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ABSTRACf

Qualitative and quantitative wood features are reported for 38 species representing 22 genera,

including the scandent genera Mendoncia and Thunbergia. Woods of Acanthaceae are characterized

by relatively narrow vessels with simple perforation plates and alternate lateral wall pitting, septate

libriform fibers, scanty vasicentric axial parenchyma, rays both multiseriate and uniseriate, erect ray

cells abundant in rays (some species rayless or near-rayless), numerous small crystals or cystoliths in

ray cells in a few genera (first documented reports of both characters in woods of Acanthaceae), and

nonstoried structure. This constellation of features is very closely matched by woods of Gesneriaceae,

Scrophulariaceae, Pedaliaceae, Martyniaceae, Bignoniaceae, and Myoporaceae (families listed in order

ofdecreasing resemblance). Narrowness ofvessels in tropical Acanthaceae appears related to understory

ecology. A few species in warm and seasonally dry areas have narrow, short vessel elements numerous

per unit transection. Vasicentric tracheids occur in two nonscandent genera in dry areas. Vessel grouping

is roughly proportional to dryness of habitat. Thunbergia alata, T. laurifolia, and all collections of

Mendoncia have interxylary phloem (first report for Mendoncia). That feature, plus presence of

occasional acicular crystals in rays and axial parenchyma and presence of large gelatinous fibers in

phloem ally Mendoncia closely with Thunbergia, and Mendonciaceae is not justified for this and other

reasons. Species of Thunbergia differ among themselves, and T. erecta and T. holstii resemble shrubby

Acanthaceae more than they do Mendoncia in wood features. Thunbergia thus should not be segregated

from Acanthaceae.

Key words: Acanthaceae, ecological wood anatomy, interxylary phloem, Mendoncia, raylessness,

Scrophulariales, Thunbergia, wood anatomy.

INTRODUCTION

The present study represents a portion of a survey of wood anatomy in tubi

florous families of dicotyledons. This survey will examine wood features with

reference to the ordinal classification system in an effort to achieve more natural

groupings. The 43 species of 26 genera included here represent a small portion

of the approximately 2500 species in 250 genera conservatively estimated for the

family (Cronquist 1981). One should remember that a large portion of the family

is herbaceous or minimally woody. Two ofthe large woody genera, Graptophyllum

and Sanchezia, have been sparsely sampled here because the relative uniformity

of habit and habitat type within these genera is likely to be associated with
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relatively uniform wood anatomy. A further problem that prevents a more ex

tensive sampling of the family is the lack of determinations on many samples in

xylaria; this in turn relates to the lack of monographs of genera in the family or

treatments of the family in floras where Acanthaceae are well represented (e.g.,

Peru). The present study must be considered an exploration of diversity in wood

anatomy within the family , and any comparison between wood anatomy and

taxonomic categories within the family must await a larger assemblage of woods.

Phylogenetic systems are in agreement that Acanthaceae belong to Scrophu

lariales (Thorne 1976; Dahlgren 1980; Cronquist 1981; Takhtajan 1987). How

ever, the systems differ with respect to the families between which Acanthaceae

are placed. Gesneriaceae, Pedaliaceae, Martyniaceae, and Myoporaceae, respec

tively, are cited as the closest ally of Acanthaceae about an equal number of times

in these systems. One goal of the present paper is to determine which families of

Scrophulariales bear the closest relationship to Acanthaceae in terms of wood

anatomy.

The predominantly herbaceous or moderately woody nature of such a high

proportion of Acanthaceae makes the family potentially interesting with respect

to wood anatomy, because patterns in such a group are different from those in

predominantly woody families. The families Gesneriaceae (Carlquist and Hoek

man 1986a), Myoporaceae (Carlquist and Hoekman 1986b) and Plantaginaceae

(Carlquist 1970) are instructive in this regard . At another extreme with respect

to habit is Mendoncia, a genus of tropical lianas, and Thunbergia, which consists

of variously woody vines or (T. erecta) shrubs. These scandent genera present

anatomical patterns that involve abnormal cambial configuration; the histology

of these patterns has been in need of study. The xylary peculiarities of Mendoncia

and Thunbergia are also pertinent in connection with systematics, because some

accounts have recognized Mendonciaceae as a separate family (Bremekamp 1953;

Dahlgren 1980; Cronquist 1981; Takhtajan 1987), and some have considered

Thunbergiaceae a worthy segregate family (e.g., Bremekamp 1953; Dalhgren 1980;

Takhtajan 1987).

Although the majority of Acanthaceae are characteristic of the humid tropics,

some of the Acanthaceae studied here are characteristic ofdrier or cooler regimes.

Anisacanthus thurberi occurs along gravelly washes in northwestern Mexico and

adjacent Arizona and New Mexico (Johnston 1924; Kearney and Peebles 1960).

Ruellia peninsularis grows on sea bluffs near La Paz, Baja California (Johnston

1924). Justicia californica (formerly considered a species of Beloperonei may be

found in washes at the northern and western edges of the Colorado Desert (Munz

1974). Diapedium assurgens (sometimes included in Dicliptera) occurs in dis

turbed places in shallow coral soils of exposed sites of the florida Keys and

adjacent peninsular florida (Long and Lakela 1971). Jacobinia is an understory

plant that ranges from Mexico to Bolivia; it does not occur in moist understory

sites, but in shrubby or dry forests, as beneath Cercidium (Gentry 1942). Detailed

ecological data on Tanzanian Acanthaceae are not at hand, although the data in

Dale and Greenway (1961) suggest that genera such as Himantochilus and Pseu

doblepharis characterize relatively dry sites in eastern Africa.

The remaining Acanthaceae studied here are from areas of relatively heavy

rainfall. These species are of interest with respect to ecological wood anatomy

because dicotyledons with mesomorphic woods have been assumed to be the
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norm instead of diverse adaptations to various kinds of humid and moist con

ditions.

Metcalfe and Chalk (1950) report on the wood features of 15 genera (species

not given) of Acanthaceae and the information they give appears accurate. The

present study amplifies that account both in qualitative and quantitative aspects.

No survey ofwood anatomy in Acanthaceae other than their account has appeared

elsewhere.

MATERIALS AND METHODS

The majority of specimens studied were available in dried form. Most of these

were derived from the SJRwand MADw collection of the Forest Products Lab

oratory, Madison, Wisconsin (see Table I). Dried samples were boiled in water

and stored in aqueous 50% ethyl alcohol. Other samples from plants in cultivation

(Table I) were preserved in aqueous 50% ethyl alcohol. Sections ofwoods of most

collections were prepared by means of the sliding microtome. However, vining

and lianoid species (Mendoncia. Thunbergia) cannot be sectioned readily in this

way because of the sectioning problems presented by large-diameter vessels and

by pockets of thin-walled parenchyma (some of which proved to contain phloem)

intercalated among the fibers. For these species, an alternative method involving

softening in ethylene diamine, infiltration, embedding in paraffin, and sectioning

on a rotary microtome (Carlquist 1982) was used. Sections were stained with a

safranin-fast green combination. Macerations were prepared by means of Jeffrey's

Fluid and stained with safranin.

Means for wood features were obtained by averaging 25 measurements except

for vessel wall thickness, libriform fiber diameter at widest point, and libriform

fiber wall thickness. For these latter features, a few typical conditions were mea

sured and averaged. Vessel diameter is taken at the widest point and excludes

wall thickness; although this is a less common way of measuring vessel diameter,

this method has the merit of representing lumen diameter, which is a dimension

more pertinent where physiological and ecological features are being discussed

than inclusion of wall thickness (although inclusion of vessel wall thickness does

not alter data significantly except in species with very narrow vessels). Vessels per

group is based on averaging counts where a solitary vessel = I, a pair of vessels

in contact = 2, etc. Vessels per mm? represents a count of all vessels (pores, not

vessel groups) within a field. Terminology in wood features follows that of the

IAWA Committee on Nomenclature (1964). Growth-ring types are according to

Carlquist (1988), which represents essentially the same system presented earlier

(Carlquist 1980). Preparation ofquantitative data, some of the wood sections and

macerations, and some observations on qualitative features are the work of the

second author. Preparation of the text, photomicrography, and some observations

of qualitative features represent the work of the first author. David A. Hoekman

prepared some wood sections and some quantitative data.

