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WONG-ZAKAI APPROXIMATION AND SUPPORT THEOREM FOR 2D

AND 3D STOCHASTIC CONVECTIVE BRINKMAN-FORCHHEIMER

EQUATIONS

KUSH KINRA1 AND MANIL T. MOHAN2*

Abstract. In this work, we demonstrate the Wong-Zakai approximation results for two and
three dimensional stochastic convective Brinkman-Forchheimer (SCBF) equations forced by
Hilbert space valued Wiener noise on bounded domains. Even though the existence and
uniqueness of a pathwise strong solution to SCBF equations is known, the existence of a
unique solution to the approximating system is not immediate from the solvability results
of SCBF equations, and we prove it by using Faedo-Galerkin approximation technique and
monotonicity arguments. Moreover, as an application of the Wong-Zakai approximation, we
obtain the support of the distribution of solutions to SCBF equations.

1. Introduction

This work is devoted to the Wong-Zakai approximation of incompressible stochastic con-
vective Brinkman-Forchheimer (CBF) equations (a non-Darcy model) which express the
motion of fluid flows in a saturated porous medium (cf. [25]). We consider the stochastic
CBF equations in a bounded subset O ⊂ R

d (d = 2, 3) as




du(t) = [µ∆u(t)− (u(t) · ∇)u(t)− αu(t)− β|u(t)|r−1
u(t)−∇p(t)]dt

+G(u(t))dW(t), in O× (0,∞),

∇ · u(t) = 0, in O× (0,∞),

u(0) = x, x ∈ O,

(1.1)

where u(x, t) : O×(0,∞) → R
d denotes the velocity field, p(x, t) : O×(0,∞) → R represents

the pressure field, W(·) is a cylindrical Wiener process in some separable Hilbert space defined
on a complete filtered probability space (Ω,F , (Ft)t≥0,P) and the noise coefficient G(·)
satisfies certain growth and local monotonicity conditions (see section 2 for more details).
Here the positive constants µ, α and β represent the Brinkman (effective viscosity), Darcy
(permeability of porous medium) and Forchheimer coefficients, respectively. The absorption
exponent 1 ≤ r < ∞ and r = 3 is known as the critical exponent. One can consider
CBF equations as damped Navier-Stokes equations (NSE) due to the presence of linear and
nonlinear damping αu + β|u|r−1

u. Furthermore, the critical homogeneous CBF equations
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(when r = 3) and NSE have the same scaling (Proposition 1.1, [16]) only when α = 0 but
no scale invariance property for other values of α and r. Therefore it is also known as the
tamed NSE ([36]) or NSE modified by an absorption term ([1]).

Let us now discuss some literature available on the solvability of CBF equations. For
the existence of unique weak as well as strong solutions for deterministic CBF equations
on periodic and bounded domains, the readers are referred to the works [1, 7, 16, 25, 29],
etc. For stochastic CBF equations (1.1), the author in [30, 32] proved that there exists a
pathwise unique strong (in the probabilistic sense) solution of 2D SCBF equations for any
r ≥ 1 and 3D SCBF equations for any r ≥ 3 (r > 3 for any µ, β > 0 and r = 3 for
2βµ ≥ 1) forced by Gaussian and pure jump noise, respectively. The existence of a weak
martingale solution for 2D and 3D SCBF equations perturbed by Lévy noise (for r ≥ 1) is
established in [33]. Similar to 3D stochastic NSE (resp. deterministic NSE), the existence
of a unique pathwise strong solution (resp. unique global strong solution) of 3D stochastic
CBF (resp. deterministic CBF) equations (for r ∈ [1, 3) and r = 3 with 2βµ < 1) is still an
open problem.

It is well known that one can approximate a solution to a stochastic differential equation
(SDE) via several methods such as the Crank-Nicholson scheme, the Euler scheme and the
Wong-Zakai approximation etc. and a good number of works have been done for each scheme
(see [17, 18, 26, 45] etc. and the references therein). In [45], authors introduced a new idea
to approximate the solution of an SDE driven by an one dimensional Brownian motion by
the solution of an SDE when the Brownian motion is replaced by an appropriate smooth
approximation and making a drift correction in the original SDE, which is now known as
Wong-Zakai approximation. The extension of work [45] to the multidimensional case can be
found in [44]. Apart from the finite dimensional cases, Wong-Zakai approximation gained
its attention in infinite dimensional case also. For example, in [11, 13, 38, 39], authors
proved the convergence of Wong-Zakai approximation for stochastic (partial) differential
equations in infinite dimensions. The author in [39] provided approximation results in finite
as well as infinite dimensional SDEs and introduced two new forms of correction terms
in the Wong-Zakai approximation. For a class of 2D hydrodynamical models like NSE,
magneto-hydrodynamic (MHD) equations and magnetic Bénard problem etc., the Wong-
Zakai approximation results are established in [5]. The authors in [15] proved Wong-Zakai
approximation for 1D parabolic nonlinear SPDEs driven by space-time white noise. Wong-
Zakai approximation for several fluid dynamics models and a class of stochastic partial
differential equations (SPDEs) is available in [3, 21, 23, 26, 46], etc. and the references
therein.

In [26], authors considered SPDEs with locally monotone coefficients driven by trace class
noise which covers several physically relevant models such as 2D hydrodynamical type sys-
tems (stochastic NSE, stochasic MHD etc.), stochastic porous media equations, p-Laplace
evolution equation etc. For stochastic CBF equations, we point out that 2D stochastic CBF
equations with r ∈ [1, 3) comes under the functional framework of the work [26] (see Remark
2.11 below) due to the local monotonicity property satisfied by linear and nonlinear opera-
tors (Theorem 2.7). But for r ≥ 3 in both two and three dimensions, one has to give special
attention for the Wong-Zakai approximation of SCBF equations due to the fast growing
nonlinearities. We also mention that the noise as well as the assumptions on the noise and
correction term of the approximated system in (1.1) is taken same as that in [26]. Therefore,
same the examples of the noise given in [26] (section 3, [26]) will work for our model also.
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There is an interesting advantage of Wong-Zakai approximation, that is, Wong-Zakai ap-
proximation helps us to describe the topological support of solutions of SDEs and SPDEs.
The concept of topological support of solutions was first introduced by Stroock and Varad-
han in [37]. In the works [14, 44], the support theorem for SDEs has been studied. From
[14, 28, 27], it is clear that one can obtain the topological support of solutions of SDEs and
SPDEs with the help of Wong-Zakai approximation. In other words, we can also say that
the support theorem is an application of Wong-Zakai approximation results, see [5, 26, 46],
etc. Therefore we are also addressing the support of stochastic CBF equations by using the
Wong-Zakai approximation results (see Section 4).

In the literature, it has also been noticed that Wong-Zakai approximation is also used to
prove the existence of random attractors for SPDEs when the diffusion term is nonlinear. In
several fluids dynamics models, it is possible to convert SPDEs into a pathwise deterministic
system when the noise is additive or linear multiplicative and these converted systems helps
us to define a continuous random dynamical system (cf. [8, 19, 42], etc). To deal with other
kind of noises in the context of random attractors, Wong-Zakai approximation also plays an
important role, see [20, 22, 43] etc. and the references therein.

An interesting question arises in the Wong-Zakai approximation is that what is the rate of
convergence of this approximation? The works [2, 13, 34] etc. deal with the rate of conver-
gence of Wong-Zakai approximation for different SPDEs. Moreover, in [13], authors proved
that the rate of convergence of Wong-Zakai approximation for SPDEs driven by Wiener
processes is essentially the same as the rate of convergence of the driving processes (say
Wn(t)) approximating the original Wiener process W(t) under certain conditions. The rate
of convergence of Wong-Zakai approximation of stochastic CBF equations will be addressed
in a future work.

The major aims of this work are listed below:

(1) For d = 2, 3 with r ≥ 3 (for d = r = 3 with 2βµ ≥ 1), we prove the Wong-Zakai
approximation result for stochastic CBF equations (1.1) (Theorem 3.3). For the case
d = 2 with r ∈ [1, 3), stochastic CBF equations satisfy the functional framework of
the work [26] (Remark 2.6) and hence the Wong-Zakai approximation result follows
from the work [26].

(2) For d = 2, 3 with r ≥ 3 (for d = r = 3 with 2βµ ≥ 1), we also obtain the topological
support of the distribution to the stochastic CBF equations (1.1) with the help of
Wong-Zakai approximation (Theorem 4.3).

The organization of further sections of this article is as follows. In the next section, we
define some functional spaces and operators (linear and nonlinear operators) needed to ob-
tain an abstract formulation as well as the main results of this paper. We also define an
approximating system and standard hypotheses for convergence of Wong-Zakai approxima-
tion (see Hypotheses 2.8 and 2.13 below) in the same section. Finally, we provide the results
for existence of a unique solution of stochastic CBF as well as its approximating system in
the same section. Section 3 is devoted to establish the main result of this article, that is,
Wong-Zakai approximation results for stochastic CBF equations. In Section 4, we describe
the support of solution of (1.1), which is a consequence of the Wong-Zakai approximation
result. In the final section, we prove the existence and uniqueness of strong solutions to the
system (4.4) (see section 4 and Theorem 4.1). From the solvability result of (1.1) (Propo-
sition 2.14), we cannot directly conclude that the approximating system (2.15) is solvable.
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Since system (2.15) is a special case of the system (4.4), one can conclude the solvability
results of the approximating system (2.15) from Theorem 4.1.

2. Mathematical Formulation

In this section, we provide the necessary function spaces needed to obtain the results of
this work. Then we define some operators to set up an abstract formulation. We fix O as a
bounded subset of Rd with C2-boundary.

2.1. Function spaces. We define the space

V := {u ∈ C∞
0 (O;Rd) : ∇ · u = 0},

where C∞
0 (O;Rd) denotes the space of all infinite times differentiable functions (Rd-valued)

with compact support in R
d. Let H be the closure of V in space L

2(O) = L2(O;Rd) with
the norm ‖u‖2

H
:=
∫
O
|u(x)|2dx, and inner product (u, v) =

∫
O
u(x) · v(x)dx, for all u, v ∈

L
2(O), respectively. Let V be the closure of V in space H

1
0(O) = H1

0(O;R
d) with the norm

‖u‖2
V
:=
∫
O
|∇u(x)|2dx, and the inner product ((u, v)) = (∇u,∇v) =

∫
O
∇u(x) · ∇v(x)dx,

for all u, v ∈ V, respectively. Let L̃
p be the closure of V in space L

p(O) = Lp(O;Rd), for
p ∈ (2,∞), with the norm ‖u‖p

L̃p
=
∫
O
|u(x)|pdx. Let 〈·, ·〉 represent the induced duality

between the spaces V and its dual V′ as well as L̃
p and its dual L̃p′ , where 1

p
+ 1

p′
= 1.

Note that H can be identified with its dual H′. We endow the space V ∩ L̃
p with the norm

‖u‖V + ‖u‖
L̃p , for u ∈ V ∩ L̃

p and its dual V′ + L̃
p′ with the norm

inf
{
max

(
‖v1‖V′, ‖v2‖L̃p′

)
: v = v1 + v2, v1 ∈ V

′, v2 ∈ L̃
p′
}
.

Moreover, we have the continuous embedding V ∩ L̃
p →֒ V →֒ H ≡ H

′ →֒ V
′ →֒ V

′ + L̃
p′ .

One can define equivalent norms on V ∩ L̃
p and V

′ + L̃
p

p−1 as

‖u‖
V∩L̃p =

(
‖u‖2

V
+ ‖u‖2

L̃p

) 1
2 and ‖u‖

V′+L̃

p
p−1

= inf
u=v+w

(
‖v‖2

V′ + ‖w‖2
L̃

p
p−1

) 1
2
.

Further, we use the notation H
2(O) := H2(O;Rd) for the second order Sobolev spaces.

2.2. Inequalities. The following inequalities are frequently used in the paper.

Lemma 2.1 (Hölder’s inequality). Assume that 1
p
+ 1

p′
= 1 with 1 ≤ p, p′ ≤ ∞, u1 ∈ L

p(O)

and u2 ∈ L
p′(O), then we get

‖u1u2‖L1(O) ≤ ‖u1‖Lp(O)‖u2‖Lp′ (O).

Lemma 2.2 (Interpolation inequality). Assume 1 ≤ s1 ≤ s ≤ s2 ≤ ∞, θ ∈ (0, 1) such that
1
s
= a

s1
+ 1−a

s2
and u ∈ L

s1(O) ∩ L
s2(O), then we have

‖u‖Ls(O) ≤ ‖u‖a
Ls1 (O)‖u‖

1−a
Ls2 (O).

