

Canadian Journal of Soil Science Revue canadienne de la science du sol

Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, Chernozemic soils

Journal:	Canadian Journal of Soil Science
Manuscript ID	CJSS-2015-094.R2
Manuscript Type:	Article
Date Submitted by the Author:	16-Jun-2016
Complete List of Authors:	Chathurika, Jayathunga; University of Winnipeg, Environmental Studies and Sciences; University of Peradeniya, Department of Soil Science Kumaragamage, Darshani; University of Winnipeg, Environmental Studies and Sciences Zvomuya, Francis; University of Manitoba, Soil Science Akinremi, Olalekan; University of Manitoba, Soil Science; University of Manitoba, Flaten, Don; Univ. of Manitoba, Soil Science Indraratne, Srimathie; University of Winnipeg, Environmental Studies and Sciences; University of Peradeniya, Department of Soil Science Dandeniya, Warshi; University of Peradeniya, Department of Soil Science
Keywords:	Soil management, Chernozemic soil, Chemical properties, Fertility, Fertilzer

SCHOLARONE™ Manuscripts

1	Woodchip biochar with or without synthetic fertilizers affects soil properties and
2	available phosphorus in two alkaline, Chernozemic soils
3	J.A. Surani Chathurika ^a , Darshani Kumaragamage ^a *, Francis Zvomuya ^b , Olalekan O.
4	Akinremi ^b , Donald N. Flaten ^b , Srimathie P. Indraratne ^{a,c} and Warshi S. Dandeniya ^c
5	
6	^a Department of Environmental Studies and Sciences, University of Winnipeg, 515, Portage
7	Avenue, Winnipeg, MB, Canada R3B 2E9
8	^b Department of Soil Science, 362, Ellis Building, University of Manitoba, Winnipeg,
9	MB, Canada R3T 2N2
10	^c Department of Soil Science, Faculty of Agriculture, University of Peradeniya,
11	Sri Lanka
12	
13	
14	Short title: Biochar effects on soil fertility of alkaline chernozems
15	
16	
17	Abbreviations: BC1 , Biochar at 10 g kg ⁻¹ ; BC2 , Biochar at 20 g kg ⁻¹ ; CEC , Cation exchange
18	capacity; EC, Electrical conductivity; MWD, Mean weight diameter; OC, Organic carbon;
19	P _{MR} , molybdate reactive P; SF, Synthetic fertilizer
20	
21	*Corresponding Author. Department of Environmental Studies and Sciences, University of
22	Winnipeg, 515, Portage Avenue, Winnipeg, MB, Canada R3B 2E9
23	Email: d.kumaragamage@uwinnipeg.ca
24	
25	

26 Abstract

27 Fertility enhancement with biochar application is well documented for tropical acidic soils; however, benefits of biochar co-applied with synthetic fertilizers on soil fertility are not well 28 29 documented, particularly for alkaline chernozems. We examined the short-term interactive effects of woodchip biochar amendment with fertilizers on selected soil properties, available 30 31 phosphorus (P) and P fractions of two alkaline Chernozems from Manitoba. Treatments were (1) urea and monoammonium phosphate fertilizers, (2) biochar at 10 g kg⁻¹, (3) biochar at 20 32 $g kg^{-1}$, (4) biochar at 10 $g kg^{-1}$ with fertilizers, (5) biochar at 20 $g kg^{-1}$ with fertilizers, and (5) 33 34 a control. Treated soils were analysed for pH, electrical conductivity (EC), and Olsen P 35 concentration biweekly, and for P fractions, cation exchange capacity (CEC), organic carbon 36 (OC) and wet aggregate stability after 70 d of incubation. Biochar amendment without 37 fertilizers significantly increased soil pH and CEC, but had no effect on EC, while co-38 application with fertilizers significantly increased Olsen P and labile P concentrations. When 39 co-applied with fertilizers, biochar did not significantly increase soil pH relative to the 40 control. Results suggest that biochar improved soil properties and available P in alkaline Chernozems, and the beneficial effects were enhanced when co-applied with synthetic 41 42 fertilizers. 43 Key words: biochar, Chernozemic soils, phosphorus availability, phosphorus fractions, soil 44 properties, synthetic fertilizers 45 46

