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In the past 40 years, the proportion of women in science courses and careers has dramatically increased
in some nations but not in others. Our research investigated how national differences in women’s science
participation related to gender-science stereotypes that associate science with men more than women.
Data from ~350,000 participants in 66 nations indicated that higher female enrollment in tertiary science
education (community college or above) related to weaker explicit and implicit national gender-science
stereotypes. Higher female employment in the researcher workforce related to weaker explicit, but not
implicit, gender-science stereotypes. These relationships remained after controlling for many theoreti-
cally relevant covariates. Even nations with high overall gender equity (e.g., the Netherlands) had strong
gender-science stereotypes if men dominated science fields specifically. In addition, the relationship
between women’s educational enrollment in science and implicit gender-science stereotypes was stronger
for college-educated participants than participants without college education. Implications for instruc-

tional practices and educational policies are discussed.
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Pervasive stereotypes associating science with men emerge
early in development (Chambers, 1983; Steffens, Jelenec, & No-
ack, 2010) and exist across cultures (Nosek et al., 2009). Over 40
years ago, Chambers asked nearly 5,000 American and Canadian
children to a draw a picture of a scientist, and only 28 children
(0.6%) depicted a woman scientist. Although most children still
associate science with men, these associations may have weakened
over time at least in the United States (Fralick, Kearn, Thompson,
& Lyons, 2009; Milford & Tippett, 2013). For example, in one
recent study (Farland-Smith, 2009), 35% of American children
depicted a woman scientist. These changes in stereotypes mirror
women’s increasing participation in science in the United States
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(Hill, Corbett, & St. Rose, 2010). For instance, women earned 19%
of the U.S.’s chemistry bachelor’s degrees in 1966 but now earn
49% of such degrees (National Science Board, 2014). To investi-
gate how women’s national participation in science relates to such
associations, our analyses used cross-sectional data from
~350,000 participants in 66 nations. These individuals completed
measures of gender-science stereotypes, defined as associations
that connect science with men more than women. Comparing these
stereotypes across nations could help identify how they are shaped
by several interacting sociocultural factors. Such sociocultural
factors could include messages in mass media; opinions of teach-
ers and peers; participation of family members in science, tech-
nology, engineering, and mathematics (STEM) fields; and/or ex-
periences learning STEM topics in male-dominated courses.
Eagly and colleagues’ social role theory (Eagly & Wood, 2012;
Wood & Eagly, 2012) provides a framework for understanding
how gender stereotypes form and change in response to observing
women and men in differing social roles within a culture. Both
direct (e.g., through social interactions) and indirect (e.g., through
mass media) observations associate social groups such as women
and men with their typical role-linked activities and thus form the
basis for cultural stereotypes (Koenig & Eagly, in press). These
observations begin at early ages. For instance, kindergarten girls
endorsed gender-mathematics stereotypes if their female teacher
was anxious about mathematics (Beilock, Gunderson, Ramirez, &
Levine, 2010; Gunderson, Ramirez, Levine, & Beilock, 2012). In
contrast, exposure to successful women scientists and mathemati-
cians can weaken gender-STEM stereotypes among young girls
(Galdi, Cadinu, & Tomasetto, 2014), high school students taking
biology (Mason, Kahle, & Gardner, 1991), or undergraduate fe-
male STEM majors who identify with their professor (Young,
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Rudman, Buettner, & McLean, 2013). Hence, stereotypes are
formed and changed, in part, by repeatedly observing members of
different social groups in role-linked activities. This theoretical
framework can also help to explain why stereotypes about other
social groups vary across nations. For instance, consistent with
social role theory, stereotypes about older adults’ incompetence
were weaker in nations where more older adults participated in
paid and volunteer work; this cross-national relationship remained
even after controlling for national differences in older adults’
cognitive abilities (Bowen & Skirbekk, 2013).

Multiple observations of counterstereotypic women across di-
verse contexts, such as directly in science courses and indirectly in
televisions shows, are critical to changing stereotypes (Eagly &
Wood, 2012; Koenig & Eagly, in press; Wood & Eagly, 2012).
People need multiple, mutually reinforcing examples to see coun-
terstereotypic individuals as evidence of trends. Otherwise, sparse
counterstereotypic examples can be dismissed as atypical through
a process called subtyping (Bigler & Liben, 2006; Richards &
Hewstone, 2001). For instance, individual women scientists could
be perceived as having followed unusual paths to science and
exerted exceptional effort to succeed (Smith, Lewis, Hawthorne, &
Hodges, 2013). These stereotyping processes may explain why
experimental studies have revealed that exposure to successful
women engineers and mathematicians have not consistently weak-
ened gender-STEM stereotypes (Ramsey, Betz, & Sekaquaptewa,
2013; Steinke et al., 2007; Stout, Dasgupta, Hunsinger, & McMa-
nus, 2011; Young et al., 2013). For instance, in Stout et al.’s Study
3, intended STEM majors (n = 100, 47% women) took a 3-month
calculus class from a professor and teaching assistant who were
either both male or both female. Although taking the calculus
course from female instructors increased female students’ implicit
identification with mathematics, the gender of the course instruc-
tors had no observable effect on gender-math stereotypes. Such
short-term interventions may be insufficient to override pervasive,
everyday experiences linking math-intensive science fields with
men. For instance, male students outnumbered female students by
three to one in the calculus course taken by Stout et al.’s partici-
pants. In such contexts, sparse examples of female math professors
may have been subtyped and seen as atypical. Moreover, taking a
STEM course from a female rather than male professor can even
strengthen gender-science stereotypes if students do not view the
professor as similar to themselves (Young et al., 2013).