Lemma 2.3 (Young’s inequality). For all a, b, ε > 0 and for all 1 < p, p′ <∞ with 1
p
+ 1

p′
= 1,

we obtain

ab ≤
ε

p
ap +

1

p′εp′/p
bp

′

.
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2.3. Projection and linear operators. Let Pp : L
p(O) → L̃

p be the Helmholtz-Hodge (or
Leray) projection (cf. [9]). For p = 2, P := P2 becomes an orthogonal projection and for
2 < p < ∞, it is a bounded linear operator. Since O has C2-boundary, P maps H1(O) into
itself (see Remark 1.6, [40]).

We define the Stokes operator

Au := −P∆u, u ∈ D(A) := V ∩H
2(O).

2.4. Bilinear operator. Let us define the trilinear form b(·, ·, ·) : V× V× V → R by

b(u, v,w) =

∫

O

(u(x) · ∇)v(x) ·w(x)dx =

d∑

i,j=1

∫

O

ui(x)
∂vj(x)

∂xi
wj(x)dx.

If u, v are such that the linear map b(u, v, ·) is continuous on V, the corresponding element
of V′ is denoted by B(u, v). We also denote B(u) = B(u,u) = P[(u · ∇)u]. An integration
by parts gives

b(u, v,w) = −b(u,w, v), for all u, v,w ∈ V. (2.1)

Consequently, b(u, v, v) = 0, for all u, v ∈ V.

Remark 2.4. Note that 〈B(v,u− v),u− v〉 = 0 and it implies that

〈B(u)− B(v),u− v〉 = 〈B(u− v,u),u− v〉 = −〈B(u− v,u− v), v〉. (2.2)

Remark 2.5. Let us recall the following estimates on trilinear form b(·, ·, ·) from [41] (see
Chapter 2, [41]). For all u, v,w ∈ V

|b(u, v,w)| ≤ C

{
‖u‖

1
2
H
‖u‖

1
2
V
‖v‖V‖w‖

1
2
H
‖w‖

1
2
V
, for d = 2,

‖u‖
1
4
H
‖u‖

3
4
V
‖v‖V‖w‖

1
4
H
‖w‖

3
4
V
, for d = 3.

(2.3)

Remark 2.6. It can also be seen that for r > 3, B maps L̃
r+1 into V

′ and using Lemma
2.2, we obtain

|〈B(u), v〉| = |b(u, v,u)| ≤ ‖u‖
L̃

2(r+1)
r−1

‖u‖
L̃r+1‖v‖V ≤ ‖u‖

r+1
r−1

L̃r+1
‖u‖

r−3
r−1

H
‖v‖V, (2.4)

‖B(u)‖2
V
′ ≤ ‖u‖

2(r+1)
r−1

L̃r+1
‖u‖

2(r−3)
r−1

H
≤ C

(
‖u‖r+1

L̃r+1
+ ‖u‖2

H

)
≤ C

(
‖u‖r+1

L̃r+1
+ ‖u‖2

V

)
.

For r = 3, we get

‖B(u)‖2
V
′ ≤ ‖u‖4

L̃4 .

2.5. Nonlinear operator. Consider the nonlinear operator C(u) := P(|u|r−1
u), which im-

plies that 〈C(u),u〉 = ‖u‖r+1

L̃r+1
. Also, the map C(·) : V ∩ L̃

r+1 → V
′ + L̃

r+1
r . For all

u ∈ V ∩ L̃
r+1, the map is Gateaux differentiable with Gateaux derivative

C
′(u)v =





P(v), for r = 1,{
P(|u|r−1

v) + (r − 1)P
(

u
|u|3−r (u · v)

)
, if u 6= 0,

0, if u = 0,
for 1 < r < 3,

P(|u|r−1
v) + (r − 1)P(u|u|r−3(u · v)), for r ≥ 3,

(2.5)
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for all v ∈ V ∩ L̃
r+1. Moreover, for any r ∈ [1,∞) and u, v ∈ V ∩ L̃

r+1, we obtain (see
subsection 2.4, [30])

〈C(u)− C(v),u− v〉 ≥
1

2
‖|u|

r−1
2 (u− v)‖2

H
+

1

2
‖|v|

r−1
2 (u− v)‖2

H
≥ 0, (2.6)

and

‖u− v‖r+1

L̃r+1
≤ 2r−2‖|u|

r−1
2 (u− v)‖2

H
+ 2r−2‖|v|

r−1
2 (u− v)‖2

H
, (2.7)

for r ≥ 1 (replace 2r−2 with 1, for 1 ≤ r ≤ 2).

Theorem 2.7 ([30]). Let d = 2 with r ∈ [1, 3], d = 2, 3 with r > 3, d = r = 3 with 2βµ ≥ 1
and u1,u2 ∈ V. Then, for the operator M(u) = µAu+ B(u) + αu+ βC(u), we have

〈M(u1)−M(u2),u1 − u2〉+
27

32µ3
‖u2‖

4
L̃4‖u1 − u2‖

2
H
≥ 0, for d = 2 and r ∈ [1, 3], (2.8)

〈M(u1)−M(u2),u1 − u2〉+ η‖u1 − u2‖
2
H
≥ 0, for d = 2, 3 and r > 3, (2.9)

where η = r−3
2µ(r−1)

[
2

βµ(r−1)

] 2
r−3

and

〈M(u1)−M(u2),u1 − u2〉 ≥ 0, for d = r = 3 with 2βµ ≥ 1. (2.10)

2.6. Abstract formulation and solvability results. In this subsection, we describe an
abstract formulation and solution of the system (1.1). Taking orthogonal projection P to
the first equation in (1.1), we obtain

{
du(t) + [µAu(t) + B(u(t)) + αu(t) + βC(u(t))]dt = G(u(t))dW(t), t > 0,

u(0) = x,
(2.11)

where W(·) is a cylindrical Wiener process in a separable Hilbert space (K, 〈·, ·〉K) defined
on a complete filtered probability space (Ω,F , (Ft)t≥0,P). Furthermore,

G : H× Ω → L2(K;H),

where (L2(K;H), ‖ · ‖L2) is the space of all Hilbert-Schmidt operators from K to H. For the
solvability of stochastic system (2.11), we need following assumptions on the noise coefficient
G(·).

Hypothesis 2.8. The noise coefficient G(·) satisfies the following conditions:

(H.1) (Growth condition) There exists a positive constant L1 such that for all v ∈ H,

‖G(v)‖2
L2

≤ L1(1 + ‖v‖2
H
).

(H.2) (Local monotonicity condition) There exists a positive measurable function ρ : V →
[0,∞) such that for all v1, v2 ∈ H and v ∈ V,

‖G(v1)−G(v2)‖
2
L2

≤ ρ(v2)‖v1 − v2‖
2
H
,

where

ρ(v) ≤ L1(1 + ‖v‖2
V
)(1 + ‖v‖γ

H
).

Let us first provide the global solvability results of the system (2.11).
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Definition 2.9. Let p > γ + 2, x ∈ Lp(Ω,F0,P;H). Then, an H-valued (Ft)-adapted sto-
chastic process {u(t)}t∈[0,T ] is called a strong solution (in probabilistic sense) of (2.11) on

[0, T ] with initial data x if u ∈ Lp(Ω; L∞(0, T ;H))∩L2(Ω; L2(0, T ;V))∩Lr+1(Ω; Lr+1(0, T ; L̃r+1)),

and satisfies, for every t > 0 and φ ∈ V ∩ L̃
r+1,

(u(t), φ) +

∫ t

0

〈µAu(ζ) + B(u(ζ)) + αu(ζ) + βC(u(ζ)), φ〉dζ

= (x, φ) +

∫ t

0

(φ,G(u(ζ))dW(ζ)),

P-a.s., and u has a modification with paths in u ∈ C([0, T ];H)∩L2(0, T ;V)∩Lr+1(0, T ; L̃r+1),
P-a.s.

A strong solution u(·) to the system (2.11) is called a pathwise unique strong solution if
ũ(·) is an another strong solution, then

P
{
ω ∈ Ω : u(t) = ũ(t), for all t ∈ [0, T ]

}
= 1.

Under the Hypothesis 2.8 on G, the existence of a unique pathwise strong solution to
the system (2.11) is given by the following result, which can be obtained from the works
[30, 31, 33], etc.

Proposition 2.10. For d = 2 with r ∈ [1, 3], d = 2, 3 with r ∈ (3,∞) and d = r = 3 with
2βµ ≥ 1, assume that all the conditions of Hypothesis 2.8 are satisfied. Then, for every
T > 0, p > γ +2, for every x ∈ Lp(Ω,F0,P;H), system (2.11) has a pathwise unique strong

solution u ∈ Lp(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)), that is,

E

[
sup

t∈[0,T ]

‖u(t)‖p
H
+

∫ T

0

‖u(t)‖2
V
dt +

∫ T

0

‖u(t)‖r+1

L̃r+1
dt

]
<∞, (2.12)

with paths in C([0, T ];H) ∩ L2(0, T ;V) ∩ Lr+1(0, T ; L̃r+1), P-a.s.

Proof. See the works [30, 31, 33]. �

Remark 2.11. In [26], authors demonstrate the Wong-Zakai approximation and support
theorem for SPDEs with locally monotone coefficients. We show that for d = 2 with r ∈ [1, 3)
our stochastic system (2.11) comes under the framework of the work [26]. Let us show
that for d = 2 with r ∈ [1, 3), the system (2.11) satisfies Assumption 1 of the work [26].
Since, assumptions on the noise coefficient G(·) (Hypothesis 2.8) is same as that in [26], we
only need to check assumptions on M(·). The conditions (H1) Hemicontinuity, (H2) Local
monotonicity and (H3) Coercivity of Assumption 1 in [26] are easy to check (cf. [30, 31]).
Finally, we show that M(·) satisfies condition (H4) of Assumption 1 in [26]. For ε ∈ (0, 1),
using (2.3) (for d = 2), Sobolev’s embedding (for d = 2), Lemmas 2.1 and 2.3, we have

|
〈
M(u), v

〉
| = |

〈
µAu+ B(u) + αu+ βC(u), v

〉
|

≤ µ‖u‖V‖v‖V + C‖u‖H‖u‖V‖v‖V + α‖u‖H‖v‖H + β‖u‖r
L̃r(1+ε)‖v‖

L̃
1+ε
ε

≤ C
[
‖u‖V + ‖u‖H‖u‖V + ‖u‖r

L̃r(1+ε)

]
‖v‖V,

where ε ∈ (0, 1). Now since r < 3, we can choose ε small enough such that r < 1 + 2
1+ε

, so
that

q :=
2

2− (r − 1)(1 + ε)
∈ (1,∞).
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Let q′ := q
q−1

= 2
(r−1)(1+ε)

and λ ∈ (0, 1). Applying interpolation inequality and choosing

λ := 1
r
(assuming WLOG that r > 1), we obtain

‖u‖r
L̃r(1+ε) ≤ ‖u‖λr

L̃λqr(1+ε)‖u‖
(1−λ)r

L̃(1−λ)q′r(1+ε)
= ‖u‖

L̃q(1+ε)‖u‖
r−1
H

≤ C‖u‖V‖u‖
r−1
H

,

which implies that

‖M(u)‖2
V′ ≤ C

[
‖u‖2

V
+ ‖u‖2

H
‖u‖2

V
+ ‖u‖2

V
‖u‖

2(r−1)
H

]

≤ C(1 + ‖u‖2
V
)(1 + ‖u‖

2max{r−1,1}
H

).

Hence condition (H4) of Assumption 1 in [26] is satisfied.

Remark 2.12. In the light of Remark 2.11, we will consider the case d = 2 with r = 3,
d = 2, 3 with r ∈ (3,∞) and d = r = 3 with 2βµ ≥ 1 only in the rest of the paper.

2.7. An approximation of the system (2.11). In this subsection, we present an approxi-
mating system for the stochastic CBF equations (2.11). For that, we first define an adapted
finite-dimensional approximation of the Wiener process W(·). Indeed, for a fixed orthonor-
mal basis {ek}k∈N of K and a sequence {wk}k∈N of independent Brownian motions defined
on a complete filtered probability space (Ω,F , (Ft)t∈R,P) such that W(t) can be written in
the following form ([6])

W(t) =

∞∑

k=1

wk(t)ek, t ∈ [0, T ].

For n ∈ N, we set σ = T
2n

and define

Ẇn(t) =
n∑

k=1

1

σ

{
wk

(⌊ t
σ

⌋
σ
)
− wk

(
(
⌊ t
σ

⌋
− 1)σ

)}
ek =:

n∑

k=1

ẇn
k (t)ek, t ∈ [0, T ], (2.13)

where ⌊s⌋ denotes the greatest integer function for s ∈ [0, T ]. Also, we set

wk(t) =

{
0 for t ≤ 0,

wk(T ) for t ≥ T,

therefore ẇk(t) = 0 for t > T . Then ẇn
k (t), k = 1, . . . , n are Ft-adapted and consequently

Ẇn(t).
For k = 1, . . . , n, let Gk : H → H be defined by Gk(u) = G(u)ek,u ∈ H. We assume that

for each k, Gk is Fréchet differentiable with its derivative denoted by DGk : H → L(H;H).
Then we define the map

T̃rn : H → H such that T̃rn(u) =
n∑

k=1

DGk(u)Gk(u), u ∈ H. (2.14)

Let us consider the approximating equations as




dun(t) + [µAun(t) + B(un(t)) + αun(t) + βC(un(t))]dt

= G(un(t))Ẇn(t)dt−
1

2
T̃rn(u

n(t))dt,

u
n(0) = x,

(2.15)
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where Ẇn and T̃rn are given in (2.13) and (2.14), respectively. The following assumption is
needed to obtain the existence and uniqueness of the approximating system (2.15), which
is similar to the conditions for Wong-Zakai approximation in the literature (see [5, 26] etc.
and references therein).