Provenance of the specimens is as follows (except for specimens taken from

cultivation by the first author): Acanthus ebracteatus (New Britain); Anisacanthus

thurberi (5 miles southwest of Tucson, Arizona); Aphelandra pulcherrima (Guy

ana) ; A. scabra (Guamitas, Venezuela); A. tetragona (Colombia); Asystasia zam

biana (Shaba, West Africa); Barleria cristata (cult. Kamehameha School, Hono-



Table 1. Wood characteristicsof Acanthaceae. IV
0
,:.

I 2 3 4 5 6 7 8 9 10 II 12 13
Taxon Collection v/g vmm vd vi VW\ fd ft fwt mrh mrw urh flv meso

Acanthus ebracteatus Vahl SJRw-28606 1.5 83 38 420 3.2 19 665 3.3 359 2.1 172 1.58 192
An isacanthus thurberi (Torr.) Gray SJRw-26701 1.6 253 38 201 3.3 13 433 2.5 600 3.7 103 2.15 30
A. pulcherrima (Jacq.) HBK. SJRw-358 76 2.5 113 38 468 3.9 20 822 4.8 432 2.0 202 1.76 157
Aphelandra seabra (Vahl)Sm. MADw-26634 1.6 169 30 486 3.3 19 779 5.5 489 2.8 187 1.60 86
A. tetragona (YahI) Nees SJRw-/6435 2.1 129 39 510 3.3 20 886 6.3 560 2.3 314 1.74 154
Asystastia zambiana Brummet & Chisuapa Tw-39931 2.8 168 53 298 5.4 13 510 2.9 :> 4.5 - 1.71 94
Barleria cristata L. SJRw-37261 1.5 116 43 566 3.9 22 802 4.3 666 2.0 304 1.42 210
Bravaisia floribunda DC. MADw-266 50 1.0 9 137 774 4.2 29 1460 1.8 753 3.0 340 1.89 11,782
B. integerrima (Spreng.) Standl, MADw-7158 1.3 14 119 542 4.9 25 1272 2.7 749 2.9 387 2.35 4607
Calycacanthus sp. SJRw-32146 1.5 122 35 449 2.5 18 748 2.8 556 2.0 277 1.67 129
Diapedium assurgens (L.) Kuntze SJRw-51436 2.1 282 20 273 2.9 13 540 2.2 - - - 1.98 19
Graptophyllum insularum (Gray) A. C. Smith SJRw-24541 4.1 206 42 379 3.9 15 661 3.1 639 2.4 305 1.74 77
Himantochilus marginatus Linden SJRw-27563 1.9 102 40 277 4.0 18 676 2.3 343 2.4 144 2.44 109
Jacobinia carnea Nichols. cult. Claremont 2.6 287 27 320 2.1 18 387 I.l - - - 1.21 30
J. ghiesbrechtiana Benth. & Hook. f. cult. Orpet Park 2.0 171 36 215 2.6 17 438 2.2 - - 340 2.04 45
Justicia californica (Benth.) D. Gibson cult. RSABG 2.1 190 45 225 3.1 20 420 3.1 - - - 1.87 53
J. magnifica (Blake) D. Gibson SJRw-14493 1.5 99 35 547 2.5 18 735 2.2 - - - 1.34 193

Megaskepasma erythrochlamys Lindau cult. PTBG 1.6 66 44 289 2.3 22 494 1.8 430 2.2 227 1.71 193
Mendoncia gigas Lindau SJRw-44438 1.5 33 181 445 5.8 40 740 4.9 494 2.0 356 1.66 2441

M. microchlamys Leonard SJRw-44483 2.3 43 158 382 5.2 38 758 3.7 499 2.0 290 1.98 1404
M. retusa Turrill SJRw-54858 1.3 22 200 338 3.2 30 608 2.4 497 2.1 418 1.80 3072
M. sp, SJRw-52920 2.6 22 186 414 6.3 40 733 3.5 574 2.0 292 1.77 3500
Pachystachys lutea Nees MADw-38349 1.4 89 27 507 3.1 19 701 2.4 762 2.3 292 1.38 154
P. spicata (R. & P.) Wassh. MADw-26785 3.6 116 40 508 3.0 21 848 2.5 830 2.4 361 1.67 175

Pseuderanthemum laxiflorum (A. Gray) Hubbard SJRw-25683 2.6 139 29 460 2.3 20 787 3.3 550 2.5 233 1.71 96
Pseudoblepharis glischrocalyx Mildbr. SJRw-27559 1.6 108 48 306 2.9 22 714 2.6 276 2.1 91 2.33 136
Psilanthele jamaicensis Lindau USw-5946 2.2 87 51 568 3.5 13 969 3.6 695 3.0 228 1.23 333
Ra zisea spicata Oerst. SJRw-54840 5.9 132 29 432 2.4 23 626 1.7 530 2.7 42 1.45 95
Ruellia peninsularis (Rose) Johnston Hunt .-35657 1.7 264 21 162 3.5 18 397 3.6 380 2.5 107 2.45 13
Ruspolia hypocrateriformis (Yahl) Milne-Redhead Tw-46550 3.2 188 45 301 5.0 11 743 3.2 :> 3.0 - 2.47 72 »-
Salpinxantha coccinea Hook. USw-593 7 1.7 146 34 217 2.2 13 419 2.3 - - 114 1.93 51 t""

en
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Table I. Continued.
C
~
IJl
tTl

I 2 3 4 S 6 1 8 9 10 II 12 13 :;e
Taxon CoUection v/g vmm vd vi vwt fd ft fwt mrh mrw urh fl v meso

Sanchezia decora Leonard & Smith MADw-38350 1.3 25 69 989 4.7 28 1417 3.9 2915 3.0 830 1.43 2730

S. nobilis Hook. f. cult. Hawaii 1.8 53 47 538 2.3 30 987 3.2 3700 4.2 493 1.83 477

S. rubriflora Leonard MADw-31383 2.5 26 69 602 3.8 38 1204 4.3 ::> 4.1 - 2.00 1598

S. stenomacia Leonard & Smith MADw-38352 2.4 32 57 863 4.1 26 1512 4.4 ::> 2.1 1287 1.75 1537

S. williamsii Leonard MADw-26799 1.6 24 86 901 4.7 37 1652 4.6 ::> 3.0 277 1.83 3229

Thunbergia alata Bojer cult. L4SCA 3.4 53 50 186 3.8 36 263 2.6 - - - 1.41 175

T. crispa Brukill Tw-45573 1.0 68 370 213 4.5 12 516 3.2 - - - 2.42 1159

T. erecta T. Anders . SJRw-37260 1.0 48 32 295 5.3 25 585 3.7 474 2.2 276 1.98 197

T. holstii Lindau cult. UCL4 1.0 80 47 131 6.1 20 442 2.6 - - 125 3.37 77

T. laurifolia Lind!. cult. L4SCA 2.6 23 81 224 2.2 27 480 2.8 - - - 2.14 789

Trichanthera gigantea HBK. MADw-ll17 1.2 12 169 822 5.4 54 1592 3.8 1084 3.4 459 1.94 11,576

Whitfieldia colorata C. B. Clarke SJRw-15093 2.6 112 26 846 2.8 25 1152 4.5 1992 3.6 34 1.36 196

Means 2.1 105 70 439 3.7 23 781 3.2 815 2.6 300 1.85 1243

Key to columns: I (v/g), mean number of vessels per group as seen in transection; 2 (vmm), mean number of vessels per mm' of transection; 3 (vd), mean

diameter of vessels at widest point (excluding wall thickness), /Lm; 4 (vi), mean vessel element length, /Lm; 5 (vwt), mean wall thickness of vessels, /Lm; 6 (fd),

mean diameter of Iibriform fibers at widest point, /Lm; 7 (fl), mean libriform fiber length , /Lm; 8 (fwt) , mean wall thickness oflibriform fibers, /Lm; 9 (mrh), mean

multiseriate ray height, /Lm; 10 (mrw), mean width of multi seriate rays at widest point, cells; II (urh), mean height ofuniseriate rays, /Lm; 12 (flv) , ratio, libriform

fiber length divided by vessel element length; 13 (meso), Mesomorphy ratio (vessel diameter times vessel element length divided by vessels per mm -, For further

explanations, see Materials and Methods.