Even students in female-dominated science majors could still
strongly associate science with men. For instance, although
women currently earn 60% of biology bachelor’s degrees in the
United States (National Science Board, 2014), biology majors
would likely encounter other stereotype-consistent evidence. This
evidence could include the preponderance of men among biology
faculty (Ceci, Williams, & Barnett, 2009) or students in required
STEM courses in other fields such as physics (Barone, 2011).
Moreover, students could form separate stereotypes about biolo-
gists while maintaining their belief that science is generally asso-
ciated with men (Richards & Hewstone, 2001). Such conflicting
experiences suggest that gender-science stereotypes would likely
vary in nuanced ways across students’ field of study. For instance,
one large correlational study (n ~ 100,000) revealed that, com-
pared with physical science majors, biological science majors
reported weaker explicit gender-science stereotypes but still im-
plicitly associated science with men to the same extent (Smyth &
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Nosek, 2013). Furthermore, pervasive cultural images associating
science with men fuel stereotyping processes for students in all
academic disciplines. Archetypes of White male scientists are
present in diverse cultural artifacts such as television shows (Long
et al., 2010), movies (Flicker, 2003), national news reports
(Chimba & Kitzinger, 2010; Shachar, 2000), science textbooks
(Bazler & Simonis, 1991; Brotman & Moore, 2008), and even
advertisements in the journal Science (Barbercheck, 2001). Such
shared cultural experiences likely disseminate and reinforce ste-
reotypes about gender in general (Furnham & Paltzer, 2010; Kim-
ball, 1986) and women in science specifically (Steinke, 2013).

Comparing gender-science stereotypes across nations could help
reveal the impact of such varied cultural experiences. In one such
effort, Nosek et al. (2009) found that nations with stronger implicit
gender-science stereotypes also had larger national gender differ-
ences favoring boys in science and mathematics achievement. The
authors suggested that this result reflected a bidirectional relation-
ship in which stereotypes influence achievement and achievement
influences stereotypes. We built on this prior research by investi-
gating how women’s participation in science relates to cross-
national differences in gender-science stereotypes. Our focus on
participation in science extends Nosek et al.’s study because wom-
en’s participation in science does not necessarily reflect gender
differences in science achievement (Riegle-Crumb, King, Grod-
sky, & Muller, 2012). When more women enter science, people
can observe counterstereotypic women across diverse contexts
such as in science classes and news articles, especially if these
changes occur across multiple science fields. These diverse obser-
vations can then influence stereotypes, as predicted by social role
theory (Eagly & Wood, 2012; Wood & Eagly, 2012). To test these
predictions, our study analyzed two aspects of women’s participa-
tion in science: percentage of women among (a) all science majors
(community college or above) and (b) employed researchers.
Many participants in our mostly college-educated sample likely
had direct repeated exposure to women and men enrolled as
science majors; direct exposure to employed researchers was per-
haps more limited.

We investigated how women'’s participation in science related to
both implicit and explicit measures of gender-science stereotypes.
Consistent with contemporary theorizing about dual processes in
social cognition (Sherman, Gawronski, & Trope, 2014), the im-
plicit measure assessed aspects of stereotyping that are generally
more automatic and less conscious, whereas the explicit measure
assessed those aspects that emerge as conscious knowledge that is
willingly reported (Nosek, Hawkins, & Frazier, 2011). Empirical
findings have generally supported the interpretation that these
measures assess related, but distinct, constructs. For instance,
explicit and implicit attitude measures often significantly, but
weakly, correlate with each other (Greenwald, Poehlman, Uhl-
mann, & Banaji, 2009; Nosek et al., 2007). Moreover, both mea-
sures often add incremental validity when predicting behavioral
outcomes such as discrimination (Greenwald et al., 2009; but see
Oswald, Mitchell, Blanton, Jaccard, & Tetlock, 2013).

Gawronski and Bodenhausen’s (2006, 2011) associative-
propositional model provides a theoretical account for why explicit
and implicit measures should often differ. According to this model,
implicit measures reflect the activations of associations in mem-
ory, whereas explicit measures reflect the outcomes of proposi-
tional processes. For instance, a person could automatically asso-
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ciate Black people with negative attributes such as violent crime
but reject the proposition that “I dislike Black people.” That person
would therefore show negative bias toward Black people on an
implicit attitude measure, but not on an explicit measure. Also
consistent with this theoretical model, different types of counter-
stereotypic exposure may be necessary to change implicit versus
explicit stereotypes. Specifically, repeated counterstereotypic ex-
posure would be critical to changing implicit stereotypes, which
reflect associations learned from repeated pairings of stimuli rep-
resenting two concepts (e.g., science and male). In contrast, brief
exposure to propositional information (e.g., statistics about wom-
en’s representation in science) could change explicit stereotypes.
For instance, a person could learn that women earn half of the
U.S.’s chemistry bachelor’s degrees (National Science Board,
2014) and readily incorporate that information into explicit re-
sponses (e.g., answering a questionnaire item asking how much
that person associates chemistry with men or women).

To explore these ideas, we analyzed four relationships between
gender-science stereotypes and women'’s participation in science
by crossing two types of women’s participation (in educational
enrollment and in the workforce) with two types of gender-science
stereotypes (explicit and implicit). Our critical hypothesis was that
a higher participation of women in science would relate to weaker
national-level gender-science stereotypes, consistent with social
role theory. The associative-propositional model would addition-
ally predict that, compared with explicit stereotypes, implicit ste-
reotypes should relate more strongly to repeated counterstereo-
typic exposure. As a proxy for this repeated exposure to women in
STEM fields, we used participants’ level of education (e.g.,
college-educated vs. some or no college). In nations with a high
percentage of women among science majors, college-educated
individuals would have frequently encountered examples of fe-
male science majors during college.

Method

Sample

The 66 nations included in our focal analyses (see Figure 1)
represented ~350,000 participants who self-selected into our sam-
ple by completing stereotype measures on a widely distributed
website called Project Implicit (see Nosek et al., 2009). These
nations met the requirements of (a) a minimum sample size of n >
50 and (b) populations of more than 5% Internet users during the
time of stereotype data collection (years 2000—2008). The Results
section explains the rationale for these selection criteria and re-
ports results across alternate criteria. In an average national sam-
ple, 50% of participants had a college degree or higher, and 79%
had some college or higher. Therefore, most participants likely had
direct, repeated exposure to the representation of women among
college science majors. Also, in an average national sample, 60%
of participants were women, and the average age was 27 years
(SD = 11 years within nations).

Measures

Explicit gender-science stereotypes. For the explicit stereo-
type measure, participants rated “how much you associate science
with males or females” on a 5-point or 7-point scale' ranging from

strongly male to strongly female. This same question was repeated
replacing “science” with “liberal arts” to serve as a comparison
measure of stereotypes in an alternate academic domain. These
questions were worded to correspond to the implicit measure (see
below) and definition of gender-science stereotypes (i.e., associa-
tions connecting science with men more than women). These
questions therefore did not ask about gender stereotypes regarding
science-related abilities and interests (e.g., “Do you think males or
females are more interested in science?”); such wording would
have addressed gender stereotypes about science-related attributes
rather than participants’ more general associations between sci-
ence and gender.

