
Wolverine : Traffic and Road Condition Estimation using Smartphone Sensors

Ravi Bhoraskar Nagamanoj Vankadhara Bhaskaran Raman Purushottam Kulkarni

Indian Institute of Technology, Bombay

Abstract

Monitoring road and traffic conditions in a city is a problem

widely studied. Several methods have been proposed towards

addressing this problem. Several proposed techniques require

dedicated hardware such as GPS devices and accelerometers

in vehicles [7][15][8] or cameras on roadside and near traffic

signals[13]. All such methods are expensive in terms of monetary

cost and human effort required. We propose Wolverine1 - a non-

intrusive method that uses sensors present on smartphones. We

extend a prior study [12] to improve the algorithm based on using

accelerometer, GPS and magnetometer sensor readings for traffic

and road conditions detection. We are specifically interested in

identifying braking events - frequent braking indicates congested

traffic conditions - and bumps on the roads to characterize the

type of road. We evaluate the effectiveness of the proposed method

based on experiments conducted on the roads in Mumbai, with

promising results.

I. Introduction

With growing number of vehicle users, traffic is growing

day by day. It is desirable to have a mechanism by which

people can know, in real time, about the traffic condition in the

routes on which they wish to travel. As a result, working on

traffic monitoring has gained significant attention in recent times.

Much of the previous work concentrated on lane system and

orderly traffic [8], which is rare outside the developed world. For

example, in India, the traffic is highly chaotic and unpredictable.

Further, many of the proposed solutions need installing dedicated

sensors in the vehicles (like GPS-based tracking units)[15], and/or

on the road side (like inductive loop vehicle detectors, traffic

cameras, Doppler radar, etc.)[13][14], which are expensive. Also,

installing sensors in a large number of vehicles or installing traffic

cameras at several junctions is impractical due to monetary cost

and human effort required. The methods which use inductive loop

vehicle detectors can only be used in laned traffic systems, which

is not the case in many countries. In addition, traffic detection

using traffic cameras is restricted to the location where they are

deployed (generally at traffic signals). To detect the road condi-

tions, accelerometers installed in a vehicle may be used[7]. But,

this is also not feasible, as the number of vehicles participating in

1An allusion to the comic book character Wolverine from X-Men, who
has heightened sensing powers

the system will be limited to the vehicles where accelerometers

is installed. Installing additional devices on vehicles to increase

sensing density can very quickly become prohibitively expensive.

Several methods have been proposed that use sensors in

smartphones for activity detection in various environments(Indoor

localization[10], traffic detection[12] and detecting activity of a

person[11]). The smartphone based traffic estimation methods

obviate the need for specialized hardware installed in vehicles or

on the road side. These crowdsourced solutions(using distributed

participatory data collection) have the advantage of high scala-

bility as the number of smartphone users is growing at a rapid

pace. The Nericell system [12] uses accelerometer, microphone,

GSM Radio and GPS sensors available in smartphones that users

carries with them. In a smartphone based method, the orientation

of the phone could be arbitrary with respect to the direction of

motion, and could also change repeatedly. Hence, it is required to

virtually reorient the axes of the phone with respect to the vehicle.

Nericell uses accelerometer and GPS readings alone for this.

The direction of gravity is used to sense the vertical orientation,

and the acceleration recorded during a braking event is used to

compute the horizontal orientation. Autowitness[9], a system to

track stolen property also uses an idea similar to Nericell in order

to reorient the axes. Further, Nericell detects road and traffic

conditions based on threshold based heuristics.

Wolverine is a method which is similar to the Nericell system

in that it too uses smartphone sensors for traffic state monitoring.

However, for axes reorientation, we use the magnetometer to find

the horizontal orientation of the phone instead of waiting for a

braking event. This makes the system more reliable, and also

reduces the energy intensive GPS usage.Also, instead of threshold

based heuristics for determining the traffic and road conditions,

we use machine learning techniques (K-means clustering and

Support Vector Machine (SVM)) which are more robust and

versatile as compared to threshold based methods.

