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WOOD, BARK, AND PITH ANATOMY OF OLD WORLD SPECIES OF 
EPHEDRA AND SUMMARY FOR THE GENUS 

SHERWIN CARLQUIST 

Rancho Santa Ana Botanic Garden and 

Department of Biology, Pomona College 

Claremont, California 9I7 II 

ABSTRACT 

Quantitative and qualitative data are presented for wood anatomy of 35 collections representing 

22 Old World species of Ephedra; the survey of bark and pith anatomy is based on some of these 

species. Character-state ranges similar to those of the New World species are reported, although more 

numerous species show vessel absence in latewood. Little diminution in vessel diameter or density 

occurs in latewood of the eight species that are scandant or sprawling. Helical thickenings or sculpture 

occur in vessels of about a third of the Old World species, but these thickenings are clearly related to 

pits, often not very prominent, and rarely present in tracheids (alternative expressions characterize 

helical thickenings in the New World species). Helical thickenings are statistically correlated to xe

romorphic wood features such as narrower vessels and fewer vessels per mm2 of transection. Paucity 

of vessels is an indicator ofxeromorphy (rather than abundance, as in dicotyledons) because tracheids, 

which have optimal conductive safety, are present instead of vessels. Near vessellessness is reported 

for E. distachya var. monostachya, E. gerardiana, and E. monosperma. A high degree of wood 

xeromorphy characterizes species of the highlands of Central Asia and the Middle East, where extremes 

of drought and cold prevail. A close approach to storied structure is reported in three species. Pro

cumbent ray cells, absent at first, are produced as stems increase in diameter. Vessel element length 

also increases with stem size, and is not a phyletic indicator. Minute calcium oxalate crystals cover 

the outside of wood and bark cells, and suggest relationship to Welwitschia and perhaps conifers. A 

review of New World as well as Old World species reveals few species criteria, and these are mostly 

difficult to quantify. Primitive character states cannot be defined with certainty in the genus. Wood 

of Ephedra is like that of a vessel-bearing gymnosperm; parallelisms with dicotyledons may be caused 

by the vessel-bearing habit. 

Key words: bark anatomy, ecological wood anatomy, Ephedra, Ephedraceae, Gnetales, growth rings, 

~nosperms, vessellessness, wood anatomy. 

INTRODUCTION 

An earlier paper (Carlquist 1989) detailed wood and bark anatomy for the New 
World species of Ephedra. As noted there, wood anatomy has been studied for 
only a small number of species in the genus. Even for these few, descriptions of 
wood features are incomplete. Among the Old World species, data on wood 
anatomy have hitherto been presented for E. distachya by Thompson (1912), for 
E. major by Greguss (1955), and for four species oflsrael and vicinity (E. alata, 

E. aphylla, E. campylopoda, and E. foliata) by Fahn, Werker, and Baas (1986). 
As with the New World species, much new information and even new features 

have been uncovered by surveying Ephedra synoptically at the species level. 
Notable features include near vessellessness, diversity of growth-ring types, sto
rying oftracheids, presence of minute calcium oxalate crystals on outside surfaces 
of wood and bark cells, and presence of helical sculpture in vessels and tracheids. 

The present study surveys 3 5 collections representing 22 species. Of species 
recognized in recent studies, only E. fedtshenkoi Paulsen, E. holoptera H. Riedl, 
and E. oxyphylla H. Riedl are not included. These species all occupy very small 
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ranges in areas of difficult access (Riedl 1963; Bobrov 1968), so lack of material 
is understandable. The relatively complete representation of species in the present 
study has been made possible by the kindness of numerous individuals (see 
ACKNOWLEDGMENTS). Cultivated material has been employed for a number of 
species, in order to obtain wood samples larger than those generally available 
from herbarium specimens. The use of cultivated material for a number of species 
permits comparisons that could show the effect of climate or water availability 
on wood patterns. For some species, only herbarium material was available. The 
relatively small stems obtained from herbarium specimens are of interest in show
ing the nature of ontogenetic change in wood features such as ray histology and 
vessel element length. 

The species in the present study would fall into the following infrageneric 
categories proposed by Stapf(l889): 

Section I. Alatae 
Tribe Tropido/epides 

E. alata, E. lomatolepis, E. przewalskii, E. strobilacea. 

Section II. Pseudobaccatae 

Tribe Scandentes 

E. altissima, E. aphylla, E. campylopoda, E. ciliata, E. foliata, E. fragilis, 
E. kokanica. 

Tribe Pachycladae 

E. intermedia, E. pachycladae, E. sarcocarpa. 

Tribe Leptocladae 

E. distachya, E. equisetina, E. gerardiana, E. major, E. monosperma, E. 

procera. 

Species that have been described since Stapfs (1889) monograph and which 
have not been placed in the above system include E. sinaica and E. sinica; E. 

lomatolepis obviously belongs in Alatae on account of its dry bracts. Although I 
have reproduced Stapfs system as he gave it, section Pseudobaccatae must now 
be called section Ephedra because it contains the type species, E. distachya. Stapfs 
use of the term "tribe" is not in accord with current use: we would now use the 
term subsection. Wood patterns prove related to systematics at least for "tribe" 
Scandentes. 

Patterns in wood anatomy are often referable to ecology, and the wood of 
Ephedra is of special interest in this regard even though Ephedra does not occupy 
a wide range of habitats. Ephedra is able to grow in dry habitats to which few 
angiosperms have adapted; Ephedra habitats range from dry to very dry. These 
habitats do show a wide range with respect to frost, however. The Old World 
Ephedra species range from near sealevel (species around the Mediterranean Sea) 
to nearly 5000 m (E. gerardiana in the Himalayas). Drought, heat, and frost are 
notably extreme in the highlands of Asia, and these species may be expected to 
show greater wood xeromorphy than do the lowland species, and in fact, they do. 

In Ephedra, there are differences between species in wood anatomy that are 
probably related to habit rather than to ecology. Some species are large shrubs 
(data from Stapf 1889): E. alata (to 3 m), E. strobilacea (to 2m). Some are very 
small shrubs: E. gerardiana varies from medium to very small. Stapf (1889) 
describes E. monosperma as less than 1 dm tall; its short upright stems, buried 
in sand, branch from underground horizontal rhizomes. This description applies 
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to E. lomatolepis also. Only a few New World species are scandent: E. triandra 
Tul., E. tweediana C. A. Meyer, and (climbing to a notable degree), E. pedunculata 

Engelmann. A larger number of Old World species qualify as climbing or sprawl
ing: the group called Scandentes by Stapf (1889) as shown above. Species not 
mentioned in this paragraph are medium-sized shrubs. 

The fact that some specimens were taken from herbarium specimens (and 
therefore are of limited size), whereas other specimens were field collected and 
represent stems of larger diameter, permits study of how wood features change 
ontogenetically. Features of potential interest are vessel diameter, vessel density, 
vessel element length, and ray histology. The specimen diameters (Table 1, column 
1) are, in general, a good guide to age of wood sample. Only in exceptional instances 
is this not true. For example, one can see in the collection E. gerardiana, Ludlow 
407 4 (Fig. 12, 13), that numerous very narrow growth rings are present, so that 
this sample-from an old high montane subshrub-represents an older stem than 
do much larger wood samples of Ephedra. 

Wood anatomy has traditionally been considered a source of systematic infor
mation. Indeed, there are distinctive features in wood anatomy of dicotyledons 
and even conifers that have conventionally been used for wood identification. 
Consequently, there has been a tendency to regard comparative wood anatomy 
as a rich source of systematic information. Work on wood anatomy during the 
past two decades has shown that many wood patterns are correlated with ecology 
and habit of particular woody species rather than their systematic relationships. 
In any woody group there is a residue of features distributed with respect to a 
taxonomic system but not readily correlated with ecology. These can be regarded 
as of systematic significance. This residue of features is small in Ephedra, but a 
few characters may be cited. 

At a different level of magnitude, a few wood features prove of considerable 
interest in analyzing the relationships of Ephedra to other Gnetales and ofGnetales 
to angiosperms. Is the wood of Ephedra more like that of a conifer or an angio
sperm? If some resemblances to angiosperms are present, do these signify rela
tionship, or are they the parallelisms that would be expected in a vessel-bearing 
gymnosperm that confronts physiological considerations similar to those in vessel
bearing angiosperms? Ephedra is a genus of exceptional interest with respect to 
these questions. Although authors have held that the wood of Ephedra (and other 
Gnetales) is clearly gymnosperms (Thompson 1918; Bailey 1944), some authors 
have demurred. Muhammad and Sattler ( 1982) have cited "scalaroid" perforation 
plates-scarce in both Gnetum and in dicotyledons-as evidence of relationship. 
The work of recent cladists (see discussion section at the end of this paper) has 
also claimed more similarities between Gnetales and angiosperms than data from 
wood anatomy would suggest. Although one may properly say that wood anatomy 
will not solve this problem, wood data based on a small number of species of 
Ephedra and Gnetum cannot be considered reliable. Consequently, I have un
dertaken a study of comparative wood anatomy of Gnetales at the species level. 

MATERIALS AND METHODS 

There is no study approximating a monograph of the Old World species of 
Ephedra since Stapfs (1889) coverage ofthe genus as a whole. I have used Stapfs 
treatment as a basis, but taken into account recent treatments, especially those of 
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Riedl (1963) for Iran and surrounding areas, and Bobrov (1968) for the U.S.S.R. 
Ephedra sinaica has been credited in accordance with Riedl's (1980) description 
of this species. A few species concepts not uniformly recognized in floras have 
been used here, notably E. major and E. kokanica. Material applied as E. alte C. 

A. Meyer is termed E. aphylla here; Danin and Hedge (1973) have demonstrated 
E. alte to be nomenclatural synonym of E. aphylla. Authors of binomials of the 
species studied are cited in Table 1. 

Material was available in dried form except for the Elias collections of E. 

equisetina and E. intermedia, which were preserved in formalin-acetic-alcohol. 
Dried specimens were boiled in water and then stored in aqueous 50% ethyl 
alcohol. Woods were sectioned on a sliding microtome without softening except 
for E. przewalskii. The wood of this species is so hard that treatment with ethylene 
diamine was invoked. The treatment used was briefer in time than that recom
mended by Kukachka (1977) in order to avoid the tendency of ethylene diamine 
to swell lignified cell walls if applied for more than a day or two. Sections for 
study by means of light microscopy were stained in safranin and counterstained 
with fast green to various degrees. Fast green is excellent for demonstrating pres
ence of tori and other pit membrane portions; thereby the bordered or non bor
dered nature of pits could be ascertained readily. Some unstained sections were 
placed between glass slides in order to dry and flatten sections. These sections 
were then studied with an lSI WB-6 scanning electron microscope after coating 
with gold. 