N
o
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lulu, Hawaii); Bravaisia jloribunda (Colombia); B. integerrima (Estrella, Cano

Papayal, Bolivar, Colombia); Calycacanthus sp. (Urakukur I., Duke of York

Group); Diapedium assurgens (Florida Keys); Graptophyllum insularum (Matuku,

Fiji); Himantochilus marginatus (Tanzania); Justicia magnifica (Belize); Mendon

cia gigas (Esperanza, Amazonas, Brazil); M. microchlamys (Colombia); M. retusa

(Darien, Panama); M. sp. (Aguaytia, Loreto, Peru); Pachystachys lutea (To cache

Nuevo, San Martin, Peru); P. spicata (Caballo-cocha, Loreto, Peru); Pseuderan

themum laxiflorum (Maztasiri, Viti Levu, Fiji); Pseudoblepharis glischrocalyx

(Tanzania); Psilanthelejamaicensis (Jamaica); Ruspolia hypocrateriformis (Shaba,

West Africa); Razisea spicata (Darien, Panama); Sanchezia decora (Iparia, Loreto,

Peru); S. rubriflora (Rio Nanay, Iquitos, Peru); S. stenomacia (Tocache Nuevo,

San Martin, Peru); Thunbergia crispa (Shaba, West Africa); T. erecta (cult. Ka

mehameha School, Honolulu, Hawaii); Trichanthera gigantea (Rio Huallaga, Lor

eto, Peru); Whitfieldia colorata (Liberia). The sites of cultivation cited in Table

1 are: Hunt. (Huntington Botanical Gardens, San Marino, California); LASCA

(Los Angeles State and County Arboretum, Arcadia, California); Orpet Park (lo

cated in Santa Barbara, California); PTBG (Pacific Tropical Botanical Garden,

Lawai, Kauai, Hawaii); RSABG (Rancho Santa Ana Botanic Garden); UCLA

(Mathias Botanical Garden, University of California at Los Angeles).

ANATOMICAL FEATURES

Growth Rings

Only a minority of Acanthaceae possesses growth rings, and even these would

probably not be designated as ring-porous in the ordinary sense of that term. In

Anisacanthus thurberi (Fig. I), vessels are wider in earlywood or somewhat after

the initiation ofearlywood (the rather unusual Type 10 ofCarlquist 1988). In this

growth-ring type, onset of temperature suitable for growth and beginning of the

rainy season are not synchronous. This is observable in the habitat for this species,

southern Arizona, in which temperatures suitable for growth occur in early spring

months, but the majority of rain does not come until summertime.

Another distinctive type ofgrowth ring is demonstrated by Whitfieldia colorata

(Fig. 3), in which little change in vessel diameter occurs in growth rings, but in

which latewood has libriform fibers thicker walled than in the earlywood (Type

IE of Carlquist 1988) . Type 1E is also present in Bravaisia integerrima and

Graptophyllum insularum (Fig. 9).

Thunbergia holstii (Fig. 21) has the unusual Type 12 (Carlquist 1988) , in which

the wood is diffuse porous and only presence of a parenchyma band defines the

beginning ofa growth ring. A terminal parenchyma band is present in some growth

rings of Justicia californica, in which moderate fluctuation of vessel diameter

occurs and thus Type 1C (Carlquist 1988) is present.

Diffuse-porous wood with no appreciable evidence ofgrowth-ring activity char

acterizes the remainder of Acanthaceae studied here, as illustrated for Beloperone

crenata (Fig. 5), Sanchezia williamsii (Fig. 13), Trichanthera gigantea (Fig. 24),

Thunbergia laurifolia (Fig. 25), T. alata (Fig. 26), and Mendoncia gigas (Fig. 29).

Vessel Elements

Vessel grouping (Table I, column 1) is moderate in Acanthaceae compared to

that in certain other families (e.g., Asteraceae): it is reported here to exceed 2.5
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Fig. 1-4. Wood sections of Acanthaceae.-1-2. Anisacanthus thurberi, SJRw-2670J .-1. Tran

section, showing growth rings.-2. Tangential section; over half of cells shown are vasicentric tra

cheids. - 3-4. Whitfieldia colorata, SJRw- J5093 .- 3. Transection; note narrowness of vessels.-4.

Tangential section; multiseriate rays have predominantly erect ray cells. (Fig. 1-4, magnification scale

above Fig. 1 [finest divisions = 10 I'm).)
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Fig. 5-8. Wood sections of rayless Acanthaceae.- 5-7 . Justicia magnifica. SJRw- /4493. - 5. Tran

section; wood is diffuse porous or nearly so.-6. Tangential section; rays are absent.-7. Portion of

radial section, showing septa and pits in libriform fibers.-8. Diapedium assurgens, SJRw-5/436.

Transection, showing a broad ray area near pith (below) that has been converted to vessels and libriform

fibers (above) . (Fig. 5, 6, 8, magnificat ion scale above Fig. I; Fig. 7, scale above Fig. 7 [divisions =

10/lm].)
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vessels per group in Graptophyllum insularum (Fig. 9), Jacobinia ghiesbrechtiana,

Mendoncia sp., Razisea spicata, Thunbergia alata (Fig. 26), T. laurifolia (Fig. 25),

and Wh itfieldia colorata (Fig. 3). However, the resemblance in transectional view

of very narrow vessels and vasicentric tracheids to libriforrn fibers results in

undermeasurement of vessels per group in Anisacanthus thurberi (Fig. I) and

Justicia californica, which, therefore, should be added to this listing. Vessel group

ing occurs as short radial multiples or as pore clusters. Species with vessels pre

dominantly solitary (1.5 vessels per group or fewer) include Bravaisia floribunda,

B. integerrima, Sanchezia decora, Thunbergia erecta , T. holstii (Fig. 21), and

Trichanthera gigantea (Fig. 24). More than half of the family averages between

1.5 and 2.5 vessels per group, a moderate figure for a family in which the libriform

fiber is the type of tracheary element present (Carlquist 1984).

Vessel density and vessel diameter-figures that tend within limits to be recip

rocals of each other in a given group with notable exceptions (e.g., vines and

lianas)-are given for Acanthaceae in Table I (columns 2 and 3). Metcalfe and

Chalk (1950) have commented on the narrowness of vessels in most Acanthaceae.

