> of	P _{SAC}	
	gradient			corrected	nugget	range, <i>km</i>	trend residuals		
H_O	68°	0.23	54	0.011	0.00	650	0.50	< 0.001	
H_E	67°	0.32	56	0.025	0.17	800	0.40	< 0.001	
F_{IS}	117°	< 0.01	53	0.695	0.00	850	0.55	< 0.001	
R_A	98°	0.31	46	0.032	0.50	2835	0.19	0.037	

Table 3. Spatial trends (a) and local autocorrelation patterns (b) of four diversity indices in two large wolf population clusters. A spherical variogram model was used. The variogram nugget is measured as relative to maximal modelled semivariance.

Index		a. Spat	ial trend		b. Local pattern				
	Azimuth R ²		dfresiduals	Psp. corrected	Variogram	Variogram	Moran's <i>I</i> of trend	PSAC	
	of				nugget	range, <i>km</i>	residuals		
	gradient								
South E	Curope (NW Ib	eria, Alpir	ne, Italian pen	insula, Dinaric-B	alkan)				
Ho	28°	0.28	24	0.037	0.33	1200	0.51	0.001	
H_E	13°	0.14	25	0.031	0.14	1100	0.69	< 0.00	
F_{IS}	88°	0.07	24	0.909	0.47	1600	0.32	0.034	
R_A	40°	0.37	17	0.089	0.33	3307	0.32	0.034	
North-H	East Europe (F	Russia, Kai	elia, Baltic, C	Carpathians, Cent	ral European Lowlan	d)			
H_O	19°	0.38	26	0.225	0.07	800	0.60	< 0.00	
H_E	99°	0.34	27	0.016	0.55	750	0.16	0.088	
F _{IS}	148°	0.25	27	0.091	0.33	500	0.35	< 0.00	
R_A	19°	0.01	25	0.843	0.35	640	0.32	< 0.00	

0,1

Table 4. The most relevant threats to different wolf populations in Europe. "y" - threat considered important in the population; "-" – threat not considered important in the population; "+/-"- threat considerd important in some parts of the population; "?" – no information;

	Alpine	Baltic	Carpa- thians	Central- European Lowlands	Dinaric- Balkan	Italian Peninsula	Karelian	NW Iberia	Scandinavian	Sierra Morena
Overharvest and poaching	у	у	-	Y	У	у	у	у	+/-	у
Low public acceptance	у	у	у	+/-	у	у	у	-	у	У
Habitat destruction	-	+/-	-	у	+/-	-	-	у	-	+/-
Barriers to gene flow	-	+/-	-	+/-	+/-	-	+/-	-	у	у
Poor management	-	-	-	->	у	-	у	у	-	у
Poor scientific knowledge	-	+/-	+/-	_	+/-	у	-	у	-	у
Inbreeding	-	+/-	-	+/-	у	-	+/-	у	у	у
Conflicts due to livestock depredation	у	у	у	У	у	у	у	у	у	-
Hybridization with dogs	у	+/-	+/-	+/-	+/-	у	-	у	-	у
Prey overharvest	-	-	-	-	+/-	-		-	-	-
Diseases	-	у	-	+/-	?	-	-	у	+/-	?

Table 5	. Priorities	and	tasks	for	conservation	and	management	planning	of	European	wolf
population	ons.										

Priorities	Tasks	Subtasks
A. Establishment of EU Wolf Scientific Committee: a panel of wolf experts that meets on a regular basis	 Consulting officials and managers in EU Coordinating Europe-wide scientific projects on wolf population genetics, wolf-dog hybridization, livestock depredation, food habits, pathogens and public attitudes Raising public awareness 	 a) Organise yearly panel meetings b) Organise biannual wolf conferences c) Create and maintain European Wolf Webpage d) Publish scientific papers, annual reports and popular science papers
 B. Establishment of EU Wolf Reference Laboratory (EU- WRL). Establishment of dedicated reference laboratories under EU-WRL: 1) on population genetics (EU-WRL-Gen); 2) on diet and pathogens (EU-WRL-DP) 	 Conducting Europe-wide scientific analyses a) EU-WRL-Gen: on population genetics, wolf-dog hybridization, livestock depredation b) EU-WRL-DP: food habits and pathogens 2) Harmonization of methods 3) Data storage 4) Publishing results 	a) Establish unified scientific protocols b) Establish databanks to store various wolf data c) Publish scientific papers, annual reports and popular science papers

Biological Reviews

Table 6. Tasks for scientific research and conservation-management planning of European wolf

 populations to be coordinated at the European level by the EU Wolf Scientific Committee and

 EU Wolf Reference Laboratory.

