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Abstract

Due to high computational costs of formal verification on
pure Boolean level, proof techniques on the word level, like
Satisfiability Modulo Theories (SMT), were proposed. Ver-
ification methods originally based on Boolean satisfiability
(SAT) can directly benefit from this progress.

In this work we present the word level framework
WoLFram that enables the development of applications for
formal verification of systems independent of the underlying
proof technique. The framework is partitioned into an ap-
plication layer, a core engine and a back-end layer. A wide
range of applications is implemented, e.g. equivalence and
property checking including algorithms for coverage/prop-
erty analysis, debugging and robustness checking. The back-
end supports Boolean as well as word level techniques, like
SMT and Constraint Solving (CSP). This makes WoLFram a
stable backbone for the development and quick evaluation
of emerging verification techniques.

1. Introduction

Following Moore’s law, the number of components that
can be integrated on a chip increases exponentially over the
years. Already today the verification gap – very large designs
can be manufactured, but not verified due to complexity
issues – is one of the biggest challenges for the hardware
industry. Thus, the need for efficient verification techniques
grows.

Formal verification methods based on Boolean Satisfiabil-
ity (SAT) were shown to work efficiently for circuits on the
Boolean level. But for circuits with large arithmetic struc-
tures, like adders and multipliers, pure Boolean SAT solving
is running out of steam. Therefore several new verification
techniques on the word level, e.g. predicate abstraction and
Satisfiability Modulo Theory (SMT), have been developed.
Word level techniques speed-up the verification process
significantly [1], [2]. Some of the verification methods based
on Boolean SAT techniques can directly benefit from the
advances for the word level provers. There have been several
publications on adapting existing methods for the use of
advanced proof techniques, like [3], [4], [5], [6], [7].

In this work we present a framework for the generic devel-
opment of formal verification methods that are independent
of the underlying proof technique, called WoLFram (Word

Level Framework). The framework is partitioned into an
application layer, a core engine and a solver back-end. The
motivation for this is on the one hand the easy adaptation of
existing verification methods for new proof techniques. On
the other hand, by building new methods on top of our core
data structures, we can reuse both, the parsing front-ends and
the solver back-end. In this way, for a new algorithm there
are a number of input languages (like SystemC or Verilog)
and numerous state-of-the-art solvers directly available.

The input of WoLFram is a word level netlist (wlnetlist)
that may contain Boolean as well as word level operations.
Synthesis tools for SystemC, Verilog and Blif are available.
Integrated applications are ranging from simulation, property
checking and equivalence checking to algorithms for analyz-
ing coverage, debugging and computing robustness. For each
of these applications, several proof engines are available,
in particular Boolean SAT, Pseudo Boolean SAT (PBS)
as well as word level techniques, like SMT or Constraint
Satisfaction Problem (CSP).

WoLFram allows for a fair and easy evaluation of proof
techniques to find the best suited solving paradigm for newly
developed verification methods (see e.g [4]). Even for a
single application it may be useful to apply alternating proof
techniques on different types of designs.

Overall, WoLFram provides a stable and extensible
framework for formal verification and allows the fast de-
velopment of formal verification methods.

The paper is structured as follows: Related work is
discussed in Section 2. Section 3 gives an overview of the
framework, followed by a detailed description of the input
model (Section 4), implemented applications (Section 5) and
proof engines (Section 6). The verification capabilities are
presented in a case study for a RISC CPU in Section 7.
Finally, a summary is given in Section 8.

2. Related Work

In 2005 SyCE – An Integrated Environment for System
Design in SystemC – was developed in our group [8].
WoLFram is a generalization of SyCE. While SyCE fo-
cuses on SystemC designs and Boolean proof techniques,
WoLFram abstracts from a specific HDL and supports
Boolean as well as word level techniques.

Academic tools for formal verification on the Boolean
level or on word level descriptions are e.g. [9], [10], [8],
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Figure 1. System overview

[11]. But all the tools are either restricted to a specific
Hardware Description Language (HDL), an application or
a proof technique. For example, [10] is a formal verification
environment for C and [8] for SystemC only. On the other
hand [9] is specialized on model checking and does not
contain support for other applications using formal methods,
like debugging or robustness computation. Boolean models
and techniques are limiting the approach of [11]. The strong
verification techniques behind commercial tools like [12],
[13], are not fully known to the public. An approach for the
formal verification of software is presented in [14]. There, an
intermediate representation is used, enabling the modeling
of Boolean and word level operations for software. However,
the focus of WoLFram is the formal verification of hardware
designs.