Presence of tori in pits as seen in transections permitted me to determine 
whether an end wall of a tracheary element bears pits (and is thus a tracheid) or 
perforations (in which case it is a vessel element). Using this method, I could 
demonstrate that vessel elements of Ephedra rarely have a lumen diameter less 
than 25 ~m; no vessel element lumina smaller than 20 ~m in diameter were 
observed. The nearly vessellessness nature of wood in several species was ascer
tained by means of identification of tori in end-wall pitting. The minimum di
ameter of a perforation in a perforation plate of Ephedra appears to be about 10 
~m, perhaps a deep-seated feature of Ephedra wood based on the relatively great 
size of circular bordered pits on end walls of Ephedra tracheids. Tracheids have 
large bordered pit pairs on tracheid to tracheid contacts, smaller but definitely 
bordered pit pairs on tracheid to fiber-tracheid contacts. The term "fiber-tracheid" 
is used here for nucleated nonseptate fibriform cells with walls nearly as thick as 
those of tracheids and with pits vestigially bordered or simple, although some 
authors have used the term "parenchyma" for these cells. Reasons for usage of 
the term "fiber~tracheid" in Ephedra have been offered in my earlier paper (Carlquist 
1989). Both fiber-tracheids ofthis sort and parenchyma strands ofthe sort found 
in dicotyledons coexist in wood of some species of Gnetum. In some species of 
Ephedra (E. kokanica, Fig. 31), one can find both fiber-tracheids and two-celled 
strands of parenchyma. Parenchyma consisting of strands oftwo cells is extremely 
rare or absent in all species of Ephedra according to my observations, contrary 
to the descriptions ofFahn et al. (1986), who attribute such parenchyma to all of 
the species they studied. They do not mention nonsubdivided fiber-tracheids, 
which perhaps they include in the concept of parenchyma. 

Vessel element diameter (Table 1, column 4) is measured as lumen diameter 
at widest point. Both earlywood and latewood tracheids were selected for mea
surement of tracheid length, although in macerations earlywood tracheids are 
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shorter than latewood tracheids, as mentioned in a later section. Tracheids in 
macerations were identified on the basis of their large circular bordered pits. 
Measurements are not presented for uniseriate ray height if uniseriate rays are 
scarce in a collection; uniseriate rays do not comprise more than 20% of the rays 
in any of the Old World species. Rays two cells wide or wider are considered 
multiseriate rays. Quantitative features are based on 20 to 25 measurements per 

feature except for vessel wall thickness, tracheid diameter at widest point, tracheid 
wall thickness, and ray cell wall thickness. For these features, conditions judged 
to be typical were selected for measurements. Wall thickness is not measured on 
the basis of the angular comers of a cell, but the thinner portion between comers. 
In all matters of terminology, the usages in the earlier paper (Carlquist 1989) were 
followed. 

Localities for specimens are as follows: E. alata (Harris 26-/II-1960, E), Tunisia; 

E. altissima (SJRw-12725), Algeria; E. altissima (cultivated in Hortus Botanicus 

Nikitensis, Yalta); E. aphylla (cultivated in the Cambridge University Botanic 

Garden); E. aphylla (SJRw-12724), banks of the Indus River, India; E. campy

lopoda (Davis 18067, RSA), Lastos, Karpathos, Greece; E. ciliata (Grant 15309, 

RSA), 30 km N of Kahurak, Baluchistan, Iran; E. ciliata (Kolez 13087, W), 

Teshkan, 2000 m, Badaksh, Afghanistan; E. distachya var. distachya (Mulkid

zhanyam 13- V//-1965, RSA), Nyuvadi, Megrinsky Region, Armenian SSR; E. 

distachya var. monostachya (cultivated at Cambridge University Botanic Garden); 

E. equisetina (Elias 97 46, RSA), Aktash, 70-80 km NE of Tashkent, Tien Shan 

Mts., Uzbek SSR; E. equisetina (Elias 9840, RSA), 80 km N of Tashkent, Uzbek 

SSR; E. equisetina (Elias 10067, RSA), 55 km N of Dushanbe, Hissar Range of 

Pamir-Alay Mts., Tajik SSR; E. foliata (SJRw-37 203), India; E. fragilis (cultivated 

in the Palermo Botanic Garden, Palermo, Sicily, Italy); E. fragilis (cultivated in 

the Cambridge University Botanic Garden); E. gerardiana (Freitag 1425, KAS
SEL), Bini-Dara-al, Kotal, Afghanistan; E. gerardiana (Ludlow 407 4, E); Between 
Kala and Samada, 4 7 50 m, U Province, southeastern Tibet; E. gerardiana (Po

lunin 804, E), Jumea, 2750 m, Nepal; E. intermedia (cultivated at the Hortus 

Botanicus Nikitensis, Yalta); E. intermedia (cultivated at the' Tashkent Botanic 

Garden); E. kokanica (cultivated at the Hortus Botanicus Nikitensis, Yalta); E. 

kokanica (Elias 9742, RSA), cultivated at the Tashkent Botanic Garden, Uzbek 
SSR: E. lomatolepis (Morefield 5133, RSA), 48 km NNW of Fukang, Xinjiang, 
Uygur Autonomous Region, W. China; E. major (Stainton 8250, RSA), Artvin, 
Artvin Province, Turkey; E. monosperma (Elias 7655, RSA), W. Sajan Mts., 
Tuva Autonomous Republic, USSR: E. pachyclada (Freitag 3424, KASSEL), 
southern Kattawaz, Zakira Mts., W. Wazi Khwa, Afghanistan; E. procera (Mulkid
shanyam 27-/X-1962, RSA), Khosrovsky Forest, Vedinsky Region, Armenian 
SSR: E. procera (cultivated at the Hortus Botanicus Nikitensis, Yalta); E. prze

walskii (Morefield 4 991, RSA), Tarim Basin, Xinjiang Uygur Autonomous Region, 
western China; E. przewalskii (Morefield 4992, RSA), Tarim Basin, Xinjiang 

Uygur Autonomous Region, western China; E. sarcocarpa (Freitag 14017, KAS
SEL), southern Kattawaz, Zakira Mts., western Wazi Khwa, Afghanistan; E. sinai

ca (Shmida 15- VIII-1974), Gebel Abas-Pasha, Sinai, Egypt; E. sinica (Liston 

835-8, RSA), north slope of Bogda Shan, Xinjiang Uygur Autonomous Region, 
western China; E. strobilacea (Ashirova 23-/V-1958), 20 km N of Bakharden, 
central Kara-kum Desert, Turkmenian SSR. 
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ANATOMICAL DESCRIPTIONS; WOOD ANATOMY 

Growth Rings 

Growth rings are illustrated in Figure 1-14 as well as cited in Table 1. This 
account of growth-ring types is based upon the presentation used for the New 

World species (Carlquist 1989). Note should be taken of the fact that within a 

single stem, more than one growth-nng type can occur, depending on the severity 

of the season. However, the shifts are predictable (e.g., one cannot find the first 

type combined with the fifth type in a particular wood). The types observed are 

as follows: 

1. Vessels only slightly narrowed in latewood, but not noticeably fewer. This 

type is shown for E. fragilis in Figure 1, as well as for E. altissima in Figure 36, 

37, and 38. Narrowing of tracheids in a radial direction occurs at the ends of 

growth rings, but there is only a little narrowing of the vessels, and no perceptible 

diminution of vessel numbers until the formation of those few layers of narrow 

tracheids. In fact, if the narrow tracheids were not formed, one probably would 

not be able to say growth rings were present at all. This growth-ring type char

acterizes A. altissima, E. aphylla, E. campylopoda, E. foliata, E. fragilis, and E. 

kokanica, all denoted by "n" in Table 1, column 2. All of these are scandent or 
scrambling species. 

2. Vessels appreciably narrower in latewood than in earlywood ("N" in Table 

1, column 2). This condition is shown in Figure 3 and 4 for E. kokanica (cult. 
Hart. Bot. Nikitensis). Woods belonging to six species showed this growth-ring 

type, either in combination with type 1 (E. kokanica) or type 4 (E. major). 

3. Vessels appreciably fewer in latewood than in earlywood. Although the ma

terials studied of Old World species of Ephedra did not yield a sample in which 

this type exclusively was represented, occasional growth rings of this type could 

be found. One is illustrated here for E. gerardiana (Polunin 884) in Figure 10. 

This growth ring was found in combination with type 2 (E. ciliata, E. fragilis) or 

type 4 (E. gerardiana, E. lomatolepis, E. pachyclada). This growth-ring type may 

be relatively uncommon (in comparison to its somewhat greater frequency in the 

New World species) because type 4, which seemingly represents an adaptation to 

more drastic climatic conditions, is relatively more common. 

4. Vessels absent in the latter halves of growth rings ("0" in Table 1, column 

2). The transection of wood of E. equisetina (Fig. 5) exemplifies this type clearly. 

The section of E. przewalskii (Fig. 6) also illustrates this type, although with less 

clarity because of the narrowness of the growth ring. If growth rings are very 

narrow because of a very dry growing season, latewood devoid of vessels may 
not be extensive. 

5. Vessels absent or nearly so (examples designated by "0" only in Table 1, 

column 2, fall into this category if number of vessels per mm2 is below 20). Four 

of the collections studied fall into this type: E. monosperma (Fig. 7), E. distachya 

var. monostachya (Fig. 8, 9), E. gerardiana, Polunin 884 (Fig. 11) exemplifies this 

condition more than Figure 10, and E. gerardiana, Ludlow 4074 (Fig. 12, 13). Of 

these, the samples of E. distachya var. monostachya (Fig. 8, 9) and E. monosperma 

have relatively wide growth rings. Extremely narrow growth rings characterize 

the collection E. gerardiana, Ludlow 407 4 (Fig. 12, 13). In this collection, some 

growth rings consist of a layer of earlywood tracheids followed by only one or 
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Fig. 1-4. Transections of Ephedra wood to show growth rings.- I . E. fragi/is (Palermo Botanic 

Garden); five growth rings with little narrowing oflatewood vessels are shown.-2. E. altissima (SJRw-

1 27 25); end of growth ring with little diminution in number or diameter of vessels; narrow tracheids 

and latewood.-3-4. E. kokanica (Hortus Botanicus Nikitensis).-3. Growth rings showing diminution 

in vessel diameter.-4. Growth ring, incorporating perhaps a " false growth ring" (narrow vessels 

followed by tracheids). (Fig. I, 3, magnification scale above Fig. I [divisions = 10 !Lm] ; Fig. 2, 4, 

magnification scale above Fig. 2 [divisions = 10 !LID].) 
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two layers of latewood tracheids. This wood is the most nearly vesselless of the 
Old World species of Ephedra, and was cited in this regard in an earlier paper 
(Carlquist 1988). The plant represented by this collection was collected in a region 
with an extreme climate, the Tibetan plateau at 4 7 50 m. The other nearly vesselless 
species also occur in localities well above sea level, in which the continental nature 
of the winters provides low minimum winter temperatures and relatively short 
growing seasons. In addition to the examples cited above, one can occasionally 
find in several of the Old World species of Ephedra an occasional growth ring 
that is vesselless. Vesselless first-year wood succeeded by vessel-bearing subse
quent wood in subsequent growth rings is illustrated in Figure 14 for E. equisetina 

(Elias 9746). The entirety of the second year's growth ring in this sample is 
illustrated in Figure 32. 