Task	Subtasks	Methods
1) Development of harmonized research protocols	Development of protocols for non-invasive sampling, genetic analysis, morphological analysis	SNP and whole-genome analysis. Standardized microsatellite multiplexing, high-throughput NGS-based microsatellite genotyping
2) Monitoring gene flow between different wolf populations at the European scale	Performing genetic analyses	 a) SNP-chips; b) low-coverage genome sequencing; c) nanofluidic SNP genotyping; d) NGS-based microsatellite genotyping e) complete mitogenome sequencing f) Y chromosome microsatellite typing
3) Monitoring wolf-dog hybridization at the European scale	Estimating the level of introgressive hybridization between wolves and other canids (dogs and jackals)	SNP-chips; low-coverage genome sequencing; multiplexing microsatellites; NGS-based microsatellite genotyping
4) Monitoring wolf depredation on livestock	Genetic identification of predator species (proportion of wolves and other species in depredation)	SNP-chips (with mtDNA, autosomal and Y-markers); microsatellites
5) Monitoring wolf food habits and pathogens	Genetic and morphological identification of dietary items and pathogens	Metabarcoding, traditional identification
6) Evaluating public attitudes	Development of unified questionnaires	Questionnaires

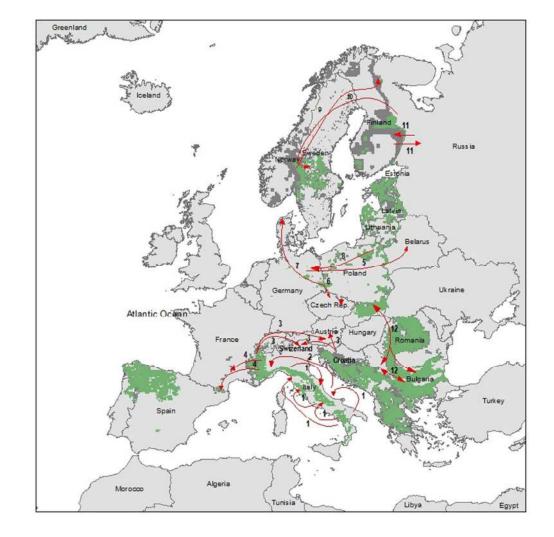


Fig. 1 140x141mm (300 x 300 DPI)

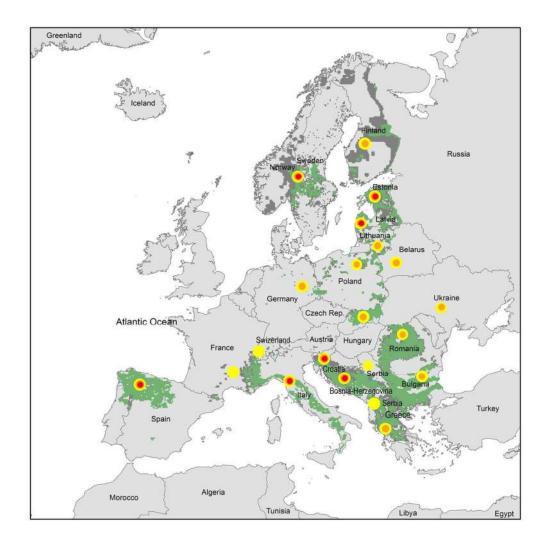


Fig. 2 139x139mm (300 x 300 DPI)

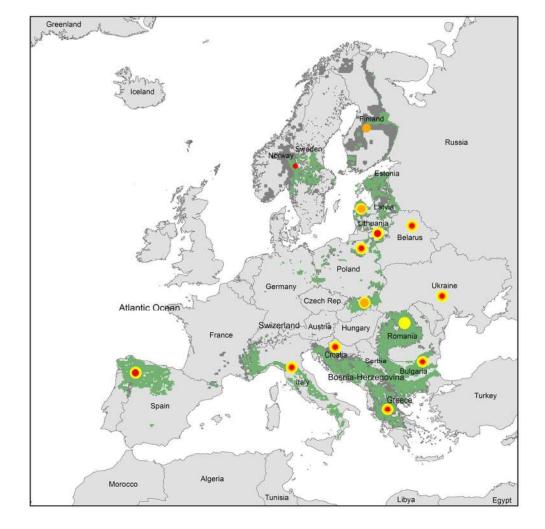
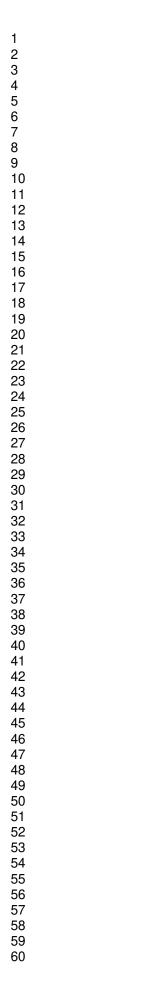