Hypothesis 2.13. For each k ∈ N, the map Gk is twice Fréchet differentiable with its second
Fréchet derivative denoted by D2Gk : H → L(H;L(H,H)) ∼= L(H×H;H), and satisfies:

(H′.1) For any M > 0, there exists a positive constant C(M) such that

sup
k∈N

sup
‖v‖H≤M

{
‖DGk(v)‖L(H;H) ∨ ‖Gk(v)‖H ∨ ‖D2Gk(v)‖L(H×H;H)

}
≤ C(M),

DG∗
k|V∩L̃r+1 : V ∩ L̃

r+1 → V ∩ L̃
r+1,

sup
k∈N

sup
‖v‖H≤M

‖DGk(v)
∗
u‖

L̃r+1 ≤ C(M)‖u‖
L̃r+1, u ∈ L̃

r+1,

sup
k∈N

sup
‖v‖H≤M

‖DGk(v)
∗
u‖V ≤ C(M)‖u‖V, u ∈ V,

and for m ∈ N,

lim
m→∞

sup
‖v‖H≤M

‖G(v)−G(v) ◦ Πm‖L2 = 0,

where Πm represents the orthogonal projection onto Km := {e1, · · · , em} in K, that
is, Πmx =

∑m
j=1〈x, ej〉Kej ,x ∈ K, and DGk(·)

∗ denotes the dual operator of DGk(·).

(H′.2) There exists a constant L2 > 0 such that for every n ∈ N and v, v1, v2 ∈ H

‖T̃rn(v)‖
2
H
≤ L2(1 + ‖v‖2

H
),

and

(T̃rn(v2)− T̃rn(v1), v1 − v2) ≤ ρ(v2)‖v1 − v2‖
2
H
,

where ρ is the same as given in Hypothesis 2.8.

For the examples which satisfies Hypotheses 2.8 and 2.13, we refer the readers to [26]
(see section 3, [26]). Under Hypotheses 2.8 and 2.13, we can obtain the following solvability
result for the system (2.15) (see Theorem 4.1 and Section 5 below).

Proposition 2.14. Assume that all the conditions of Hypotheses 2.8 and 2.13 are satisfied.
Then, for every T > 0, p > γ+2, for all x ∈ Lp(Ω,F0,P;H), the system (2.15) has a pathwise

unique strong solution u
n ∈ Lp(Ω; L∞(0, T ;H))∩L2(Ω; L2(0, T ;V))∩Lr+1(Ω; Lr+1(0, T ; L̃r+1)),

that is,

sup
n≥1

E

[
sup

t∈[0,T ]

‖un(t)‖p
H
+

∫ T

0

‖un(t)‖2
V
dt +

∫ T

0

‖un(t)‖r+1

L̃r+1
dt

]
<∞, (2.16)

with a modification having paths in C([0, T ];H) ∩ L2(0, T ;V) ∩ Lr+1(0, T ; L̃r+1), P-a.s.
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3. Wong-Zakai approximation for stochastic CBF equations

In this section, we prove our main result of this work, that is, Wong-Zakai approximation
of the stochastic CBF system (2.11). Let us first recall the following Lemma which was
proved in [5].

Lemma 3.1 (Lemma 2.1, [5]). Let T > 0. Then there exists a constant δ0 > 0 such that for
every δ > δ0√

T
, t ∈ [0, T ],

lim
n→∞

P

(
sup

1≤k≤n
sup
s≤t

|ẇn
k (s)| > δn

1
22

n
2

)
= 0, (3.1)

lim
n→∞

P

(
sup
s≤t

‖Ẇn(s)‖K > δn2
n
2

)
= 0. (3.2)

Let us define stopping times for M ≥ 0, n ∈ N, δ > δ0√
T
:

τ
(1)
M := inf

t≥0

{
t : ‖u(t)‖H +

∫ t

0

‖u(ζ)‖2
V
dζ +

∫ t

0

‖u(ζ)‖r+1

L̃r+1
dζ > M

}
∧ T,

τ
(2)
n,M := inf

t≥0

{
t : ‖un(t)‖H +

∫ t

0

‖un(ζ)‖2
V
dζ +

∫ t

0

‖un(ζ)‖r+1

L̃r+1
dζ > M

}
∧ T,

τ (3)n := inf
t≥0

{
t :
[
sup
s∈[0,t]

sup
1≤k≤n

|ẇn
k (s)|

]
∨
[
n− 1

2 sup
s∈[0,t]

‖Ẇn(s)‖K
]
> δn

1
22

n
2

}
∧ T,

and

τn,M := τ
(1)
M ∧ τ

(2)
n,M ∧ τ (3)n . (3.3)

From (2.12), (2.16) and (3.1)-(3.2), we infer that

lim
M→∞

P

(
τ
(1)
M = T

)
= lim

n→∞
P
(
τ (3)n = T

)
= 1 and

lim
M→∞

P

(
τ
(2)
n,M = T

)
= 1, uniformly for n ∈ N.

Remark 3.2. In order to deal with the difference of equations (2.11) and (2.15), it is ob-
served that the integral

∫ ·
0
G(un(s))Ẇn(s)ds cannot be considered as stochastic integral di-

rectly. Instead, we use following identity (see Remark 2.7, [26])

∫ t

0

G
(
u

n
(
(
⌊ s
σ

⌋
− 1)σ

))
Ẇn(s)ds =

∫ t

0

(
1

σ

(⌈ s
σ
⌉+1)σ∫

⌈ s
σ
⌉σ

1{ξ≤t}dξ

)
G
(
u

n
(⌊ s
σ

⌋
σ
))

◦ ΠndW(s),

(3.4)

to compare with the corresponding diffusion term
∫ t

0
G(u(s))dW(s), where ⌈s⌉ denotes the

smallest integer function for s ∈ [0, T ].

Now we state our main result of this work.

Theorem 3.3. Assume that all the conditions of Hypotheses 2.8 and 2.13 are satisfied,
p > γ + 2 and x ∈ Lp(Ω,F0,P;H). Let u and u

n be the solutions to the systems (2.11) and
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(2.15), respectively, with same initial data x. Then

lim
n→∞

E

[
sup

t∈[0,T ]

‖u(t)− u
n(t)‖2

H

]
= 0. (3.5)

Proof. In order to prove (3.5), it is enough to show that for sufficiently large M > 0,

lim
n→∞

E

[
sup

t∈[0,τn,M ]

‖u(t)− u
n(t)‖2

H

]
= 0, (3.6)

where τn,M is given by (3.3). Set Ωn,M := {ω ∈ Ω : τn,M = T} for M > 0. It follows from
(2.12), (2.16) and (3.3) that for any ε > 0, there exists a constant Mε (sufficiently large and
independent of n), still denoting by M , such that

E

[
sup

t∈[0,T ]

χΩc
n,M

‖u(t)− u
n(t)‖2

H

]
≤ P

(
Ωc

n,M

) p−2
2 E

[
sup

t∈[0,T ]

‖u(t)− u
n(t)‖p

H

] 2
p

≤
ε

2
. (3.7)

In fact, (3.7) implies that we only need to prove (3.6) to obtain (3.5). For simplicity, we
denote τn,M by τn. The proof is divided into following four steps.

Step 1: According to the definition of τn, for some fixed constant δ with δ > δ0√
T
, we can

find a constant C(M) such that for all t ∈ [0, τn] and k = 1, . . . , n,




‖u(t)‖H + ‖un(t)‖H ≤ C(M),
∫ t

0

‖u(ζ)‖2
V
dζ +

∫ t

0

‖un(ζ)‖2
V
dζ ≤ C(M),

∫ t

0

‖u(ζ)‖r+1

L̃r+1
dζ +

∫ t

0

‖un(ζ)‖r+1

L̃r+1
dζ ≤ C(M),

|ẇn
k (t)|+ n− 1

2‖Ẇn(t)‖K ≤ 2δn
1
22

n
2 .

(3.8)

Now applying Itô’s formula (cf. [30, 31]) to ‖un(·)− u(·)‖2
H
, we get

‖un(t)− u(t)‖2
H
+ 2µ

∫ t

0

‖un(ζ)− u(ζ)‖2
V
dζ + 2α

∫ t

0

‖un(ζ)− u(ζ)‖2
H
dζ

= −2

∫ t

0

〈
B
(
u

n(ζ)
)
− B

(
u(ζ)

)
,un(ζ)− u(ζ)

〉
dζ

− 2β

∫ t

0

〈
C
(
u

n(ζ)
)
− C

(
u(ζ)

)
,un(ζ)− u(ζ)

〉
dζ

+

∫ t

0

∥∥∥∥
(
1

σ

(⌈ ζ
σ
⌉+1)σ∫

⌈ ζ

σ
⌉σ

1{ξ≤t}dξ

)
G
(
u

n(
⌊ ζ
σ

⌋
σ)
)
Πn −G

(
u(ζ)

)∥∥∥∥
2

L2

dζ

+ 2

∫ t

0

(
u

n(ζ)− u(ζ),

[(
1

σ

(⌈ ζ

σ
⌉+1)σ∫

⌈ ζ

σ
⌉σ

1{ξ≤t}dξ

)
G
(
u

n(
⌊ ζ
σ

⌋
σ)
)
Πn −G

(
u(ζ)

)]
dW(ζ)

)

+ 2

∫ t

0

([
G
(
u

n(ζ)
)
−G

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))]
Ẇn(ζ)−

1

2
T̃r
(
u

n(ζ)
)
, un(ζ)− u(ζ)

)
dζ
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=: J1(n, t) + J2(n, t) + J3(n, t) + J4(n, t) + J5(n, t). (3.9)

Step 2: Claim:There exists a constant C(T,M) such that

E

[ ∫ τn

0

‖u(ζ)− u(
⌊ ζ
σ

⌋
σ)‖2

H
dζ

]
≤ C(T,M)2−

3
4
n, (3.10)

E

[ ∫ τn

0

‖un(ζ)− u
n(
⌊ ζ
σ

⌋
σ)‖2

H
dζ

]
≤ C(T,M)2−

3
4
n, (3.11)

E

[ ∫ τn

0

‖u(ζ)− u
(
(
⌊ ζ
σ

⌋
− 1)σ

)
‖2
H
dζ

]
≤ C(T,M)2−

3
4
n, (3.12)

E

[ ∫ τn

0

‖un(ζ)− u
n
(
(
⌊ ζ
σ

⌋
− 1)σ

)
‖2
H
dζ

]
≤ C(T,M)2−

3
4
n, (3.13)

E

[ ∫ τn

0

‖u(ζ)− u(
⌈ ζ
σ

⌉
σ)‖2

H
dζ

]
≤ C(T,M)2−

3
4
n, (3.14)

E

[ ∫ τn

0

‖u(ζ)− u(
⌈ ζ
σ

⌉
σ)‖2

H
dζ

]
≤ C(T,M)2−

3
4
n. (3.15)

Proof of (3.10): Applying Itô’s formula to ‖u(·)− u(⌊ ξ
σ
⌋σ)‖2

H
, integrating with respect to ξ

and taking expectation, we get for t ∈ (0, τn],

E

[∫ t

0

‖u(ξ)− u(
⌊ ξ
σ

⌋
σ)‖2

H
dξ

]

= 2E

[∫ t

0

∫ ξ

⌊ ξ
σ
⌋σ

〈
µAu(ζ) + B(u(ζ)) + αu(ζ) + C(u(ζ)),u(ζ)− u(

⌊ ξ
σ

⌋
σ)
〉
dζdξ

]

+ E

[∫ t

0

∫ ξ

⌊ ξ

σ
⌋σ
‖G
(
u(ζ)

)
‖2L2

dζdξ

]

+ 2E

[∫ t

0

∫ ξ

⌊ ξ

σ
⌋σ

(
u(ζ)− u(

⌊ ξ
σ

⌋
σ),G

(
u(ζ)

)
dW(ζ)

)
dξ

]

=: I1(n) + I2(n) + I3(n). (3.16)