47

48

49

51	INTRODUCTION
52	Biochar has been used as a soil amendment for centuries, but during the last three decades,
53	the use of biochar in agriculture had received renewed interest because of its potential role in
54	enhancing soil fertility for crop production (Sohi et al. 2010; Jeffery et al. 2011; Gul et al.
55	2015). Soil fertility is defined as "the quality of a soil that enables it to provide nutrients in
56	adequate amounts and in proper balance for the growth of specified plants or crops" (Soil
57	Science Society of America 2001). Since the availability, mobility and uptake of nutrients are
58	dependent on soil physical, chemical and biological properties, biochar effects on soil fertility
59	is often evaluated by considering the improvement of these properties with biochar
60	application (Kloss et al. 2014; Mandal et al. 2015).
61	Biochar is produced by incomplete combustion of organic biomass (Schmidt et al.
62	1999; Lehmann 2007) under anaerobic conditions (pyrolysis) and consists of condensed
63	aromatic forms of OC. This stable form of carbon (C) does not decompose easily in soils
64	(Atkinson et al. 2010), preventing C from returning to the atmosphere as carbon dioxide
65	within a short period. The residence time of biochar in soils therefore can range from
66	hundreds to thousands of years (Lehmann 2007; Gul et al. 2015). Generally, biochar has a
67	higher pH, higher CEC, higher porosity and a greater specific surface area than the other un-
68	charred organic amendments (Lehmann et al. 2006). However, these properties vary
69	depending on the organic material, charring conditions and the formation process (Lehmann
70	2007; Kloss et al. 2012).
71	Application of biochar can increase the CEC of soils (Yamato et al. 2006; Novak et
72	al. 2009) and thereby increase nutrient retention (Glaser et al. 2002; Major et al. 2010).
73	Biochar application has increased soil OC concentration (Novak et al. 2009; Sukartono et al.
74	2011; Angst et al. 2014), and increased soil microbial and mycorrhizal activities (Warnock et
75	al. 2007; Gul et al. 2015), thus promoting microbe-mediated processes in soils such as

76	mineralization of organic matter and phosphorus (P) solubilisation, resulting in an enhanced
77	bioavailability of nutrients. Biochar amendment to soil also improved water-holding capacity
78	(Glaser et al. 2002), and reduced soil acidity (Van Zwieten et al. 2010; Peng et al. 2011),
79	providing favourable conditions for crop growth. Wet aggregate stability, an indicator of soil
80	resistance to erosion by water, increased with biochar application (Ouyang et al. 2013;
81	Soinne et al. 2014), thus minimizing the loss of fertile topsoil due to water erosion. These
82	effects of biochar application on soil physical, chemical and biological properties often
83	improved soil fertility (Glaser et al. 2002; Novak et al. 2009; Major et al. 2010), and thereby
84	increased crop yields (Yamato et al. 2006; Atkinson et al. 2010; Sukartono et al. 2011), while
85	nutrient losses from the soil and environmental pollution were reduced (Laird et al. 2010; Wu
86	et al. 2013).
87	Biochar effects on P availability have been inconsistent (DeLuca et al. 2009; Xu et al.
88	2014); in some soils, biochar application increased P availability, while in others, P
89	availability was not affected or reduced, mainly due to increased P sorption (Novak et al.
90	2009; Kloss et al. 2014; Xu et al. 2014). Since biochar usually contains P in relatively larger
91	concentrations compared to soil, its addition can directly release soluble P and increase
92	available P concentration in amended soils (Atkinson et al. 2010). In addition, changes in soil
93	properties with biochar amendment can alter P availability by influencing P reactions in soils
94	such as adsorption, desorption, precipitation and dissolution (Xu et al. 2014). The
95	mechanisms underlying the P availability changes remain poorly understood, particularly in
96	alkaline and calcareous soils (Farell et al. 2014). Investigating changes in operationally
97	defined P fractions with biochar amendment rather than changes in available P measured
98	using a single extraction provides a better understanding on biochar effects on soil P
99	availability (Farell et al. 2014).

100	Contrary to these positive effects, some researchers found negative effects of biochar
101	application on soil fertility, especially in the short term, such as reduced bioavailability of
102	nutrients such as nitrogen (N) and P (Novak et al. 2009; Zavalloni et al. 2011; Case et al.
103	2012) and increased EC in soil (Méndez et al. 2012; Kloss et al. 2014) resulting in reduced
104	crop yields (Kloss et al. 2014). To mitigate the negative effects of biochar on soil fertility,
105	recent work examined the effects of biochar applied to soil in combination with inorganic
106	fertilizers. Synergistic effects were observed in some studies with co- application of biochar
107	and synthetic fertilizers; however, this effect was inconsistent (Asai et al. 2009; van Zwieten
108	et al. 2010; Saarino et al. 2013; Mete et al. 2015), and needs further investigation.
109	Most of the studies that showed enhanced crop yields and improved soil conditions
110	with biochar application have focused on weathered, acidic, tropical soils with low OC
111	contents and low CEC (Chan et al. 2008; Sukartono et al. 2011). Chernozemic soils
112	(Mollisols) in temperate regions are generally considered fertile, because of their high OC
113	content and high CEC. Laird et al. (2010) observed that biochar amendments have the
114	potential to improve the quality and fertility status of Mollisols; however, results of Kloss et
115	al. (2014) suggest short-term growth inhibition with biochar application in a chernozemic
116	soil. Limited information is available on fertility improvement with biochar application to
117	chernozemic soils, especially when it is co-applied with synthetic fertilizer.
118	In the above context, the objective of this study was to evaluate the effects of two
119	rates of biochar produced from Manitoba Maple woodchips, with and without synthetic
120	fertilizer, on selected soil properties, available P and P fractions, in two low-P Chernozemic
121	soils from the Canadian prairies. Our hypothesis was that biochar has the potential to improve
122	soil fertility of alkaline, low-P chernozemic soils, and the soil fertility improvement would be
123	enhanced with the application of biochar in combination with synthetic fertilizers compared
124	to biochar applied alone.