Hence, the main contributions of this work are two fold (1)

A novel algorithm to virtually reorient the coordinate axes of

a disoriented phone (2) Machine learning techniques to identify

bump and braking events.

II. Experimental Setup

Before we move on to describe our algorithms in detail, in

this section, we describe the experimental setup that we used to

collect the data, and to validate our algorithms.

Smartphones come with wide range of capabilities. They

can process information at high speeds and can support good

amount of external storage. The storage capability can be used for978-1-4673-0298-2/12/$31.00 c© 2012 IEEE

Y

X

Z

Fig. 1. Phone

Axes

Z’

Y’

X’

Fig. 2. Vehi

cle Axes

Fig. 3. Direction

of Motion

piggybacking processed or raw data collected by the application

to estimate traffic conditions. The processed or unprocessed

data can be communicated to a central server using GPRS,

EDGE, UMTS, WiFi or Bluetooth. Many sensors - accelerometer,

magnetometer, gyroscope, microphone, camera and GPS - can be

used to sense the environment and location information.

We chose Android platform as it is open source and has

a fairly versatile API (Application Programmer Interface). We

used Google Nexus S and HTC Wildfire S both of which runs

Android 2.3.3 OS and used SDK version 10. Both these phones

are equipped with an accelerometer, a magnetometer and GPS

sensor. Nexus S has a gyroscope as well.

We developed an application which processes the accelerom-

eter and magnetometer readings along with GPS information

and outputs the linear acceleration of the mobile, in the vehicle

frame of reference. We used a Suzuki Access 125 vehicle, and

collected data in different locations on the IIT Bombay campus.

We chose different road conditions (smooth, bumpy, inclined)

and environment conditions(clear sky, covered with trees - these

can affect GPS readings).

III. Virtual Reorientation Mechanism

When the phone is kept in proper orientation so that, its

axes align with vehicle’s axes, the readings of the three-axes

accelerometer gives vehicle acceleration in all three directions.

The phone can be kept in any arbitrary orientation inside the

vehicle. For example, it can be kept in a phone holder, which is

not flat, but in some orientation. We need to virtually reorient the

axes of the phone so that they are aligned with the vehicle’s axes.

Once we reorient the axes of the phone, we use the acceleration

readings to estimate traffic and road conditions.

A. Framework

The Android system assumes axes of the accelerometer as

shown in Figure-1. The X-axis is along the smaller edge when

the phone is held in portrait mode and points towards right, Y-

axis is along the longer edge in portrait mode and points up and

the Z-axis is perpendicular to the plane of the front face of the

screen and points towards the sky when laid on table on its back.

It also assumes same axes for magnetometer, except, the Z-axis

is inverted and points vertically downwards towards center of the

earth. We assume the vehicle’s axes as shown in Figure-2. The

direction of motion of vehicle is the Y-axis, the direction towards

the right hand side of the driver will be X-axis and the direction

which acts vertically upwards from the center of gravity is the

Z-axis. We call the axes of the phone, the reference axes (X,Y,Z)

and the axes of the vehicle, the target axes (X’, Y’, Z’).

Both the accelerometer and magnetometer gives readings

along all the three axes of the phone. Imagining the accelerometer

as a small ball at the center of the phone, its readings represent

the force applied by the phone against the force acting on the ball

to displace it (values are in m/s2). The magnetometer measures

ambient magnetic field in the three axes (values are in micro

tesla).

B. Determining Accelerometer Orientation

As described in Section III, the accelerometer (or rather the

mobile that contains this accelerometer) can be in any orientation

in the vehicle. We need to find the readings of the accelerometer

along Y’ and Z’ axes of the vehicle to find braking and bump

events respectively, which we use for estimating traffic and road

conditions. When the phone is kept idle in some arbitrary orien-

tation, the accelerometer shows some non-zero readings, giving

illusion that it the phone is accelerating in those directions with

the specified acceleration, which is actually not accelerating. This

is because the force of gravity which acts vertically downwards,

is factorized along the axes of the accelerometer. Similarly, even

when the device is actually accelerating some direction, the

readings does not corresponding to only the actual acceleration,

but also includes this added factor of gravity. We need to calculate

this force acting along the axes of the phone in that orientation

and subtract it from readings. This can be done once we know

the orientation of the phone.