Estimate for I1(n): Using Lemmas 2.1 and 2.3, (2.1), Remark 2.6, stochastic Fubini’s theo-
rem and (2.12), we obtain

|I1(n)| ≤ CE

[ ∫ τn

0

∫ ξ

⌊ ξ

σ
⌋σ

{
‖u(ζ)‖2

H
+ ‖u(ζ)‖2

V
+ ‖u(ζ)‖r+1

L̃r+1
+ ‖u(ζ)− u(

⌊ ξ
σ

⌋
σ)‖2

H

+ ‖u(ζ)− u(
⌊ ξ
σ

⌋
σ)‖2

V
+ ‖u(ζ)− u(

⌊ ξ
σ

⌋
σ)‖r+1

L̃r+1

}
dζdξ

]

≤ CσE

[ ∫ T

0

{
‖u(ξ)‖2

H
+ ‖u(ξ)‖2

V
+ ‖u(ξ)‖r+1

L̃r+1
+ ‖u(ξ)− u(

⌊ ξ
σ

⌋
σ)‖2

H

+ ‖u(ξ)− u(
⌊ ξ
σ

⌋
σ)‖2

V
+ ‖u(ξ)− u(

⌊ ξ
σ

⌋
σ)‖r+1

L̃r+1

}
dξ

]

≤ C(T,M)2−n. (3.17)
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Estimate for I2(n): From condition (H.1) of Hypothesis 2.8 and (3.8), it is immediate that

|I2(n)| ≤ C(T,M)2−n. (3.18)

Estimate for I3(n): We infer from Burkholder-Davies-Gundy’s (BDG) inequality, condition
(H.1) of Hypothesis 2.8 and (3.8) that

I3(n) ≤ 2E

[
sup

t∈[0,τn]

∫ t

0

∫ ξ

⌊ ξ

σ
⌋σ

〈
u(ζ)− u(

⌊ ξ
σ

⌋
σ),G

(
u(ζ)

)
dW(ζ)

〉
dξ

]

≤ CE

[∫ τn

0

∫ ξ

⌊ ξ

σ
⌋σ
‖G
(
u(ζ)

)
‖2
L2
‖u(ζ)− u(

⌊ ξ
σ

⌋
σ)‖2

H
dζdξ

]1
2

(3.19)

≤ C(T,M)2−
n
2 . (3.20)

From (3.16)-(3.20), we obtain

E

[ ∫ τn

0

‖u(ξ)− u(
⌊ ξ
σ

⌋
σ)‖2

H
dξ

]
≤ C(T,M)2−

n
2 . (3.21)

Again, applying stochastic Fubini’s theorem in (3.19), using condition (H.1) of Hypothesis
2.8 and (3.21), respectively, we obtain

I3(n) ≤ CE

[
σ

∫ τn

0

‖G
(
u(ζ)

)
‖2
L2
‖u(ζ)− u(

⌊ ζ
σ

⌋
σ)‖2

H
dζ

] 1
2

≤ CE

[
σ

∫ τn

0

(1 + ‖u(ζ)‖2
H
)‖u(ζ)− u(

⌊ ζ
σ

⌋
σ)‖2

H
dζ

]1
2

≤ C(T,M)2−
3
4
n. (3.22)

Hence, combining (3.16)-(3.19) and (3.22), we obtain (3.10). Similarly, one can show (3.11)-
(3.15).

Step 3: In this step, we estimate each term of the right hand side of (3.9) separately.

Estimate for J1(n, t): When d = 2 and r = 3. Using (2.2), (2.3), Lemmas 2.1 and 2.3, we
obtain

|J1(n, t)| ≤

∫ t

0

[
µ‖un(ζ)− u(ζ)‖2

V
+ C‖u(ζ)‖2

H
‖u(ζ)‖2

V
‖un(ζ)− u(ζ)‖2

H

]
dζ. (3.23)

When d = r = 3. Using (2.2), Lemmas 2.1 and 2.3, we obtain

|J1(n, t)| ≤

∫ t

0

[
2θµ‖un(ζ)− u(ζ)‖2

V
+

1

2θµ
‖u(ζ)

(
u

n(ζ)− u(ζ)
)
‖2
H

]
dζ, (3.24)

for θ ∈ (0, 1].

When d = 2, 3 and r > 3. Using (2.2), Lemmas 2.1 and 2.3, we obtain

|J1(n, t)| ≤

∫ t

0

[
µ‖un(ζ)− u(ζ)‖2

V
+
β

2
‖|u(ζ)|

r−1
2 |un(ζ)− u(ζ)|‖2

H
+ C‖un(ζ)− u(ζ)‖2

H

]
dζ.

(3.25)
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Estimate for J2(n, t): Using (2.6) and (2.7), we get

J2(n, t) = −2β

∫ t

0

〈
C
(
u

n(ζ)
)
− C

(
u(ζ)

)
,un(ζ)− u(ζ)

〉
dζ

= −β

∫ t

0

‖|un(ζ)|
r−1
2 |un(ζ)− u(ζ)|‖2

H
dζ − β

∫ t

0

‖|u(ζ)|
r−1
2 |un(ζ)− u(ζ)|‖2

H
dζ

≤ −
β

2

∫ t

0

‖|un(ζ)|
r−1
2 |un(ζ)− u(ζ)|‖2

H
dζ −

β

2

∫ t

0

‖|u(ζ)|
r−1
2 |un(ζ)− u(ζ)|‖2

H
dζ

−
β

2r−1

∫ t

0

‖un(ζ)− u(ζ)‖r+1

L̃r+1
dζ. (3.26)

Estimate for J3(n, t): For s ∈ [0, t ∧ τn], we have

|J3(n, s)|

≤ 2

∫ t∧τn

0

‖
(1
σ

(⌈ ξ

σ
⌉+1)σ∫

⌈ ξ

σ
⌉σ

1{ξ>t∧τn}dξ
)
G
(
u

n(
⌊ ζ
σ

⌋
σ)
)
‖2
L2
dζ

+ 4

∫ t∧τn

0

‖G
(
u

n(
⌊ ζ
σ

⌋
σ)
)
−G

(
u

n(ζ)
)
‖2L2

dζ + 8

∫ t∧τn

0

‖G
(
u

n(ζ)
)
Πn −G

(
u

n(ζ)
)
‖2L2

dζ

+ 8

∫ t∧τn

0

‖G
(
u

n(ζ)
)
−G

(
u(ζ)

)
‖2
L2
dζ

≤ 2

∫ t∧τn

t∧τn−2σ

‖G
(
u

n(
⌊ ζ
σ

⌋
σ)
)
‖2L2

dζ

︸ ︷︷ ︸
:=I4(n)

+4

∫ τn

0

ρ
(
u

n(ζ)
)
‖un(

⌊ ζ
σ

⌋
σ)− u

n(ζ)‖2
H
dζ

︸ ︷︷ ︸
:=I5(n)

+ 8

∫ τn

0

‖G
(
u

n(ζ)
)
Πn −G

(
u

n(ζ)
)
‖2
L2
dζ

︸ ︷︷ ︸
:=I6(n)

+8

∫ τn

0

ρ
(
u(ζ)

)
‖un(ζ)− u(ζ)‖2

H
dζ. (3.27)

From the definition of σ (for I4(n)), condition (H.2) of Hypothesis 2.8, (3.8) and (3.11) (for
I5(n)), and condition (H′.1) of Hypothesis 2.13 and (3.8) (for I6(n)), we obtain

lim
n→∞

I7(n) = 0, where I7(n) = E[I4(n) + I5(n) + I6(n)]. (3.28)

It implies from (3.27) that

E

[
sup

t∈[0,τn]
|J3(n, t)|

]
≤ I7(n) + 8E

[∫ τn

0

ρ
(
u(ζ)

)
‖un(ζ)− u(ζ)‖2

H
dζ

]
. (3.29)

Estimate for J4(n, t): Making use of BDG inequality, we get

E

[
sup

t∈[0,τn]
|J4(n, t)|

]
≤ 4E

[
sup

t∈[0,τn]
‖un(t)− u(t)‖H ·

{
sup

t∈[0,τn]
|J3(n, t)|

} 1
2

]

≤
1

2
E

[
sup

t∈[0,τn]
‖un(t)− u(t)‖2

H

]
+ 8E

[
sup

t∈[0,τn]
|J3(n, t)|

]
. (3.30)
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Estimate for J5(n, t): We claim that

I8(n) := E

[
sup

t∈[0,τn]
|J5(n, t)|

]
→ 0 as n→ ∞. (3.31)

The proof of (3.31) depends on obtaining an appropriate term from

[
G
(
u

n(ζ)
)
−G

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))]
Ẇn(ζ),

which can be compensated with the correction term −1
2
T̃r
(
u

n(ζ)
)
. To find this appropriate

term, by (2.13) and (2.14), we equivalently write

T̃rn(u
n) =

n∑

k=1

DGk(u
n)Gk(u

n), G(un)Ẇn =
n∑

k=1

Gk(u
n)ẇn

k . (3.32)

Since Gk is twice Fréchet differentiable for all k ∈ N, applying the second order Taylor’s
formula to Gk, we obtain (Theorem 7.9.1, [4])

Gk

(
u

n(ζ)
)
−Gk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))

= DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))[
u

n(ζ)− u
n
(
(
⌊ ζ
σ

⌋
− 1)σ

)]

+

∫ 1

0

(1− θ)D2Gk

(
θun(ζ) + (1− θ)un

(
(
⌊ ζ
σ

⌋
− 1)σ

))
dθ

{
u

n(ζ)− u
n
(
(
⌊ ζ
σ

⌋
− 1)σ

)
,un(ζ)− u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

)}
, (3.33)

where D2Gk(w){w1,w2} represents the value of the second Fréchet derivative D2Gk(w) on
the elements w1 and w2. In view of (2.15), we can write

u
n(ζ)− u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

)
= −

∫ ζ

(⌊ ζ

σ
⌋−1)σ

{
µAun(ξ) + B

(
u

n(ξ)
)
+ αun(ξ) + βC

(
u

n(ξ)
)

−G
(
u

n(ξ)
)
Ẇn(ξ) +

1

2
T̃rn
(
u

n(ξ)
)}

dξ, (3.34)

in V
′ + L̃

r+1
r . Making use of (2.13) and (3.32) (second equality), we have

∫ ζ

(⌊ ζ
σ
⌋−1)σ

G
(
u

n(ξ)
)
Ẇn(ξ)dξ

=
n∑

j=1

[
ẇn

j

(
(
⌊ ζ
σ

⌋
− 1)σ

) ∫ ⌊ ζ

σ
⌋σ

(⌊ ζ
σ
⌋−1)σ

Gj

(
u

n(ξ)
)
dξ + ẇn

j (ζ)

∫ ζ

⌊ ζ
σ
⌋σ
Gj

(
u

n(ξ)
)
dξ

]
. (3.35)

Now, putting the values from (3.32)-(3.35) into J5(n, t), we have

J5(n, t) =: S1(n, t) + S2(n, t) + S3(n, t) + S4(n, t) + S5(n, t) + S6(n, t), (3.36)

where

S1(n, t) :=

n∑

k=1

∫ t

0

ẇn
k (ζ)

〈
DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

)) ∫ ζ

(⌊ ζ

σ
⌋−1)σ

{
µAun(ξ) + B

(
u

n(ξ)
)
+ αun(ξ)
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+ βC
(
u

n(ξ)
)}

dξ,un(ζ)− u(ζ)

〉
dζ,

S2(n, t) :=

n∑

k=1

n∑

j=1

∫ t

0

ẇn
k (ζ)ẇ

n
j

(
(
⌊ ζ
σ

⌋
− 1)σ

)(
DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))

×

∫ ⌊ ζ

σ
⌋σ

(⌊ ζ

σ
⌋−1)σ

Gj

(
u

n(ξ)
)
dξ,un(ζ)− u(ζ)

)
dζ,

S3(n, t) :=
n∑

k=1

n∑

1≤j≤n,j 6=k

∫ t

0

ẇn
k (ζ)ẇ

n
j (ζ)

(
DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))

×

∫ ζ

⌊ ζ
σ
⌋σ
Gj

(
u

n(ξ)
)
dξ,un(ζ)− u(ζ)

)
dζ,

S4(n, t) :=

n∑

k=1

∫ t

0

(
[ẇn

k (ζ)]
2DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

)) ∫ ζ

⌊ ζ

σ
⌋σ
Gk

(
u

n(ξ)
)
dξ

−
1

2
DGk

(
u

n(s)
)
Gk

(
u

n(s)
)
,un(ζ)− u(ζ)

)
dζ,

S5(n, t) :=−
1

2

n∑

k=1

∫ t

0

ẇn
k (ζ)

(
DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))

×

∫ ζ

(⌊ ζ

σ
⌋−1)σ

T̃rn
(
u

n(ξ)
)
dξ,un(ζ)− u(ζ)

)
dζ,

S6(n, t) :=

n∑

k=1

∫ t

0

ẇn
k (ζ)

(∫ 1

0

(1− θ)D2Gk

(
θun(ζ) + (1− θ)un

(
(
⌊ ζ
σ

⌋
− 1)σ

))
dθ

{
u

n(ζ)− u
n
(
(
⌊ ζ
σ

⌋
− 1)σ

)
,un(ζ)− u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

)}
,un(ζ)− u(ζ)

)
dζ.