125

MATERIALS AND METHODS

126 Soil characteristics

127	We collected surface soil samples (0- to 15-cm layer) from two locations, Roseisle (N 49°
128	33.577'; W 098° 24.824') and Justice (N 49° 58.590'; W 099° 52.908') in Manitoba, Canada.
129	The soils were (i) an Almasippi loamy sand (Gleyed Rego Black Chernozem) and (ii) a
130	Newdale clay loam (Orthic Black Chernozem) according to Canadian system of classification
131	(CASCC 1998). A composite soil sample was collected from a farmer's field in each
132	location. Soils were stored at room temperature and field moisture content. A homogenized
133	subsample of soils were air-dried and sieved (<2mm) and used for analysis of soil properties.
134	Particle size analysis was done using the pipette method (Gee and Bauder 1986). Soil pH
135	(1:2, soil: water) and EC (1:2, soil: water) were measured using an Accumet AB15 pH meter
136	and an Accumet AB30 conductivity meter (Fisher Scientific Ltd, Ottawa, Canada),
137	respectively. Soil organic matter determined by the loss-on-ignition at 550 °C was converted
138	to OC by multiplying by the conversion coefficient of 0.58 (Davies 1974). To determine
139	exchangeable cation concentrations, soils were extracted using 1.0 M ammonium acetate
140	(Rhoades, 1982), and exchangeable calcium (Ca), potassium (K), magnesium (Mg) and
141	sodium (Na) concentrations in extracts were determined by inductively coupled plasma
142	atomic emission spectroscopy (ICP-AES, Thermo iCAP 6500 Duo, Cambridge, UK). The
143	sum of exchangeable Ca^{2+} , K^+ , Mg^{2+} and Na^+ was reported as the CEC of the soils. Olsen
144	extractable P in soils was determined by shaking 1-g soil with 20 mL of a 0.5 M NaHCO ₃
145	solution at pH 8.5 with 0.25 g P-free charcoal for 30 min and filtering through a Whatman
146	No. 40 filter paper (Olsen et al. 1954). Inorganic P concentration in extracts was determined
147	by the molybdate blue method (Murphy and Riley 1962) at a wavelength of 882 nm using an
148	Ultraspec 2100 Pro UV/visible spectrophotometer (Biochrom, Cambridge, UK). Available N
149	(Nitrate-N) concentration was determined in 2 M KCl extracts using the Cd reduction method

150 (Mulvaney 1996). To determine total P, soil samples were digested with H_2O_2/H_2SO_4 in a 151 block digester (Akinremi et al. 2003) and P concentration was measured using the molybdate 152 blue method. 153 **Biochar characteristics** 154 We used biochar produced by a local Manitoba farmer using woodchips of Manitoba Maple 155 (Acer negundo L.) from a logging area of Eastern Manitoba for this study. The biochar was 156 produced using top-lit-up-draft technique in 200-L drums as described by Munkhbat et al. (2013) with a pyrolysis temperature in the range of 500 - 650 °C. Total C concentration in 157 158 the homogenized biochar samples was measured using a combustion analyser at 1100 °C.

159 (Carlo Erba NA1500, Milan, Italy). To determine total element concentrations in biochar,

160 representative biochar samples were digested with HNO_3/H_2O_2 using the hot block digestion

161 procedure (United States Environmental Protection Agency, 1986) and concentrations of total

162 P, K, Ca, and Mg in digests were analysed using the same procedure described above. Olsen

163 P, and exchangeable cation concentration (Ca^{2+} , K^{+} , Mg^{2+} and Na^{+}) and CEC of biochar

samples were determined using the same procedures described above for soil analysis.

165 **Incubation studies**

166 The first incubation experiment was laid out in a completely randomized design with a 2×6

167 factorial treatment structure and three replicates per treatment. The factors were the two soils

described above and six amendments: (1) synthetic fertilizer applied at a rate of 50 mg N and

169 15 mg P kg⁻¹ soil (equivalent to 100 kg N and 30 kg ha⁻¹ to a 15-cm depth) using urea and

- 170 monoammonium phosphate (SF), (2) biochar applied at 10 g kg⁻¹ (or 1% w/w, BC1), (3)
- biochar applied at 20 g kg⁻¹ (or 2% w/w, BC2), (4) biochar at 10 g kg⁻¹ with synthetic fertilizer
- 172 (BC1+SF), (5) biochar applied at 20 g kg⁻¹ with synthetic fertilizer (BC2+SF), and (6) an
- unamended control soil (C). Even though our research mainly focused on P availability, we
- supplied N as urea to investigate the interactive effects of fertilizers and biochar amendment