Single-item measures such as our study’s explicit measure
sometimes have lower reliabilities than multiple-item measures
and therefore can underestimate relationships. Hence, to the extent
that our explicit measure was unreliable, it would have provided
conservative tests of hypotheses regarding explicit stereotypes.
However, compared with multiple-item measures, single-item
measures often have equal reliability and validity for assessing
psychosocial constructs such as attitudes (Bergkvist & Rossiter,
2007; Fishbein & Ajzen, 1974), job satisfaction (Wanous, Reich-
ers, & Hudy, 1997), and math anxiety (Nuiez-Pefia, Guilera, &
Sudrez-Pellicioni, in press).

Implicit gender-science stereotypes. For the implicit mea-
sure, participants completed a gender-science Implicit Association
Test (IAT; for an overview of the IAT methodology, see Green-
wald et al., 2009). As described by Nosek et al. (2009), this
computerized task recorded how quickly participants associated
science with males. Participants categorized words representing
the categories of male (boy, father, grandpa, husband, male, man,
son, uncle), female (aunt, daughter, female, girl, grandma, mother,
wife, woman), science (astronomy, biology, chemistry, engineer-
ing, geology, math, physics, math), and liberal arts (arts, English,
history, humanities, literature, music, philosophy). These 30 words
were presented one at a time, and participants categorized them by
pressing one of two keyboard keys; one response key was on the
left side of the keyboard and the other was on the right. The
response keys were paired stereotypically for some trials (e.g.,
participant presses the e key for male and science words, and i key
for female and liberal arts words) and counterstereotypically for
other trials (e.g., participant presses the e key for female and
science words). Participants responded faster when the keys were
paired stereotypically than counterstereotypically by an average of
~100-150 milliseconds (Nosek, Banaji, & Greenwald, 2002).
This response time difference was interpreted as evidence of
implicit gender-science stereotypes.

Participants were given unlimited time to make a response for
each word, but were instructed to go as fast as possible. The
precision of these reaction times was limited by the clock rates of

! The response categories for the 5-point scale (strongly male, somewhat
male, neither male nor female, somewhat female, strongly female) and the
7-point scale (strongly male, moderately male, somewhat male, neither
male nor female, somewhat female, moderately male, strongly female)
were similar. These response categories were converted to a numeric scale
by assigning neither male nor female to a value of 0 and assuming equal
numeric spacing between the ordinal response categories. Male responses
were given positive scores, and female responses were given negative
scores. We standardized the variances of 5-point and 7-point scales to both
be 1 before using the scales to compute national averages.
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Figure 1. Nations analyzed (shown in black) by the criteria of n > 50 responses per nation and > 5% Internet

user population.

participants’ computers; this limitation introduced some random
noise into the implicit measure, but no large systematic biases
(Nosek, Greenwald, & Banaji, 2005). Each participant completed
a block of 60 stereotype-consistent trials and a block of 60
stereotype-inconsistent trials. The ordering of stereotype-
consistent and stereotype-inconsistent blocks can have weak to
moderate effects on the magnitude of implicit bias (Nosek et al.,
2005, Study 4). The ordering of these blocks was therefore coun-
terbalanced across participants. Before completing these critical
blocks, participants completed a practice block of 20 trials that
involved categorizing only male and female words and then an-
other practice block of 20 trials that involved categorizing only
science and liberal arts words. These practice blocks helped par-
ticipants become familiar with the IAT, consistent with standard
practices for administering this task (Nosek et al., 2005).

We used the exact same data cleaning procedures used by
Greenwald, Nosek, and Banaji (2003) and Nosek et al. (2009) to
process the IAT data. Individual trial response times faster than
400 ms or slower than 10,000 ms were removed. Response times
for trials with errors (i.e., participant presses the wrong response
key for the presented word) was replaced with the mean of correct
responses in that response block plus a 600-ms penalty. To help
minimize the impact of careless responding, participants’ IAT
scores were disqualified if participants consistently made many
errors (i.e., made errors on more than 30% of trials across all the
critical blocks, 40% of trials in any one of the critical blocks, 40%
of trials across all the practice blocks, and/or 50% of trials in any
one of the practice blocks) or consistently responded too quickly
(i.e., responded faster than 300 ms on more than 10% of the total
test trials, 25% of trials in any one of the critical blocks, 35% of
trials in any one of the practice blocks). These data quality stan-
dards disqualified 9% of IAT scores. The reaction time difference
between stereotype-consistent and stereotype-inconsistent blocks
was divided by each individual’s standard deviation of reaction
times to compute an IAT D score (Greenwald et al., 2003).

Scoring of stereotype measures. For both explicit and im-
plicit stereotype measures, positive scores indicated male—science
associations, negative scores indicated female—science associa-
tions, and scores of 0 indicated neutral gender—science associations
(e.g., an explicit response of “neither male nor female”). To
facilitate comparison across the two stereotype measures, each

measure’s raw scores were standardized by dividing by the stan-
dard deviation of all individual scores across the globe. These
standardized scores are identical to z-scores if z-scores were com-
puted without first subtracting the population mean. Hence, for
both stereotype measures, a standardized score of 0.5 represented
a response that differed 0.5 standard deviations in the male direc-
tion from neutral gender—science associations, with standard de-
viation representing variability across individuals. This approach
has the advantage that the magnitude of stereotypes can be inter-
preted in Cohen’s d effect size units (for an example meta-analytic
application, see Koenig, Eagly, Mitchell, & Ristikari, 2011,
masculinity-femininity paradigm). Hence, national averages ex-
ceeding 0.5 can be considered moderate to large.