Fig. 3 140x140mm (300 x 300 DPI)

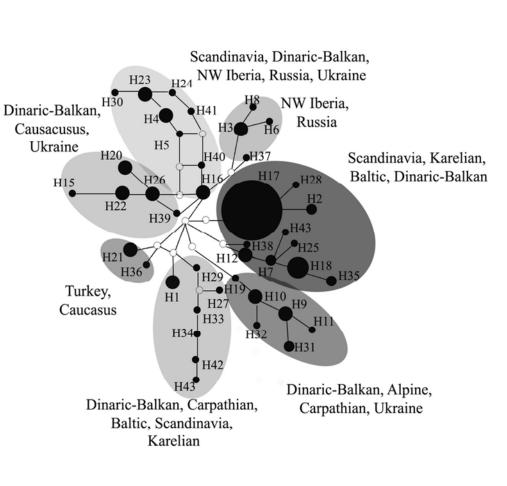
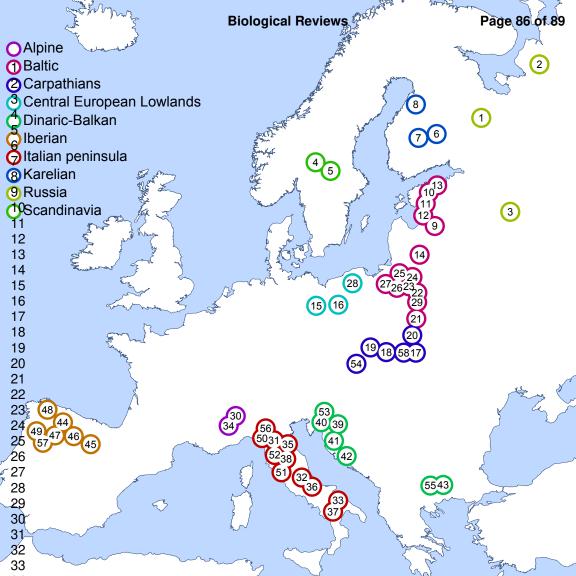
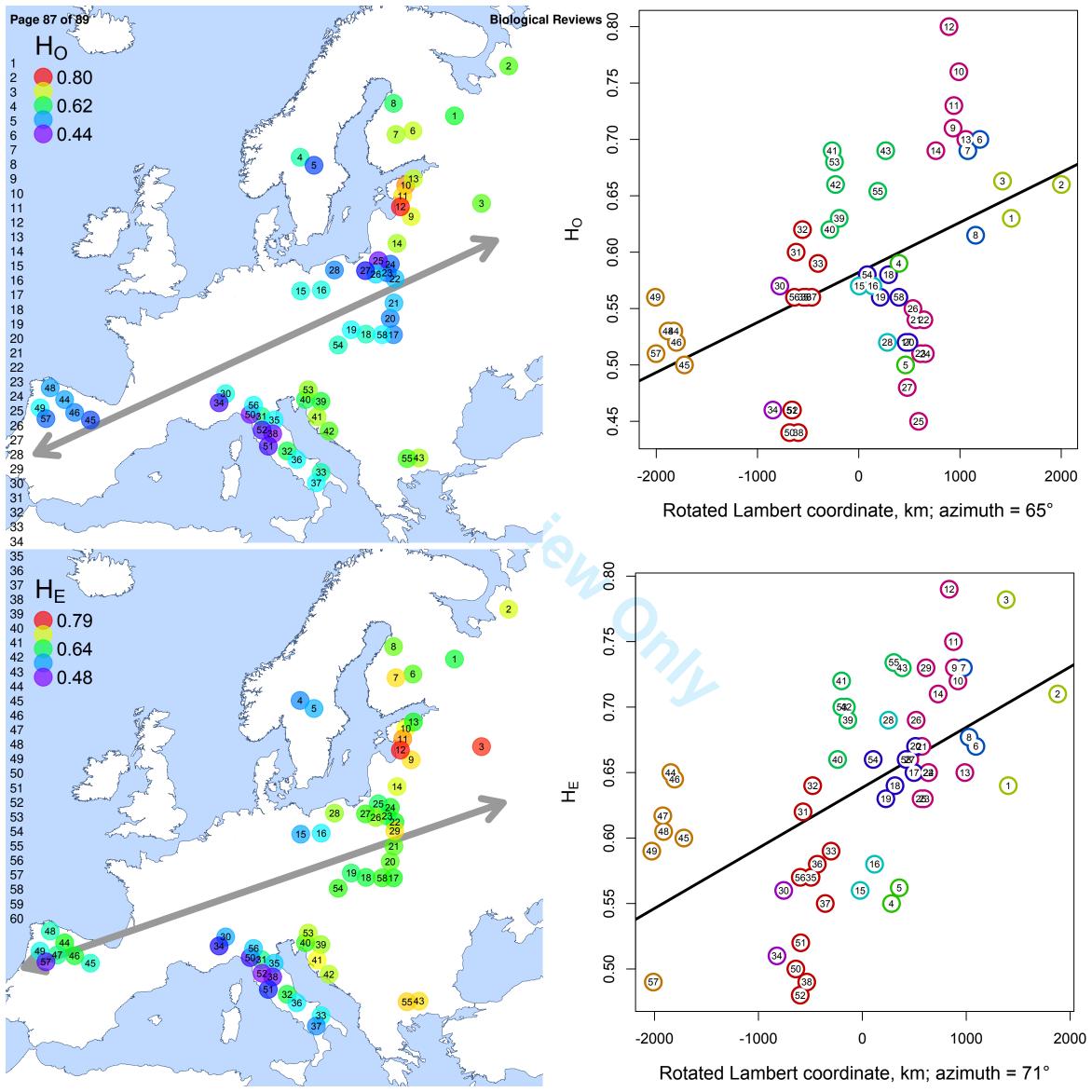