Vessel Density 

Mean vessel density is reported in Table 1, column 3. The nearly vesselless 
species can easily be distinguished: they have a vessel density of less than 20 
vessels per mm2

• In the remaining collections, vessel density ranges upward to 
338 vessels per mm2

, and the mean for the collections is 89. Relatively high vessel 
densities characterize species in which there is little fluctuation in vessel diameter 
or density throughout a growth ring (Fig. 1, 2). The species with type 4 growth 
rings (vessels absent in latewood) have a relatively low vessel number of vessels 
per mm2 (mostly from: 35 to 100). Evidently the density of earlywood vessels, 
however great, does not .. compensate" for the absence oflatewood vessels (dense 
earlywood vessels do not produce, in these woods, a mean vessel density as great 
as that in the species with type 1 growth rings). Hypotheses that attempt to account 
for the various vessel density configurations are given in a terminal section of this 
paper. 

Vessel Diameter 

Figures for mean vessel diameter are given in Table 1, column 4. One may 
have the idea that vessel diameter should be roughly inverse to vessel density 
because of packing considerations. In dicotyledons, one finds considerable de
viation from a straight line relationship (Carlquist 1975:183). There are many 
instances in which number of vessels falls well below what packing considerations 
would dictate, based on a P::trticular vessel diameter. In species of Ephedra in 
which vessels are few or absent in latewood, and especially in nearly vesselless 
species, vessel density falls far short of what packing considerations would dictate 
for any given mean vessel diameter. 

The mean vessel diameter for the Old World species of Ephedra is 32 p.m. This 
would be a very narrow vessel diameter for a woody dicotyledon. In addition, 
the conductive area is somewhat smaller than the vessel diameters would suggest, 
because vessels in Ephedra deviate from circular outline frequently; they are often 
wider radially than tangentially (e.g., Fig. 3), and the widest lumen diameter has 
been used for measurements. 

Vessel Element Length 

Mean vessel element length ofthe Old World species ranges from 406 to 1167 
p.m. Mean vessel element length for all the collections of the present study is 619 
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Fig. 5-9. Transections of Ephedra wood to show growth-ring types.-5. E. equisetina (Elias 9746), 

vessels present only in first portion of each growth ring.-6. E. przewalskii (Morefield 4991), vessels 

tend to be absent in latter portion of growth rings.- 7. E. monosperma (Elias 9655), nearly vesselless 

wood; vertical rifts are ray areas with collapsed ray cells.-8-9. E. distachya var. monostachya (Cam

bridge University Botanic Garden).-8. Transection showing a succession of nearly vesselless but wide 

growth rings.-9. A growth ring (center of photograph) containing (at its beginning) two vessels. (Fig. 

5, 7, 8, scale above Fig. I; Fig. 6, 9, scale above Fig. 2.) 
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,urn, which is shorter than that reported for the New World species (697 ,urn). The 
cause for this difference is doubtless the diameter of wood samples studied: small
er-diameter wood samples have shorter vessel element length (Carlquist 1989, 
Table 4), and more large-diameter samples were available for the study of the 
New World species. The longest vessel elements in the present study were observed 
in the largest-diameter sample studied, that of E. altissima (SJRw-12724). The 
shortest vessel elements were observed not in the sample with the smallest di
ameter, but in that of a very diminutive (and relatively old, with relation to sample 
diameter) shrub, the high-elevation collection of E. gerardiana (Ludlow 407 4). 

Vessel Wall Thickness 

Vessel wall thickness averages 2.2 ,urn in the Old World species of Ephedra 

(Table 1, column 6), and the range within the collections is not very great. This 
degree of uniformity seems more interesting than the extremes, and no correlations 
between vessel wall thickness and otherwood features appear significant. 

Perforation Plates and Lateral Wall Pitting 

The foraminate perforation plates of Old World species of Ephedra are shown 
in Figure 15-19. Perforations are always clearly bordered. Exceptionally well
developed borders are shown for a narrow vessel of E. major in Figure 15. Even 
if borders are not wide or raised above the remaining wall surface, they can be 
seen readily if perforations are viewed in an oblique fashion (Fig. 16). Typically, 
perforations are very close to circular in outline. Where moderately crowded, the 
outlines may be somewhat transitional from circular to polygonal (Fig. 1 7). In 
two species with a sprawling (E. ciliata, Fig. 18) or scandent (E. kokanica, Fig. 

19) habit, perforations are relatively large. Where perforations are large, there is 
more tendency for polygonal outline of perforations. Also, the perforations are 
often oval, wider radially (horizontally) than vertically. 

The number of series of perforations per perforation plate is quantified in Table 
1, column 7. If a perforation plate is only one perforation wide throughout, it was 
rated "1 "; if two perforations wide at any point, it was assigned the value "2". 
Similar considerations were applied to three or four series. Interestingly, the mean 
number obtained in this way for the samples as a whole was 2.0. This means that 
on average, the perforation plate has two series along part or most of its length. 
In general, the widest vessels in Ephedra might be expected to have three or even 
four series of perforations, whereas the narrowest have only a single series of 
perforations. 

Number of perforations per perforation plate can be quite readily counted, and 
the mean number per perforation is given for the collections in Table 1, column 
8. Mean number of perforations per perforation plate in Old World species reaches 
a low of 5.8 in E. campylopoda, the stems of which available for study had very 

narrow vessels (averaging 24 .urn in diameter). The highest mean number of 
perforations per perforation plate was recorded for E. przewalskii (Morefield 4991), 

19.7. This is higher than the mean number recorded in any New World species 
of Ephedra. Although there is not a perfect correlation, there is a tendency for 
higher number of perforations per perforation plate to occur in species with greater 
mean vessel diameter. 
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Fig. I 0-14. Transections of Ephedra wood to show nearly vesselless conditions.- 10-11. E . gerar

diana (Polunin 884).-IO. Pith and first two growth rings, showing very narrow vessels that become 

fewer in latewood. -11 . Nearly vesselless wood portion (three probable vessels near beginning of 

growth ring).-12-13 . E. gerardiana (Ludlow 4074).-!2. Numerous growth rings (probably more 

than 25) in which few vessels occur.-13. Growth rings vey short; only one vessel shown (to left of 

numeral).-14. E. equisetina (Elias 9746), pith and two growth rings, the first of which is vesselless, 

the second of which begins with vessels. (Fig. 10, 12, scale above Fig. I ; Fig. II, 13, 14, scale above 

Fig. 2.) 
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Fig. 15-19. SEM photographs of perforation plates of Ephedra, from radial sections of wood.-

15. E. major (Stainton 18280), perforations with raised borders. -16. E. przewalskii (Morefield 4991), 

perforations viewed obliquely to show bordered condition.-17. E. intermedia (Tashkent Botanic 

Garden), three series of near-circular perforations. -18. E. ciliata (Koelz 13087), perforations large, 

radially widened.-19. E. kokanica (Elias 9742), perforations transitional between circular and po

lygonal shape. (Fig. 15, scale at top left [bar = 10 ~tm] ; Fig. 16-19, scale at top right in Fig. 16 [bar 

= 10 ~tm].) 
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Mean perforation diameter (Table 1, column 9) shows a relatively great range, 
a range illustrated photographically in Figures 15 to 19. Perforations are narrow 
in the E. major plate shown (Fig. 15), intermediate in E. przewalskii (Fig. 16: 
note that the scale is slightly higher than for the remaining photographs on the 
page), and E. intermedia (Fig. 17). Relatively large perforations are illustrated for 
E. ciliata (Fig. 18) and E. kokanica (Fig. 19), two species which have a scrambling 

or ascending rather than upright habit. The data of Table 2 clearly shows the 
widest perforations (averaging more than 12 ~m) in scandent species (E. altissima, 

E. aphylla, E. ciliata, E. fragilis, E. kokanica). Narrowest perforations (less than 
9 ~m) were recorded in E. gerardiana, E. monosperma, and E. pachyclada. The 

first two of these are small subshrubs. 
As with the New World species of Ephedra, the quantitative expression relative 

to perforations that is most significant in terms of habit and habitat proves to be 
the mean total area of perforations per mm2 of transection. This figure is calculated 
by multiplying the mean perforation radius squared times 3.14 times mean per

foration number per perforation plate times mean number of vessels per mm2
• 

This figure (Table 1, column 1 0) offers a better representation of conduction 
characteristics of vessels than would vessel diameter or vessel number per mm2

, 

or even the mean vessel area per mm2 (for reasons, see Carlquist 1989). 
The mean total perforation area per mm2 of transection differentiates the species 

quite markedly. The values range from almost infinitely small in the vesselless 
species (0.0006 in E. gerardiana, Ludlow 4074) to 0.36 (E. foliata). The signifi
cance of this gamut is discussed in terms of habit and ecology in a later portion 
ofthis paper. 

Some instances of vessel elements with more than two perforation plates were 
seen. In these cases, branching of the vessel may be suspected. Number of per
forations at one end might be expected to be virtually the same as the number of 
perforations at the other end of a normal vessel element in Ephedra because of 
flow considerations, but marked deviations in perforation number between the 
two ends could often be seen. Pits with reduced borders (Fig. 20, 21) may be 
present among the perforations in a perforation plate. What appears at first glance 
to be a perforation plate in Figure 20, because of the wide pit apertures and 
reduced borders, is actually an end wall of a tracheid that shows pit characteristics 
very similar to those of perforations. Perforationlike pits distributed within per

foration plates of Ephedra were figured by Thompson (1912). In fact, in all species 
one can find tracheary elements showing degrees of transition between typical 
tracheids and typical vessel elements. 

Lateral walls of vessels have pits with wide borders, much like those figured 
for conifer tracheids. These are vessel to tracheid pits. Pits between vessels and 
the living fiber-tracheids are definitely bordered, but the pits are smaller in di
ameter than vessel to tracheid or tracheid to tracheid pits. Greguss (1955) figures 
laterally elongate pit apertures on vessel walls for E. distachya, but these are, in 
my experience, infrequent; pit apertures are generally circular (Fig. 25}, although 
some lateral widening may be seen in species in which helical thickenings occur 

on vessel walls (Fig. 26, 27). 

Tracheids 

Mean tracheid length is given in Table 1, column 11. The mean tracheid length 
for all collections (691 ~m) is less than that for the New World species (765 ~m). 
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The difference is probably attributable to the larger diameter of samples, on the 
average, in the specimens studied of New World species. Samples with larger 
diameter have greater tracheid length (Table 1). 