175	on soil properties and P availability. Biochar rate of 10 g kg ⁻¹ and 20 g kg ⁻¹ represent 15 and
176	30 t ha ⁻¹ , considering a soil depth of 15 cm and a bulk density of 1.0 g cm ⁻³ . The lower rate of
177	biochar application was selected based on the findings of previous researchers (Sukartono et
178	al. 2011; Uzoma et al. 2011) that the rate, 15 t ha ⁻¹ is optimum for crop production, and we
179	used 2 x this rate for our higher rate of application. The biochar was sieved and particles of
180	0.2-4.47 mm size were added to soils, with or without fertilizers and thoroughly mixed.
181	Amended and unamended soils were watered to field capacity using reverse osmosis water,
182	and 500 g of the moistened soil was packed into 1.5-L glass incubation vessels to a bulk
183	density of 1.1 g cm ⁻³ . Soils were incubated for 70 d at 20 °C and maintained at field capacity
184	moisture content throughout the incubation period by weighing and adding reverse osmosis
185	water twice a week. Soil samples were taken at 14-d intervals from all incubation vessels and
186	analysed for pH, EC, and Olsen P concentration. At the end of the incubation period, CEC,
187	OC and wet aggregate stability were quantified for control, 10 and 20 g kg ⁻¹ biochar
188	treatments assuming these soil properties did not change substantially with the addition of
189	synthetic fertilizer. Phosphorus fractionation of soil samples from all treatments was
190	conducted at the end of the incubation period using a modified Hedley procedure (Ajiboye et
191	al. 2004; Kashem et al. 2004). Soil samples (0.5 g) were sequentially extracted with 30 mL
192	of deionized water, 0.5 M NaHCO ₃ , 0.1 M NaOH and 1 M HCl. In each extraction step, soil
193	with the extraction solution was shaken at 120 oscillations min ⁻¹ for 16 h, and then
194	centrifuged at 12500 g for 10 min. The supernatant was collected through vacuum filtration
195	using 0.45 μ m membrane filters and the P concentration in each extract was determined by
196	the molybdate blue method (Murphy and Riley 1962). The sum of water-extractable and
197	NaHCO ₃ -extractable P was considered as "labile P" (Kumaragamage et al. 2012). Residual
198	soil remaining after the extraction was digested with H_2O_2/H_2SO_4 in a block digester and total
199	P concentrations of digests were determined.

At the end of the incubation period, soils were sieved through a 4-mm sieve. Wet aggregate stability was measured using a wet-sieving device (Yoder 1936). A 50-g sample was placed on a filter paper and wetted up slowly on a tension plate at 10 cm tension for one day. Sieves were assembled in the order of 2.0, 1.0, 0.5 and 0.25 mm. The sample was placed onto the top sieve and then wet-sieved for 10 min at a frequency of 30 strokes min⁻¹. Soil remaining on each sieve was removed and oven-dried at 105 °C overnight to obtain the mean weight diameter (MWD) (van Bavel 1949) using the equation:

$$X = \sum_{i=1}^{n} x_i w_i$$

Where X = Mean Weight Diameter (mm), n= number of size fraction+1, x_i = mean diameter of a given size range of aggregates separated by sieving, and w_i = weight of aggregates in that size range as a fraction of total dry weight of sample.

A second, separate incubation study that ran in parallel, determined treatment effects 210 211 on soil microbial activity during incubation by measuring microbial respiration. Moist soil 212 (10 g) from each treatment (same as in the previous incubation study) was placed in an 213 incubation vessel with a vial containing 5 mL of freshly prepared 0.1 M NaOH to trap 214 evolved CO₂. Another incubation vessel was maintained without soil as a blank treatment. 215 Incubation vessels were kept covered using Parafilm (Fisher Scientific, Pittsburgh, PA). 216 During the first 14 d, the amount of CO_2 trapped in NaOH was quantified by titrating the 217 NaOH remaining in the vial with 0.1 M HCl on 2, 7 and 10 d. Thereafter, trapped CO_2 was 218 quantified every 14 d for 70 days. 219 **Statistical analysis** 220 Analysis of variance (ANOVA) of pH, Olsen P concentration, EC and microbial respiration 221 data was performed using the MIXED procedure in SAS v9.3 (SAS Institute 2011) with soil

and amendment as fixed effects and time as the repeated measure factor. A two-way ANOVA

was conducted for CEC, organic matter, wet aggregate stability and P fractions, with soil and 223 224 biochar rate as fixed effects. Normality of data was tested using the Shapiro-Wilks test (W< 225 0.9) from PROC UNIVARIATE. For data that were not normally distributed (wet aggregate 226 stability, and P fractions extracted with NaOH, HCl and residual P), natural log transformed 227 data were used for analysis to meet the assumption of normality of residuals. The LSMEANS 228 function in SAS was used to compare treatment means, with adjustments made using Tukey's 229 pairwise-comparison method for soil properties and available P, and using Fisher's protected 230 LSD method for P fractions.

231

RESULTS

232 Initial soil properties and biochar properties

Initial soil and biochar properties are presented in Table 1. Based on the OC and total N
concentrations of biochar, the added rates of biochar at 10 and 20 g kg⁻¹ provided OC at rates
of 3.1 and 6.2 mg kg⁻¹ soil (4.7 and 9.4 t ha⁻¹) respectively, while the amount of total N added
was 10.8 and 21.6 mg kg⁻¹ soil, respectively. Based on the Olsen P concentration in biochar,
the added rates of 10 and 20 g kg⁻¹ provided available P at rates of 3.0 and 6.0 mg kg⁻¹ soil,
respectively.