To transform the vector from reference coordinate system to

target coordinate system, one method is to find the angles by

which the axes of the reference coordinate system need to be

rotated around each of the axes, to align with the axes of the target

coordinate system. Each of these rotations can be expressed in

the form of a rotation matrix. For example, consider the reference

coordinate system XY in 2-D plane, is rotated at an angle α in

counter-clockwise direction, then the rotation matrix equivalent

to this rotation can be represented as

R =

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

(1)

and, a column vector V in reference coordinate system can

be transformed to new coordinate system just by multiplying it

with the rotation matrix with it, as shown

V
′ = R(θ)× V (2)

Similarly the rotation matrix corresponding to the rotations

of the reference coordinate system at an angle φ around Y-axis,

then at an angle ψ around X-axis and then at an angle θ

around Z-axis, can be formed by multiplying the rotation matrix

corresponding each rotation. A vector V in reference coordinate

system can be represented in target coordinate system as

V
′ = R(θ)R(ψ)R(φ)× V (3)

v′x
v′y
v′z

 =

c(θ)c(φ) + s(θ)s(ψ)s(φ) −s(θ)c(φ) + c(θ)s(ψ)s(φ) c(ψ)s(φ)
s(θ)c(ψ) c(θ)c(ψ) −s(ψ)

−c(θ)s(φ) + s(θ)s(ψ)c(φ) s(θ)s(φ) + c(θ)s(ψ)c(φ) c(ψ)c(φ)

×

vx
vy
vz

(4)

where c represents cos and s represents sin.

Here we can observe that, each row vector in the rotation

matrix is mutually perpendicular, and have unit magnitude. In

fact, these are the axes representing the axes of the target

coordinate system. Also, the magnitude of each column is unit,

which means, each vector in old coordinate system will be split

onto each of the axes of new coordinate system so that the total

magnitude will not be changed. Thus, the rotation matrix can be

formed by just knowing the axes of the target coordinate system

(vectors representing the target coordinate axes with respect to

reference coordinate system).

We use the second method to perform virtual reorientation

of the axes of the accelerometer (transforming the accelerometer

readings from phone’s coordinate system to vehicle’s coordinate

system). We consider the phone’s axes as the reference coordinate

axes and the vehicle’s axes as the target axes. We do the total

reorientation in two steps. First, we transform the accelerometer

readings from phone’s coordinate system to geometric coordinate

system, then from geometric coordinate system to vehicle’s

coordinate system.

C. Reorientation from Phone’s axes to Geometric axes

The accelerometer can give Gravity Vector, which acts ver-

tically downwards towards the center of the earth. The magne-

tometer can give the Magnetic Vector, which acts towards the

magnetic north. Cross product of these two vectors gives us a

vector perpendicular to the plane of these two vectors and acts

along magnetic west (using right hand rule [4]). We call it East

West Vector. Again cross multiplying the Gravity Vector with East

West Vector, we get North South Vector, which acts horizontally

towards magnetic north. We do not present the exact calculation

here due to lack of space. Interested user may refer [5]. Now,

we have three mutually perpendicular vectors, representing the

geometric coordinate system. The rotation matrix representing

this system as target system can be formed as,

R−1 =

EastWest Vector

North South Vector

Gravity Vector

 (5)

This rotation matrix is in fact a 3×3 matrix, which is equivalent

to (1). Each of the row represent the projections of the geometric

axes onto the phone’s coordinate axes. The obtained rotation

matrix represents the angles of rotation of the phone around the

device’s axes to align with geometric axes. The orientation of

the phone with respect to geometric coordinate system can be

calculated from the rotation matrix with simple trigonometric

calculations. Once we have the three angles, we calculate the

factor of gravity that is added accelerometer readings along each

axis and subtract it. Multiplying the obtained rotation matrix

with the column vector representing the modified acceleration

values gives us the acceleration values of the phone along each

of the axes of geometric coordinate system. i.e, we can get the

acceleration values along magnetic west direction, magnetic north

direction and along the gravity vector direction. Here we need to

observe that, magnetic north and the true north are deviated by

a small angle, hence the magnetic west and true west also. We

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
−10

−5

0

5

10

15

20

Time (seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

1 1 2 2 2 2 2 2 1 1 2 2 2 2 1 2 1 1 2 2 2 2 2 1

1

X

Y

Z

Fig. 4. Accelerometer data for bumpy(025s) and

smooth(2551s) road

will calculate this deviation in next subsection.