Earlywood tracheids in the Ephedra collections studied here are often wide, 
with blunt ends; they are little longer than the vessel elements they accompany. 
Latewood tracheids are longer and more slender than earlywood tracheids. Ear
lywood and latewood tracheids cannot be readily separated from each other. In 
one instance, an attempt was made to measure the two categories separately; in 

E. monosperma, earlywood tracheids averaged 468 ~m long, whereas latewood 
tracheids averaged 624 ~m. 

Mean tracheid length divided by mean vessel element length averaged 1.12 for 
the Old World species as a whole, a value virtually identical to that for the New 
World species (1.11). This ratio indicates little difference between tracheids and 
vessel elements with respect to elongation capability. In fact, a mean vessel element 
length longer than mean tracheid length was obtained for one collection (E. foliata) 

in the present study, and three in the earlier study (Carlquist 1989). Conceivably 
a larger sample size would have produced different results, but the closeness of 
the two cell types is the significant finding. Mean lengths of the two cell types 
were virtually identical in E. alata. 

End walls of tracheids are provided with large pits close to each other (Fig. 22). 
The tori and threadlike margo strands illustrated for that species are much like 
those often figured for conifer tracheids, and certainly not like pit membranes of 
angiosperm tracheids. Tracheids of Ephedra have pits mostly on radial walls, as 

in conifers, less commonly on tangential walls except in latewood (Fig. 24). The 
radial width of tracheid walls of Ephedra accommodates only a single series of 
the full-sized bordered pits, which are rather large, like those of conifers (Fig. 20, 
22). The radial width of latewood tracheids is less than the diameter of a typical 
bordered pit; this circumstance may account for pits that occur on tangential walls 
instead of radial walls in latewood. 

Tracheids of Ephedra are mostly fusiform in shape. However, irregularities in 
wall outline as seen in macerations were evident in several species of Ephedra 

and are shown for E. foliata in Figure 23. 

Fiber-tracheids 

The cells termed fiber-tracheids here (parenchyma of some other authors) are 
nonseptate and contain one or more nuclei at maturity. They bear bordered pit 
pairs on contracts with tracheids. Pits between adjacent fiber-tracheids are small 
(about 2 ~m in diameter); these pits are simple or nearly so. Fiber-tracheid to 
fiber-tracheid pits with vestigial borders were reported earlier, together with pho
tographic evidence (Carlquist 1989). Vestigial borders may be more evident with 
SEM than with light microscopy. Reasons why these cells are called fiber-tracheids 
rather than parenchyma (as in Martens 1971) are discussed earlier. Thompson 

( 1912) believed these cells result from a kind of tracheid dimorphism. 
Grouping of the fiber-tracheids into patterns much like those of axial paren

chyma in angiosperms is evident in Ephedra wood. Tangential grouping of a sort 
that would be called diffuse-in-aggregates in dicotyledon woods is illustrated here 
for E. equisetina (Fig. 24). Species in which "diffuse-in-aggregates" distribution 
of nucleated fiber-tracheids was observed include E. a/tissima, E. aphylla, E. 
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Fig. 20-24. Wood of Ephedra, showing details oftracheids, pitting, perforations.-20. E. equisetina 

(Elias 97 46), tracheary element from radial section; wide apertures with vestigial borders like perfo

rations, pit membranes with tori present.-21. E. intermedia (Tashkent Botanic Garden), portion of 

a perforation plate with two small pits at bottom (pit membranes ruptured).-22. E. gerardiana 

(Po/unin 884), pits on end wall oftracheid, from radial section (tori and margo threads visible).-23 . 

E. foliata (SJRw-37203), tracheid with irregular surface from maceration.-24. E. equisetina (Elias 

9746), transection portion to show fiber tracheids (narrower cells, with contents), tracheids (wider 

cells without contents), and nature of pitting among cells. (Fig. 20-22, scale at top right in Fig. 20 

[bar= 10 I'm]; Fig. 23, scale above Fig. 2; Fig. 24, scale at top of Fig. 24 [divisions= 10 I'm] .) 
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distachya var. distachya, E. equisetina, E. gerardiana (Freitag 142 5, Ludlow 407 4), 

E. intermedia, E. kokanica, E. /omatolepis, E. major, E. monosperma, E. procera, 

E. przewalskii, and E. sinica. In Old World species not included in the preceding 
list diffuse distribution was much more common than diffuse-in-aggregates. In all 
species, some diffuse cells are present. 

Fahn et al. (1986) report that fiber-tracheids ( .. parenchyma" in their usage) are 
"paratracheal scanty and apotracheal diffuse" for the four species they studied. 

My interpretation of the conditions they studied differs in that the fiber-tracheids 
adjacent to the vessels seem no more abundant to me than would be expected if 
random distribution of these cells throughout the wood occurred. Therefore, l 
prefer to consider that there is no paratracheal distribution of these cells in Ephe

dra. 

Narrow bands of the fiber-tracheids (more than one cell wide) are illustrated 
here for E. equisetina in Figure 32. In this photograph, fiber-tracheids of the 
latewood have diffuse distribution, and the bands of cells are limited to earlywood 
subsequent to the first-formed vessels. I believe that the deposits of dark-staining 
compounds in this photograph serve as accurate indicators; the cells I am con
sidering fiber-tracheids in that photograph are smaller in diameter and have slightly 
thinner walls than do the tracheids. Species in which narrow bands of fiber
tracheids were observed include E. lomatolepis, E. procera, and E. sinica. Apo
tracheal clusters of three to five fiber-tracheids were observed in wood of E. 

distachya var. distachya and E. major. 

Wall Sculpture in Vessels and Tracheids 

Helical sculpture in vessels is reported in Table 1, column 12. SEM photographs 
of vessel wall sculpture are presented in Figure 25-28. Where sculpture is more 

moderate (" +" in column 12), striae only a little raised above the wall surface 
may be seen, as illustrated for E. equisetina in Figure 25. More marked helical 
thickenings in vessels of the Old World species of Ephedra appear as a pair of 
bands flanking a pit aperture. Less conspicuous bands of this sort are shown for 
E. przewalskii in Figure 26; more pronounced thickenings are illustrated for the 
same species in Figure 27. Instances like this, or even more pronounced, as in 
Figure 28, where the bands extend around the vessel element, are designated by 
.. + +" in Table 1, column 12. The more pronounced thickenings in vessels have 
a helical orientation on the vessel wall. 

The more pronounced thickenings on vessel walls of Old World species of 
Ephedra do not form the high relief reported for vessels of the New World species 
(Carlquist 1989). Relatively pronounced vessel wall thickening is reported here 
only for six species; helical sculpture on vessel walls has not hitherto been reported 
for Old World species of Ephedra. 

Thickenings in tracheids of Old World species are less common than thickenings 
in the tracheids of New World species of Ephedra. Thickenings were observed 
only in tracheids of E. distachya var. monostachya (Fig. 29), E. gerardiana, Polunin 

884 (Fig. 30), and E. monosperma. The thickenings in tracheids form sharply 
ascending helical patterns. The three species in which helical thickenings are 

reported in tracheids occur in very extreme climatic conditions. In the New World 
species of Ephedra, helical thickenings are present in tracheids in all species that 
have thickenings in vessels. The ecological significance of helical thickenings in 
vessels will be explored in the conclusions section of this paper. 
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Fig. 25-28. SEM photographs of vessel walls of Ephedra from radial sections, to show wall sculp

ture.-25 . E. equisetina (Elias 9840), sculpture composed of inconspicuous relief.-26-28 . E. prze

walskii (Morefield 4991).-26. Low relief, composed of thickenings paired beside pits.-27. Higher 

relief, composed of thickenings paired beside pits.-28. Higher relief, thickenings continue around 

vessel. (Fig. 25, scale at upper right in Fig. 25 [bar= 10 !Lm]; Fig. 26-28 , scale at upper right in Fig. 

26 [bar = 10 !Lm].) 
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Helical splits, leading away from pits, were observed in vessels and tracheids 
of E. gerardiana (Polunin 884). This is an indication of gelatinous wall compo
sition rather than helical sculpture. 

Axial Parenchyma 

Cells similar to fiber-tracheids but subdivided horizontally into a pair of cells, 
each surrounded by a lignified wall, were observed quite infrequently in the Old 

World species of Ephedra, contrary to the report ofFahn et al. (1986), who claim 
"few celled strands" for all four of the species they studied. A transverse wall, 
indicating a two-celled strand of parenchyma, is illustrated here for E. kokanica 

(Fig. 31). Such strands were also observed in appreciable numbers in E. foliata; 

in no species are these strands common. 

Rays 

Ray histology is illustrated in Figure 33-41. Ray features are also summarized 
in Table 1. Column 13 gives height of uniseriate rays. Figures are omitted in that 
column if only a very few uniseriate rays were present in a section. Certainly in 
all species, multiseriate rays are more common than uniseriate rays. Uniseriate 
rays are relatively common in E. kokanica (Fig. 33), E. aphylla, E. foliata, and 
E. fragilis. Uniseriate rays are rather short: the mean for the Old World species 
in which they were measured is 190 Mm. Uniseriate rays are relatively uniform 
in height, and do not fluctuate greatly from species to species. In these respects, 
they agree with uniseriate rays of the New World species. 

Multiseriate ray height is given in Table 1, column 14. In contrast with uniseriate 
rays, multiseriate rays for the Old World species as a whole average 1326 Mm. If 
vessel elements reflect fusiform cambial initial length in Ephedra as they do in 
dicotyledons, uniseriate ray height is much shorter than fusiform cambial initial 
length, whereas multiseriate ray height averages twice as tall. Thus, origin of 
uniseriate rays by subdivision of fusiform cambial initials into a series of ray 
initials seems unlikely. There appears to be no relationship between multiseriate 
ray height and diameter of sample. Tall multiseriate rays may be found both in 
large diameter samples (E. altissima) and small ones (E. fragilis, E. pachyclada). 

Multiseriate ray width is given in terms ofnumbers of cells at the widest point 
in Table 1, column 15. Relatively few rays are biseriate, a fact that may relate to 
the paucity of uniseriate rays. The typical width of multiseriate rays (which av
erages 4.1 cells at the widest point in Old World species) is shown in Figure 34, 

35, and 37. 
Ray cells in Ephedra often appear rhomboidal rather than rectangular as seen 

in transections of wood (Fig. 36-38) or radial sections (Fig. 39, 40). The reason 
for this, explained in an earlier paper (Carlquist 1989), is that the cambium does 
not add equally to all fascicular xylem segments (axial portions between any two 

multiseriate rays as seen in transection). For example, one can see a marked offset 
between where the growth ring ends in the left side on Figure 36 and the right 
side. The ray cells are angled so as to interconnect equivalent places in the growth 
ring in these segments. The effect can be studied more closely in the higher 
magnification photograph ofFigure 38, where the ray cell walls run quite obliquely 
rather than tangentially and radially. Where rays have such oblique cells, and 
where two rays fuse into one, as in Figure 37, center, a "herringbone" pattern is 
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Fig. 29-33. Wood sections of Ephedra-29-30. SEM photographs of inner surfaces of tracheids 

from radial sections showing helical sculpture.-29. E. distachya var. monostachya (Cambridge Uni

versity Botanic Garden), thickenings prominent on all wall portions.-30. E. gerardiana (Polunin 884), 

thickenings most prominent in vicinity ofpits.-31. E. kokanica (Hortus Botanicus Nikitensis), radial 

section, showing two tracheids (left) and two axial parenchyma cells separated by wall (right).-32. 