The data ofTable I in general show that vessels are narrower in the mesic species

than one might expect on the basis of other dicotyledonous families (e.g., Whit

fieldia colorata, Fig. 3). Vessel diameter is probably less in Anisacanthus thurberi :

and Justicia californica than the figures in Table 1 indicate, because narrow vessels

grade into vasicentric tracheids in these species, and these cell types are so difficult

to distinguish from libriforrn fibers in transections that overestimating vessel

diamter and underestimating vessel density is almost inevitable. Vessel diameter

increases with age in stems of Asystasia zambiana, Thunbergia crispa, and T.

holstii. The low figures for vessel density in Acanthaceae can be appreciated by

comparison with xylem in species ofthe woody flora ofsouthern California, where

relatively high vessel density is to be expected on account of the predominant

dryness of this area. In the southern California flora, the mean number of vessels

per mm- is 257 (Carlquist and Hoekman 1985). Only three of the Acanthaceae

studied here have vessel density higher than that figure.

Vessel element length is relatively great in Acanthaceae. The mean vessel ele

ment length for the world woody flora is reported by Metcalfe and Chalk (1950)

to be 649 J,tm. To be sure, their sample is probably somewhat biased in favor of

trees of relatively moist habitats. The Acanthaceae studied here fall below that

figure except for a few species : Bravaisia floribunda, Sanchezia decora, S. steno

macia, S. williamisii, Trichanthera gigantea, and Whitfteldia colorata (Table 1,

column 4).

Figures for vessel wall thickness are given in Table 1 (column 5). Relatively

thick vessel walls characterize the genera Bravaisia, Mendoncia (Fig. 29) and

Ruspolia, as well as some species of Thunbergia (Fig. 22) and Sanchezia.

Simple perforation plates characterize all Acanthaceae, although in a few end

walls there are two perforations, a distinctly larger perforation accompanied by a

smaller one (Fig. 15). However, an interesting feature is characteristic of many

of the acanthaceous woods studied: perforation plates appreciably narrower than

the vessel elements in which they are located. This is shown for Sanchezia wil

liamsii (Fig. 15) and, less markedly, Graptophyllum insularum (Fig. 11). This

tendency was observed characteristically in the genera Bravaisia, Pseuderanthe

mum, and Sanchezia.
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Fig. 9-12. Wood sections of Graptophyllum insularum, SJRw-2454/ .-9. Transection; growth

rings demarcated by thick-walled libriform fibers.-IO. Tangential section; multiseriate and un iseriate

rays are about equally abundant.-II. Portion of radial section; perforation plates are appreciably

narrower than vessel elements.-12. 'SEM photograph of radial section, showing small rhomboidal

crystals in ray cells. (Fig. 9,10, magn ification scale above Fig. I; Fig. II , scale above Fig. 7; Fig. 12,

scale on photograph = 10 um.)
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Fig. 13-16. Wood sections of Sanchezia.- 13, IS, 16. S. williamsii, MADw-2677.-13. Transec

tion; wood is diffuse porous.-I4. S. decora, MADw-38350. Tangential section ; rays are tall, erect

cells are predominant. - 15. Radial section (vertical axis oriented left to right), showing narrow per

foration plate; axial parenchyma cell below.-I6. Radial section, showing pitting in axial parenchyma

cells. (Fig. 13, 14, scale above Fig. 1; Fig. 15, 16, scale above Fig. 7.)
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Fig. 17-20. Wood sections ofAcanthaceae.-17. Sanchezia williamsii, MADw-2677. Transection,

showing simple pits in ray cells.-18. Sanchezia decora, MADw-38350. Tangential section ; cystoliths

in ray cells.-19. Bravaisia integerrima , MADw-7158. Tangential section; cystoliths in ray cells.-20.

Bravaisia floribunda, MADw-7154. Radial section; cystoliths in ray cells. (Fig. 17-20, magnification

scale above Fig. 7.)
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Fig. 21-24. Wood sections of Acanthaceae.-21-23. Thunbergia holstii, cult. UCLA .-21. Tran

section; parenchyma band in center.-22. Transection portion near cambium, showing patch of small

vessels extending into phloem, above.-23 . Tangential section; vessel has grooves interconnecting pit

apertures; septate fibers present.-24. Trichanthera gigantea. MADw-1117. Transection; note wide

vessel diameter. (Fig. 21, 24, magnification scale above Fig. I; Fig. 22, scale above Fig. 22 [divisions =

10 I'm); Fig. 23, scale above Fig. 7.)
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Lateral wall pitting of vessel-vessel or vessel-libriform fiber pits in the family

consists ofalternate pits, oval to circular in shape. Size of intervascular pits within

the family is as follows (approximate mean given, from which deviation by 1 ~m

is common): 3 ~m : Aphelandra tetragona, Calycacanthus sp., Graptophyllum in
sularum (Fig. 11), Justicia magnifica, Megaskepasma erythrochlamys, Pachysta

chys lutea, Pseuderanthemum laxiflorum, Psilanthele jamaicensis, Ruspolia hy

pocrateriformis; 4 ~m: Aphelandra pulcherrima, A. scabra, Barleria cristata,

Diapedium assurgens, Jacobinia carnea, J. ghiesbrechtiana, Justicia californica,
Ruellia peninsularis, Salpinxantha coccinea, Thunbergia holstii (Fig. 23), Whit

fteldia colorata; 5 ~m: Bravaisia floribunda, B. integerrima, Himantochilus mar
ginatus, Ra zisea spicata, Sanchezia nobilis, Thunbergia alata (Fig. 28) T. crispa,

T. erecta; 6 um: Acanthus ebracteatus, Sanchezia stenomacia, Mendoncia gigas,
M. microchlamys, M. retusa (Fig. 31), M. sp.; 7 ~m: Sanchezia decora, S. rubriflora,

Thunbergia laurifolia, Trichanthera gigantea.

Pits that are notably elongate radially characterize at least some intervascular

pitting of Bravaisia floribunda, Sanchezia rubriflora, S. stenomacia, S. williamsii

(Fig. 15-16), Thunbergia alata (Fig. 28) and Trichanthera gigantea. Intervascular

pits in Acanthaceae are only infrequently circular in outline, and mostly vary

between oval and elliptical in shape. Pit apertures are elliptical to slitlike, more

often the latter (Fig. 15, 28), in the majority of the family.

Vessel-axial parenchyma and vessel-ray pitting is like intervascular pitting, but

variously more radially elongate. This tendency is shown in a pronounced form

in Mendoncia retusa (Fig. 31) , Sanchezia williamsii (Fig. 15, 16), and characterizes

the genera Bravaisia, Mendoncia, Sanchezia, and Trichanthera .

Helical sculpture has not hitherto been reported in vessels of woods of Acan

thaceae. Grooves interconnecting pit apertures were observed in Aphelandra sea

bra, Asystasia zambiana, Barleria cristata, Bravaisia integerrima , Graptophyllum

insularum (Fig. 11), Jacobinia ghiesbrechtiana, Justicia californica, Pachystachys

spicata, Razisea spicata, Ruellia peninsularis, Thunbergia alata, T. holstii (Fig.

23), and Trichanthera gigantea. Inconspicuous helical thickenings (a band on

either side of a groove) were found in Bravaisia integerrima, Razisea spicata, and

Trichanthera gigantea.

Small and numerous thin-walled tyloses were observed in vessels in Asystasia

zambiana, Pachystachys lutea, P. spicata, and Ruellia peninsularis.