239 Both soils had neutral to slightly alkaline pH (Table 1) indicating a favourable pH for 240 crop production. Both soils were non-saline, and had low available P concentrations. The 241 loamy sand had lower soil OC content, CEC, and available nutrients, and was therefore less 242 fertile in general than the clay loam. According to the rating system used in Manitoba 243 (Manitoba Soil Fertility Advisory Committee 2007), loamy sand had "moderate" available N 244 and "very low" available P, while the clay loam had "high" available N and "low" available 245 P. Thus both soils showed a severe P-limitation for crop production and P is the main focus 246 for the evaluation of fertility effects in this experiment. Biochar used in the current study had an alkaline pH, which was substantially greater than the pH of both soils. The total C and OC 247

248 contents of biochar were lower than values reported previously for wood based biochars 249 (Lehmenn et al. 2002; Glaser et al. 2002) but greater than the values reported by Major et al. 250 (2010). Cation exchange capacity was similar to CEC reported previously for biochar made 251 from various sources (Major et al. 2010; Sukartono et al. 2011; Kloss et al. 2014). Available 252 P concentration (measured as Olsen P) for the woodchip biochar in the current study was 253 greater than available P measured as Mehlich 3 and Bray 1 extractable P (Major et al. 2010; 254 Yamato et al. 2006) for other wood based biochars, but less than or comparable to available P 255 measured using a sequential water extraction (Angst et al. 2014) for pine woodchip biochar. 256 Soil pH and EC in unamended and amended soils 257 Initial pH values in the two soils were neutral to slightly alkaline (Table 1). Soil pH changed 258 with amendment application and during incubation. A significant (P=0.005) interaction was observed for soil \times time x amendment (Table 2), indicating that the effect of biochar and 259 260 fertilizer application on pH varied depending on the soil type and incubation time. In general, 261 application of biochar without fertilizers resulted in higher soil pH compared with the 262 unamended control soil. At 70 d of incubation, the increase in pH was significant (P < 0.05) in 263 the loamy sand for the BC2 treatment (Fig. 1). For the clay loam, pH increase was significant for BC2 at 42 d after incubation, and for BC1, BC2 and BC2+SF after 70 d of incubation. 264 265 The increase in pH with biochar application became more apparent with time of incubation 266 and was greatest at 70 d of incubation. At 70 d of incubation, the pH difference between BC2 267 and the control was greater in the clay loam (0.46 pH units) than in the loamy sand (0.23 pH 268 units). Application of synthetic fertilizer, on the other hand, reduced soil pH (Fig. 1) 269 compared to the control, but the differences were significant (P<0.05) only for the loamy 270 sand at 14 and 70 d of incubation. 271 Soil, amendment and incubation time main effects and the soil × time interaction were

significant (P<0.0001) for EC (Table 2). As expected, synthetic fertilizer application

273	increased EC in both soils, on average by about 120 μ S cm ⁻¹ compared to the control
274	treatment. Application of biochar alone (BC1 and BC2) did not show significant changes
275	(P<0.05) in EC relative to the control treatment in both soils. Application of biochar with
276	fertilizer increased soil EC relative to the control treatment by about 95 μ S cm ⁻¹ for BC1+SF
277	and by 105 μ S cm ⁻¹ for BC2+SF, on average (Table 2). Further, EC values of the BC1+SF
278	and BC2+SF treatments did not differ significantly from EC values of the SF treatment. In
279	the loamy sand, EC values did not significantly (P<0.05) change over time of incubation, but
280	in the clay loam EC values increased up to about 56 d of incubation and then significantly
281	(P<0.05) decreased between 56 and 70 d of incubation (Fig. 2).
282	Olsen P and P fractions in unamended and amended soils
283	The soil x time x amendment interaction was significant (P< 0.0001) for Olsen P
284	concentration (Table 2). Application of P fertilizer and/or biochar increased the Olsen P
285	concentration significantly (P<0.05) in both soils with a few exceptions (Fig. 3). At all
286	sampling times, the BC2+SF treatment had greater Olsen P concentration than all the other
287	treatments, whereas the lowest Olsen P concentration, in general, was observed in the control
288	treatment. Olsen P concentrations were significantly (P<0.05) greater in the BC1+SF and
289	BC2+SF treatments than in the other treatments for both soils at most sampling times (Fig.
290	3). The BC2 treatment significantly ($P < 0.05$) increased Olsen P concentration compared
291	with the SF treatment at 14 and 28 d of incubation in the loamy sand but not in the clay loam.
292	For all treatments, concentrations of water-extractable molybdate reactive P (P_{MR})
293	were smaller (<10 mg kg ⁻¹) compared to other fractions, while HCl-extractable and residual P
294	concentrations were largest (>100 mg kg ⁻¹ in the loamy sand and >250 mg kg ⁻¹ in the clay
295	loam) (Fig. 4). Biochar and fertilizer amendment increased P_{MR} concentrations in most
296	fractions with a few exceptions. The soil \times amendment interaction was significant (P<0.05)
297	for P _{MR} extracted by water, NaHCO ₃ , NaOH and HCl. Biochar amendment (at both rates)