E. equisetina (Elias 9746), transection, showing one growth ring; cells with dark contents are fiber

tracheids.-33. E. kokanica (Hortus Botanicus Nikitensis), tangential section to close approach to 

storied condition; arrows indicate levels at which tracheids terminate. (Fig. 29 , 30, scale in Fig. 20; 

Fig. 31 , scale above Fig. 24; Fig. 33, scale about Fig. 2.) 
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Fig. 34-37. Sections of Ephedra wood to show details of rays.-34. E. aphy/la (SJRw-12724), 

tangential section to show uniseriate rays (right half of photograph).-35 . E. przewalskii (Morefield 

4991), tangential section; all rays are multiseriate.-36-37. E. altissima (SJRw-12725) , transections 

to show angled ray cells related to offsetting in wood segments.-36. Offset between left (growth ring 

ends at middle of photograph) and right (growth ring ends further up).-37. Two rays (below, middle) 

fuse into one (above, middle); angled ray cells in opposing directions comprise ray above, middle. 

(Fig. 34-37, scale at top of Fig. 1.) 
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Fig. 38-41. Details of rays of Ephedra. -38. E. altissima (SJRw-127 25), transection, ray cell walls 

are strongly oblique in orientation.-39. E. aphylla (SJRw-12724) , radial section showing air spaces 

among the ray cells ("disjunctive ray cells"), especially in center, top to bottom.-40. E. sinica (Liston 

835-8), ray cells from radial section, showing borders on pits between cells.-41. E.fragilis (Palermo 

Botanic Garden), tangential section showing upright ray cells sheathing most surfaces of the multiseriate 

rays. (Fig. 38, 39, 41, scale above Fig. 2; Fig. 40, scale above Fig. 24.) 
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achieved: oblique cells in opposed directions in the combined ray. The majority 
of Old World species showed ray cells with rhomboidal shapes, corresponding to 
offsets in fascicular xylem segments. 

Although a ray fusion is illustrated in Figure 3 7, ray fusions appear uncommon 
in Ephedra. Events of ray breakup also are uncommon. I would not identify any 
grouped multiseriate rays I have seen in Ephedra as compound rays. Fahn et al. 
(1986) report compound rays for E. alata. 

Ray cell wall thickness is reported in Table 1, column 16. Most species deviate 
only a little from the mean wall thickness for the species studied here, 2. 7 ~m. 
Notably thick ray cell walls were observed in E. procera and E. przewalskii (Fig. 
35). Thin-walled nonlignified ray cells characterize the stems of E. gerardiana, 
Ludlow 4074 (note notch at tops of photographs, Figures 12 and 13, denoting 
collapsed ray cells). The stems of E. monosperma also have thin-walled nonlig
nified cells, evident in the spaces between fascicular areas in Figure 7, where ray 
cells have collapsed. In both E. gerardiana, Ludlow 407 4, and E. monosperma, 

upright stems buried by sand or below ground level provided the wood samples; 
this seems related to the nature of the ray cell walls. 

Histology ofmultiseriate rays is summarized in Table 1, column 17. Uniseriate 
ray cells thoughout the species studied are mostly upright, with a few square cells. 
Multiseriate rays conform to a similar pattern in E. alata, E. campylopoda, E. 
distachya var. monostachya, E. gerardiana (Freitag 1425), E. kokanica, E. lomato

lepis, E. pachyclada and E. sarcocarpa. If one compares this roster to sample 
diameter (Table 1, column 1), one finds that the samples with predominantly 
upright ray cells plus only a few square cells occur only in samples 5 mm or less 
in diameter, and that all samples in the smaller size class have this ray histology. 
Because more samples of small diameter were used in the present study than in 
the earlier one (Carlquist 1989), the present study demonstrates the relationship 
between sample diameter and ray histology definitively (Table 2). 

Procumbent ray cells are present in multiseriate rays of specimens with large 
sample diameter (Table 1, column 17). Procumbent ray cells tend to occupy the 
central regions ofmultiseriate rays (Fig. 39, 41). Upright ray cells are present as 
sheathing cells on multiseriate rays (Fig. 41), in agreement with the descriptions 
given for wood of four Ephedra species by Fahn et al. (1986). Uniseriate wings 

on multiseriate rays are infrequent. 
A few cells in multiseriate rays are disjunctive: conspicuous air spaces form 

between them (Fig. 39). These spaces mostly form separations in tangential walls 
rather than vertical radial and horizontal ray cell walls. 

Ray cell walls bear pits that are often conspicuously or inconspicuously bordered 
as seen in sectional view (Fig. 40). Bordered pits were recorded as abundant in 
ray cell walls except in the samples that had ray cell walls with thin unlignified 

Table 2. Sample diameter compared to quantitative wood features. 

Mean vessel 
Mean no. of Mean vessel element length, Mean tracheid 

Sample diameter, mm vessels per mm2 diameter, j4lll ,.m length, ,.m 

> 10 (N = 11) 92 38 753 789 
<6 (N = 11) 93 31 589 696 
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walls (E. gerardiana, E. monosperma). Bordered pits on ray cells were also re
ported in the New World species (Carlquist 1989). Bordered pits in Ephedra ray 
cells tend to be more common on tangentially oriented walls, but as shown in 
Figure 40, bordered pits are often just as common on walls oriented in other 
directions. Attention is called to the fact that one can see borders on ray cell pits 
clearly only in sectional view. Radial sections are ideal for seeing these pits in 
sectional view. Lack of reports of bordered pits in ray cell walls is probably due 
to the difficulty of seeing borders on ray cell pits in alternative ways. Borders are 
not mentioned on ray cell pits by Fahn et al. (1986), who claim that vessel-to
ray pits are half bordered (simple pits on the ray side of the contact). Careful 
search has revealed only fully bordered pit pairs in vessel-to-ray pits in my ma
terial. However, I should stress that contacts between vessels and ray cells are 
infrequent, although contacts between tracheids and ray cells are common (see 
for example Fig. 38). The concept of vessel restriction patterns (Carlquist and 
Zona 1988) is probably not truly applicable to this paucity of vessel-ray contacts, 

but certainly one notices fewer vessels in contact with rays than one would expect 
on the basis of random vessel distribution. 

Storied Structure 

In the New World species of Ephedra, a nearly storied condition was reported 
in only one species, although some tendency could be observed in other species 
(Carlquist 1988). This tendency can also be seen in some of the Old World species. 
In the stem of E. kokanica, cult. Hortu. Bot. Nikitensis (Fig. 33), tracheids tend 
to terminate at particular levels (indicated by arrows). These levels are not so 
neatly demarcated as in angiosperms with short imperforate tracheary elements 
(usually libriform fibers), but the phenomenon is nevertheless a real one. A ten

dency toward storied structure was also observed in E. equisetina (Elias 97 46) 
and E. foliata. Together with the previous report of storying in the genus, the 
present account confirms Ephedra as the first genus of gymnosperms in which 
storying, or a tendency toward it, has been reported. Storying is related to shortness 
of the fusiform cambial initials (Bailey 1923), so the occurrence of storying in 
Ephedra rather than in any other gymnosperm is to be expected. The tracheids 
of Ephedra are shorter than those of other gymnosperms (Bailey and Tupper 

1918). 
One hint of the storied condition can be seen in a transection of E. equisetina 

(Fig. 24). The tracheids in that transection all appear at approximately their widest 
diameter. If storying were absent, one would expect narrow tracheid tips to be 
intermixed at random with wider segments of tracheids in a transection. 

Crystals 

As in the New World species of Ephedra, minute rhomboidal calcium oxalate 
crystals occur on the surfaces of tracheary elements and wood ray cells in the 
specimens of the present study. These crystals are relatively sparser among tra
cheary elements (Fig. 43) than among ray cells (Fig. 42). The crystals are smaller 

on the surfaces of wood cells (Fig. 42, 43) than on the surfaces of phloem ray 
cells, where they are denser and show a great range in size (Fig. 44). At points 
where cells are closely appressed to each other, there are few crystals; they tend 
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to occur in the interstices among cells, lining intercellular spaces or filling what 
would otherwise be intercellular spaces (Fig. 42). Scanning electron microscopy 
confirms that crystals are not formed inside cell walls of Ephedra, but on surfaces 
of these cells. They may be somewhat embedded in the outer cell surfaces, but 
not deeply (Fig. 43). Crystals dislodged by the sectioning process may leave hex
agonal impressions in the cell wall surface (Fig. 43). In the epidermis of Ephedra, 

crystals occur abundantly (Fig. 45), but apparently in the cuticle rather than in 
the epidermal cell wall, in agreement with the developmental findings of Oladele 

(1982), who worked with conifers. 
Crystals were observed to be quite abundant in the wood of E. campy/opoda, 

E. ciliata (Grant 15309), E. distachya var. distachya, E. equisetina (Fig. 43), E. 

fragilis, E. intermedia, and E. przewalskii (Fig. 42). Crystals were least abundant 
in the wood of E. aphylla, E. ciliata (Koelz 13087: crystals not seen upon careful 
search), E. kokanica (both collections), and E. procera (Mulkidzhanyam 27-IX-

1962). The listings in the two preceding sentences are based mostly upon light 

microscopy. With light microscopy, crystals can readily be seen as a granular 
deposit among cells, but where scarce, they might be missed. Fahn et al. (1986) 
report crystals as absent from woods of the four Ephedra species they examined. 
Presumably they were looking for crystals inside cells rather than on the outer 
cell surfaces. 

Cellular Contents 

Starch was observed in ray cells of E. alata, E. altissima, E. distachya var. 
distachya, E. fo/iata, E. fragi/is, E. intermedia, E. kokanica, and E. procera. Very 
likely, starch occurs widely in ray cells of the Old World species of Ephedra, but 
the dried specimens available are probably not uniformly suited to revealing the 
presence of starch. Starch occurrence was better demonstrated in the New World 
species (Carlquist 1989), in which more numerous specimens were available in 
liquid preserved form. 

Massive deposits of darkly staining compounds are illustrated in the fiber
tracheids of E. equisetina (Fig. 32) and in the ray cells of E. aphylla (Fig. 39). 
Massive darkly staining deposits were also observed in ray cells of E. aphy/la and 
E. intermedia, but droplets of these compounds can be observed in woods of 

many Ephedra species. 