D. Reorientation from Geometric axes to Vehicle’s axes

Once we have the acceleration values along the magnetic north

and magnetic south, transforming them onto vehicle’s axes is

simple if we know the angle at which the direction of motion of

the vehicle deviates from the magnetic north. We calculate the

magnetic declination, which is the deviation of magnetic north

from true north, which we can calculate from the magnetometer

readings and GPS readings, as shown in [2]. We also calculate

the bearing as described in [1], which is the angle that a line

joining two latitude-longitude points makes with geometric north

as shown in the Figure-3. We can extract the latitude/longitude

information from the location fixes returned by GPS. A GPS

fix is the location identified by the GPS receiver. To reduce the

possibility of miscalculation of this bearing due to the lack of

accuracy in GPS fixes, we take average of bearings calculated

from first fix to next 30 fixes.

Once we know the bearing and the magnetic declination, we

can transform the values from geometric axes to vehicle’s axes

with the help of a rotation matrix representing a rotation of the

geometric axes at an angle bearing − declination .

IV. Road and Vehicle State Detection

Previous sensing methods use thresholds on accelerometer

data for bump detection and sensing braking of the vehicle

[12]. However, according to experiments we conducted, the

characteristics of the acclerometer data changes with enviroment

configuration. In particular, the vehicle, the mobile device and

the nature of the road affect the characteristics of the sensor data.

Due to this variation in characteristic, the accuracy of the system

with fixed thresholds would be lower when tested under different

conditions. The method we propose is to use machine learning

algorithms to classify the incoming stream of accelerometer data

into classes based upon the features present in the data itself.

This will make the classification more robust to changes in the

environment. In this section, we describe two techniques. The

first one is used for classifying data from bumpy roads as separate

from smooth roads. The second one is for detecting braking.

A. Bump Detection

The problem that we address in this section is to distinguish

a bumpy road from a smooth one. This can be used both to

detect single speed-bumps and lengthier patches where the road

is consistently bumpy.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
−10

−5

0

5

10

15

20

Time(seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

S SS S S S S S S
B

S S S S S S S S S S S S S
B

S S SS S S S S S S S S SS S S
B BB

S S S

X

Y

Z

Fig. 5. Accelerometer Data for three speedbreakers

First the virtual reorientation, described in Section III, is

applied on the acclerometer data in order to convert it from the

phone frame of reference to the vehicle frame of reference. Then

we divide the reoriented accelerometer data into windows of 1

second duration, and use each window as a single data point (see

Figure 4). The sampling rate of the accelerometer we used was

50 times per second. We found that while one second is large

enough to smoothen out the random jitters in the data, it is also

small enough to capture the inherent characteristic features of a

bumpy or smooth road. From each of the 1 second window, we

extract the features to be used as input to the machine learning

algorithm. We use six features - the mean and standard deviations

in the three coordinate axes (µX , µY , µZ , σX , σY and σZ) over

the window.

We devised a technique that is essentially a supervised

learning technique. However, it uses an unsupervised learning

algorithm to help generate the class labels for the training. First,

we use a K-means clustering algorithm [3], with K = 2,
to partition the set of data points into two classes. The class

labels are arbitrary at this point of time. These classes are then

manually labelled as either Bumpy or Smooth. Notice that the

manual labelling is done only for the two classes, and not for

individual data points. However, the user might choose to re-

label some points, based on his observations in the data collectio

phase. This makes the effort required in this step considerably

smaller than if he had to label every data point individually. After

this manual labeling is done, we have a set of labeled data points.