Next, we estimate Si(n, t) for i = 1, 2, . . . , 6, separately. For S1(n, t), we have

S1(n, t) =
n∑

k=1

∫ t

0

ẇn
k (ζ)

∫ ζ

(⌊ ζ
σ
⌋−1)σ

〈{
µAun(ξ) + B

(
u

n(ξ)
)
+ αun(ξ)

+ βC
(
u

n(ξ)
)}
,DGk

(
u

n
(
(
⌊ ζ
σ

⌋
− 1)σ

))∗
[un(ζ)− u(ζ)]

〉
dξdζ.

Using (3.8), condition (H′.1) of Hypothesis 2.13, Lemmas 2.1 and 2.3, and Remark 2.6, we
obtain

E

[
sup

t∈[0,τn]
|S1(n, t)|

]

≤ C(M)
n∑

k=1

E

[ ∫ τn

0

|ẇn
k (ζ)|

∫ ζ

(⌊ ζ

σ
⌋−1)σ

{(
‖un(ξ)‖V + ‖B(un(ξ))‖

V
′

)
‖un(ζ)− u(ζ)‖V

+ ‖un(ξ)‖r
L̃r+1‖u

n(ζ)− u(ζ)‖
L̃r+1

}
dξdζ

]
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≤ C(M)n
3
22

n
2 · E

[ ∫ τn

0

{∫ ζ

(⌊ ζ
σ
⌋−1)σ

(
‖un(ξ)‖2

V
+ ‖un(ξ)‖r+1

L̃r+1

)
dξ

} 1
2

×

{∫ ζ

(⌊ ζ

σ
⌋−1)σ

‖un(ζ)− u(ζ)‖2
V
dξ

} 1
2

dζ +

∫ τn

0

{∫ ζ

(⌊ ζ

σ
⌋−1)σ

‖un(ξ)‖r+1

L̃r+1
dξ

} r
r+1

×

{∫ ζ

(⌊ ζ

σ
⌋−1)σ

‖un(ζ)− u(ζ)‖r+1

L̃r+1
dξ

} 1
r+1

dζ

]

≤ C(M)n
3
22

n
2 σ

1
2

(
E

[ ∫ τn

0

∫ ζ

(⌊ ζ

σ
⌋−1)σ

{
‖un(ξ)‖2

V
+ ‖un(ξ)‖r+1

L̃r+1

}
dξdζ

]) 1
2

+ C(M)n
3
22

n
2 σ

1
r+1

(
E

[ ∫ τn

0

∫ ζ

(⌊ ζ

σ
⌋−1)σ

‖un(ξ)‖r+1

L̃r+1
dξdζ

]) r
r+1

.

Applying stochastic Fubini’s Theorem and (2.12), we obtain

E

[
sup

t∈[0,τn]
|S1(n, t)|

]
≤ C(M)n

3
22

n
2 σ = C(T,M)n

3
22−

n
2 . (3.37)

For Si(n, t) for i = 2, 3, . . . , 6, we refer the readers to the work [26] (see proof of (2.19) in
section 2 of [26]). Since, the calculations are same, therefore we are not repeating here. But
for the completeness, we provide bounds for each Si(n, t) for i = 2, 3, . . . , 6.





E

[
sup

t∈[0,τn]
|S2(n, t)|

]
≤ C(T,M)n32−

3n
8 ,

E

[
sup

t∈[0,τn]
|S3(n, t)|

]
≤ C(T,M)n32−

3n
8 ,

E

[
sup

t∈[0,τn]
|S4(n, t)|

]
≤ C(T,M)n22−

3n
8 ,

E

[
sup

t∈[0,τn]
|S5(n, t)|

]
≤ C(T,M)n

3
22−

n
2 ,

E

[
sup

t∈[0,τn]
|S6(n, t)|

]
≤ C(T,M)n

3
22−

n
4 .

(3.38)

Combining (3.36)-(3.38) and passing limit n → ∞, we obtain the convergence claimed in
(3.31).

Step 4: Taking supremum and expectation, respectively, both sides of (3.9), and using
(3.23)-(3.26) and (3.29)-(3.31) in final estimate, we obtain

E

[
1

2
sup

ζ∈[0,τn]
‖un(ζ)− u(ζ)‖2

H
+ a1

∫ τn

0

‖un(ζ)− u(ζ)‖2
V
dζ + a2

∫ τn

0

‖un(ζ)− u(ζ)‖r+1

L̃r+1
dζ

]

≤ I7(n) + I8(n) + E

[
C

∫ τn

0

(
Φ(u(ζ)) + ρ(u(ζ))

)
‖un(ζ)− u(ζ)‖2

H
dζ

]
, (3.39)
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where, for θ ∈ (0, 1],

a1 =





µ for d = 2 and r = 3,

2µ(1− θ) for d = r = 3,

µ for d = 2, 3 and r > 3,

a2 =





β
2r−2 for d = 2 and r = 3,
1

2r−2

(
β − 1

2θµ

)
for d = r = 3,

β
2r−1 for d = 2, 3 and r > 3,

(3.40)

and

Φ(u(ζ)) = C





‖u(ζ)‖2
H
‖u(ζ)‖2

V
for d = 2 and r = 3,

0 for d = r = 3,

1 for d = 2, 3 and r > 3.

(3.41)

Now, set X(t) := supζ∈[0,t] ‖u
n(ζ) − u(ζ)‖2

H
and Z(t) := C

∫ t

0

(
Φ(u(ζ)) + ρ(u(ζ))

)
dζ, for

t ∈ [0, T ]. Then X and Z are adapted, non-negative and continuous. From (3.3), condition
(H.1) of Hypothesis 2.8 and (3.41), we obtain that there exists a constant C ′(M) such that
Z(t) ≤ C ′(M) uniformly for t ∈ [0, τn]. From (3.39), we have

E

[
X(τn)

]
≤ I7(n) + I8(n) + E

[∫ τn

0

X(s)dZ(s)

]
. (3.42)

Applying Lemma 2 from [12] to (3.42), we achieve

E

[∫ τn

0

X(s)dZ(s)

]
≤ {I7(n) + I8(n)}e

C′(M)

∫ C′(M)

0

e−ydy → 0 as n→ ∞, (3.43)

where we have used the convergences obtained in (3.28) and (3.31). Hence, (3.42) together
with (3.28), (3.31) and (3.43) provide that

lim
n→∞

E

[
sup

ζ∈[0,τn]
‖un(ζ)− u(ζ)‖2

H

]
= 0,

as required. �

4. Support of solutions of stochastic CBF equations

This section is devoted to establish an application of Wong-Zakai approximation, that is,
the support of solutions of stochastic CBF equation (2.11). Assume that T > 0 and W be a
cylindrical process discussed in subsection 2.6. For n ∈ N, t ∈ [0, T ], define

Mn(t) := exp

(∫ t

0

Ẇn(s)dW(s)−
1

2

∫ t

0

‖Ẇn(s)‖2Kds

)
,

where Ẇn is defined in (2.13) and

Ŵn(t) := W(t)−

∫ t

0

Ẇn(s)ds. (4.1)

Since the real valued random variables ẇk(jσ), j, k ∈ N are independent and for each j, k ∈ N,

σ
1
2 ẇk(jσ) is standard normal. Therefore for all n ∈ N

sup
t∈[0,T ]

E

[
eλ‖Ẇ

n(t)‖2K
]
= sup

t∈[0,T ]

∏

1≤k≤n

E

[
eλ|ẇ

n
k
(t)|

2]
=
(
E

[
e

λ
σ
|Z|2
])n

<∞
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is satisfied for some standard normal random variable Z and λ > 0 sufficiently small (Fer-
nique’s theorem). Consequently, by Girsanov’s theorem (Theorem 10.14 and Proposition

10.17, [6]), the process {Ŵn(t)}t∈[0,T ] given by (4.1) is a cylindrical Wiener process under Pn

with the measure P
n ≪ P satisfying

dPn

dP

∣∣∣∣
Ft

=Mn(t), for t ∈ [0, T ].

Analogously, for arbitrary k ∈ L2(0, T ; K), we define the process

Mn
k := exp

(
−

∫ t

0

k(s)dŴn(s)−
1

2

∫ t

0

‖k(s)‖2Kds

)
,

and

Ŵn
k(t) := Ŵn(t) +

∫ t

0

k(s)ds, for t ∈ [0, T ], n ∈ N. (4.2)

Again, in view of Girsanov’s theorem, we get another probability measure P
n
k ≪ P

n ≪ P

such that

dPn
k

dPn

∣∣∣∣
Ft

=Mn
k (t), for t ∈ [0, T ], (4.3)

where Ŵn
k is a cylindrical Wiener process under Pn

k.
Now, for fixed T > 0, consider the system





dUn
k(t) = −[µAUn

k(t) + B(Un
k(t)) + αUn

k(t) + C(Un
k(t))]dt+ F1(U

n
k(t))dW(t)

+ F2(U
n
k(t))Ẇ

n(t)dt + F3(U
n
k(t))k(t)dt− F(Un

k(t))dt,

Un
k(0) = x,

(4.4)

where F1,F2,F3 : H × Ω → (L2(K;H), ‖ · ‖L2) and F : H × Ω → H are progressively
measurable. Note that, the system (2.15) is a spacial case of system (4.4) with F1 = 0,

F2 = G, F3 = 0 and F = 1
2
T̃rn. Hence, the solvability of system (2.15) is an immediate

consequence of the solvability of the system (4.4). Let us state the result for existence of a
unique solution for the system (4.4) which is proved in Section 5 (see below).

Theorem 4.1. Let T > 0, k ∈ L2(0, T ; K), p > γ + 2 and x ∈ Lp(Ω,F ,P;H), where
γ as in Hypothesis 2.8. Assume that the operators F1,F2 and F3 satisfy the conditions of
Hypothesis 2.8 and F satisfies the condition (H′.2) of Hypothesis 2.13. Then there exists
a unique solution Un

k to equation (4.4) with the initial condition x. Furthermore, Un
k ∈

Lp(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)), that is,

sup
n≥1

E

[
sup

t∈[0,T ]

‖Un
k(t)‖

p
H
+

∫ T

0

‖Un
k(t)‖

2
V
dt +

∫ T

0

‖Un
k(t)‖

r+1

L̃r+1
dt

]
<∞, (4.5)

with a modification having paths in C([0, T ];H) ∩ L2(0, T ;V) ∩ Lr+1(0, T ; L̃r+1), P-a.s.
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For k ∈ L2(0, T ; K), let us consider two systems which can be seen as two spacial cases of
the system (4.4),





dYk(t) = −{µAYk(t) + B(Yk(t)) + αYk(t) + C(Yk(t))}dt+G(Yk(t))k(t)dt

−
1

2
T̃r(Yk(t))dt,

Yk(0) = x,

(4.6)

and




dYn
k(t) = −{µAYn

k(t) + B(Yn
k(t)) + αYn

k(t) + C(Yn
k(t))}dt+G(Yn

k(t))dW(t)

−G(Yn
k(t))Ẇ

n(t)dt +G(Yn
k(t))k(t)dt,

Yn
k(0) = x,

(4.7)

where the operators A, B, C, G and T̃r are defined in section 2. Furthermore, the existence
of unique solutions Yk and Yn

k of the systems (4.6) and (4.7), respectively, are confirmed

from Theorem 4.1. Moreover, we have Yk, Y
n
k ∈ C([0, T ];H))∩L2(0, T ;V)∩Lr+1(0, T ; L̃r+1),

P-a.s. and

E

[
sup

t∈[0,T ]

‖Yk(t)‖
p
H
+

∫ T

0

‖Yk(t)‖
2
V
dt+

∫ T

0

‖Yk(t)‖
r+1

L̃r+1
dt

]
<∞, (4.8)

and

sup
n≥1

E

[
sup

t∈[0,T ]

‖Yn
k(t)‖

p
H
+

∫ T

0

‖Yn
k(t)‖

2
V
dt +

∫ T

0

‖Yn
k(t)‖

r+1

L̃r+1
dt

]
<∞. (4.9)

The following Lemma demonstrates the Wong-Zakai approximation results for the systems
(4.6) and (4.7).