ANATOMICAL DESCRIPTIONS: BARK ANATOMY 

Because bark is often attached to wood sections, observations on bark anatomy 
could be made conveniently. Because bark portions were not present on all samples 
provided, and adherence of bark to wood sections varied, comparable data are 
not available for all species. However, the range of phenomena seen in Ephedra 

bark is certainly evident. 
As with the New World species of Ephedra, four types of sclerenchyma are 

present in the secondary phloem and periderm: 

1. Fibers with gelatinous walls in the axial phloem. 
2. Fibers with lignified walls in the axial phloem. 
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Fig. 42-45. SEM photographs of minute calcium oxalate crystals in stems of Ephedra. -42. E . 

przewalskii (Morefield 4991), ray cells from tangential section; crystals among ray cells.-43. E. equiseti

na (Elias 9746), crystals on tracheids from tangential section.-44-45. E . pachyclada (Freitag 3424), 

portions from stem radial section.-44. Crystals on outer surfaces of secondary phloem ray cells.-

45 . Outer wall of epidermal cell; most of the photograph (except for narrow strip at bottom) is cuticle 

(or cutinized wall), in which numerous crystals are embedded. (Fig. 43-45 , scale at right in Fig. 42 

[bar= 10 I'm] .) 
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3. Sclereids in phloem rays, formed from ray parenchyma. 
4. Phelloderm sclereids. 

There are species of Ephedra in which gelatinous fibers were not observed in 
bark. Absence of fibers is shown for E. equisetina in Figure 46. Only a short 
distance outside the cambium in Figure 46, sieve cells are crushed. Phloem pa
renchyma cells intermixed with the sieve cells enlarge and fill the space left by 
the shrivelling sieve cells. At the upper end of Figure 46 is a periderm. The 
phellogen has produced numerous layers of phellem, plus a few layers of thin
walled phelloderm. Species in which fibers with gelatinous walls were not observed 
in secondary phloem include E. gerardiana (Ludlow 407 4) and E. intermedia. 

Fibers with gelatinous walls, but without accompanying lignified fibers or scler
eids with lignified walls, were observed in E. aphylla (SJRw-12725), E. ciliata, 

E. distachya var. monostachya, E. equisetina, E. foliata (Fig. 48, top), E. fragilis, 

E. gerardiana (Freitag 1425, Polunin 884), and E. sarcocarpa. 

Fibers with gelatinous walls mixed with fibers with lignified walls are shown in 
Figure 4 7. The fibers with gelatinous walls, yellowish in unstained sections, stain 
dark red with safranin. This accounts for the very dark appearance of these fibers 
in Figure 47. The fibers with lignified walls were observed in bark of E. alata, E. 

aphylla (Cambridge University Botanic Garden), E. campylopoda, E. distachya 
var. distachya, E. intermedia, E. kokanica, E. lomatolepis, E. major, E. procera, 

E. sarcocarpa (Fig. 50, bottom; see enlarged, Fig. 52), and E. sinica. 

Sclereids in ray areas are illustrated for E. aphylla in Figure 49 (below, middle). 
Other species in which ray sclereids were observed include E. campy/opoda, E. 

kokanica, E. major, and E. procera. 

Phellem consists ofthin-walled cells that stain reddish with safranin (Fig. 49, 
above). Phellem cells are compacted at the outer surface of periderm, as shown 
in Figure 54 (right). Phelloderm, however, can consist of sclereids with lignified 
walls, as mentioned earlier (Carlquist 1989). Phelloderm sclereids are shown in 
Figure 48, just below center. Phelloderm sclereids may form as many as five layers 
per periderm. Phelloderm sclereids were observed in E. foliata and E. kokanica, 

which are closely related (if not actually conspecific). Very likely phelloderm 
sclereids characterize more of the Old World species than these, but sectioning 
of stems by means of a sliding microtome is likely to result in tearing the periderm 

away from bark, especially if it contains sclereids. 
Phelloderm that is thin walled but rich in rhomboidal crystals of various sizes 

is illustrated here for E. sarcocarpa. Figure 50 shows the entire periderm together 
with underlying phloem that consists at this point mostly of fibers. In Figure 51, 
most of the photograph is devoted to the thin-walled phelloderm cells (phellem 
at top of photograph only). Crystals of various sizes, some much larger than those 
seen among xylem cells, densely cover the outside surfaces of the radially elongate 
phelloderm cells. In Figure 52, an enlarged portion of the juncture between crys
talliferous phelloderm (above) and phloem fibers (below) is shown. The density 

of the crystals is evident. One can also see crystals among some of the outer fibers. 
Most of the fibers (those that appear pale gray) have lignified walls. A few fibers 

with gelatinous walls (darker gray) may also be seen. Crystals in thin-walled 
phelloderm are also illustrated for E. procera by means of SEM in Figure 54. 

Successive periderms were not illustrated in the earlier study (Carlquist 1989), 
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Fig. 46-49. Transections of bark of Ephedra.-46. E. equisetina (Elias 9746), periderm at top, 

secondary xylem at bottom; most of photograph shows secondary phloem devoid of fibers.-47. E . 

aphy//a (Cambridge University Botanic Garden), secondary phloem rich in gelatinous fibers (dark); a 

few lignified fibers (upper right) also present.-48. E. fo/iata (SJRw-37203) , gelatinous fibers in old 

secondary phloem (above), phelloderm sclereids (middle, left to right).-49. E. aphy//a (Cambridge 

University Botanic Garden), bark with phellem above (pale cells), ray sclereids in phloem ray area, 

below, just left of center. (Fig. 46-49, scale above Fig. 2.) 
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although they may occur in all Ephedra species. Successive periderms are illus
trated here for E. campylopoda (Fig. 53). The pale gray bands in that photograph 
are phellem; the darker strips represent collapse of secondary phloem. 

ANATOMICAL OBSERVATIONS: PITH 

Pith although not produced by secondary growth, is conveniently studied in 
stems sectioned on a sliding microtome. Comparative anatomy of pith has been 
very little studied in Ephedra (see Thompson 1912, Martens 1971 ), so an account 
is offered here. 

Pith composed of thin-walled cells, but no sclereids and no fibers, was observed 
in E. major, E. monosperma, and E. procera. 

The most common pith condition, both in New World and Old World species 
of Ephedra, consists of gelatinous fibers at the periphery of the pith, combined 
with thin-walled pith cells. A few such gelatinous fibers can be seen in Figure 57, 
top. Other species in which gelatinous fibers occur at the periphery of the pith 
include E. aphylla, E. campylopoda, E. gerardiana (Freitag 1425), E. kokanica, 

and E. lomatolepis. 

In a few species gelatinous fibers were observed in strands throughout the pith. 
Sclereids can be found scattered throughout the pith. Both of these conditions 
were present in E. sarcocarpa (Fig. 55) and E. alata (Fig. 56). The great similarity 
between these species with respect to pith anatomy is interesting, because they 
are placed in divergent parts of the genus in Stapfs (1889) system. Ephedra alata 

belongs in Section Alatae (bracts of female strobili papery at maturity), whereas 
E. sarcocarpa is placed in Section Ephedra [= Pseudobaccatae] (bracts fleshy at 
maturity). 

In a scattering of Ephedra species, dark deposits are present in pith cells. These 
may be seen in the pith of E. distachya var. distachya. 

CONCLUSIONS 

Wood Anatomy and Habit 

In the earlier study (Carlquist 1989), correlations between wood anatomy and 
habit could be derived clearly: many samples studied were close to optimal size. 
This permitted one to separate differences that relate to habit or to ecology from 
those that represent degrees of juvenilism. More significantly, the New World 
species can be categorized rather easily with respect to habit. In the Old World 
shrubs, intermediate sizes between small and large occur, but, more significantly, 
in a number of species sprawling shrubs grade into climbing shrubs or even upright 
sqrubs. In the Old World species, one can perhaps best categorize the effect of 
habit on wood anatomy by selecting particular species with distinctive habit 
features and comparing them to the earlier (Carlquist 1989) findings. 

The medium-sized shrubs in the study of the New World Ephedra species 
showed values for mean total perforation area per mm2 of transection of about 
0.10. This value is also closely approximated here by the species E. alata, E. 

distachya var. distachya, E. fragilis, E. intermedia, E. major, E. procera, E. prze

walskii, E. sinaica, and E. strobilacea. One of these, E. fragilis, can be described 
as having a scrambling habit, but it is not scandent. Species that could be termed 
scandent or ascending (values in parentheses from Table 1, column 10) include 
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Fig. 50-53. Transections of bark of Ephedra.-50-52. E . sarcocarpa (Freitag 14017).-50. Portion 

of thin bark with periderm above, a few secondary phloem fibers below.- 51. Portion of periderm to 

show phellem (flattened cells above), phelloderm cells (bottom three-quarters of photograph) densely 

bearing crystals.-52. Portion of crystal-bearing phelloderm (above) and fibers of secondary phloem 

(below).- 53. E. campylopoda (Davis 18067), successive periderms; phellem bands pale gray, secondary 

phloem bands dark. (Fig. 50, scale above Fig. 2; Fig. 51 , 52, scale above Fig. 24; Fig. 53 , scale above 

Fig. 1.) 
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E. altissima (0.24), E. aphylla (0.30), E. foliata (0.36), and E. kokanica (0.24). 
These values are comparable to ones reported for the scandent species E. pedun
culata, E. triandra, and E. tweediana (Carlquist 1989). Ephedra equisetina (0.12, 
0.18, 0.14) has values above those of the other shrubs, perhaps because it is a 
large shrub rather than a small one; treelike shrubs in the earlier study had values 
above 0.10. 

The very low perforation area values for E. gerardiana (0.04, 0.0006, 0.01) and 

E. monosperma (0.006) relate to their entry into a nearly vesselless condition, 
rather than diminution in size by itself, and ecology is inseparably related to 
habit for these two species. Values lower than one would expect for shrubs (e.g., 
E. campylopoda, 0.05) are probably related to diameter of the wood sample. If 
one takes a twig sample from a large shrub, one obtains wood the quantitative 
features of which are like those of a small shrub. For example, in angiosperms, 
wood of branches has narrower vessels and more numerous vessels per mm2 than 
one finds in the main stem (Carlquist 1969). The value for combined area of 
perforations per mm2 was similar for scandent species and treelike species of 
Ephedra in the earlier study (Carlquist 1989). The relatively high value for E. 
aphylla might correspond to either habit, because the habit of this species, ac
cording to Stapf(1889), can be either a climbing or a self-supporting large shrub. 

Growth rings of scandent and sprawling species are of type 1 (vessels only 
slightly narrower in latewood, not fewer in number than in earlywood). This is 
in accord with the relatively greater area of stems devoted to conduction in 
scandent dicotyledons, as compared to nonscandent ones (Carlquist 1975). The 
larger area devoted to conduction is evident also in the total perforation area per 
mm2 for Ephedra. This may, in tum, be an expression of the greater transpirational 
requirements of larger shrubs as compared to smaller ones, because scandent 
Ephedra species tend to be large and bear more total transpirational stem area 
than do nonscandent shrubby species of Ephedra. Larger scandent Ephedra species 
do not grow in localities extreme for the genus, so that the loss of safety that is 
inevitably coupled with greater transection area devoted to conduction is tolerable. 