Women’s representation in science. Two indicators of wom-
en’s representation in science were downloaded from UNESCO’s
website (stats.uis.unesco.org): the percentage of women among
individuals (a) enrolled in tertiary science education and (b) em-
ployed as researchers. Both indicators were based on head counts.
Statistics by field of science (e.g., life vs. physical sciences) were
generally less available. The composite measure for women’s
representation in the researcher workforce combined statistics
across sectors of employment: business enterprise, government,
higher education, and private nonprofit. Although this measure
aggregated researcher statistics across many fields, the composite
measure correlated highly with the specific, but less available,
measure for natural sciences (r = .86, p < .0001, n = 28). Our
central results were similar when using the aggregated or disag-
gregated measure. Consistent with prior analyses (Else-Quest,
Hyde, & Linn, 2010; Reilly, 2012), we therefore focused on the
more available, aggregated statistics to maximize both statistical
power and the diversity of nations in our analyses. We averaged all
available statistics for the years of stereotype data collection
(2000-2008), or if those data were not available, then for the 4
years before and after data collection.

Other national indicators. In addition to using women’s
representation in science to predict gender-science stereotypes,
multiple regression analyses included 25 other national attributes
as covariates. These covariates included broad and domain-
specific indicators of gender equity, gender differences in science
achievement, Hofstede’s cultural dimensions, human develop-
ment, prevalence of scientists, world region, and sample demo-
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graphics (see the Appendix for a complete list). These covariates
helped to eliminate alternate explanations of relationships between
women’s representation in science and gender-science stereotypes.
For instance, women’s representation in science might reflect
broader gender equity across multiple societal domains such as
employment opportunities and political agency. However, recent
research also has demonstrated the multidimensional nature of
gender equity (Else-Quest & Grabe, 2012). For instance, gender
differences in STEM achievement and attitudes related more
strongly to women’s representation in the researcher workforce
than in the overall workforce (Else-Quest et al., 2010; for a review,
see Miller & Halpern, 2014). We similarly predicted that gender-
science stereotypes should relate more strongly to domain-specific
measures of sex segregation than to composite indices of national
gender equity.

Procedure

Participants found the Project Implicit website mainly through
links from other websites, media coverage, search engines, and
word of mouth (Nosek et al., 2002). The website was available in
17 different languages and hosted on various web servers across
the world. Participants choose the gender-science task from a list
of five to 12 topics (e.g., implicit age attitudes, implicit racial
attitudes). Participants therefore self-selected into the sample by
having Internet access, learning about the Project Implicit website,
visiting the website, and choosing the gender-science task. The
Results and Limitations sections consider the influence of possible
self-selection biases. The explicit stereotype measure, implicit
stereotype measure, and a brief demographics questionnaire (e.g.,
about participants’ gender, nationality) were completed in coun-
terbalanced order.” The gender-science task required approxi-
mately 10 min to fully complete. We analyzed data from partici-
pants who had indicated their nationality and had usable data for at
least one of the two gender-science stereotype measures (see
Nosek et al., 2009, for description of the data cleaning procedures
for the implicit measure).

Data Analysis

Our analysis addressed three questions: (a) Does women’s par-
ticipation in science predict national explicit and implicit gender-
science stereotypes? If so, how robust are these relationships
across criteria for including nations? (b) Can other variables alter-
natively explain these relationships? (c) Are gender-science ste-
reotypes better predicted by women’s representation in science or
gender differences in science achievement? Unless otherwise
noted, all analyses used mixed-effects meta-regression models,
which assumed that national averages were combinations of fixed
effects of predictor variables (e.g., women’s representation in
science), between-nation heterogeneity, and within-nation sam-
pling variance (Borenstein, Hedges, Higgins, & Rothstein, 2009).
The metafor package in the statistical software R (Viechtbauer &
Cheung, 2010) identified potential outliers using a diagnostic
(DFFITS) of a nation’s influence on the overall regression model.
Nations were considered outliers if their IDFFITSI| > 1, a rule of
thumb useful to previous researchers (e.g., Cohen, Cohen, West, &
Aiken, 2003; Nosek et al., 2009). Our raw data and analysis scripts
are available from the first author.

Results

Averaged across the nations, explicit and implicit measures
indicated strong associations of science with men (Ms = 0.99 and
0.98, respectively, based on random-effects weighting). The mag-
nitude of these stereotypes was large in all nations. For instance,
90% of national averages for explicit and implicit measures fell
within the ranges 0.78-1.20 and 0.76-1.20, respectively, which
were estimated using the between-nation heterogeneity (both s =
0.13) that adjusts for within-nation sampling variance. As shown
in Figure 2, stereotypes were large even in nations such as Argen-
tina and Bulgaria where women were approximately half of the
nation’s science majors and employed researchers. However, the
between-nation heterogeneity was significant (both ps < .0001)
and substantial relative to sampling error (only 3%—4% of ob-
served heterogeneity could be attributed to within-nation sampling
variance). This heterogeneity suggests that national attributes (e.g.,
women’s representation in science) may explain differences in
observed national averages. In addition, explicit and implicit mea-
sures correlated weakly among individuals within nations (r = .19,
p < .0001, based on random-effects weighting) and across nations
(based on national averages, r = .35, p = .004, N = 66 nations),
suggesting that some national attributes may differently predict
explicit versus implicit stereotypes.

Does Women’s Representation in Science Predict
National Gender-Science Stereotypes?

As shown in Figure 2, higher female enrollment in tertiary
science education predicted weaker national averages of explicit
(Panel a, p = .0006) and implicit (Panel c, p = .0002) gender-
science stereotypes. Higher female employment in the researcher
workforce predicted weaker explicit (Panel b, p = .0004) but not
implicit (Panel d, p = .88) stereotypes.® Additionally, the differ-
ence between women'’s representation in science education versus
researcher workforce predicted implicit stereotypes (p = .006), but
not explicit stereotypes (p = .55). This last result established that
Panel c’s regression coefficient significantly differed from Panel
d’s and that Panel a’s and Panel b’s were both significant but did
not differ from each other.

What might explain the exception in which women’s employ-
ment in the researcher workforce did not predict implicit stereo-
types (Panel d)? As suggested earlier, repeated counterstereotypic
exposure is critical to changing implicit associations between

2 Prior research has generally revealed that the order of administration
(i.e., explicit or implicit measure first) does not substantially affect mea-
surement of stereotypes at least for Project Implicit samples (Nosek et al.,
2005, Study 3). Moreover, we found similar results when separating
analyses by order of administration. For instance, the relationships reported
in Figure 2 never differed by order of administration (all ps > .46).