These are then used to train a Support Vector Machine classifier

[6]. This trained SVM, in turn, is used to classify the data points

that are generated during the test phase, and hence to predict the

vehicle state.

We observe from Figures 4 and 5 that the major difference in

characteristic of the data for the bumpy and smooth road is the

difference in the magnitude of variability of the accelerometer

data within a window. In particular, the magnitude of variability

of the Z axis captures the characteristic difference between the

two classes of data. This feature is best captured by the standard

deviation of the accelerometer data in the Z axis (σZ). We tested

this hypothesis by running our classification algorithm using only

σZ as a feature, and comparing it with the six-feature scenario.

The classes predicted are exactly identical in both scenarios (They

are marked in Figure 5). We thus conclude that the dominant

feature deciding the bumpy/smooth characteristic is σz , and

thus use it for our characterization. This observation, that the

acceleration in Z direction is the dominant feature identifying

bumps, is consistent with the observations of Pothole Patrol[8].

Let us explain the technique through an example. Figure 4

shows the reoriented data collected for a run that involved the

vehicle moving on a rough, bumpy patch for 24 seconds, followed

by moving on a smooth road for 23 seconds. As described above,

this data is chunked into 1 second windows, features are extracted

from it, and given as input to the K-means clustering algorithm.

The (arbitrary) labels generated by the clustering algorithm are

marked in Figure 4.

Now, the manual labeling is done over the clustered data. In

this case label 2 corresponds to a bumpy road, and label 1 to a

smooth road; such is fed to the SVM as labels for the training

data. Now that the SVM is trained, it can be used to classify more

data. Figure 5 shows 23 seconds worth of data corresponding

to a smooth road, interspersed with solitary bumps, that were

encounterd at roughly the 5th, 12th and 21st seconds. The SVM
is used to then generate the classes for this data. The classes

predicted by the SVM are marked in Figure 5. S is smooth and

B is bumpy. Notice that the SVM correctly identifies all three

bumps.

B. Vehicle Braking Detection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
−8

−6

−4

−2

0

2

4

6

Time (seconds)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

2 2 2 2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2

Y

Fig. 6. Y axis Accelerometer for braking events(with

labels)

The problem we wish to address in this section is the detection

of braking events. This has applications in traffic state prediction.

For example, a number of braking events within a short interval

of time on the same vehicle could indicate the presence of road

congestion. A number of braking events observed at the same

geographical location across vehicles could indicate some sort of

obstacle on the road.

As in case of the bump detection algorithm, we use the reori-

ented accelerometer data, and chunk it into 1 second windows.

The features used are different, though. A braking event lasts for

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
−5

−4

−3

−2

−1

0

1

2

3

4

Time (seconds)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

SSSSSS
RRRR

SS
R

S
R

SSS
RRR

SSS
RR

SSSSS
RRR

SSS
RR

SSSSS
R

SSSSS
RRR

SSS
RR

SSS

Y

Fig. 7. Braking events with generated class labels

around 60ms(See Figure 6). This is sudden, and much shorter

than the duration of a bump event, which lasts for close to

500ms(Figure 5). Thus, the standard deviation σY is not able

to classify the braking windows from the non-braking ones very

well. For this reason, we use a different feature to help classify

the braking data. We define a metric δ or difference metric defined

as follows

δX = maxai∈windowai −minai∈windowai (6)

Here ai is the acceleration recorded at the ith instant. (Recall that

the accelerometer collects 50 readings per second) It is similarly

defined for the Y and Z axes too. Thus now we now have nine

features to choose from µX , µY , µZ , σX , σY , σZ , δX , δY and

δZ . We found that the feature that captures the braking event

the best, and thus is the most apt to be used for it is δY . Recall

that Y is the direction of motion of the vehicle, and thus this

is the axis in which the horizontal decceleration associated with

braking can be best observed.

The technique used is identical to the one for bump detection,

apart from the changed feature being used. On the extracted

features, we use the K-means clustering algorithm, followed

by a manual labeling stage, followed by training of a support

vector machine. The classification phase then involves running

the extracted features through the SVM. We shall not describe

this in detail here, having already described the similar bump

detection algorithm in section IV-A.