Wood Anatomy and Organography 

Because I was unable to collect wood samples of Old World species of Ephedra, 
samples from various parts of a single plant were not available. Thereby, I could 
not compare wood of roots, upright stems, and underground stems. Such com
parisons were made for wood of the New World species (Carlquist 1989). Wood 
of roots proved to be more mesomorphic (e.g., wider vessels) than that of stems; 
wood of underground stems was intermediate. Greater width of rays-perhaps 
related to storage of water and starch-was observed in roots as compared to 
stems. Ephedra monosperma forms a very diminutive shrub Oess than 1 dm tall) 
according to Stapf(1889). Bobrov (1968) described it as having stems, apparently 
buried in the soil, arising from a knotty caudex. The habit of E. gerardiana (Ludlow 
407 4) is not dissimilar. The stems of this specimen were very short, perhaps the 

result of browsing, so the stem studied was apparently an underground stem from 
which the aerial stems branched. Both in E. monosperma and the collection of 
E. gerardiana just described, multiseriate rays are composed of thin-walled non
lignified cells. Lack of mechanical strength in these ray cells may be related to the 
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Fig. 54-57. Bark and pith features of Ephedra.-54. E. procera (Mulkidzhanyam 27-IX-1962), 

compressed phellem cells (right) and subadjacent crystalliferous phelloderm cells (left).-55-57. Tran

sections of pith.- 55. E. sarcocarpa (Freitag 140 17), patches of gelatinous fibers (dark).- 56. E. a/at a 

(Harris 26-111-1960), gelatinous fibers (dark) plus sclereids with variously thick walls and thin-walled 

pith cells.-57. E. distachya var. distachya (Mulkidzhanyam 13- VII-1965), a few gelatinous fibers at 

pith periphery (above) and (below), thin-walled cells with dark contents. (Fig. 54, scale in Fig. 25; Fig. 

55-57, scale above Fig. 2.) 
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underground nature of the stems. Also, nonlignified cells with thin walls would 

readily accommodate changes in volume if storage of water within the stem 

fluctuated with season. 

Ifthick lignified ray cell walls contribute to mechanical strength of a shrub, one 
would expect them in larger shrubs. The Old World species of Ephedra with ray 

cell wall thickness greater than 3.0 JI-m include E. altissima, E. equisetina, E. 
procera, and E. przewalskii (Table 1, column 16). All of these species are shrubs 

more than 1 m tall according to Stapf (1889) and Bobrov (1968); the sample 

diameter was also of greater than twig size for these species. 

Wood Anatomy and Ontogeny 

A clear trend showing increase in vessel element length or tracheid length with 

increase in stem diameter was demonstrated in the New World species of Ephedra 
(Carlquist 1989). Likewise, that study showed increase in vessel diameter with 

stem diameter. Comparable data are obtainable from the present study (Table 2). 

One would expect that if vessel diameter increases with sample diameter, vessel 

density ought to decrease. That result is not obtained from figures represented in 

Table 2, yet I believe the data are representative (e.g., one nearly vesselless spec

imen falls under each of the two specimen-diameter categories). The increase in 

vessel diameter shown in Table 2 certainly appears valid, judging from the New 
World species (Carlquist 1989, Table 1). Increase in vessel diameter with sample 

diameter is probably a common trend in dicotyledons, but is often not reported 

because sample diameter is usually unknown or unreported. Increased vessel 

diameter would have the effect of providing greater conductivity. The fact that 

vessel density stays the same suggests that conductive safety is not lessened. 

Perhaps conductive safety is theoretically lessened slightly, for if vessel density 

stays the same while vessel diameter increases, there would have to be a small 

diminution in number oftracheids per mm2
• Tracheids have the ability to confine 

air within individual cells, bounded as they are by membranes in pits; in vessels, 

bubbles can, at least theoretically, spread from one vessel element into an entire 

series of vessel elements. Therefore increased vessel area would lessen conductive 

safety, but I believe that tracheids are present in such large numbers in Ephedra 
wood that any of such diminution of conductive safety would be small. 

Increase in length of vessel elements and tracheids with increase in sample 

diameter is clear, if not dramatic, as demonstrated in Table 2. This trend accords 

with the findings of Bailey and Tupper (1918) and subsequent research. 

Also cited in the anatomical descriptions above, as well as in the study of the 

New World species, is the tendency for ray cells in small stems to be upright or 
square, whereas ray cells in larger stems are commonly to predominantly pro

cumbent, with upright cells restricted to sheathing positions in multiseriate rays. 

Although not demonstrated with clarity in the present study, the New World 

Ephedras show widening and lengthening of multiseriate rays with increase in 

sample diameter to a significant degree (Carlquist 1989, Table 4). 

Storying is reported in three species here (E. equisetina, E. foliata, E. kokanica). 
The wood samples of E. kokanica were not notably large in diameter, so degree 

of storying does not seem directly related to age. In dicotyledons, there is a 

tendency for less storying in twigs than in mature stems, but the onset of storying 
occurs relatively early (Bailey 1923). One would like to know if storying would 
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have been even more pronounced had samples of large diameter of E. kokanica 

been studied. 

Wood and Bark Anatomy and Ecology 

Determining the ecological regimes in which the various specimens grew is 
nearly impossible. One can, however, find ways of showing the relationship be
tween ecology and wood anatomy in Ephedra. Ephedra localities range from dry 
to extremely dry, and from cool in winter to extremely cold. Ephedra on the 
steppes of Asia must experience extreme summer heat as well. High alpine species, 
from localities above 4000 m, such as E. gerardiana in Tibet and E. rupestris in 
Argentina, experience extremes ofboth cold and dryness. The high-alpine species 
may well experience a growing season of only a few weeks per year. 

The occurrence of helical thickenings in vessels of Ephedra is interesting with 
relationship to ecology. In the New World species, this feature may be mono
phyletic; it characterizes only fleshy bracted North American species, and is absent 
in all South American species, regardless of habitat. In the Old World species, 
helical thickenings are not present in species centered in southern Europe, North 
Africa, Mediterranean islands and shores, and India. Helical sculpture is char
acteristic of species ofCentral Asia, from western China (E. przewalskii, E. sinica) 

to the Middle East (E. distachya, E. sarcocarpa, E. strobilacea). These species 
belong to section Alatae (E. przewalskii) as well as section Ephedra (Pseudobac

catae). Helical sculpture in vessels may have originated polyphyletically in the 
Old World species, and probably has originated independently of the phenomenon 
in the New World species (in which helical thickenings are present in tracheids 
of any species in which they are present in vessels, unlike the condition in the 

Old World species). 
Certainly in dicotyledons there is a relationship between extreme climates, 

particularly those involving coldness or dryness, and presence of helical thick
enings (e.g., Baas 1973; Carlquist 1966, 1982). The geographical distribution of 
the Old World species of Ephedra with helical thickenings in vessels or tracheids 
corresponds to areas with strongly continental climates, and extremes of coolness, 
heat, and drought. Let us assume, then, that helical thickenings in Ephedra are 
one indicator of climatic extremes. Table 3 has been constructed using helical 
thickenings in vessels in order to see what other features of wood may be indicative 

of xeromorphy . 
In Table 3, vessel diameter is less in species with helical thickenings, as would 

be expected if narrow vessels are a criterion ofxeromorphy. Narrowness of vessels 
is certainly an indicator ofxeromorphy in woods of dicotyledons (Carlquist 1966, 
1975). If one has in mind vessel density of xeromorphic dicotyledons (Carlquist 
1966, 1975) and looks at the results in Ephedra (Table 3), however, one obtains 

Table 3. Helical sculpture in tracheary elements compared to quantitative wood features. 

Mean number of Mean vessel Mean vessel element 
Degree of sculpture presence vessels per mm2 diamter, ~m length, ~tm 

Present (N = 14) 59 30 573 
Absent (N = 21) 104 35 650 

\· 
;k_ 

!•:S' 
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an unexpected result: vessels are fewer per mm2 in species with helical thickenings 
than in those that lack them. In fact, the results in Ephedra are exactly what one 
would expect if one takes into account the conductive safety oftracheids: tracheids 
are safer than vessels according to the considerations mentioned earlier (see also 
Ewers 1985). All of the nearly vesselless Old World species of Ephedra have 
helical thickenings in vessels. The replacement of vessels by tracheids in the woods, 
so to speak, can be seen as a gain in conductive safety. One can, however, also 
interpret an approach to vessellessness in these species of Ephedra as lack of 
selection for the conductive efficiency that vessels might supply, a lack of selection 
quite understandable in these plants, which have such small size and, in relatively 
cold conditions, presumably low transpiration and conduction rates. In either 
case, reduction of vessel density in Ephedra can, as Table 3 indicates, represent 
xeromorphy. 

Table 3 seems to show that species with helical thickenings also have shorter 
vessel elements than those without helical thickenings (tracheid length, not pre
sented in this table, would show the same pattern). However, shorter vessel ele
ments in these species may connote smaller plant size, which is correlated with 
shorter tracheary element length in conifers (Carlquist 1975). 

Allied to reduction in vessel density identified in Table 3 as a xeromorphic 
trend is the absence of vessels in latewood of growth rings ("0" in Table 1, column 
2). This strategy combines conductive efficiency of earlywood with optimal safety 
oflatewood (or lack of requirement for conductive efficiency in latewood), as in 
the dicotyledonous type 5 growth rings (Carlquist 1980). This strategy is not 
available to dicotyledons that have fiber-tracheids or libriform fibers instead of 
tracheids. 

The presence of minute calcium oxalate crystals on the surface of wood and 
bark cells was reported in the New World species (Carlquist 1989) and these 
crystals are equally prevalent in the Old World species, although crystals are more 
abundant in some species than in others. Crystals are larger and denser on surfaces 
of phloem and phelloderm cells than crystals on outer surfaces of xylem cells in 
Ephedra. Greater abundance and size of crystals in peripheral positions of the 
stem, lesser abundance and size of crystals in the wood correlate with deterrence 
of a chewing or boring insect. There has been little work demonstrating the 
effectiveness of crystals in this way, however, and one must concede data would 
be difficult to obtain. Likewise, there is a presumption, largely untested, that 
sclereids and fibers, such as one sees in bark and pith of Ephedra, also function 
in deterring predation by insects or larger animals. 

One might think that wood anatomy of Ephedra would be readily altered by 
cultivation. Some features one might expect to show modification as a result of 
greater water availability in cultivation would be vessel diameter and nature of 
growth rings. The following species in the present paper are represented by both 
cultivated and wild-collected specimens: E. altissima, E. aphylla, and E. procera. 