Imperforate Tracheary Elements

The imperforate tracheary elements of Acanthaceae (with the exception of the

vasicentric tracheids noted below) must all be termed libriform fibers in accor

dance with the lAWA Committee on Nomenclature (1964), because no borders

were observed on pits. This observation is in accord with the findings ofSolereder

(1908) and Metcalfe and Chalk (1950). Pits in libriform fibers are shown here in

a transection ofwood ofSanchezia williamsii (Fig. 17), in which pits are relatively

abundant. Pits are more abundant on radial walls than on tangential walls of

libriform fibers in Acanthaceae. Libriform fibers are characteristically septate in

the family (e.g., Justicia magnifica, Fig. 7), and septate fibers were observed in

all collections studied except for Diapedium assurgens, Ruellia peninsularis, Thun

bergia alata, T. crispa, T. erecta, and T. holstii. Metcalfe and Chalk (1950) reported
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Fig. 25-28. Wood sections of Thunbergia.-25. T. laurifolia, cult. LASCA. Transection; note

gelatinous fibers in phloem, above.-26-28. T. alata, cult. LASCA.-26. Transection; as in section of

T. laurifolia, gray areas = interxylary phloem.-27. Transection portion showing large diameter of

sieve tubes, slightly darker, surrounded by parenchyma (gray). -28. Tangential section portion to show

vessel (above), with narrow pit apertures. (Fig. 25, 26, magnification scale above Fig. I; Fig. 27, scale

above Fig. 22; Fig. 28, scale above Fig. 7.)
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Fig. 29-32. Wood sections of scand ent Acanthaceae.-29-30. Mendoncia gigas, SJRw-44438.

29. Transection of secondary xylem, extra xylary phloem with gelatinous fibers above; in terxylary

phloem strands are present within xylem.- 30. Tangential section ; rays are predominantly uniseriate.

31. Mendoncia retusa, SJRw-54858. Vessel wall from tangential section; vessel-axial parenchyma

pitting shown except for small patch of intervascular pitting below center.-32. Thunbergia alata, cult.

LASCA. Transection of secondary xylem showing acicular crystals in parenchyma of interxylary

phloem strand. (Fig. 29, 30, magnification scale above Fig. I ; Fig. 31, 32, scale abo ve Fig. 7.)
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nonseptate fibers in Aphelandra, Pachystachys, and Pseudoblepharis. In those

species with septate fibers, the proportion of libriform fibers in which septa may

be seen ranges from a small proportion to virtually all. Several septa per fiber

(often three) are characteristic of septate fibers.

Libriform fiber length (Table I, column 6) does not parallel vessel diameter.

Exceptionally narrow fibers (less than IS ~m at widest point) were recorded for

Anisacanthus thurberi (Fig. I) and Diapedium assurgens (Fig. 8). The libriform

fibers of the four collections of M endoncia are notably wide, as in M. gigas (Fig.

29). Fibers nearly as wide characterize Sanchezia rubriflora, Thunbergia alata

(Fig. 26, 27), and Trichanthera gigantea (Fig. 24).

Libriform fiber length (Table I, column 7) parallels length of vessel elements,

as in other groups of dicotyledons. The ratio between length of libriform fibers

and vessel elements (Table I, column 12)gives a characteristic figure for particular

families. The figure for Acanthaceae, 1.85, lies midway between the figure for

Gesneriaceae, 1.33 (Carlquist and Hoekman 1986a) and that for Myoporaceae,

2.49 (Carlquist and Hoekman 1986b).

Libriform fiber wall thickness (Table I, column 8) is moderate in the family.

Relatively thick-walled fibers were observed only in Aphelandra, Bravaisia, Me

gaskepasma, Sanchezia (Fig. 17), and Whitfieldia.

Vasicentric tracheids are abundant in Anisacanthus thurberi, and represent the

majority of the cells shown in Figures I and 2, although the magnifications shown

in those photographs do not provide details that document this. A few vasicentric

tracheids mixed with narrow vessels were observed in all four collections of

Mendoncia and in Ruspolia hypocrateriformis and Thunbergia alata. Vasicentric

tracheids were previously reported for the family in Justicia calijornica (Carlquist

1985a). The "tracheids" reported by Solereder (1908) for Thunbergia are doubtless

what would now be termed vasicentric tracheids.

Axial Parenchyma

Metcalfe and Chalk (1950) have characterized the axial parenchyma of Acan

thaceae as vasicentric scanty, and the present study confirms this. Axial paren

chyma forms a complete or partial sheath one cell thick around vessels or vessel

groups in all collections studied; such parenchyma is illustrated for Sanchezia

williamsii (Fig. 13). Vasicentricparenchyma was observed to be very scarce in

Barleria cristata, Diapedium assurgens, and Pseudoblepharis glischrocalyx.

Record and Hess (1943) report terminal and diffuse parenchyma in Anisacan

thus. Our material of A. thurberi reveals that in the growth rings, parenchyma is

probably initial rather than terminal. In this species, the vessels are narrow at

first in growth rings, with wider vessels appearing somewhat later in the earlywood;

latewood may be defined by the libriform fibers of narrowest radial diameter.

Similar short bands of thin-walled parenchyma were observed in Justicia cali

jornica. The report by Record and Hess of diffuse parenchyma in Anisacanthus

is very likely a result of the fact that so many narrow vessels and vasicentric

tracheids, cell types that resemble libriform fibers in transection, occur in Ani

sacanthus. Parenchyma scattered among narrow vessels and vasicentric tracheids

should be called vasicentric parenchyma in accord with current usage.

The wood of Thunbergia holstii (Fig. 21, center) possesses parenchyma in a
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band that may be at the end ofa growth ring , but no fluctuation in vessel diameter

can be used to define such a ring. This parenchyma is thin walled and nonseptate,

and may represent a kind of fiber dimorphism (Carlquist 1958, 1980 , 1988). In

other species of Acanthaceae, axial parenchyma is generally in strands of two to

five (often three) cells.

M endoncia and two species of Thunbergia, T. alata and T. laurifolia, have large

pockets of thin-walled apotracheal axial parenchyma (Fig. 25-27, 29), but these

contain interxylary phloem and are considered below under that heading. In T.

crispa , the earlier-formed secondary xylem begins without apotracheal paren

chyma, but later-formed wood contains strands of apotracheal parenchyma like

those of T. alata and T. laurifolia but somewhat smaller and with no phloem.

Vascular Rays

Acanthaceae show a wide range of expressions in presence of uniseriate or

multiseriate rays. Multiseriate rays much more common than uniseriate rays were

observed in Anisacanthus thurberi (Fig. 2), Razisea spicata, Sanchezia nobilis, S.

rubriflora, and S. williamsii. Multiseriate rays somewhat more common than

uniseriate rays were seen in Acanthus ebracteatus, Aphelandra tetragona, Bravaisia

jloribunda, B. integerrima, Justicia californica, Sanchezia decora, Trichanthera

gigantea, and Whitfieldia colorata (Fig. 4).

Multiseriate rays about as numerous as uniseriate rays occur in Aphelandra

pulcherrima, A. scabra , Calycacanthus sp., Graptophyllurn insularum (Fig. 10),

Himantochilus marginatus, Megaskepasma erythrochlamys, Mendoncia retusa,

Pachystachys lutea, P. spicata, Pseuderanthemum laxiflorum, Pseudoblepharis

glischrocalyx, Ruellia peninsularis, Sanchezia stenomacia, and Thunbergia erecta.

Multiseriate rays fewer than uniseriate rays characterize Barleria cristata, Men

doncia gigas (Fig. 30), M . erythrochlamys, and M . sp.

Various degrees of raylessness characterize some Acanthaceae. Species with few

rays (and those all uniseriate) include Jacobinia ghiesbrechtiana, Salpinxantha

coccinea, and Thunbergia holstii. The ontogenetic development of a rayless con

dition can be seen in Diapedium assurgens (Fig. 8). Woods observed to be entirely

rayless include Jacobinia carnea, Justicia magnifica (Fig. 5, 6), and Thunbergia

laurifolia (Fig. 25).