https://mc.manuscriptcentral.com/cjss-pubs

298	with and without fertilizer amendment significantly (P<0.05) increased water extractable P_{MR}
299	in the loamy sand, but not in the clay loam (Fig. 4a). The BC2+SF treatment in the loamy
300	sand significantly (P<0.05) increased water-extractable P_{MR} concentration compared with
301	synthetic fertilizer alone (SF), indicating that the application of fertilizer in combination with
302	biochar enhanced the water-extractable P concentration in the soil. Both fertilizer and biochar
303	amendments did not significantly increase NaHCO ₃ -extractable and NaOH-extractable P_{MR}
304	in the loamy sand soil. However, in the clay loam, fertilizer amendment significantly
305	(P < 0.05) increased NaHCO ₃ -extractable P _{MR} compared to the control, while both fertilizer
306	and biochar amendments significantly (P< 0.05) increased NaOH-extractable P _{MR} (Fig. 4b and
307	4c). In both soils, "labile" P concentration (water extractable plus NaHCO ₃ -extractable P_{MR})
308	was significantly (P<0.05) greater with biochar amendment at 20 g kg ⁻¹ with fertilizer. In the
309	loamy sand, HCl-extractable P_{MR} concentration in the BC1 treatment was significantly less
310	compared to the control, SF, BC1+SF and BC2+SF treatments. But in the clay loam, both
311	BC1+SF and BC2+SF treatments had significantly greater HCl-extractable P _{MR} , than control
312	and BC2 treatments. Residual P concentrations were not significantly affected by any of the
313	treatments in either soil (Fig. 4d and 4e).
314	Soil OC, wet aggregate stability and CEC

Soil OC, wet aggregate stability and cation exchange capacity were determined in only three treatments (control, BC1 and BC2) at the end of incubation. Organic C concentration in the clay loam was significantly (P<0.001), and nearly 3-fold greater than that in the loamy sand at the end of the 70-d incubation period. However, the main effect of biochar rate and interaction effect of biochar rate × soil on soil OC were not significant (Table 3). Significant increases in OC concentrations were not observed for either rate of biochar treatments, compared to the unamended control.

322	Wet aggregate stability of soils determined as MWD, differed significantly between
323	the two soils while the soil \times biochar rate interaction was also significant (P< 0.05) for MWD
324	(Table 3). The clay loam had a higher MWD than the loamy sand. Even though both rates of
325	biochar (10 and 20 g kg ⁻¹) increased MWD numerically in both soils compared to un-
326	amended control, the differences were statistically significant (P<0.05) only in the loamy
327	sand at the highest biochar rate of 20 g kg ⁻¹ (Table 3).
328	The clay loam had significantly greater CEC (P<0.0001) than the loamy sand (Table
329	3). Cation exchange capacity significantly (P<0.0001) increased with the addition of biochar
330	in both soils when compared with the respective unamended soil. However, there was no
331	significant difference in CEC between the two rates of biochar (10 and 20 g kg ⁻¹) in both soils
332	(Table 3).
333	Changes in carbon dioxide emission during incubation
334	The main effects of soil and time and soil \times time interaction were significant (P< 0.05) for
335	cumulative microbial respiration but the amendment effect was not significant (Fig. 5).
336	Therefore, incorporation of biochar with or without fertilizer did not significantly (P>0.05)
337	influence the cumulative microbial respiration. Cumulative microbial respiration was
338	significantly (P<0.01) greater in Almasippi loamy sand than in Newdale clay loam at most
339	sampling times. In both soils, the rate of increase in cumulative microbial respiration was
340	greater during the first 14 d of incubation, and continued to increase but at a slower rate
341	thereafter (Fig. 5).
342	DISCUSSION
343	Soil pH changes during incubation in un-amended and amended soils
344	Application of biochar resulted in greater soil pH compared to the control treatment at all
345	times of incubation, with significant differences at 70 d of incubation. Increased soil pH with
346	biochar application has been previously observed with biochar derived from various sources