3 We also reanalyzed explicit stereotypes using difference scores that
resembled those for the implicit measure: individuals’ male—female asso-
ciations for science minus for liberal arts. National averages of these
difference scores marginally related to female science enrollment (p = .06)
and significantly related to female researcher employment (p = .01). These
p values, which were higher compared with Panels a’s and b’s values,
suggested that including the contrast category of liberal arts introduced
some construct-irrelevant variance. However, because these relationships
were still significant or marginally so, these results cannot explain why
Panel d’s relationship with the implicit measure (which included a contrast
category by design of the implicit measure) was not significant.
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Figure 2. Cross-national relationships between women’s participation in science and explicit (Panels a—b) and
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influential outlier (Romania) was excluded from Panel c (see the Results section). “R> based on the percent
reduction in estimated between-nation heterogeneity when adding women’s participation in science to a

meta-regression model with no covariates.

science and men. Notably, these mostly college-educated partici-
pants likely had less exposure to people employed as researchers
than to science majors in universities, perhaps explaining why
Panel d’s relationship was not significant. To test this explanation,
we investigated a corollary hypothesis: Panel c’s relationship
between women’s science enrollment and implicit stereotypes
should also be weaker among individuals less exposed to science
majors than among those with more exposure. Additional analyses
supported this hypothesis. As shown in Figure 3, Panel c’s rela-
tionship between implicit stereotypes and women’s enrollment
was about half as strong for participants who had never attended
college than for college-educated participants (p = .001), based on
two-level hierarchical linear models (Raudenbush & Bryk, 2002).
Presumably, participants without college education had less re-
peated exposure to female and male science majors. In contrast,
relationships with explicit stereotypes (Panels a and b) did not
differ by participants’ level of education (all ps > .10). Finally, all
significant relationships (Panels a—c) were approximately twice as
strong for female than male participants (see Figure S1), consistent
with other evidence that women are more sensitive to changes in
gender diversity in STEM fields (Inzlicht & Ben-Zeev, 2000;
Young et al., 2013). These differences by participant gender,
however, were not as robust as differences by college education or
the central findings in Figure 2 (see next section, Footnote 2).

How Robust Are Results Across Criteria
for Selecting Nations?

Self-selected Internet samples such as ours have limited
representativeness of national populations (Yeager et al., 2011).
Consistent with other research (e.g., Lippa, Collaer, & Peters,
2010), we therefore selected nations on the basis of two vari-
ables (sample size and the population’s percentage of Internet
users) to maximize the likelihood of producing reasonably
precise and representative national-level estimates. Rather than
using a single criterion, we report results across many choices
of selection criteria, as advocated by Simmons, Nelson, and
Simonsohn (2011). Results in Figure 2 were robust across 36
choices in selection criteria based on minimum sample size
(n>1,n> 10, n > 25, n > 50, n > 100, n > 200) and
percentage of Internet users (>0%, >1%, >5%, >10%,
>25%, >50%). Across criteria, results were consistently repli-
cated for the significant relationships in Panel a (all ps < .005),
Panel b (p < .05 in 86% of cases), and Panel ¢ (p < .05 in 86%
of cases), as well as for the nonsignificant relationship in Panel d
(all ps > .28). For Panels a—c, all relationships were in the
predicted direction. Furthermore, consistent with results presented
in the last section, Panel c’s estimated relationship was always
more than 50% stronger for individuals with a bachelor’s degree
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Figure 3. Moderation of cross-national relationships by participant’s level of college education. The p values
concern differences in the regression slopes, and “Slope ratio” is the slope for college-educated participants
divided by the slope for participants with some or no college.

compared with those who never attended college (p < .05 in 72%
of cases).* Also consistent with results presented earlier, Panel a’s
and b’s estimated relationships never differed by college education
(all ps > .098). Finally, Figure 2’s relationships were also robust
to exclusion of outliers. For instance, across selection criteria,
Panel ¢’s relationship was significant in 86% versus 78% of cases
when including versus excluding outliers, respectively. Romania
was an outlier in Figure 2’s Panel c¢ and therefore was excluded
from that panel and subsequent analyses of that relationship;
results were similar with and without the outlier. This robustness
across selection criteria strengthens our central findings.

Can Covariates Explain Relationships Between
Gender Diversity and Stereotypes?

Multiple regression models tested whether other national attri-
butes could have accounted for Figure 2’s relationships between
women’s representation in science and gender-science stereotypes.
Closely following Bryk and Thum’s (1989) analytic approach, we
first developed separate regression models that each contained
only one group of covariates (e.g., composite indices of gender
equity). These initial models helped identify specific covariates
that were most related to stereotypes. Consistent with Bryk and
Thum, a composite model then included those covariates that
significantly predicted stereotypes in the initial models. This ap-
proach maximized statistical power while investigating a wide
range of covariates.

Multiple regression analyses generally indicated that (a) cova-
riates such as national gender equity did not independently predict
implicit or explicit gender-science stereotypes and (b) inclusion of
covariates did not nullify relationships between women’s repre-
sentation in science and these stereotypes (see Table S1 for de-
tailed results). For example, two widely used composite indices of
national gender equity—the Gender Empowerment Measure and
Gender Gap Index—did not independently predict explicit or
implicit gender-science stereotypes (all ps > .38). When con-
trolled for these measures, all relationships between women’s
science participation and gender-science stereotypes that were
previously significant (see Figure 2, Panels a—c) remained signif-
icant (all ps < .002). The Netherlands was a particularly dramatic
example of composite equity indices not predicting gender-science
stereotypes. Despite scoring high on composite indices of gender
equity, this nation (sample size n ~ 3,000) had the strongest
explicit and second strongest implicit gender-science stereotypes
among the nations in Figure 1. This seemingly paradoxical result,
however, makes sense because of high domain-specific sex seg-
regation in the Netherlands, whereby male scientists outnumbered

*The moderating effect of gender was less robust. Across selection
criteria, our focal relationships (Panels a—c) were stronger for women than
men in 98% of cases and twice as strong in 32% of cases. These trends
were consistent but significant (p < .05) in only 17% of cases and marginal
(.05 < p < .10) in 21% of cases.
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female scientists nearly four to one in both employment and
educational enrollment.