In species of Acanthaceae in which rays are present, a large proportion have

abundant erect cells in the multiseriate portions of multiseriate rays. Erect cells

only were observed in Thunbergia erecta and T. holstii. Erect cells almost exclu

sively, with a few square cells, characterize multiseriate portions of multiseriate

rays in Acanthus ebracteatus, Anisacanthus thurberi (Fig. 2), Asystasia zambiana,

Barleria cristata, Calycacanthus sp., Graptophyllum insularum (Fig. 10), Justicia

californica, Megaskepasma erythrochlamys, Pachystachys lutea, P. spicata, Ra

zisea spicata, Ruellia peninsularis, Sanchezia nobilis, S. rubriflora, S. stenomacia,

S. williamsii, and Whitfieldia colorata (Fig. 4). A few procumbent cells and square

cells , but otherwise erect cells, occur in multiseriate portions of multiseriate rays

in Aphelandra pulcherrima, A. tetragona, and Sanchezia decora (Fig. 14). Pre

dominance of square or nearly square cells in multiseriate portions of multiseriate

rays , was observed in Aphelandra scabra, Mendoncia gigas (Fig. 30), M . microch

lamys, M. retusa, M. sp., Pseuderanthemum laxiflorum, Pseudoblepharis glis

chrocalyx, and Ruspolia hypocrateriformis. In only a few species of Acanthaceae
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are procumbent cells abundant (along with some erect cells) in multiseriate por

tions of multiseriate rays: Bravaisia floribunda, B. integerrima, Himantochilus

marginatus, Psilanthele jamaicensis, and Trichanthera gigantea. Erect cells char

acterize uniseriate rays and uniseriate portions of multiseriate rays except in the

species listed above in which procumbent cells are common in multiseriate por

tions of multiseriate rays; in these latter species, square or procumbent cells are

occasional but the majority of cells are erect in uniseriate rays and uniseriate

portions of multiseriate rays. Thus, upright cells bulk very large in rays of all but

a few Acanthaceae. The species with wider rays (Table I, column 10) tend to have

a higher proportion of procumbent cells in multiseriate portions of multiseriate

rays: Anisacanthus thurberi, Aphelandra deppeana , Bravaisia floribunda, B. in

tegerrima, and Trichanthera gigantea could be cited in support of this trend. Rays

are characteristically narrow in Acanthaceae: the mean width of multiseriate rays

at their widest point is only 2.6 cells for the family at large (Table I, column 12),

and in only seven species does the figure exceed 3.0 cells.

Ray cell walls are only moderately thick in the family (Fig. 2, 4,10,14,19,20,

24, 30), but all ray cells were lignified except in Thunbergia alata, in which rays

are very few. Pits interconnecting ray cells were simple in all species studied with

the exception of a few pits of ray cells in Aphelandra pulcherrima.

Ray heights are shown in Table I, columns 10 and II. In general, ray heights

parallel length of vessel elements or libriform fibers. The genera Sanchezia and

Trichanthera have long vessel elements and also exceptionally tall multiseriate

rays.

Cystoliths

Cystoliths have been reported for various Acanthaceae by Solereder (1908),

who has even provided (p. 616-617) a key to the various types of cystoliths in

the family. However, the organographic distribution of cystoliths in the family is

not given by Solereder (1908) nor by Metcalfe and Chalk (1950), and no account

to date has indicated in which genera in the family cystoliths occur in wood.

In the present study, cystoliths were observed in some ray cells of Bravaisia

floribunda (Fig. 20), B. integerrima (Fig. 19), Sanchezia decora (Fig. 18), S. nobilis,

S. rubriflora, S. williamsii, and Trichanthera gigantea. All ofthese cystoliths could

be referred to the same basic type: they are oval to elongate structures that tend

to conform in their shape to the shape of the cells in which they are contained.

Hyaline outer layers or tips (Fig. 18) can be seen on some, while others exhibit a

knobby appearance (Fig. 19, center). Cystolith lamellae that stain brightly with

fast green, and which therefore probably represents nonlignified cellulosic layers,

can be seen in all cystoliths observed in Acanthaceae. These layers are illustrated
in Fig. 20.

Crystals

Calcium oxalate crystals have not hitherto been reported in Acanthaceae. In

the present study such crystals were uncovered only in three species. In Grapto

phyllum insularum (Fig. 12), crystals are small, rhomboidal, and numerous per

ray or axial parenchyma cell. Although crystals are rather uniformly small in G.

insularum, there are a few larger rhomboidal crystals in ray or axial parenchyma
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cells of this species. Small and relatively short acicular crystals were numerous

in ray cells ofAphelandra tetragona. Acicular crystals of this nature were observed

in ray cells and apotracheal parenchyma of Thunbergia crispa, and in axial paren

chyma associated with interxylary phloem in T. alata (Fig. 28, bottom; Fig. 32)

and T. laurifolia as well as all four collections of Mendoncia.

Amorphous Deposits

Irregularly shaped accumulations of tanninlike materials were observed in ray

cells of Aphelandra pulcherrima, A. tetragona, Pseudoblepharis glischrocalyx,

Ruellia peninsularis, and Salpinxantha coccinea. Such deposits are to be expected

in other species of the family, because in various dicotyledonous woods, amor

phous deposits seem to occur without reference to taxonomic groupings.

Interxylary Phloem and Other Cambial Variants

Although "fissured xylem" has been reported for Mendoncia and Thunbergia

(Metcalfe and Chalk 1950), interxylary phloem has been reported in Acanthaceae

only for Thunbergia (Mullenders 1947). Interxylary phloem is present in Thun

bergia alata (Fig. 26, 27), T. laurifolia (Fig. 25), Mendoncia gigas (Fig. 29), M .

microchlamys, M . retusa, and M . sp. In Thunbergia alata and T. laurifolia, the

phloem strands are sheathed in parenchyma cells that have a smaller diameter

than the sieve tube elements and thus are easily distinguished from them. The

remaining xylem areas consist of vessels , libriform fibers, and vasicentric tra

cheids, cell types that have thick, lignified walls, and thus are quite distinct from

the parenchyma-sheathed interxylary phloem zones (Fig. 25-27).

The interxylary phloem of Thunbergia alata and T. laurifolia lacks fibers, al

though large scattered gelatinous fibers do characterize the extraxylary phloem of

these species (Fig. 25, top) . In Mendoncia gigas and other species of Mendoncia,

gelatinous fibers identical to those of Thunbergia occur not only in extraxylary

phloem (Fig. 29, top and left) but also in some of the interxylary phloem strands.

In Thunbergia holstii , a small cambial anomaly was noted; although the xylem

cylinder was otherwise normal, a patch of vessels embedded in parenchyma (Fig.

22, top) outside of the xylem cylinder was observed. The cambium presumably

is external to the patch of vessels at this point. The apotracheal parenchyma

strands in later-formed wood of Thunbergia crispa represent a conditional tran

sition between the absence of such parenchyma bands (T. erecta) and the strands

of parenchyma that contain interxylary phloem in T. alata and T. laurifolia.

SYSTEMATIC CONCLUSIONS

The features that characterize Acanthaceae include: vessels with simple per

foration plates and lateral-wall pitting of medium-sized alternate bordered pits ;

imperforate tracheary elements with simple pits and therefore libriform fibers

(vasicentric tracheids also present in a few genera); libriform fibers septate in most

genera; axial parenchyma vasicentric scanty (also initial or terminal in a few

genera); rays both multiseriate and uniseriate, the former mostly biseriate (some

species rayless or nearly rayless); multiseriate portions of multiseriate rays with

procumbent cells in a few genera, rays otherwise paedomorphic (see Carlquist
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1962, 1980, 1988) by virtue of predominance of erect cells; cystoliths present in

ray cells in a few genera; small rhomboidal or acicular crystals present in axial

and ray parenchyma of a few genera; wood nonstoried.

All of the features listed in the above paragraph are matched by those in wood

of Gesneriaceae, except for cystolith presence (Carlquist and Hoekman 1986a).