https://mc.manuscriptcentral.com/cjss-pubs

347	(Van Zwieten et al. 2010; Peng et al. 2011; Rabileh et al. 2015), but in most of those studies,
348	acidic soils were used. Thus, biochar is considered an effective liming agent for acidic soils.
349	In alkaline soils, Van Zwieten et al. (2010) and Busch and Glaser (2015) did not observe a
350	significant increase in soil pH with biochar application, because the pH of soil and biochar
351	were similar. In the current study with alkaline soils, the greatest pH increase was observed in
352	the BC2 treatment for both soils at 70 d of incubation. The magnitude of pH increase for the
353	BC2 treatment after 70 d of incubation was greater in the less alkaline clay loam (initial
354	pH=7.6), than in the more alkaline loamy sand (initial pH=8.0). The pH increase with biochar
355	amendment in the current study was often less than previously reported values for acidic
356	ferrosol but greater than those reported for alkaline ferrosol soils (Van Zwieten et al.2010;
357	Méndez et al. 2012). Contrary to our findings, Ahmed and Schoenau (2015) did not observe a
358	significant effect on soil pH when biochar was amended at 1-2 t ha ⁻¹ in black Chernozems,
359	probably due to the very low rate of biochar application.
360	The fertilizer amendment in the current study consisted of a combination of
361	monoammonium phosphate and urea. Monoammonium phosphate is an acidic P fertilizer,
362	resulting in an acidic saturated solution with a pH of 3.5, thus decreasing soil pH when
363	applied to soil (Sample et al. 1980). The release of H^+ from the nitrification of ammonium
364	with increasing incubation time may further decrease soil pH (Hanson and Westfall 1985; Al-
365	Showk et al. 1987), as observed in the loamy sand. This effect was not observed in the clay
366	loam likely due to the greater pH buffering ability in soils with greater clay concentration
367	(Xie and Mackenzie, 1990). As expected, the increase in pH with application of biochar (BC1
368	and BC2) was smaller when biochar was added with fertilizer (BC1+SF and BC2+SF)
369	because of counteracting effects of biochar and fertilizer on soil pH. Similar observations
370	were made in acidic soils (Van Zwieten et al. 2010) where the pH increase was greater with
371	biochar application in the absence of fertilizer than with fertilizer.

372	In alkaline soils, pH>7.5 may negatively influence plant growth due to reduced
373	nutrient availability and microbial activity (Davidson, 2014). Further increase in pH with
374	biochar addition may aggravate these negative effects and may offset the beneficial effects of
375	biochar application. Biochar application with synthetic fertilizer, however, could be a better
376	approach for alkaline chernozems, since the increase in soil pH was less than when biochar
377	was applied alone.
378	Soil electrical conductivity changes during incubation in unamended and amended soils
379	The effect of biochar on soil EC was negligible and not significant in these alkaline
380	chernozesm. Using a 30 t/ha rate of biochar, Kloss et al. (2014) observed similar results in
381	chernozems, but at a higher rate of 90 t/ha of biochar, EC increased significantly immediately
382	after application. Soinne et al. (2014), on the other hand, observed a decrease in soil EC with
383	biochar addition. As expected, synthetic fertilizer consisting of monoammonium phosphate
384	and urea increased EC in both soils because of the added cations and anions. Even though the
385	increase in EC with synthetic fertilizer was statistically significant, it was not agronomically
386	significant since the soil EC remained in the non-saline range.
387	Changes in soil Olsen P and P fractions during incubation
388	In both soils, the BC2+SF treatment increased the Olsen P close to or above 12 mg kg ⁻¹ , thus
389	raising the available P rating from very low/low to medium (Manitoba Soil Fertility Advisory
390	Committee 2007). Olsen P concentration increased about 2-fold with the application of
391	biochar with synthetic fertilizer in the loamy sand compared to the control soil at 14 d of
392	incubation, but the increase in Olsen P concentration with biochar and fertilizer application
393	was less pronounced in the clay loam. A similar influence of soil texture on enhancing P
394	availability with manure amendment has been previously reported for alkaline chernozems in
395	Manitoba (Kumaragamage et al. 2011).

396	Biochar application affects the P cycle directly and indirectly through various
397	mechanisms, and as a result, the effect of biochar on soil P availability has been inconsistent
398	(DeLuca et al. 2009; Xu et al. 2014). Greater P availability could result from the direct supply
399	of P by the biochar, as well as decrease in P retention and/or increased P mineralization due
400	to enhanced microbial activity (DeLuca et al. 2009; Laird et al. 2010). In our study, increased
401	P availability could result mainly from the direct supply of available P by the biochar, as its
402	Olsen P concentration was 297 mg kg ⁻¹ , which is very high compared to the soil Olsen P
403	concentration. At the rates of biochar application, the added Olsen extractable P with biochar
404	was 3.0 and 6.0 mg kg ⁻¹ for BC1 and BC2, respectively. Similar to our findings, Kloss et al.
405	(2014) observed an increase in P availability in a chernozemic soil immediately after biochar
406	application; however after 7 months of application, available P in biochar amended and
407	unamended soils did not show significant differences in the chernozem, unlike in a planosol
408	and a cambisol they used in the same study. Xu et al. (2014) observed contradictory effects of
409	biochar (total P of 2773 mg kg ⁻¹) application on P retention in different soils depending on
410	soil pH; P retention increased in two acidic soils and slightly decreased in an alkaline soil.
411	They concluded that the initial level of soil acidity determines the response of P retention to
412	biochar addition. However, it is interesting to note that the acidic soils in their study were
413	sandy loams whereas the alkaline soil was a loam to silty loam. The results of the current
414	study using two alkaline chernozems with similar pH levels indicate that soil properties other
415	than soil pH, such as soil texture and organic matter, may influence P availability changes
416	with biochar addition, which warrant further investigations using alkaline chernozemic soils.
417	Apart from Olsen P, concentrations of some P fractions in soils were influenced by
418	biochar and fertilizer amendment. Co-application of fertilizer with biochar enhanced the
419	water-extractable P concentration in the loamy sand. This observation has implications for
420	improving P availability in this loamy sand, which had a very low initial Olsen P