Furthermore, indicating discriminant validity, the percent of
women among science majors or researchers did not predict ex-
plicit stereotypes about liberal arts (all ps > .06). Women’s rep-
resentation in science therefore did not predict gender stereotypes
that are not related to science. Additionally, average explicit ste-
reotypes for liberal arts and science were generally not related
across nations (e.g., ¥ = .09 among the 66 nations in Figure 1). In
summary, covariate and discriminant validity analyses together
support the domain specificity of relationships between women’s
representation in science and national gender-science stereotypes.

How Do Achievement Differences, Compared With
Gender Diversity, Relate to Stereotypes?

Nosek et al. (2009) presented evidence that gender differences
in science achievement related to national implicit gender-science
stereotypes (see also Hamamura, 2012; Pope & Sydnor, 2010).
Our covariate analyses, however, revealed that these achievement
differences did not independently relate to stereotypes after con-
trolling for women’s enrollment in science education. Hence,
although both gender differences in achievement and in enrollment
sometimes related to cross-national differences in gender-science
stereotypes, gender differences in enrollment may be more rele-
vant to explaining differences in stereotypes. To investigate fur-
ther, we compared the strength of stereotype—achievement rela-
tionships across time, selection criteria, participant gender,
inclusion of covariates, and international data sources (for further
detail, see the supplemental materials).

Consistent with Nosek et al. (2009), stereotype—achievement
relationships were found in data from the Trends in International
Mathematics and Science Study (TIMSS), which focuses on as-
sessing what students learn in science classrooms. However, these
results for TIMSS were somewhat inconsistent over time (e.g., not
replicated in the year 2007), as shown in the top-left corner of
Table 1. Averaging across four testing administrations helped to

MILLER, EAGLY, AND LINN

identify overall trends. For instance, indicating some robustness,
time-averaged gender differences in TIMSS science achievement
significantly related to implicit gender-science stereotypes in 39%
of cases of selection criteria after excluding one influential outlier.
These cross-national relationships were somewhat more robust for
the stereotypes of female than male participants (see bottom-left
corner of Table 1). For instance, time-averaged TIMSS gender
differences related to women’s implicit stereotypes in 58% of
cases of selection criteria after excluding one influential outlier.
When controlled for women’s enrollment in science education,
however, this relationship remained significant in only 8% of cases
(and in the predicted direction in 89% of cases), whereas women’s
enrollment continued to significantly predict stereotypes in 67% of
cases (see Tables S2—-S6 for more detailed results). Finally, our
analysis identified another novel finding that relationships between
achievement gender differences and stereotypes were generally not
found in data from the Programme for International Student As-
sessment (PISA), which focuses more on assessing how well
students apply science to everyday contexts than does TIMSS
(Else-Quest et al., 2010; but see Fensham, 2008). See right half of
Table 1 for results for PISA. Hence, achievement differences
independently predicted stereotypes in some cases when specifi-
cally analyzing women’s implicit stereotypes and TIMSS (not
PISA) data. However, evidence for this relationship was consid-
erably less robust than for relationships between gender-science
stereotypes and women'’s representation in science.

Discussion

Results indicated robust relationships between women’s repre-
sentation in science and national gender-science stereotypes, de-
fined as associations connecting science with men more than
women. These relationships tended to be stronger for female
participants and remained after controlling for many covariates
such as national gender equity. Even nations with high overall
gender equity had strong gender-science stereotypes if men dom-
inated science fields specifically (see also Charles & Bradley,

Table 1
Robustness of Stereotype—Achievement Relationships
TIMSS PISA
Variable 1999 2003 2007 2011 Ave Ave?® Ave® 2000 2003 2006 2009 Ave Ave® Ave?
Predicting mean implicit stereotypes
p < .05 25% 44% 0% 17% 8% 39% 0% 3% 0% 0% 0% 0% 0% 0%
05 <p<.10 11% 6% 0% 17% 19% 11% 8% 25% 0% 0% 0% 3% 3% 0%
p>.10 64% 50% 100% 67% 72% 50% 92% 2% 100% 100% 100% 97% 97% 100%
Predicting women’s implicit stereotypes

p < .05 17% 50% 0% 53% 31% 58% 8% 0% 0% 0% 0% 28% 0% 0%
05 <p<.10 14% 17% 0% 28% 17% 17% 25% 0% 0% 0% 6% 6% 17% 0%
p>.10 69% 33% 100% 19% 53% 25% 67% 100% 100% 100% 94% 67% 83% 100%
Max N 38 43 46 44 62 61 51 42 40 55 68 69 68 61
Note. Each column displays results across selection criteria (e.g., with 1999 TIMSS data, stereotype—achievement relationships were significant across

25% of choices in selection criteria). TIMSS = Trends in Mathematics and Science Study; PISA = Programme for International Student Assessment;
Ave = time-averaged gender differences in science achievement; Max N = number of nations analyzed with the most liberal selection criteria (sample size

n>1).
# Qutlier Colombia excluded.
excluded.

® Controlling for percent women among science majors. Outliers Colombia and Romania excluded.
4 Controlling for percent women among science majors. Outliers Malta and Romania excluded.

¢ Outlier Malta
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2009). In support of the specificity to science fields, women’s
representation in science did not predict explicit gender stereo-
types about liberal arts. Furthermore, compared with gender dif-
ferences in science achievement (Nosek et al., 2009), women’s
representation in science more robustly predicted explicit and
implicit stereotypes.

Women'’s representation in science predicted national gender-
science stereotypes in three of four cases. As an informative
boundary condition, women’s employment in the researcher work-
force predicted only explicit, but not implicit, gender-science
stereotypes. This result suggests that repeated and varied expo-
sures to counterstereotypic women may be necessary to stably
change implicit gender-science stereotypes, consistent with
broader literature on implicit social cognition (Gawronski &
Bodenhausen, 2006, 2011). The implicit stereotypes of these
mostly college-educated participants thus likely related more to
their frequent exposure to female and male science majors and less
to their rarer exposure to female and male employed researchers.
If this reasoning is valid, then cross-national relationships between
implicit stereotypes and gender diversity among science majors
should also be weaker among participants who never attended
college. Our analyses supported these predictions.