Overall, the prospective need for verification techniques
on a higher level of abstraction requires a flexible framework
with a wide range of applications and proof techniques. The
integration in one framework supports a high degree of reuse
and a fast evaluation of new verification techniques.

3. System Overview

The overall flow of WoLFram is shown in Figure 1. Here,
the left-hand side represents the algorithmic flow and the
right-hand side the data flow.

The control flow of WoLFram is partitioned into an
application layer, a core engine and a back-end layer. The
applications are written separately from the core algorithms
of WoLFram. An API of the core engine provides access to

frequently used features. Additionally, each of the applica-
tions is configurable with different back-end proof engines.
In this way, different proof techniques can be evaluated
without changing the application.

The core engine contains classes for the representation
of a hierarchical word level netlist (wlnetlist), counterex-
ample generation and simulation. The simulation supports
the generation of wave traces in VCD format, which can be
visualized with standard tools. Common algorithms like path
tracing, topological sorting, reachability analysis and design
abstraction facilities provide a rich set of basic functionality
for the applications.

The supported input languages and verification techniques
are presented on the right side of Figure 1. Front-ends for
SystemC and Verilog synthesize a design to a wlnetlist (see
Section 4). Afterwards, an application is started and works
on the hierarchical wlnetlist. By choosing a proof engine,
the core engine automatically translates the formal problem
description either to Conjunctive Normal Form (CNF), the
common input format for Boolean SAT solvers, to Pseudo
Boolean SAT (PBS) [15], to Quantified Boolean Formulae
(QBF) [16] or to SMTLIB format [17].

WoLFram is implemented in C++ and a set of over 200
unit tests ensures a stable development environment. A TCL
layer on top of WoLFram connects to a Graphical User
Interface (GUI), an interactive terminal, and a scripting
interface to invoke functions or applications.

The following sections give more details on the input
language (Section 4), the applications (Section 5) and the
underlying proof techniques (Section 6).



4. Input Language

The input format of WoLFram is a description of a hier-
archical wlnetlist. The wlnetlist contains information about
signals and their connection via operations. Both, the signals
as well as the operations, have variable bit size for signed or
unsigned values. By this, Boolean gate level descriptions as
well as n-bit logical and arithmetic operations are supported.
Additionally, arrays of signals and operations enable the
compact encoding of memories, register files or similar
regular circuit structures.

For example, the following operations for single and
multiple bits (n ≥ 1) are supported:

• Logic and bit operations: e.g. AND, OR, SETBIT
• Arithmetic operations: e.g. ADD, MUL, DIV
• Control and relational operations: e.g. ITE, LEQ, EQ
• Array operations: READ, WRITE

Currently only synchronous circuits with a single clock
domain are supported.

The generalization to a wlnetlist separates the input lan-
guage from a concrete HDL. The signals and operations
are the common elements that can be synthesized from any
HDL. Additionally, the HDL synthesis tools annotate the
wlnetlist with source code information, i.e. line and column
number from the original HDL input. A WoLFram wlnetlist
is stored in eXtensible Markup Language (XML) format,
simplifying parsing and generation of wlnetlist files.

Three front-ends are implemented to generate the wl-
netlist. For example, gate level netlists are synthesizable
from Blif and BlifMV format [18]. But also higher level
HDLs like SystemC and Verilog are supported1. The SystemC
front-end is based on the parser from [8].

5. Applications

During the last two years a wide range of applications
based on formal methods were implemented and evaluated
in the WoLFram framework. This includes applications for
property and equivalence checking, but also the strong
debugging facilities of WoLFram. The developed set of
applications provides a stable backbone for formal verifi-
cation and evaluation of new techniques. This section gives
an overview of the integrated applications:

• Property checking
• Coverage and property analysis
• Equivalence checking
• Debugging
• Robustness computation

Section 5.1 and Section 5.2 give details on property checking
and analysis algorithms, followed by information on equiv-
alence checking in Section 5.3. Debugging and robustness
computation are introduced in Section 5.4 and Section 5.5,
respectively.

1. The synthesis process of HDLs is not in focus of this work and is
therefore not considered in detail.

5.1. Property Checking

Functional verification is a major issue in today’s hard-
ware design flows. To ensure the correct functionality of
a circuit, its specification is formalized in a dedicated
verification language such as the Property Specification
Language (PSL) [19]. The properties are then checked using
model checking procedures like Bounded Model Check-
ing (BMC) [20].