Lemma 4.2. Assume that all the conditions of Hypotheses 2.8 and 2.13 are satisfied, p >
γ + 2 and x ∈ Lp(Ω,F0,P;H). For k ∈ L2(0, T ; K), let Yk and Yn

k be the solutions to the
systems (4.6) and (4.7), respectively, with same initial data x. Then

lim
n→∞

E

[
sup

t∈[0,T ]

‖Yn
k(t)−Yk(t)‖

2
H

]
= 0. (4.10)

Proof. The proof of this lemma is similar to the proof of Theorem 3.3. In comparison with
(3.9), the only term which we need to control is

∫ t

0

([
G(Yn

k(ζ))−G(Yk(ζ))
]
k(ζ),Yn

k(ζ)−Yk(ζ)
)
dζ

≤

∫ t

0

(
ρ(Yk(ζ)) + ‖k(ζ)‖2K

)
‖Yn

k(ζ)−Yk(ζ)‖
2
H
dζ.

Since k ∈ L2(0, T ; K), applying similar arguments as in the proof of Theorem 3.3, we obtain
(4.10), as desired. �

Let D = C([0, T ];H)). Define L := {Yk, k ∈ L2(0, T ; K)} and observe that L ⊂ D. Let
us now state and prove the support theorem.
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Theorem 4.3. Assume that x ∈ Lp(Ω,F0,P;H) with p > γ + 2, where γ is the same as in
Hypothesis 2.8, and Hypotheses 2.8 and 2.13 are satisfied. Let u represent the solution of
the system (2.11) with initial data x. Then

supp(P ◦ u−1) = L̄,

where L̄ is the closure of L in D and supp(P◦u−1) represents the support of the distribution
P ◦ u−1.

Proof. Let u and u
n be the solutions of the systems (2.11) and (2.15), respectively. Since

Yk represents the solution of the system (4.6), then, for k = Ẇn, we have YẆn = u
n, P-a.s.

Furthermore, it implies from Theorem 3.3 that for every ν > 0,

lim
n→∞

P(‖YẆn − u‖D ≥ ν) = lim
n→∞

P(‖un − u‖D ≥ ν) = 0.

Since P-a.s. Ẇn ∈ L2(0, T ; K), we have

supp(P ◦ u−1) ⊂ L̄. (4.11)

Conversely, we claim that supp(P ◦ u
−1) ⊃ L̄. By Remark 2.5.1 of [24], there exists an

another Hilbert space K̄ ⊃ K such that the embedding from (K, 〈·, ·〉K) to (K̄, 〈·, ·〉K̄) is
Hilbert-Schmidt. Additionally, we can find a set {ej , j ∈ N} ⊆ K, and 0 < λ1 ≤ λ2 ≤

· · · ≤ λj ↑ ∞ such that {ej, j ∈ N} is an orthonormal basis in K and {
√
λjej , j ∈ N} is

an orthonormal basis in K̄. Fix such K̄ and define W
K̄ := C([0,∞); K̄) and W

K̄
0 := {w ∈

W
K̄|w(0) = 0}. Here W

K̄
0 is equipped with metric

d(w1, w2) :=

∞∑

j=1

(
max
0≤t≤j

‖w1(t)− w2(t)‖K̄ ∧ 1

)
, w1, w2 ∈ W

K̄
0 .

Then W
K̄
0 is a complete metrizable space with respect to the metric d(·, ·). Let B(WK̄

0 )
represents its Borel sigma-algebra. It follows that W ∈ W

K̄
0 P-a.s. Let {Bt(W

K̄
0 )}t≥0 be the

normal filtration generated by the canonical process ω. It gives another complete probability
space

(
W

K̄
0 ,∪t≥0Bt(W

K̄
0 ),Bt(W

K̄
0 ), P̄

)
,

where P̄ represents the distribution of ω in W
K̄, that is,

P̄ ◦ ω−1 = P ◦W−1. (4.12)

Let x be F0/B(H)-measurable and x ∈ Lp(Ω,F0,P;H) with p > γ+2. By Proposition 2.10
and the Yamada-Watanabe Theorem in [35] (Theorem E.1.8, [35]), we can find a measurable
map

SP◦x−1 : (H×W
K̄
0 ,B(H)⊗ B(WK̄

0 )) → (X,B(X)),

where X = C([0, T ];H)), such that u := SP◦x−1(x,W) is the solution of the system (2.11)
with the initial data u(0) = x, P-a.s. For k ∈ L2(0, T ; K), define maps T n

k on (WK̄
0 ,B(WK̄

0 ))
by

T n
k (w) = w −

∫ ·

0

ẇn(ζ)dζ +

∫ ·

0

k(ζ)dζ, w ∈ W
K̄
0 ,
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where

ẇn(t) :=
n∑

j=1

〈λj
σ

[
w(
⌊ t
σ

⌋
σ)− w((

⌊ t
σ

⌋
− 1)σ)

]
, ej

〉
K̄
ej, t ∈ [0, T ].

We infer from (4.1)-(4.3) that T n
k can be seen as measurable transformations of Wiener space

W
K̄
0 . Select a B(WK̄

0 )/B(H)-measurable map x0 : WK̄
0 → H such that P̄ ◦ x

−1
0 = P ◦ x

−1.
Then S

P̄◦x−1
0
(x0(ω), ω) is also a solution of the system (2.11) with the initial data x0 and

noise ω. Since x0 is B(WK̄
0 )/B(H)-measurable, x0(T

n
k (ω)) = x0(ω), for all n. Again, from

Yamada-Watanabe theorem, pathwise uniqueness implies that for every ν > 0, n ∈ N

P̄

(
ω : ‖S

P̄◦x−1
0
(x0(ω), T

n
k (ω))− Yk‖D ≥ ν

)
= P(‖Yn

k − Yk‖D ≥ ν), (4.13)

which implies from Lemma 4.2 that for ν in (4.13)

lim
n→∞

P(‖Yn
k −Yk‖D ≥ ν) = 0. (4.14)

For P̄n
k = P̄ ◦ T n

k
−1, n ∈ N along with (4.13)-(4.14), it follows that there exists n0 ∈ N such

that

P̄
n0
k (ω : ‖S

P̄
n0
k

◦x−1
0
(x0(ω), ω)−Yk‖D < ν)

= P̄(ω : ‖S
P̄◦x−1

0
(x0(ω), T

n0
k (ω))− Yk‖D < ν) > 0.

From (4.3), we have that P̄n0
k ≪ P̄ which implies that

P(‖u− Yk‖D < ν) = P̄(ω : ‖S
P̄◦x−1

0
(x0(ω), ω)− Yk‖D < ν) > 0.

Therefore

supp(P ◦ u−1) ⊃ L̄. (4.15)

Hence, (4.11) and (4.15) imply that supp(P ◦ u−1) = L̄, as required. �

5. Proof of Theorem 4.1

The proof of Theorem 4.1 is based on a standard Galerkin approximation scheme. Let
{f1, f2, · · · , fm, · · · } ⊂ D(A) be an orthonormal basis ofH and setHm := span{f1, f2, · · · , fm}.
Let Pm : V′ → Hm be given by

Pmh =

m∑

k=1

〈h, fk〉fk, h ∈ V
′. (5.1)

For h ∈ H, one can write Pmh =
∑m

k=1(h, fk)fk. For k ∈ L2(0, T ; K), we consider the
following finite dimensional system in Hm:





dUn,m
k (t) = −[µAUn,m

k (t) + Bm(U
n,m
k (t)) + αUn,m

k (t) + Cm(U
n,m
k (t))]dt

+ F1,m(U
n,m
k (t))ΠmdW(t) + F2,m(U

n,m
k (t))Ẇn(t)dt

+ F3,m(U
n,m
k (t))k(t)dt− Fm(U

n,m
k (t))dt,

Un,m
k (0) = Pmx,

(5.2)
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where Pm and Πm are given in (5.1) and Hypothesis 2.13, respectively, Bm = PmB, Cm =

PmC, Fm = PmF, Fi,m = PmFi, i = 1, 2, 3. For any t ∈ [0, T ], E
[
‖Ẇn(t)‖2K

]
= n

σ
. Also, from

Hypothesis 2.8, we have for u1,u2 ∈ Hm

〈[F2(u1)− F2(u2)]Ẇ
n(t),u1 − u2〉 ≤ ‖F2(u1)− F2(u2)‖L2‖Ẇ

n(t)‖K‖u1 − u2‖H

≤
[
ρ(u2) + ‖Ẇn(t)‖2K

]
‖u1 − u2‖

2
H
. (5.3)

Similarly, one can show that

〈[F3(u1)− F3(u2)]k(t),u1 − u2〉 ≤
[
ρ(u2) + ‖k(t)‖2K

]
‖u1 − u2‖

2
H
. (5.4)

It follows from Theorem 2.7, Hypotheses 2.8 and 2.13, (5.1) and (5.3) that there exists a
unique solution Un,m

k (·) of the system (5.2) (Theorem 3.1.1, [24]).

A-priori energy estimates: We provide an a-priori energy estimate of Un,m
k which will

help us to get the solution for the system (4.4).

Lemma 5.1. Under the assumptions in Theorem 4.1, we have

sup
n,m∈N

E

[
sup

t∈[0,T ]

‖Un,m
k (t)‖p

H
+

∫ T

0

‖Un,m
k (t)‖p−2

H
‖Un,m

k (t)‖2
V
dt

+

∫ T

0

‖Un,m
k (t)‖p−2

H
‖Un,m

k (t)‖r+1

L̃r+1
dt

]
≤ Ce

∫ T

0
(1+‖k(t)‖2K)dt

(
E[‖x‖p

H
] + 1

)
, (5.5)

where C is a positive constant.

Proof. Applying finite dimensional Itô’s formula to the process ‖Un,m
k (t)‖p

H
, we obtain

‖Un,m
k (t)‖p

H
+ p

∫ t

0

‖Un,m
k (ζ)‖p−2

(
µ‖Un,m

k (ζ)‖2
V
+ α‖Un,m

k (ζ)‖2
H
+ β‖Un,m

k (ζ)‖r+1

L̃r+1

)
dζ

= ‖Pmx‖
p
H
+ p

∫ t

0

‖Un,m
k (ζ)‖p−2(Un,m

k (ζ),F1,m(U
n,m
k (ζ))ΠmdW(ζ))dζ

+ p

∫ t

0

‖Un,m
k (ζ)‖p−2

(
F2(U

n,m
k (ζ))Ẇn(ζ),Un,m

k (ζ)
)
dζ

+ p

∫ t

0

‖Un,m
k (ζ)‖p−2(F3(U

n,m
k (ζ))k(ζ),Un,m

k (ζ))dζ

− p

∫ t

0

‖Un,m
k (ζ)‖p−2(F(Un,m

k (ζ))k(ζ),Un,m
k (ζ))dζ

+
p

2

∫ t

0

‖Un,m
k (ζ)‖p−2‖F1,m(U

n,m
k (ζ))Πm‖

2
L2
dζ

+ p(p− 2)

∫ t

0

‖Un,m
k (ζ)‖p−4

H
‖(F1,m(U

n,m
k (ζ))Πm)

∗Un,m
k (ζ)‖2

H
dζ

≤ ‖x‖p
H
+

6∑

i=1

Qi(t, n,m), (5.6)

where we have used ‖Pmx‖H ≤ ‖x‖H. Let us now estimate each term of (5.6) separately.
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Estimate for Q1(t, n,m): Using BDG inequality, we have

E

[
sup

t∈[0,T ]

|Q1(s, n,m)|

]
≤ E

[
1

6
sup

t∈[0,T ]

‖Un,m
k (t)‖p

H
+ C

∫ T

0

(‖Un,m
k (ζ)‖p

H
dζ + 1)dζ

]
. (5.7)

Estimate for Q2(t, n,m): It is easy to see that Ẇn(ζ) = 1
σ

∫ ⌊ ζ

σ
⌋σ

(⌊ ζ
σ
⌋−1)σ

ΠndW(ξ). Therefore, by

Fubini’s theorem, we have

Q2(t, n,m)

=

∫ t

0

⌊ t
σ
⌋∑

j=0

p

σ

∫ (j+1)σ∧t

jσ

1{ξ∈[(j−1)σ∨0,jσ]}
(
‖Un,m

k (ζ)‖p−2
H

F2(U
n,m
k (ζ))∗Un,m

k (ζ),ΠndW(ξ)
)
dζ.