Repeated counterstereotypic exposure may be less critical to
changing explicit stereotypes because they also respond to more
abstract propositional information such as statistics about women’s
representation in science (Gawronski & Bodenhausen, 2006,
2011). Consistent with these hypotheses, relationships between
gender diversity and explicit stereotypes were similar for partici-
pants with and without college education, even though participants
without college education likely had less repeated exposure to
female and male science majors. These results align with other
findings that people often are highly accurate in explicitly estimat-
ing gender compositions of occupations. For instance, in one
study, undergraduates had high accuracy across 80 occupations,
despite little direct exposure to women and men in those occupa-
tions (Cejka & Eagly, 1999).

These cross-national findings extend previous research investi-
gating the psychological effects of encountering female role mod-
els in STEM fields (Dasgupta, 2011; Gonzdlez de San Roman & de
la Rica Goiricelaya, 2012; Riegle-Crumb & Moore, 2014). Such
role models show promise for weakening stereotypes, especially
among female students (Beilock et al., 2010; Galdi et al., 2014;
although see Lenton, Bruder, & Sedikides, 2009) and students who
strongly identify with the role models (Young et al., 2013). How-
ever, these counterstereotypic examples could be subtyped because
they occur along with pervasive stereotypic evidence from the
broad cultural environment (Richards & Hewstone, 2001; Stout et
al., 2011). Changes in broader cultural environments such as
women’s increasing representation in science fields in the United
States. (Hill et al., 2010) might have stronger, more robust effects
on gender-science stereotypes. Role models may be one of the first
steps in changing stereotypes over time, especially because female
STEM peers and mentors can help protect girls and women against
the negative effects of current stereotypes (Dasgupta, 2011; Stout
et al., 2011). Cultural stereotypes could then change as more
women enter STEM fields and gender compositions change at the
national level (Beaman, Chattopadhyay, Duflo, Pande, & To-
palova, 2009). Future research can help understand how individual
differences in counterstereotypic exposure contribute to these cul-

tural trends. For instance, our analysis of the relationship between
individuals’ educational attainment and gender-science stereotypes
could be extended by measuring how closely college-educated
individuals identified with female science peers and professors
(Young et al., 2013).

Throughout this article, we have primarily considered how
gender diversity might influence stereotypes. However, as noted
earlier, because the data are correlational, a bidirectional relation-
ship is plausible. For instance, as Nosek et al. (2009) suggested,
implicit stereotypes could cause women to underperform on sci-
ence achievement tests because of a phenomenon known as ste-
reotype threat (Schmader, Johns, & Forbes, 2008; Walton &
Spencer, 2009). This lower achievement could, in turn, limit
women’s access to science fields. Consistent with this reasoning,
women’s implicit gender-science stereotypes related to male ad-
vantages in the TIMSS test, which was designed to assess students’
learning of science curriculum. However, this evidence was less
robust than our central findings relating stereotypes and women’s
representation in science. Stereotypes could also influence wom-
en’s representation in science through other factors such as wom-
en’s identification with STEM fields (Dasgupta, 2011; Nosek &
Smyth, 2011). Both causal directions between gender composition
in science and gender-science stereotypes are thus plausible, al-
though gender composition likely influences stereotypes more
directly than stereotypes influence gender composition. The im-
pact of stereotypes on gender compositions would be mediated
over many years as women enroll in STEM courses and seek
employment in STEM fields, whereas the impact of gender com-
positions on stereotypes can be more immediate (Lenton et al.,
2009).

Furthermore, some of our study’s results would be difficult to
explain if gender composition did not influence stereotypes in
some way. For instance, if the gender composition of science
majors in college did not affect stereotypes, then stereotypes of
individuals with and without college education should not differ.
Another alternative hypothesis is that individuals with and without
college education might differ on average if other correlated
individual-level variables (e.g., age or socioeconomic status) in-
fluence stereotypes. However, our data supported neither hypoth-
esis because college education predicted stronger implicit stereo-
types, but only in nations where men dominated science majors
(see Figure 3). In contrast, college education predicted weaker
implicit stereotypes in nations where women dominated science
majors. Compared with those alternative hypotheses, the
associative-propositional model (Gawronski & Bodenhausen,
2006, 2011) can more parsimoniously account for the cross-level
interactions with women’s representation in science, as discussed
earlier.

Limitations

Our correlational design revealed the possible impact of cultural
environments, but experimental manipulations offer greater poten-
tial for causal inference. However, the effects of experimental
manipulations may be weakened by broader sociocultural mes-
sages (e.g., Stout et al., 2011). Hence, the effects of cultural
environments are inherently challenging to study because they
generally cannot be experimentally manipulated. Although inves-
tigating changes over time could strengthen cross-cultural analyses
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such as ours (Brandt, 2011), this study’s time period of data
collection was too small (2000—2008) to meaningfully test for
such longitudinal changes.

This study used self-selected Internet samples, which have lim-
ited representativeness of national populations (Yeager et al.,
2011), especially if the percentage of Internet users is low. These
concerns were somewhat lessened because our central results were
robust across a wide range of minimum percentages of Internet
users. Nevertheless, participants also self-selected into our study
by finding the Project Implicit website and choosing the gender-
science task. For instance, participants especially interested in
gender issues might have been more likely to choose the gender-
science task. Self-selection is therefore a general methodological
concern. However, it is unclear how much self-selection affected
our specific empirical findings (e.g., the regression slopes in Fig-
ure 2).

Another limitation was that available statistics did not permit
analysis of how results might have differed by field of science
(e.g., physics vs. biology). Future research should address this
issue because both stereotypes and gender diversity vary substan-
tially by field (Nosek & Smyth, 2011; Smyth & Nosek, 2013).
However, as noted in the introduction, our analyses that averaged
across science fields may be justified because female dominance in
only one field (e.g., biology) could be regarded as an exception to
the usual pattern of male dominance in science (Richards &
Hewstone, 2001). Other limitations were that explicit stereotypes
were measured by a single survey item, participants without col-
lege education were underrepresented in our sample, nations char-
acterized as low in human development and/or had low Internet
usage rates were underrepresented in our sample, and the number
of nations was small (N = 66) even if the number of participants
was large. However, in defense of our findings, they proved to be
robust despite these limitations.