The presence of septate libriform fibers in both Gesneriaceae and Acanthaceae

provides a striking similarity, and the two families are also alike in presence of

paedomorphosis and raylessness in a number of genera. Raylessness could be

claimed to form an instance of parallel evolution in the two families, indicative

of a similar range of herbaceousness in both families. The entire family Planta

ginaceae is rayless or nearly so (Carlquist 1970), but is probably not as close to

either Gesneriaceae or Acanthaceae as it is to Scrophulariaceae, a family which

also has some rayless species in genera such as Hebe. One genus of Gesneriaceae,

Coronanthera, has fiber-tracheids (Carlquist and Hoekman 1986a), but the re

maining genera have libriform fibers. Fiber-tracheids characterize some Scroph

ulariaceae, although many have septate libriform fibers and a few (e.g., Hebe)

have tracheids (Metcalfe and Chalk 1950). In Pedaliaceae and Martyniaceae,

libriform fibers are present; they are septate in Sesamothamnus of the Pedaliaceae

(Carlquist 1987).

Bignoniaceae have aliform-confluent axial parenchyma, and thus represent a

slightly greater departure from Acanthaceae than the above families; imperforate

tracheary elements in Bignoniaceae are fiber-tracheids or libriform fibers, the latter

septate in vining genera (Metcalfe and Chalk 1950). Myoporaceae share vasicentric

scanty parenchyma with Acanthaceae, but Myoporaceae differ in having fiber

tracheids rather than libriform fibers and a predominance of procumbent rather

than erect cells in rays (Carlquist and Hoekman 1986b). Occasional bands of

parenchyma, probably the result of fiber dimorphism, such as those observed in

Thunbergia holstii, may be found in some Myoporaceae (Carlquist and Hoekman

1986b), Scrophulariaceae (Michener 1986) and Pedaliaceae (Carlquist 1987), but

these may not be indicative of relationship because they appear to have originated

independently in a number of dicotyledon families. Storying is present in some

Scrophulariaceae (Michener 1983, 1986), Drymonia of the Gesneriaceae (Carl

quist and Hoekman 1986a), some Myoporaceae (Carlquist and Hoekman 1986b),

and many Bignoniaceae (Metcalfe and Chalk 1950). The lack of storying in Acan

thaceae may be significant because the number of collections of Acanthaceae

surveyed was large in comparison to collections studied in the other families.

Presence of inconspicuous forms ofhelical sculpture in a scattering ofAcanthaceae

should probably be interpreted more as an ecological adaptation to dry conditions

(Carlquist 1966) than as an indicator of systematic relationship.

Although the families of Scrophulariales (Bignoniales of some authors) do de

viate from one another with respect to wood anatomy, the order is remarkably

uniform with respect to wood features compared with other dicotyledonous orders

in which wood heterogeneity is much greater. This may aid in defining Scrophu

lariales and in determining the degree of relationship among the component

families.

The present study offers significant evidence about the status of families some

times segregated from Acanthaceae. Bremekamp (1953) and Cronquist (1981),

who recognize Mendonciaceae as a monogeneric family, cite absence of cystoliths
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and a specialized seed dispersal mechanism as reasons for segregating Mendoncia.

However, cystoliths are not present in all Acanthaceae (Metcalfe and Chalk 1950).

In addition, three highly distinctive wood features link Mendoncia with the scan

dent Thunbergia species (T. alata, T. laurifoliay: presence of large, scattered ge

latinous fibers in extraxylary phloem; presence ofinterxylary phloem; and presence

of acicular crystals in the parenchyma associated with interxylary phloem. With

such a constellation of unusual features linking the two genera, segregation of

Mendoncia from Acanthaceae seems inadvisable unless Thunbergia is also ex

cluded from Acanthaceae. Thunbergia has been segregated from Acanthaceae by

some workers (e.g., Dahlgren 1980). However, wood oftwo species of Thunbergia,

T. erecta and T. holstii, does not share the features cited for Mendoncia but is,

instead, compatible with the wood of remaining Acanthaceae. Thus, segregation

of Thunbergia from Acanthaceae is not supported here.

Specific and generic characters probably exist in Acanthaceae (e.g., cystolith

presence or absence), but the sampling of the family in the present study is

insufficient to establish such features with any degree of validity. Study of wood

anatomy in genera with diversity among species (e.g., Justiciai in habit and ecology

is likely to reveal some wood features that correspond with species limits.

ECOLOGICAL CONCLUSIONS

Although the majority of Acanthaceae occur in moist tropical habitats, some

range into dry tropical and even desert (Anisacanthus, Justiciat localities, although

the two genera named occur in desert washes , where moisture availability is very

likely greater than on desert flats. In viewing woods of Acanthaceae, therefore,

one is likely to find mesomorphic adaptations.

The vessels of Acanthaceae from the wet tropics are much narrower than one

would expect on the basis of observations on wood of tropical trees. Mean vessel

diameter for the world flora (admittedly a sample that favors tree species) is 94

J.Lm (Metcalfe and Chalk 1950, p. 1360), whereas the mean vessel diameter for

Acanthaceae is 70 J.Lm (Table I, column 3). Moreover, the presence in several

genera (e.g., Bravaisia, Sanchezia) ofperforation plates appreciably narrower than

the vessels in which they occur, suggests a suboptimal conformation of vessels

where flow of volume per unit time is concerned. If one views the characteristic

habitats ofgenera such as Sanchezia, the nature of quantitative vessel features in

the family becomes evident. Tropical Acanthaceae are typically understory plants.

Plants in this habitat would transpire lower volumes per unit time than plants

with canopy status, so a conductive system adapted to moderate transpiration is

not surprising.

The genus Jacobinia occupies understory habitats where seasonal drought occurs

(see Introduction), and thus the canelike shoots of limited duration in that genus

are understandable when one compares Jacobinia to genera with single trunks,

such as Sanchezia. We may take the Mesomorphy ratio value of about 50, well

below the family mean of 1361 (Table I, column 13), as the threshhold below

which woody dicotyledons are xeromorphic (Carlquist and Hoekman 1985). Ja

cobinia falls close to that threshhold, as does Justicia. Notably low Mesomorphy

values are represented by Anisacanthus thurberi (30), Diapedium assurgens (19) ,

and Ruellia peninsularis (13). Desert shrubs of southern California have a Me

somorphy value (20.9) in about the same range (Carlquist and Hoekman 1985),
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and correlated with the habitats of these three species (see Introduction). The

specimen of Ruellia peninsularis was obtained from a cultivated plant receiving

regular watering, demonstrating that xeromorphic wood features may be heritable

with less phenotypic modification than a scattering of comments in the literature

on wood anatomy might lead one to expect.

The range of Mesomorphy-ratio values in Acanthaceae is relatively great, and

the figures obtained do appear to be reliable indicators of ecology. However, a

species with a value of 10,000 probably should not be considered ten times as

mesomorphic as one with a value of 1000: values in this range may indicate

differences in ability to conduct volumes per unit time, but values at the low end

of the Mesomorphy scale are probably more significant with respect to order of

magnitude of numerical values, because they indicate conductive safety (ability

to maintain water columns intact through a dry season).

Vessel element length, one of the dimensions on which the Mesomorphy ratio

is based, very clearly correlates with ecology in Acanthaceae. If one notes which

species in Table I have a vessel element length greater than the world flora mean,

649 ~m (Metcalfe and Chalk 1950), one finds that they are all broadleaved shrubs

of moist tropical forest understory habitats. Degree of vessel grouping is held to

be proportional to xeromorphy in woody dicotyledons that have libriform fibers

or fiber-tracheids (Carlquist 1984). With respect to this criterion, species of Acan

thaceae appear mostly mesomorphic (Table 1, column 1). In this connection, one

should note that the vessel per group figures for Anisacanthus thurberi and Justicia

californica are not accurate because narrow vessels and vasicentric tracheids are

difficult to distinguish from Iibriform fibers, and if the former cell types could

have been counted accurately, a much higher vessel per group figure would have

been obtained for those species.