Figure 6 shows the reoriented accelerometer data for the Y

axes for eight braking events over a 32 second time period, along

with the labels generated by the K-means clustering algorithm.

Here, we manually label the cluster 2 to be a non-braking event,

and 1 to be a braking event

Figure 7 shows the reoriented Y axis acceleration for another

run with multiple braking events. The data is 51 seconds long,

with nine breaking events. The SVM is trained using the labels

in Figure 6, and then the data in Figure 7 is classified using that

SVM. The labels given by the classification algorithm are marked

in the figure itself(S is smooth, R is braking).

C. Concluding Remarks

The classification phase of the technique we desribed above

is a single pass algorithm. Thus it is appropriate to be used on a

smartphone device, where space constraints might be significant.

Even in the training phase, the data we store is only the features

corresponding to each window, which comes out to be 16 bytes

per second (2 float variables), or less than 1kb per minute - not

large at all.

We end up using two kinds of features for classification δ and

σ. We found σ to be a much more robust parameter as compared

to δ. It is less susceptible to noise in the data. Thus it is used

where possible - in our case for bump detection. When σ is not

a feasible feature, due to the small duration of the event, we use

δ. In case of high noise in the sensor data input, a filter to the

accelerometer data may be necessary before using δ. However,

we leave this for future work.

V. Evaluation

For data collection, we carried the phone on several rides

on a Suzuki Access 125 at different locations in the IIT-Bombay

campus. We performed the data collection in different road condi-

tions, collecting readings from accelerometer, magnetometer and

GPS. Our rides include roads which were bumpy, having speed-

breakers and smooth. Additionally, we collected data with several

braking and acceleration events, in order to test the braking

detection technique.

While collecting the training data, we kept the mobile in a cer-

tain arbitrary orientation. We noted the number of events(braking

or bump), and then used this knowledge while labeling. For

test data, we collected data with the phone held in a different,

arbitrary orientation. This enabled us to test both the reorietation

and the machine learning algorithms. We applied reorientation

algorithm on this data and fed the output to the machine learning

algorithm, which labeled readings in each one second interval.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
−10

−5

0

5

10

15

Time(seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

111111111111111221111111111111111111112111111111111112111

Reoriented Z

Fig. 8. Accelerometer readings in Zdirection after reori

entation for training data, with clusters

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
−10

−5

0

5

10

15

Time(seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

B B B B B B B B B B B B B B B B B B

Reoriented Z

Fig. 9. Accelerometer readings in Zdirection after reori

entation for test data, with labels

Figure 8 and 9 show the acceleration of the mobile phone in

the reoriented Z direction, that is in the direction perpendicular

to the plane of the vehicle. We use the data in Figure 8 to train

our system, and then validate it by testing on the data shown

in Figure 9. The clustering algorithm generated labels, which are

consistent with the ground truth (See clusters marked in Figure 8).

The windows with cluster 2 correspond to three bumps - which

were also noted during data collection. The points in cluster 1
are on a straight patch of road. After labelling the clusters as

such, we proceed to train the SVM, and generate labels for the

test data. Each Bump label generated by the algorithm is shown

in the graph (we show the labels for windows within 2 seconds

of each other as a single label. These correspond to the same

bump event). The algorithm correctly identifies 18 out of the 20

bump events(all except those at the 170th and 275th second). No

smooth road patch is incorrectly identified as a bump. Thus we

get a zero false positive rate, and a 10% false negative rate.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92
−8

−6

−4

−2

0

2

4

6

Time(seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

1111111122111111111111211111111122212111111222111111111122121111111111222111111111211111111122

Reoriented Y

Fig. 10. Accelerometer readings in Ydirection after reori

entation for training data, with clusters

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480
−8

−6

−4

−2

0

2

4

6

Time(seconds)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

RR R RR R R R R R R RR RR R RR RR R RR R R R R RR R

Reoriented Y

Fig. 11. Accelerometer readings in Ydirection after reori

entation for test data, with labels

Similarly, we plot the graphs for the experiments conducted

for the braking detection algorithm. Figure 10 shows the training

data, with the generated clusters marked. Figure 11 shows the

test data, with the generated labels marked for braking events.