Educational Implications and Future Research

Our results indicated that participants across 66 nations strongly
associated science with men more than women, including in na-
tions where women were approximately half of the nation’s sci-
ence majors and employed researchers (see also Nosek et al.,
2009). Hence, across the world, gender-science stereotypes present
concerns for science educators and students to the extent that these
associations affect the experiences of women and men pursuing
science degrees and occupations. For instance, such stereotypes
negatively impact women by causing underachievement in intro-
ductory undergraduate STEM courses (Miyake et al., 2010), dis-
identification with and negative attitudes toward science (Good,
Rattan, & Dweck, 2012; Nosek & Smyth, 2011; Steffens et al.,
2010), and gender discrimination (Rueben, Sapienza, & Zingales,
in press). Despite their ubiquity, gender-science stereotypes also
demonstrated cultural variability and therefore potential for
change. Yet, gender-science stereotypes were still strong even in
nations with small gender differences in overall science participa-
tion.

Although it is not yet clear how best to weaken these stereo-
types, a number of promising strategies can be explored. Science
educators could help weaken stereotypes by highlighting diverse
examples of female scientists. Presenting single or infrequent
examples of female scientists will likely not substantially change
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gender-STEM stereotypes (Stout et al., 2011), especially if such
women are presented as token examples (Shachar, 2000). A more
effective strategy to weaken stereotypes could be to integrate many
examples of female scientists as part of teachers’ normal class-
room instruction. For instance, teachers could motivate the learn-
ing of specific scientific concepts by discussing how they relate to
the research of currently practicing female and male scientists
(Linn & Eylon, 2011). Related prior research has indicated the
benefits of integrating narrative information about scientists into
instruction (Arya & Maul, 2012). For instance, in one experimental
study (Hong & Lin-Siegler, 2012), learning how scientists strug-
gled in their research increased students’ interest in the science
lesson and students’ content understanding (e.g., about Newtonian
mechanics). Learning how both female and male scientists struggle
could also help protect female students against the negative effects
of gender-STEM stereotypes (Asgari, Dasgupta, & Stout, 2012;
Good et al., 2012). Future research should extend these approaches
to understand how repeated examples of female scientists might
weaken gender-STEM stereotypes over time.

Our study might also have implications for social policies such
as affirmative action. For the recent U.S. Supreme Court case
Fisher v. Texas, social psychologists prepared an amicus brief
outlining the implications of stereotype threat for affirmative ac-
tion (Brief of Experimental Psychologists, 2012). The brief argued
that diversity in college populations helps minorities reach their
maximum potential because ingroup peers can inoculate minorities
against the negative effects of cultural stereotypes (Dasgupta,
2011; Murphy, Steele, & Gross, 2007; Richman, vanDellen, &
Wood, 2011). Increasing the diversity of college populations might
also change underlying stereotypes about science fields. Future
research should investigate this possibility. These efforts to
weaken stereotypes could then have cascading influence by en-
couraging more women to pursue and excel in fields in which they
have been historically underrepresented.
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Appendix

Covariates Included in Multiple Regression Analyses

Variable name Description

Composite indices of gender equity

GGI Gender Gap Index. Based on four subindices for gender gaps in economic participation and opportunity, educational
attainment, political empowerment, and health/survival.
GEM Gender Empowerment Measure. Based on gender gaps in earned income; women’s representation in parliament; and

women’s employment in managerial, professional, and technical occupations.
Domain-specific gender equity

GGI_eco Economic subindex of Gender Gap Index. Based on gender gaps in labor force participation rates, wage equality for similar
work, earned income, and high labor employment.
GGI_edu_log Education subindex of Gender Gap Index. Based on gender gaps in literacy rates and enrollment rates in primary, secondary,
and tertiary education. Reflected and log-transformed to reduce negative skew.
TertArtsF Percentage of women among liberal arts majors (humanities and arts).
TertTeachF Percentage of teachers in tertiary education who are women.
Achievement differences
TIMSS_diff Gender difference in Grade 8 TIMSS science achievement averaged across years 1999, 2003, 2007, 2011. Positive values
indicate male advantages.
PISA_diff Gender difference in PISA science achievement averaged across years 2000, 2003, 2006, 2009. Positive values indicate male
advantages.
Cultural dimensions
PowerDist Power Distance. Represents “the extent to which the less powerful members of institutions and organizations within a
country expect and accept that power is distributed unequally” (Hofstede, Hofstede, & Minkov, 2010, p. 61).
UncertAvoid Uncertainty Avoidance. Represents “the extent to which the members of a culture feel threatened by ambiguous or unknown
situations” (Hofstede et al., 2010, p. 191).
MascFem Masculinity minus Femininity. Masculinity represents “when emotional gender roles are clearly distinct: Men are supposed to

be assertive, tough, and focused on material success, whereas women are supported to be more modest, tender, and
concerned with the quality of life,” whereas femininity represents “when emotional gender roles overlap” (Hofstede et al.,
2010, p. 140).

IndivCollect Individualism minus Collectivism. Individualism represents “societies in which the ties between individuals are loose,”
whereas collectivism represents “societies in which people from birth onward are integrated into strong, cohesive in-
groups” (Hofstede et al., 2010, p. 92).

Atheism_log Percentage of population that does not believe in a God. Log-transformed to reduce positive skew.
Human development
HDI_log Human Development Index. Based on life expectancy at birth, mean years of schooling, expected years of schooling, and
gross national income per capita. Reflected and log-transformed to reduce negative skew.
1Q Nation’s average 1Q.
Prevalence of scientists
Rsrcher_log Number of employed researchers (based on head counts) per one million people. Log-transformed to reduce positive skew.
TertSciPrct Percentage of tertiary students in science.
World region
Asia Dummy code comparing nations in Asia with nations in the Americas.
Europe Dummy code comparing nations in Europe with nations in the Americas.
Other Dummy code comparing nations in other world regions (Africa; Oceania) with nations in the Americas. These other regions

were combined into one dummy code because of their low frequency in our sample of nations.
Sample characteristics

critlat_mean Average trial latency collapsed across experimental conditions of the implicit measure.
prct_male Percentage of men in the stereotype sample.

pret_college Percentage of stereotype sample with bachelor’s degree or higher.

age_mean Average age of the stereotype sample.

corr_iatexp Correlation between implicit and explicit gender-science stereotypes.

Note. TIMSS = Trends in Mathematics and Science Study; PISA = Programme for International Student Assessment.
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