Using BDG inequality, Hypothesis 2.8 and Lemma 2.3, we get

E

[
sup

t∈[0,T ]

|Q2(t, n,m)|

]

≤ E

[∫ T

0

2n−1∑

j=0

p2

σ

∫ (j+1)σ

jσ

dζ1{ξ∈[(j−1)σ∨0,jσ]}‖U
n,m
k (ζ)‖2p−2

H
‖F2(U

n,m
k (ζ))‖2

L2
dξ

]1/2

= E

[∫ T

0

p2‖Un,m
k (ζ)‖2p−2

H
‖F2(U

n,m
k (ζ))‖2L2

dζ

]1/2

≤ E

[
C

∫ T

0

‖Un,m
k (ζ)‖2p−2

H

(
‖Un,m

k (ζ)‖2
H
+ 1
)
dζ

]1/2

≤ E

[
1

6
sup

t∈[0,T ]

‖Un,m
k (t)‖p

H
+ C

(∫ T

0

‖Un,m
k (ζ)‖p

H
dζ + 1

)]
. (5.8)

Estimate for Q3(t, n,m): Using Hypothesis 2.8 and Lemma 2.3, we obtain

E

[
sup

t∈[0,T ]

|Q3(t, n,m)|

]
≤ E

[
C

∫ T

0

‖Un,m
k (ζ)‖p−1

H
(‖Un,m

k (ζ)‖H + 1)‖k(ζ)‖Kdζ

]

≤ CE

[∫ T

0

(
‖k(ζ)‖2K‖U

n,m
k (ζ)‖p

H
+ ‖Un,m

k (ζ)‖p
H
+ 1
)
dζ

]
. (5.9)

Estimate for Q4(t, n,m): Making use of condition (H′.1) of Hypothesis 2.13, we obtain

E

[
sup

t∈[0,T ]

|Q4(s, n,m)|

]
≤ E

[
1

6
sup

t∈[0,T ]

‖Un,m
k (t)‖p

H
+ C

∫ T

0

(‖Un,m
k (ζ)‖p

H
dζ + 1)dζ

]
. (5.10)

Estimates for Q5(t, n,m) and Q6(t, n,m): Using condition (H.1) of Hypothesis 2.8 and then
applying Lemma 2.3, we get

|Q5(t, n,m) +Q6(t, n,m)| ≤ C

∫ T

0

(‖Un,m
k (ζ)‖p

H
+ 1)dζ. (5.11)



WONG-ZAKAI APPROXIMATION AND SUPPORT THEOREM FOR STOCHASTIC CBF 25

Taking supremum over [0, T ] and expectation on both sides of (5.6), then inserting (5.7)-
(5.11) and applying Gronwall’s inequality to the final estimate, we obtain (5.5), which com-
pletes the proof. �

Weak limits: Lemma 5.1 implies that

Un,m
k ∈ Lp(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)). (5.12)

For Mm(u) = µAu+ Bm(u) + αu+ βCm(u), let us consider

E

[∣∣∣∣
∫ T

0

〈Mm(U
n,m
k (t)),V(t)〉dt

∣∣∣∣
]

≤ µE

[∣∣∣∣
∫ T

0

(∇Un,m
k (t),∇V(t))dt

∣∣∣∣
]
+ E

[∣∣∣∣
∫ T

0

〈B(Un,m
k (t),V(t)),Un,m

k (t)〉dt

∣∣∣∣
]

+ αE

[∣∣∣∣
∫ T

0

(Un,m
k (t),V(t))dt

∣∣∣∣
]
+ βE

[∣∣∣∣
∫ T

0

〈|Un,m
k (t)|r−1Un,m

k (t),V(t)〉dt

∣∣∣∣
]

≤ CE

[∫ T

0

‖Un,m
k (t)‖V‖V(t)‖Vdt

]
+ E

[∫ T

0

‖Un,m
k (t)‖

L̃r+1‖U
n,m
k (t)‖

L̃

2(r+1)
r−1

‖V(t)‖Vdt

]

+ βE

[∫ T

0

‖Un,m
k (t)‖r

L̃r+1‖V(t)‖L̃r+1dt

]

≤ CE

[(∫ T

0

‖Un,m
k (t)‖2

V
dt

)1/2(∫ T

0

‖V(t)‖2
V
dt

)1/2
]

+ E

[(∫ T

0

‖Un,m
k (t)‖r+1

L̃r+1
dt

) 1
r−1
(∫ T

0

‖Un,m
k (t)‖2

H
dt

) r−3
2(r−1)

(∫ T

0

‖V(t)‖2
V
dt

)1/2
]

+ βE

[(∫ T

0

‖Un,m
k (t)‖r+1

L̃r+1
dt

) r
r+1
(∫ T

0

‖V(t)‖r+1

L̃r+1
dt

) 1
r+1

]

≤ C

{
E

(∫ T

0

‖Un,m
k (t)‖2

V
dt

)}1/2{
E

(∫ T

0

‖V(t)‖2
V
dt

)}1/2

+ T
r−3

2(r−1)

{
E

(∫ T

0

‖Un,m
k (t)‖r+1

L̃r+1
dt

)} 1
r−1

{
E

(
sup

t∈[0,T ]

‖Un,m
k (t)‖2

H

)} r−3
2(r−1)

×

{
E

(∫ T

0

‖V(t)‖2
V
dt

)} 1
2

+ β

{
E

(∫ T

0

‖Un,m
k (t)‖r+1

L̃r+1
dt

)} r
r+1

×

{
E

(∫ T

0

‖V(t)‖r+1

L̃r+1
dt

)} 1
r+1

, (5.13)

for r > 3 and for all V ∈ L2(Ω; L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)), where we have used
Lemmas 2.1 and 2.2. Similarly for r = 3, we obtain

E

[∣∣∣∣
∫ T

0

〈Mm(U
n,m
k (t)),V(t)〉dt

∣∣∣∣
]
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≤ C

{
E

(∫ T

0

‖Un,m
k (t)‖2

V
dt

)}1/2{
E

(∫ T

0

‖V(t)‖2
V
dt

)}1/2

+

{
E

(∫ T

0

‖Un,m
k (t)‖4

L̃4dt

)} 1
2
{
E

(∫ T

0

‖V(t)‖2
V
dt

)} 1
2

+ β

{
E

(∫ T

0

‖Un,m
k (t)‖4

L̃4dt

)} 3
4
{
E

(∫ T

0

‖V(t)‖4
L̃4dt

)} 1
4

, (5.14)

for all V ∈ L2(Ω; L2(0, T ;V)) ∩ L4(Ω; L4(0, T ; L̃4)). The above inequalities (5.13) and (5.14)
along with Lemma 5.1 imply that for all r ≥ 3,

Mm(U
n,m
k ) ∈ L2(Ω; L2(0, T ;V′)) + L

r+1
r (Ω; L

r+1
r (0, T ; L̃

r+1
r )). (5.15)

By condition (H.1) of Hypothesis 2.8 and Lemma 2.3, we get

‖F2,m(U
n,m
k (t))Ẇn(t)‖2

H
≤ ‖F2(U

n,m
k (t))‖2

L2
‖Ẇn(t)‖2K

≤ L1

(
1 + ‖Un,m

k (t)‖2
H

)
‖Ẇn(t)‖2K

≤ C

(
1 + ‖Un,m

k (t)‖p
H
+ ‖Ẇn(t)‖

2p
p−2

K

)
. (5.16)

From (2.13), we infer that ‖Ẇn(jσ)‖K (for j = 1, 2, . . . , 2n) are independent centered normal

random variables with E

[
‖Ẇn(jσ)‖2K

]
= n

σ
, which gives

E

[∫ T

0

‖Ẇn(t)‖
2p
p−2

K dt

]
=

2n∑

j=1

σE

[
‖Ẇn(jσ)‖

2p
p−2

K

]

≤ Cσ
2n∑

j=1

(
E

[
‖Ẇn(jσ)‖2K

]) p

p−2
= Cσ2n

(n
σ

) p

p−2
. (5.17)

From Lemma 5.5, (5.16)-(5.17) and continuous embedding H →֒ V
′, we obtain that for each

n ∈ N

F2,m(U
n,m
k )Ẇn ∈ L2(Ω; L2(0, T ;V′)) uniformly for m ∈ N. (5.18)

For k ∈ L2(0, T ; K), from condition (H.1) of Hypothesis 2.8, Lemma 2.3 and continuous
embedding H →֒ V

′, we obtain

‖F3,m(U
n,m
k (t))k(t)‖2

H
≤ ‖F3(U

n,m
k (t))‖2

L2
‖k(t)‖2K

≤ L1

(
1 + ‖Un,m

k (t)‖2
H

)
‖k(t)‖2K

≤ C(1 + ‖Un,m
k (t)‖p

H
)‖k(t)‖2K, (5.19)

which gives that for each n ∈ N

F3,m(U
n,m
k )k ∈ L2(Ω; L2(0, T ;V′)) uniformly for m ∈ N. (5.20)

Similarly, from from condition (H′.1) of Hypothesis 2.13, Lemma 2.3 and continuous embed-
ding H →֒ V

′, we obtain that for each n ∈ N

Fm(U
n,m
k ) ∈ L2(Ω; L2(0, T ;V′)) uniformly for m ∈ N. (5.21)
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Therefore, for each n ∈ N, we can find a subsequence mj (depends on n) such that mj → ∞
as j → ∞ and have the following convergence in hand as j → ∞:





U
n,mj

k

w∗

−⇀ Ũn
k in Lp(Ω; L∞(0, T ;H)),

U
n,mj

k

w
−⇀ Ũn

k in L2(Ω; L2(0, T ;V)),

Mmj
(U

n,mj

k )
w
−⇀ Mn

0 in L2(Ω; L2(0, T ;V′)) + L
r+1
r (Ω; L

r+1
r (0, T ; L̃

r+1
r )),

F2,mj
(U

n,mj

k )Ẇn w
−⇀ Nn

2,k in L2(Ω; L2(0, T ;V′)),

F3,mj
(U

n,mj

k )k
w
−⇀ Nn

3,k in L2(Ω; L2(0, T ;V′)),

Fmj
(U

n,mj

k )
w
−⇀ Nn

k in L2(Ω; L2(0, T ;V′)),

F1,mj
(U

n,mj

k )
w
−⇀ Nn

1,k in L2(Ω; L2(0, T ;L2(K,H))).

(5.22)

The final convergence in (5.22) implies that
∫ ·

0

F1,mj
(U

n,mj

k )Πmj
dW →

∫ ·

0

Nn
1,kdW weakly in L2(Ω,L∞(0, T,H)). (5.23)

Itô stochastic differential satisfied by Un
k(·): Now following the method given in [24, 30]

and using the convergences obtained in (5.22), we prove that Un
k(·) satisfies the system (4.4),

where Un
k is defined by

Un
k(t) := x+

∫ t

0

{
−Mn

0 (ζ) + Nn
2,k(ζ) + Nn

3,k(ζ)−Nn
k(ζ)

}
dζ +

∫ t

0

Nn
1,k(ζ)dW(ζ), (5.24)

in V
′ + L

r+1
r . Our next aim is to prove that Un

k(t) = Ũn
k(t), dt ⊗ P-a.s. From (5.2) and

Fubini’s theorem, for all υ ∈ ∪m≥1Hm ⊂ V, ϕ ∈ L∞(Ω; L∞(0, T )), we obtain

E

[∫ T

0

〈
Ũn

k(t), ϕ(t)υ
〉
dt

]

= lim
j→∞

E

[∫ T

0

〈
U

n,mj

k (t), ϕ(t)υ
〉
dt

]

= lim
j→∞

E

[ ∫ T

0

(
U

n,mj

k (0), ϕ(t)υ
)
dt−

∫ T

0

∫ t

0

(
Mmj

(U
n,mj

k (ζ)), ϕ(t)υ
)
dζdt

+

∫ T

0

∫ t

0

(
F2,mj

(U
n,mj

k (ζ)), ϕ(t)υ
)
dζdt+

∫ T

0

∫ t

0

(
F3,mj

(U
n,mj

k (ζ)), ϕ(t)υ
)
dζdt

−

∫ T

0

∫ t

0

(
Fmj

(U
n,mj

k (ζ)), ϕ(t)υ
)
dζdt+

∫ T

0

(∫ t

0

F1,mj
(U

n,mj

k (ζ))Πmj
dW(ζ), ϕ(t)υ

)
dt

]

= lim
j→∞

E

[
(Un,mj(0), υ)

∫ T

0

ϕ(t)dt

]
− lim

j→∞
E

[∫ T

0

(
Mmj

(U
n,mj

k (ζ)), υ

∫ T

ζ

ϕ(t)dt

)
dζ

]

+ lim
j→∞

E

[∫ T

0

(
F2,mj

(U
n,mj

k (ζ)) + F3,mj
(U

n,mj

k (ζ))− Fmj
(U

n,mj

k (ζ)), υ

∫ T

ζ

ϕ(t)dt

)
dζ

]

+ lim
j→∞

E

[∫ T

0

(∫ t

0

F1,mj
(U

n,mj

k (ζ))Πmj
dW(ζ), ϕ(t)υ

)
dt

]
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=E

[∫ T

0

〈
x+

∫ t

0

{
−Mn

0 (ζ) + Nn
2,k(ζ) + Nn

3,k(ζ)−Nn
k(ζ)

}
dζ +

∫ t

0

Nn
1,k(ζ)dW(ζ), ϕ(t)υ

〉
dt

]
,

which implies that

Ũn
k(t) := x+

∫ t

0

{
−Mn

0 (ζ) + Nn
2,k(ζ) + Nn

3,k(ζ)− Nn
k(ζ)

}
dζ +

∫ t

0

Nn
1,k(ζ)dW(ζ),

in V
′ + L̃

r+1
r for all t ∈ [0, T ]. Hence Un

k(t) = Ũn
k(t), dt ⊗ P-a.s. Further, Lemma 5.1

along with Theorem 4.2.5 from [24] (one can prove energy equality satisfied by Un
k(·) using

same method used in [30], where the author obtained the energy equality with the help of
eigenfunctions of the Stokes operator and a construction available in [10]) implies that Un

k

is an H-valued continuous (Ft)-adapted process. Therefore, for the existence of solutions to
the system (4.4), it only remains to prove that

−[µAUn
k + B(Un

k) + αUn
k + C(Un

k)] + F2(U
n
k)Ẇ

n + F3(U
n
k)k − F(Un

k)

= −Mn
0 +Nn

2,k +Nn
3,k −Nn

k, (5.25)

F1(U
n
k) = Nn

1,k, dt⊗ P. (5.26)

Let Φ and ρ be defined by (3.41) and Hypothesis 2.8, respectively and set

M :=

{
φ : φ is V ∩ L̃

r+1-valued Ft-adapted process,

E

[∫ T

0

Φ(φ(ζ))dζ

]
<∞ and E

[∫ T

0

ρ(φ(ζ))dζ

]
<∞

}
.