Both figures show the acceleration in the reoriented Y direction,

that is in the direction parallel to the motion of the vehicle.

Out of a total of 37 braking events in the run, the algorithm

correctly identifies 29, with one false positive (at the 200th

second). Thus, we get a false positive rate of 2.7% and a false

negative rate of 21.6%.

Both the reorientation algorithm and the vehicle state detec-

tion algorithms give good results, with the system giving very

low false positives and relatively low false negatives.

VI. Conclusion and Future Work

As road traffic is increasing day by day, monitoring it in an

effective way has been challenge to researchers. Since smart

phones are penetrating into common people’s lives very fast,

utilizing the sensors available in them for traffic monitoring

is good idea. The data processed by the mobile can be sent

to a central server, which can use the information received to

annotate maps accessed by the users through this application.

This annotation can contain lot of information like the intensity

of traffic at a junction, the bumpy nature of the road etc. All

this can be done in an energy efficient manner by using low

energy consuming components of the mobile like accelerometer

and magnetometer and occasionally using GPS for localization

and finding the bearing of the road. Also, applying machine

learning techniques in classifying data can help the system to

adapt to changing factors like nature of the road and vehicle type

the users use. Some filtering techniques and advanced machine

learning methods are to be applied to further improve the false

negative rates of the Wolverine system.

References

[1] Calculate distance, bearing and more between latitude/longitude
points. http://www.movable-type.co.uk/scripts/latlong.html.

[2] Geomagnetic field. http://hi-android.info/src/android/hardware/
GeomagneticField.java.html.

[3] K-means clustering. http://en.wikipedia.org/wiki/K-means
clustering.

[4] Right hand rule. http://en.wikipedia.org/wiki/Right-hand rule.
[5] Sensor manager documentation. http://hi-android.info/src/android/

hardware/SensorManager.java.html.
[6] Support vector machine. http://en.wikipedia.org/wiki/Support

vector machine.
[7] V. Bychkovsky, K. Chen, M. Goraczko, H. Hu, B. Hull, A. Miu,

E. Shih, Y. Zhang, H. Balakrishnan, and S. Madden. The cartel
mobile sensor computing system. In SenSys’06, pages 383–384,
2006.

[8] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Bal-
akrishnan. The pothole patrol: Using a mobile sensor network
for road surface monitoring. In The Sixth Annual International

conference on Mobile Systems, Applications and Services (MobiSys

2008), Breckenridge, U.S.A., June 2008.
[9] S. Guha, K. Plarre, D. Lissner, S. Mitra, B. Krishna, P. Dutta, and

S. Kumar. Autowitness: locating and tracking stolen property while
tolerating gps and radio outages. In Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’10,
pages 29–42, New York, NY, USA, 2010. ACM.

[10] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell.
Soundsense: scalable sound sensing for people-centric applications
on mobile phones. In Proceedings of the 7th international confer-

ence on Mobile systems, applications, and services, MobiSys ’09,
pages 165–178, New York, NY, USA, 2009. ACM.

[11] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The jigsaw continuous sensing engine for mobile phone
applications. In Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, SenSys ’10, pages 71–84,
New York, NY, USA, 2010. ACM.

[12] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich
monitoring of road and traffic conditions using mobile smartphones.
In Proceedings of the 6th ACM conference on Embedded network

sensor systems, SenSys ’08, pages 323–336, New York, NY, USA,
2008. ACM.

[13] R. Sen, B. Raman, and P. Sharma. Horn-ok-please. In MobiSys,
pages 137–150, 2010.

[14] R. Sen, P. Siriah, and B. Raman. Roadsoundsense: Acoustic sensing
based road congestion monitoring in developing regions. In SECON,
pages 125–133, 2011.

[15] J. Yoon, B. Noble, and M. Liu. Surface street traffic estimation. In
MobiSys 07, pages 220–232. ACM, 2007.