In WoLFram there are two different BMC algorithms
implemented, both taking as input safety properties written
in the PSL language. The first method, k-induction, starts
from the initial states and tries to prove the property using
induction [21]. The second method, interval property check-
ing, abstracts the initial states, thus performing an all-states
verification. While this enables the efficient verification
of larger designs, usually additional invariants have to be
supplied to prevent spurious counterexamples that start from
an unreachable state. Details on this method can be found
in [22].

5.2. Coverage and Property Analysis

In order to guarantee a high quality of the functional
verification, a coverage check is available. The proof engine
is used to decide whether the properties uniquely determine
the value of all outputs for each input and state combination.
The method implemented in WoLFram is described in [23].
If the check fails, a missing scenario (coverage gap) is
presented to the user.

Additional methods aid the user in finding a concise
description of a design that covers the whole functionality.
In [24] an approach to understand the reasons for contradic-
tions in the antecedent of a property has been proposed. As
described in [25], properties can be strengthened automat-
ically and in case of a failing coverage check, suggestions
are made how to complete the set of properties.

5.3. Equivalence Checking

Equivalence checking decides whether an implementation
is functionally equivalent to a reference implementation
(specification) or not.

Combinational equivalence is checked by creating a miter
circuit [26] from implementation and specification, connect-
ing the primary inputs of both circuits and adding a compari-
son logic to the primary outputs. If one of the outputs differs
for any input combination, implementation and specification
are not functionally equivalent and a counterexample is
generated.

For sequential circuits an Iterative Logic Array (ILA) [27]
is created, the primary inputs are connected and the com-
parison logic is added to the primary outputs. But also
name-based state matching algorithms are implemented to
avoid unrolling. Algorithms to handle retiming are not
implemented at the moment, but are focus of future work.



5.4. Debugging

Formal verification techniques like property and equiva-
lence checking show faulty behavior, but often the coun-
terexamples have to be analyzed by a designer in a time
consuming manual process.

SAT-based debugging algorithms provide a powerful tech-
nique to evaluate the cause for a counterexample automat-
ically. Given a faulty implementation, a set of counterex-
amples and correct output responses from a specification,
a diagnosis application computes a set of components that
form a possible cause for the faulty behavior. Components
may be gates as well as hierarchical modules of a wlnetlist.

The WoLFram framework implements basic SAT-based
debugging [28], [29] as well as extensions that use unsat-
cores to speed-up the debugging process [30] and increase
the accuracy [31]. Experimental studies on SMT-based de-
bugging show promising results [6].

5.5. Robustness Computation

While facing continuously shrinking feature sizes, perma-
nent faults from manufacturing or externally triggered tran-
sient faults may affect the correct functionality of circuits.
Therefore, the demand for fault tolerance increases.

To ensure robustness, often redundancy is applied during
design [32] or at the layout level [33]. But an additional
formal check to prove robustness of an implementation is
usually not performed.

A formal method to prove fault tolerance was proposed
in [34]. Without assuming a specific fault type, the method
formally checks, if non-deterministic behavior of a signal is
observable at the primary outputs. In this case the signal is
non-robust. Recently, the basic method has been extended
to the computation of bounds for fault tolerance [35]. Both
methods are available in the WoLFram environment.

6. Proof Engines

The back-end of WoLFram consists of proof engines on
the Boolean level and on the word level. Table 1 summa-
rizes the different paradigms and lists the engines available
within WoLFram. The first column shows the type of proof
algorithm. The second column briefly explains the specific
properties of the algorithm. Column ‘engine‘ denotes the
engines that are currently integrated in WoLFram.

A common interface controls the generation of verification
models in the respective level. That is, a base class for all
verification models defines a generic interface. The interface
contains methods for the creation of e.g. logical operations
like OR and arithmetic operations like multiplication and
addition. Each proof technique inherits from the base class
and implements a specific verification model. To evaluate
a new proof technique, only a newly derived verification
model is required. The translation of circuit related problems

1 property INCREMENT =
2 always (
3 r e s e t == 0 &&
4 pc . l e == 0 &&
5 pc . pc < 2047
6 ) −> (
7 next [ 1 ] (
8 ( prev [ 1 ] ( pc . en ) == 1) ?
9 ( pc . p c o u t == prev [ 1 ] ( pc . pc ) + 1 ) :

10 ( pc . p c o u t == prev [ 1 ] ( pc . pc ) )
11 )
12 ) ;

Figure 2. Failing property

considered in WoLFram into the respective formats for
different solvers takes linear time, but trade-offs of different
encodings have to be considered carefully [6], [4].