In addition to features involving vessel dimensions, one should note that pres

ence of vasicentric tracheids in Anisacanthus thurberi and Justicia califarnica is

of great importance as a probable mechanism for survival of drought, as noted

earlier (Carlquist 1985a). Growth-ring presence and presence of helical sculpture

in vessels, although both of these are present in relatively moderate forms in the

Acanthaceae that possess them, seem to correlate with relative dryness of habitat.

One must remember that features of the vegetative apparatus other than wood

may be of overriding importance to survival. For example, if Jacobinia stems

are moderately succulent, leaves tend to be drought-deciduous, and shoots are of

short duration and can die back to the woody caudex without causing any loss in

ability to produce flowers the following year.

CONCLUSIONS RELATIVE TO HABIT

Paedomorphosis in dicotyledon wood (Carlquist 1962 , 1980, 1988) is indicated

by a series ofstructural features characteristic ofwood ofherbs and herblike plants

(particularly their metaxylem and early secondary xylem) that are protracted

indefinitely into the secondary xylem . One of these tendencies is predominance

of erect cells in rays , especially in the multiseriate part of multiseriate rays , in

which procumbent cells are normally abundant in wood of typically woody di

cotyledons. This tendency is remarkably common in Acanthaceae; erect ray cells

predominate in multiseriate rays ofall but the woodiest of the Acanthaceae studied

here.
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Raylessness is a form of paedomorphosis in which ray cells are not only so

erect that they resemble imperforate tracheary elements in length, they also are

like libriform fibers rather than ray cells in morphology (cells are fusiform rather

than blunt). Raylessness has been considered as an indicator of secondary wood

iness (Carlquist 1970) or an increase in strength involving relatively slender but

tall stems in herbs or herblike plants, as in certain species of Phacelia (Carlquist

and Eckhart 1984). The slender stems of Plantago princeps Cham. (Carlquist

1970) and ofJacobinia, both good examples of raylessness , may be representative

of both tendencies.

The genera Mendoncia and Thunbergia show adaptation in wood structure to

the vining habit. In the genus Thunbergia, T. alata, T. crispa, and T. laurifolia

show the most pronounced expressions of these modifications; T. erecta and T.

holstii are more nearly shrubs than vines in habit and in wood anatomy. Thun

bergia alata, T. laurifolia, and the various species of Mendoncia have vasicentric

tracheids in addition to very narrow vessels. Thus, they illustrate the dimorphism

in vessel diameter that is characteristic ofscandent woody dicotyledons (Carlquist

1981), and they also exemplify the tendency for vines and Hanas with libriform

fibers (or fiber-tracheids) to have vasicentric tracheids (Carlquist 1985b). Acan

thaceae should be added to the list of families with vasicentric tracheids given in

Carlquist (1985b) . Vasicentric tracheids are theorized to offer a form of safety in

vines and lianas, because they could be more resistant to embolism spread than

vessels, and thereby could continue to conduct if the wide vessels were temporarily

disabled.

A sheath of starch-rich parenchyma around vessels in vines and Iianas is also

theorized to be a potential conductive safety mechanism (Carlquist 1985b), be

cause hydrolysis ofstarch into sugar, followed by transfer ofsugar into the vessels ,

could increase volume ofwater within the vessels by osmotic pressure. Thunbergia

alata, T. laurifolia, and the four collections of Mendoncia studied here all show

vasicentric parenchyma unusually abundant for the family (sheaths around vessels

usually two cells thick). Dobbins and Fisher (1986) support the idea that presence

of parenchyma may help regeneration of conductive tissue following wounding,

as might happen when a liana falls from its host tree. While their studies do show

callus formation and cambial renewal after artificial wounding, they do not show

that this process helps in survival ofdamaged lianas in the wild. One might expect

that evolutionary mechanisms that prevent damage to the conductive system

would have greater selective value than those that repair damage; disruption to

conductive tissue of a liana could be fatal.

The role ofparenchyma in providing flexibility and thereby potentially reducing

damage to liana stems has been stressed by various authors (see Carlquist 1985b).

The parenchyma sheaths around phloem in Thunbergia alata and T. laurifolia

are quite prominent and suggest a function in protecting the integrity of the

interxylary phloem. This function might be in those species related to the abundant

acicular crystals in those cells, potentially an herbivore deterrence mechanism

rather than a flexibility mechanism. Another possible function of parenchyma

abundance in stems oflianas and vines is providing sites for fissuring of the xylem

into separate units. Fissuring of the xylem in Mendoncia has been mentioned by

Metcalfe and Chalk (1950) and by Obaton (1960). When fissuring is active, in

terxylary phloem provides a mechanism for close phloem association with the

fragmented xylem strands.
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Wide vessel diameter has long been noted as a characteristic of scandent di

cotyledons (for a review, see Carlquist 1985b). Vessels in Thunbergia alata , T.

laurifolia, and the four collections ofMendoncia do not appear exceptionally wide

according to the data of Table I, column 3. However, the presence of numerous

narrow vessels in those species undoubtedly masks, in averaging vessel diameters,

the existence of exceptionally wide vessels revealed in preparations such as those

illustrated in Figure 25, 26, and 29. The presence of numerous narrow vessels in

a lianoid species, as in Asystasia zambiana, may have a function in improving

conductive safety much like the safety conferred by vasicentric tracheids, for very

narrow vessels may resist embolisms nearly to the degree that vasicentric tracheids

do so (see Carlquist 1988).

The exceptionally thick walls of vessels in Thunbergia crispa and T. holstii are

unusual in Acanthaceae. Walls of this nature might represent a mechanism for

maintaining the integrity of water columns in vessels . This possibility should be

investigated, and additional instances of notably thick walls in lianas should be

reported. As a generalization one may say that wider vessels in dicotyledons have

thicker walls. The degree to which th is is true deserves study; if wider vessels do

tend to be notably thick walled , the function of this thickness may be in main

taining integrity of the water column, because mechanical strength of the stem

itself could be achieved much more readily by a moderate increase in thickness

of libriform fibers. Thicker vessel walls might also characterize species in which

imperforate tracheary elements also tend to be thicker walled, so that an increase

in wall thickness of one type of cell tends to be applied, for genetic reasons, to

other cell types as well.

The rayless or nearly rayless wood of Thunbergia alata and T. laurifolia and

the relatively ray-poor wood of T. crispa may seem curious in view of the prom

inence of wide rays in scandent families such as Aristolochiaceae and Vitaceae.

However, raylessness has been reported in another woody vine, Cobaea (Carlquist,

Eckhart and Michener 1984). The abundant parenchyma of Cobaea and the two

Thunbergia species may serve not only the functions of axial parenchyma in

scandent woody plants cited above, it may also substitute very effectively for rays

in these species, in which stem diameter may not exceed about 1 em. Asystasia

zambiana is a lianoid species that does correspond to the Aristolochia pattern,

for it has notably wide primary rays altered little during secondary growth.

The possible function of rayless ness as a way of conferring mechanical strength

to stems of short duration has been mentioned above. Thick-walled libriform

fibers appear related to habit in Acanthaceae, because they are most prominent

in genera that are large shrubs or even small trees (Sanchezia, Trichanthera). The

ratio between imperforate tracheary element length and vessel element length is

of potential interest with relation to habit. The ratio has a comparatively low

value in Gesneriaceae, an intermediate value in Acanthaceae, and a high value

in Myoporaceae. This may accord with the fact that woody Gesneriaceae are

relatively small shrubs, woody Acanthaceae are medium-sized to large shrubs,

and Myoporaceae are medium-sized shrubs to trees.
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