Fig. 4 71x63mm (300 x 300 DPI)

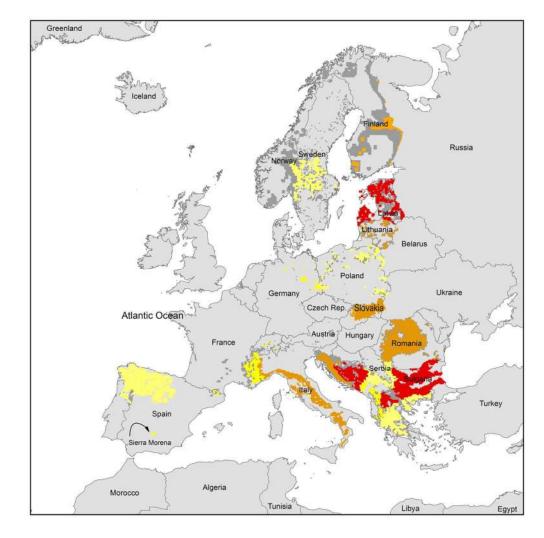


Fig. 7 141x142mm (300 x 300 DPI)

SCIENCE-BASED WOLF CONSERVATION AND MANAGEMENT IN EUROPE **Scientific Committee EU Reference Laboratory** of Wolf Studies **Counseling EU and countries** Scientific analyses Coordination of scientific projects Data management **Europe-wide scientific projects** l **Population genetics*** Population connectivity, inbreeding, population viability, etc. Hybridization Livestock depredation* with dogs* Public attitudes Food habits* & awareness rising Pathogens*

parasites viruses

Fig. 8 130x121mm (600 x 600 DPI)

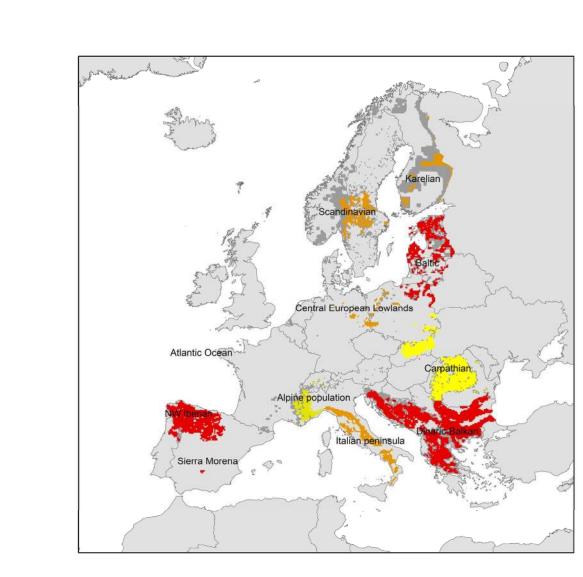


Fig. 9 141x142mm (300 x 300 DPI)