For φ ∈ Lp(Ω; L∞(0, T ;H))∩L2(Ω; L2(0, T ;V))∩Lr+1(Ω; Lr+1(0, T ; L̃r+1))∩M, an application
of finite dimensional Itô’s formula yields

E

[
e−

∫ t

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ‖U
n,mj

k (t)‖2
H

]
− E

[
‖Pmx‖

2
H

]

= E

[ ∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ
{
2
〈
M(U

n,mj

k (s)),U
n,mj

k (s)
〉

+ 2
(
F2(U

n,mj

k (s))Ẇn(s) + F3(U
n,mj

k (s))k(s)− F(U
n,mj

k (s)),U
n,mj

k (s)
)

+ ‖F1,mj
(U

n,mj

k (s))Πmj
‖2
L2

−
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖U

n,mj

k (s)‖2
H

}
ds

]

≤ E

[ ∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn (ζ)‖2K+‖k(ζ)‖2K)dζ

×

{
2
〈
M(U

n,mj

k (s))−M(φ(s)),U
n,mj

k (s)− φ(s)
〉
+ ‖F1(U

n,mj

k (s))− F1(φ(s))‖
2
L2

+ 2
([
F2(U

n,mj

k (s))− F2(φ(s))
]
Ẇn(s) +

[
F3(U

n,mj

k (s))− F3(φ(s))
]
k(s)

−
[
F(U

n,mj

k (s))− F(φ(s))
]
,U

n,mj

k (s)− φ(s)
)

−
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖U

n,mj

k (s)− φ(s)‖2
H

}
ds

]
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+ E

[ ∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ

×

{
2
〈
M(U

n,mj

k (s))−M(φ(s)), φ(s)
〉
+ 2
〈
M(φ(s)),U

n,mj

k (s)
〉

+ 2
([
F2(U

n,mj

k (s))− F2(φ(s))
]
Ẇn(s), φ(s)

)
+ 2
(
F2(φ(s))Ẇ

n(s),U
n,mj

k (s)
)

+ 2
([
F3(U

n,mj

k (s))− F3(φ(s))
]
k(s), φ(s)

)
+ 2
(
F3(φ(s))k(s),U

n,mj

k (s)
)

− 2
(
F(U

n,mj

k (s))− F(φ(s)), φ(s)
)
− 2
(
F(φ(s)),U

n,mj

k (s)
)

− ‖F1(φ(s))‖
2
L2

+ 2
〈
F1(U

n,mj

k (s)),F1(φ(s))
〉
L2

− 2
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)(
U

n,mj

k (s), φ(s)
)

+
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖φ(s)‖2

H

}
ds

]
.

For any non-negative ψ ∈ L∞(0, T ), we have

E

[ ∫ T

0

ψ(t)‖Un
k(t)‖

2
H
dt

]

= lim
j→∞

E

[ ∫ T

0

ψ(t)
〈
Un

k(t),U
n,mj

k (t)
〉
dt

]

≤

(
E

[ ∫ T

0

ψ(t)‖Un
k(t)‖

2
H
dt

])1/2

lim inf
j→∞

(
E

[ ∫ T

0

ψ(t)‖U
n,mj

k (t)‖2
H
dt

])1/2

.

With the help of Theorem 2.7, Hypotheses 2.8 and 2.13, we obtain

E

[ ∫ T

0

ψ(t)
{
e−

∫ t

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn (ζ)‖2K+‖k(ζ)‖2K)dζ‖Un
k(t)‖

2
H
− ‖x‖2

H

}
dt

]

≤ lim inf
j→∞

E

[ ∫ T

0

ψ(t)
{
e−

∫ t

0(2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ‖U
n,mj

k (t)‖2
H
− ‖Pmx‖

2
H

}
dt

]

≤ E

[ ∫ T

0

ψ(t)

(∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ

×

{
2
〈
Mn

0 (s)−M(φ(s)), φ(s)
〉
+ 2
〈
M(φ(s)),Un

k(s)
〉

+ 2
〈
Nn

2,k(s)− F2(φ(s))Ẇ
n(s), φ(s)

〉
+ 2
〈
F2(φ(s))Ẇ

n(s),Un
k(s)

〉

+ 2
〈
Nn

3,k(s)− F3(φ(s))k(s), φ(s)
〉
+ 2
〈
F3(φ(s))k(s),U

n
k(s)

〉

− 2
〈
Nn

k(s)− F(φ(s)), φ(s)
〉
− 2
〈
F(φ(s)),Un

k(s)
〉

− ‖F1(φ(s))‖
2
L2

+ 2
〈
Nn

1,k(s),F1(φ(s))
〉
L2

− 2
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)〈
Un

k(s), φ(s)
〉

+
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖φ(s)‖2

H

}
ds

)
dt

]
. (5.27)
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From (5.24) using the energy equality established in [30], we also have

E

[
e−

∫ t

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ‖Un
k(t)‖

2
H
− ‖x‖2

H

]

= E

[ ∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ

×

{
2
〈
Mn

0 (s) + Nn
1,k(s) + Nn

2,k(s)− Nn
k(s),U

n
k(s)

〉
+ ‖Nn

1,k(s)‖
2
L2

−
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖Un

k(s)‖
2
H

}
ds

]
,

which together with (5.27) gives

0 ≥ E

[ ∫ T

0

ψ(t)

(∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ

×

{
2
〈
Mn

0 (s)−M(φ(s)),Un
k(s)− φ(s)

〉
+ 2
〈
Nn

2,k(s)− F2(φ(s))Ẇ
n(s) + Nn

3,k(s)

− F3(φ(s))k(s)− Nn
k(s) + F(φ(s)),Un

k(s)− φ(s)
〉
+ ‖F1(φ(s))− Nn

1,k(s)‖
2
L2

−
(
2Φ(φ(s)) + 5ρ(φ(s)) + ‖Ẇn(s)‖2K + ‖k(s)‖2K

)
‖Un

k(s)− φ(s)‖2
H

}
ds

)
dt

]
. (5.28)

Lemma 5.1 and Hypothesis 2.8 imply that

Un
k ∈ Lp(Ω; L∞(0, T ;H)) ∩ L2(Ω; L2(0, T ;V)) ∩ Lr+1(Ω; Lr+1(0, T ; L̃r+1)) ∩M.

Thus, in (5.28), put φ = Un
k − εφ̃v where φ̃ ∈ L∞([0, T ] × Ω; dt ⊗ P;R) and v ∈ V ∩ L̃

r+1,
then divide it by ε and passing limit ε→ 0, we reach at

0 ≥ E

[ ∫ T

0

ψ(t)

(∫ t

0

e−
∫ s

0 (2Φ(φ(ζ))+5ρ(φ(ζ))+‖Ẇn(ζ)‖2K+‖k(ζ)‖2K)dζ φ̃(s)

×

{
2
〈
Mn

0 (s)−M(φ(s)), v
〉
+ 2
〈
Nn

2,k(s)− F2(φ(s))Ẇ
n(s) + Nn

3,k(s)

− F3(φ(s))k(s)− Nn
k(s) + F(φ(s)), v

〉
+ ‖F1(φ(s))− Nn

1,k(s)‖
2
L2

}
ds

)
dt

]
. (5.29)

Since ψ and φ̃ are arbitrary, we finally obtain (5.25) and (5.26) from (5.29), and we conclude
that Un

k are solutions of the system 4.4. To obtain (4.5), we repeat the method used in the
proof of Lemma 5.1, which completes the existence of solution of the system (4.4).

Uniqueness: For any n ∈ N given, let Un
1,k(·),U

n
2,k(·) be two solutions to the system (4.4)

with initial data x1 and x2 respectively. For N > 0, we define

τ 1N = inf
0≤t≤T

{
t : ‖Un

1,k(t)‖
2
H
+

∫ t

0

‖Un
1,k(s)‖

2
V
ds ≥ N

}
,

τ 2N = inf
0≤t≤T

{
t : ‖Un

2,k(t)‖
2
H
+

∫ t

0

‖Un
1,k(s)‖

2
V
ds ≥ N

}
,

τN : = τ 1N ∧ τ 2N .
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With the help of energy estimates (4.5), one can show that τN → T as N → ∞, P-a.s.
(see Proposition 3.5, [30]). Let us define Un(·) := Un

1,k(·)− Un
2,k(·). Then, U(·) satisfies the

following system:



dUn(t) = −
[
µAUn(t) + αUn(t) + B(Un

1,k(t))− B(Un
2,k(t)) + β(C(Un

1,k(t))− C(Un
2,k(t)))

]
dt

+
[
F1(U

n
1,k)− F1(U

n
2,k)
]
dW(t) +

[
F2(U

n
1,k)− F2(U

n
2,k)
]
Ẇn(t)dt

+
[
F3(U

n
1,k)− F3(U

n
2,k)
]
k(t)dt−

[
F(Un

1,k)− F(Un
2,k)
]
dt,

U
n(0) = x1 − x2,

(5.30)

in V
′ + L̃

r+1
r . Let us take

F(t) :=

∫ t

0

(
2Φ(Un

2,k(ζ)) + 5ρ(Un
2,k(ζ)) + ‖Ẇn(ζ)‖2K + ‖k(ζ)‖2K

)
dζ,

so that

F′(t) = 2Φ(Un
2,k(t)) + 5ρ(Un

2,k(t)) + ‖Ẇn(t)‖2K + ‖k(t)‖2K, for a. e. t ∈ [0, T ].

Applying energy equality (see [30], for a proof) to the process e−F(t)‖U(t)‖2
H
and using The-

orem 2.7, Hypotheses 2.8 and 2.13, we obtain

e−F(t∧τN )‖Un(t ∧ τN )‖
2
H
− ‖Un(0)‖2

H

= −2

∫ t∧τN

0

e−F(s)〈M(Un
1,k(s))−M(Un

2,k(s)),U
n(s)〉ds

+ 2

∫ t∧τN

0

e−F(s)
([

F2(U
n
1,k(s))− F2(U

n
2,k(s))

]
Ẇn(s),Un(s)

)
ds

+ 2

∫ t∧τN

0

e−F(s)
([
F3(U

n
1,k(s))− F3(U

n
2,k(s))

]
k(s),Un(s)

)
ds

+ 2

∫ t∧τN

0

e−F(s)
(
F(Un

2,k(s))− F(Un
1,k(s)),U

n(s)
)
ds

+

∫ t∧τN

0

e−F(s)‖F1(U
n
1,k(s))− F1(U

n
2,k(s))‖

2
L2
ds

+ 2

∫ t∧τN

0

e−F(s)
([
F1(U

n
1,k(s))− F1(U

n
2,k(s))

]
dW(s),Un(s)

)
ds−

∫ t∧τN

0

F′(s)‖Un(s)‖2
H
ds

≤

∫ t∧τN

0

e−F(s)F′(s)‖Un(s)‖2
H
ds−

∫ t∧τN

0

F′(s)‖Un(s)‖2
H
ds

+ 2

∫ t∧τN

0

e−F(s)
([
F1(U

n
1,k(s))− F1(U

n
2,k(s))

]
dW(s),Un(s)

)
ds. (5.31)

Taking expectation in (5.31) and using the fact that the final term in (5.31) is a martingale,
we obtain

E

[
e−F(t∧τN )‖Un

1,k(t ∧ τN )−Un
2,k(t ∧ τN )‖

2
H

]
≤ E

[
‖x1 − x2‖

2
H

]
.

Thus the initial data Un
1,k(0) = Un

2,k(0) = x yields to Un(t∧τN ) = 0, P-a.s. But we know that
τN → T , P-a.s. which gives Un(t) = 0 and hence Un

1,k(t) = Un
2,k(t), P-a.s., for all t ∈ [0, T ],

which completes the proof of uniqueness.
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