For Boolean engines the problem has to be flattened,
typically into a two-level representation. In contrast, the
word level solvers have access to structural and seman-
tic information about the original problem. For example
arithmetic operations are encoded into two-level logic for
SAT, but are directly available in SMTLIB format. Therefore
techniques like predicate abstraction [49] or term-rewriting
can be applied within the word level engine.

7. Case Study

To show the application of WoLFram on a concrete
design, a case study for a RISC CPU is presented in this
section. The case study consists of three parts: visualization
(Section 7.1), debugging (Section 7.2) and coverage analysis
(Section 7.3).

7.1. Visualization

The visualization engine of Concept Engineering2 pro-
vides a graphical view of the RISC CPU (see Figure 4). The
visualization capabilities improve design and fault under-
standing and may significantly speed-up manual engineering
tasks such as debugging and optimization.

Some features are highlighted here:
• navigation in a hierarchical schematic view
• cone extraction
• source code browsing
• cross-probing schematic view and source code

The visualization engine interacts with WoLFram over a
TCP/IP connection and provides an additional GUI that can
be used in an interactive session. Formal applications can
use the visualization to annotate counterexamples or to mark
important components.

7.2. Debugging

Debugging is applied to find candidate fault sites for
a failing property. The property is specified in PSL (see

2. http://www.concept.de



Table 1. Proof algorithms and engines

Algorithm Description Engine
Boolean level
SAT Boolean Satisfiability finds an assignment for a Boolean function f : {0, 1}n → {0, 1} so that

f evaluates to 1 or proves that no such assignment exists; common input format is Conjunctive
Normal Form (CNF)

MiniSAT [36], zChaff [37], Boole-
Force [38], PicoSAT [39]

PBS Pseudo Boolean SAT also known as 0-1 integer linear programming; extends SAT by constraints
of the form c1x1 + c2x2 + . . . + cnxn ≤ d0 where the xi are Boolean variables, the ci and
d are integer constants

Pueblo [40], MiniSAT+ [15]

QBF Quantified Boolean Formulae extend Boolean SAT by existential and universal quantification;
provides speed-up, e.g. for debugging [41]

sKizzo [16], Quantor [42]

Word level
SMT Satisfiability Modulo Theories integrates SAT engines with theory solvers, e.g. for bit-vector

arithmetic; SMTLIB is the common input format [17]
Boolector [43], CVC3 [44],
SWORD [45], Yices [46]

CSP Constraint Satisfaction Problems; developed and applied in the domain of artificial intelligence;
common input format [47]

Abscon [48]

Figure 2) and checks whether the program counter is incre-
mented correctly3. In this example the program counter is
faulty due to swapping the then and the else part of the if-
statement in lines 23 to 31 shown at the bottom of Figure 4.
The faulty behavior is found by a property check. Now, a
counterexample is extracted and annotated in the design. The
cone view is used to restrict the view to the program counter.
In parallel, the corresponding Verilog source code is opened
at the bottom.

Afterwards, the debugging application determines all fault
candidates that may be a fix for the design. Debugging
correctly determines the reason for the faulty behavior in
the program counter and marks the fault candidates red. By
selecting a fault candidate in the cone view, in parallel the
corresponding part in the source view is marked red. As
shown in Figure 4, the above mentioned if-then-else block
is one of the fault candidates.

7.3. Coverage Analysis

After the design has been fixed, the property holds.
Additional properties describe the reset behavior and the
loading of new addresses into the program counter (not
shown here). Now, an automatic check determines whether
the set of properties completely covers the functionality of
the examined block. For this purpose, the coverage analysis
is started for signal pcout, resulting in an uncovered
scenario. The corresponding wave trace is shown in Figure 3.
As can be seen in the figure, the wrap around behavior of
the program counter – restarting with the value zero after
exceeding the highest address – has been omitted in the
properties. After including a proper description of this case,
the coverage check succeeds and thus the property set forms
a complete specification.

3. The prefix “pc.” of a signal name denotes the program counter in
the hierarchical CPU model, whereas “pc” is the register of the program
counter and en (le) denotes the enable (load enable) signal.

Figure 3. Coverage analysis

8. Summary

In summary, WoLFram is an environment for the de-
velopment of applications for formal verification on the
Boolean level and on the word level. Front-ends for syn-
thesizing HDLs are available and a wide range of applica-
tions provide strong verification capabilities. The replaceable
back-end allows an easy and fair evaluation of applications
using different proof techniques. Several publications clearly
demonstrate the strengths of WoLFram in different applica-
tion domains.
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Figure 4. Visualization
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