In each of these pairs, there is little difference in vessel diameter between the 
cultivated and the wild-collected specimen. These pairs may provide an insuffi

cient basis for interpretation. Alternatively, cultivation may not be as favorable 
as one may suspect. Even though botanic gardens do tend to have greater water 
availability than wild areas, botanic gardens may have colder winters. A large 
number of Ephedra species are cultivated at the Cambridge University Botanical 
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Garden and the Copenhagen Botanical Garden. Although these localities do not 
have truly continental winters in terms of extreme lows, winters in these cities 

are certainly harsher than in areas with Mediterranean-type climates, and Ephedra 

species from such climates are grown in these cities. That a large number of 
Ephedra species can be cultivated in these localities is, in fact, surprising. 

Wood, Bark, and Pith Anatomy and Systematics 

Very few wood features in Ephedra are distributed in a way that corresponds 

to the infrageneric classification ofStapf(1889), the best attempt to date at creating 

an infrageneric system for Ephedra. 

The growth-ring types show considerable variability. However, the type 1 growth 

ring (latewood vessels very little narrower or less numerous than earlywood ves

sels) is evidently characteristic of particular species. Most of these are climbing 

species, so that one might credit Stapfs "tribe" Scandentes as a natural group on 

the basis of this single feature. However, E. americana H. & B., an upright shrub, 

also has growth rings of this type. In the case of this species, the relatively non

seasonal climate in the subtropical latitudes of the central Peruvian Andes, rather 

than a climbing habit, is correlated with the growth-ring type. 

Ephedra americana consistently has borders on perforations to a rather more 

prominent degree than one finds in other species. Prominently bordered perfo

rations may be found in occasional narrow vessels in other species. Helical thick
enings in vessels and tracheids are not present in all of the species that occur in 

extreme environments. The genetic information that leads to formation of helical 

sculpture probably is not readily evolved, and thus this feature may be regarded 

as a specific criterion in the species that possess it. 

A tendency toward storying of tracheids was noted in roots of E. coryi Reed 

var. viscida Cutler (Carlquist 1989); in the present study, it was observed in E . 

equisetina, E. foliata, and E. kokanica. This feature is not yet reliably enough 
established so that one can use it as a specific criterion, but further investigation 

of this feature is certainly warranted. 

Presence of notably thick-walled ray cells in E. equisetina, E. procera, and E. 

przewalskii is a feature worthy of consideration as a specific criterion in those 

species. Presence ofuniseriate rays in appreciable numbers (multiseriate rays occur 

in all species) is characteristic of E. aphylla, E. foliata, E. intermedia, and E. 

kokanica among the Old World species, and a scattering of New World species. 

Three of the species just listed are climbing species, but one is not; in the New 

World species, one species in which uniseriate rays are common is the climbing 

E. pedunculata, but two New World species with uniseriate rays are nonscandent. 

Both the ray cell wall thickness and the presence of uniseriate rays are, however, 

difficult to express in quantitative terms. 

Occurrence of crystals in very small numbers (E. pedunculata) or large numbers 

(E. przewalskii, E. trifurca) may be of specific significance, although relative abun

dance is difficult to express in quantitative terms. 

Very likely there are some specific criteria in bark and pith anatomy. The 

occurrence of strands of gelatinous fibers scattered throughout the pith, together 

with isolated thick-walled sclereids, was observed in E. alata and E. sarcocarpa 
but not in other species. 



292 ALISO 

Even more difficult than establishment of specific criteria within the genus with 
respect to wood, bark, and pith anatomy is establishment of polarity in these 
character states. Are the relatively prominent borders on perforations, the presence 
ofuniseriate rays, and the type 1 growth rings primitive features in E. americana? 

I find difficulty in assenting because of the distribution of these features elsewhere 
in the genus. Helical thickenings would probably appeal as a specialization a priori 

to some workers, and in view of the occurrence of this feature in habitats more 
extreme for the genus, I would probably be inclined to agree. We cannot use vessel 
element length as a kind of measuring stick by which to judge degree of phyletic 
advancement of other features in the wood of Ephedra as we can in dicotyledons: 
in gymnosperms, tracheary element length relates to plant or organ size, not 
phyletic status (Carlquist 1975). We cannot use degrees ofperforation plate sim
plification as a phyletic indicator in Ephedra, as we can in dicotyledons and 
monocotyledons: the number of perforations, the only significant variable in this 
respect in Ephedra, is governed by vessel diameter, which varies with respect to 
ecology and position of a vessel in a growth ring. Vessel element length is correlated 
primarily with ontogeny in Ephedra, also with plant size (which usually relates 
closely to age of plant, although not in shrubs of high alpine situations). There is 
no reason to believe that length of vessel elements in Ephedra is in any way 
conservative or irreversible, and thereby it cannot be a useful phyletic indicator. 

In order to assign polarity to the character states of anatomical features, we 
would very likely have to do a total cladistic analysis of the genus. There are a 
few distinctive features, such as the fleshy or dry bracts of female strobili, or the 
presence of leaves in threes or in pairs. However, even the gross morphological 
characters may not be as readily used for phyletic analysis as in some other groups. 
If Ephedra is ancient, sufficient time for particular features to have evolved more 
than once has occurred, and the "missing links," so useful in analysis of recently 
evolved clades, are fewer. By placing the Ephedra species with dry bracts before 
those with fleshy bracts, Stapf (1889) presumably regards the former as more 
primitive, but there is no compelling reason for this treatment, and even if one 
agrees with it one has no way of knowing, from distribution of other characters, 
whether fleshy bracts evolved once, a few, or many times. Professor Helmut 
Freitag of the University ofKassel, working with vegetative anatomy in an attempt 
to find taxonomic characters, says, "we tried to make use of anatomical characters, 
but unfortunately we were not much more successful than Stapf. We found a few 
rather reliable characters, but not sufficient to produce a working key" (Freitag, 
personal communication). 

Very likely, phylesis within the genus can be elucidated only by chemical studies. 
When chemical studies are available, the phyletic status of particular anatomical 
characters as well as the bract texture, leaf number, habitat type, and other features 
may become clearer. Because of the highly disjunct nature of the genus, accu
mulation of suitable material for a thorough analysis of the genus with respect to 

secondary products as well as genetic material will not be easy. 
In recent years, the concept that Gnetales might be close to angiosperms has 

been revived (Muhammad and Sattler 1982; Crane 1985; Doyle and Donoghue 
1986). Thompson (1912), on the basis of wood and other anatomical features, 
and various workers, on the basis of strobilar morphology and anatomy and on 
the anatomy of the life cycle (see Martens 1971 ), concluded that Gnetales offer 
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many parallelisms to angiosperms, but are not closely related to them. The tra
cheids of Ephedra are like the tracheids of conifers (and other gymnosperms) in 
a number of salient respects (bordered pits large, circular, pit membranes with 
thick torus central to a margo composed of an open mesh of strands). The vessels 
of Ephedra are clearly derived from such tracheids (Bailey 1944). A striking 
feature, not often mentioned, but found in Ephedra and other Gnetales as well 
as in conifers is the intercalation ofbordered pits into the gyres of primary xylem 
helical tracheids. This phenomenon is unknown in angiosperms, Cycadales, and 

Cycadeoideales. 
Uniseriate rays are infrequent in Ephedra, with the exception of a few species, 

whereas in dicotyledons, uniseriate rays are always present in woods with the 
most primitive ray type, Heterogeneous I of Kribs (1935). I do not find any 
compelling reason to say what the primitive ray type in Ephedra might be, although 
multiseriate rays, present in all species, must have been present in the ancestors 
of Ephedra. In only a few species of Ephedra are there cells that could be called 
strands of axial parenchyma. In most Ephedra woods, I was able to find only the 
nucleated cells I am terming fiber-tracheids. Thompson ( 1912) regards these fiber
tracheids as the product of a kind of tracheid dimorphism, an interpretation I 
find entirely plausible on account of their pitting features, wall thickness, and lack 
of septation or subdivision into strands. If this interpretation is correct, wood of 
Ephedra is primitively devoid of axial parenchyma, whereas axial parenchyma is 
present in all phylads of primitive dicotyledons. Thus, there are some clear dis
continuities between wood of Ephedra (and other Gnetales) and wood of dicot
yledons. 

The presence of minute calcium oxalate crystals on the outer surfaces of wood 
and bark cells in Ephedra is so pervasive within the genus, despite the fact it was 
not mentioned prior to my 1989 paper, that one must consider it a basic feature 
of Ephedra. These minute crystals were known in leaf epidermis, and also occur 
in the stem epidermis, apparently in the cuticle (see Fig. 45). I believe the presence 
of these crystals might be considered indicative of relationship to Welwitschia, 

the peculiar "spicular cells" of which, found throughout the plant body, bear 
similar coverings of calcium oxalate crystals. These cells are likely described by 
Parameswaran and Liese (1979), who give a good review. A few instances of cells 
covered with minute calcium oxalate crystals are known in angiosperms (notably 
foliar sclereids ofNymphaeaceae and Schisandraceae: Metcalfe and Chalk 1950). 
However, the majority of instances of cells covered with minute calcium oxalate 
crystals are in conifers, such as leaves of Araucaria (Griffith 19 50) and bark of 
Cupressaceae (Sinz 1925; Wallendorff and Meier 1970), instances in which the 
mode of occurrence of these crystals is like those of Gnetales. This feature is 
worthy of more investigation, perhaps using transmission electron microscopy as 
done by Oladele (1982). 

Some features of Ephedra wood do resemble those of dicotyledon wood, but 
one can explain these are features that show similarity for functional reasons, not 
for reasons of common descent. For example, in rays, the proportion of procum
bent cells increases over time, just as it does in dicotyledons. However, procumbent 
cells are theoretically more efficient at radial conduction of solutes than upright 
cells, so that predominance of procumbent cells in wider stems is physiologically 
understandable. Likewise, the grouping of the nucleated fiber-tracheids into a 
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tangential "diffuse-in-aggregates" configuration provides bands ofliving cells that 
interconnect rays, and offers interconnection between these vertical cells and 
horizontal cells (rays), thereby linking the two photosynthate-containing systems. 
Even the occurrence of borders on ray cell pits of Ephedra and of dicotyledons 
has a similar potential explanation, that offacilitating photosynthate translocation. 
The systematic occurrence of bordered pits in ray cells of dicotyledons does not 
suggest they are primitive for the group: they occur in a wide range of groups, 
and their occurrence seems related to ray physiology entirely. 

The above examples illustrate that elucidation of relationships of Gnetales does 
not appear to be simplifying at all. Because Gnetales are a smaller group than 
angiosperms, and because very few fossils are known (Crane and Upchurch 1987), 
origin of Gnetales appears to be an even more abiding mystery than the "abom
inable mystery" of angiosperm origin, despite the attention the latter has attracted. 
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