421	concentration. Concentrations of NaHCO3-extractable and NaOH-extractable P were not
422	significantly affected by amendments in the loamy sand. However, application of biochar
423	and fertilizer, alone, or in combination, often increased the NaHCO3-extractable and NaOH-
424	extractable P concentration in the clay loam. Overall, the results indicate that application of
425	biochar at 20 g kg ⁻¹ rate with or without synthetic fertilizer is an effective means of enhancing
426	labile P concentration. In a Calcisol, biochar with P fertilizer showed a significant and
427	interactive effect on soil P fractionation with the fertilizer having the main influence on
428	changes in P fractions (Farrell et al. 2014). In two acidic soils, biochar application increased
429	concentrations of Ca-bound P (HCl-extractable) but this was not observed in an alkaline soil
430	(Xu et al. 2014). In the same study, biochar application slightly decreased the Fe-bound P
431	(NaOH-extractable) in both alkaline and acidic soils. Results of HCl-extractable P in biochar-
432	amended soils in the current study are consistent with the findings of Xu et al. (2014) and
433	further suggest that effects of biochar application on soil P availability may be influenced by
434	soil texture and soil pH, by influencing P sorption and desorption. This warrants further
435	investigation, as it would have important implications for improving soil productivity on a
436	large scale.
437	Changes in soil organic carbon, wet aggregate stability, and cation exchange capacity
438	
	Biochar amendment at both rates did not significantly increase OC concentration in the two
439	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils
439 440	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils where biochar addition significantly increased the soil OC concentration in laboratory
439 440 441	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils where biochar addition significantly increased the soil OC concentration in laboratory incubation (Novak et al. 2009; Sukartono et al. 2011). The rates of total C added with biochar
439 440 441 442	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils where biochar addition significantly increased the soil OC concentration in laboratory incubation (Novak et al. 2009; Sukartono et al. 2011). The rates of total C added with biochar amendment in those studies (Novak et al. 2009; Sukartono et al. 2011) were often greater (6.3
439 440 441 442 443	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils where biochar addition significantly increased the soil OC concentration in laboratory incubation (Novak et al. 2009; Sukartono et al. 2011). The rates of total C added with biochar amendment in those studies (Novak et al. 2009; Sukartono et al. 2011) were often greater (6.3 to 25 t of total C ha ⁻¹) compared to the total C added with biochar amendment in the current
439 440 441 442 443 444	Biochar amendment at both rates did not significantly increase OC concentration in the two soils. Results from the current study are inconsistent with previous findings in acidic soils where biochar addition significantly increased the soil OC concentration in laboratory incubation (Novak et al. 2009; Sukartono et al. 2011). The rates of total C added with biochar amendment in those studies (Novak et al. 2009; Sukartono et al. 2011) were often greater (6.3 to 25 t of total C ha ⁻¹) compared to the total C added with biochar amendment in the current study (4.7 and 9.4 t ha ⁻¹). Thus, the significance of the increase in soil OC in biochar-

446	A high MWD value is an indication of the predominance of larger and more stable
447	aggregates over smaller and less stable aggregates, thus indicating greater wet aggregate
448	stability. Application of biochar at the 20 g kg ⁻¹ rate to the loamy sand increased water stable
449	aggregates and thereby reduced the vulnerability of the fertile topsoil loss through erosion,
450	thus maintaining long term foil fertility. Ouyang et al. (2013) observed similar results in an
451	incubation study with two soils, a sandy loam and a silty clay, both with slightly acidic pH.
452	They found that the MWD values were significantly enhanced by biochar addition in the
453	sandy loam on most of the sampling days, whereas in a silty clay soil, significant differences
454	in MWD were observed only at later stages of incubation between unamended and biochar-
455	amended treatments. Soinne et al. (2014), however, observed that biochar addition increased
456	aggregate stability in acidic clay soils, implying that the influence of biochar in improving
457	wet aggregate stability is not limited to sandy soils. The type of biochar used may also
458	influence the effect on MWD. For example, aggregate stability measured as MWD in clay
459	soils with a neutral pH (7.2) was enhanced by wastewater sludge biochar and straw biochar
460	amendment, but not with woodchip biochar amendment (Sun and Lu 2014).
461	The cation exchange capacity was significantly increased with the addition of biochar
462	in both soils when compared to the respective unamended soil. There was no significant
463	difference in CEC between the two rates of biochar addition (10 and 20 g kg ⁻¹) in either soil
464	(Table 3). Contrary to our findings, Kloss et al. (2014) did not observe an increase in CEC
465	with the application of biochar in temperate chernozems, while CEC increased with biochar
466	application in a Planosol in the same study. Increase in CEC with biochar application has also
467	been reported for strongly acidic tropical soils (Yamato et al. 2006; Sukartono et al. 2011).
468	The presence of carboxylic and phenolic functional groups in biochar results in high surface
469	negative charges, with a greater ability than other organic matter to adsorb cations (Liang et
470	al. 2006). This characteristic of biochar may explain the increase in CEC in biochar amended

soils compared to the control, however it does not explain the lack of a significant difference
in CEC for the two rates of biochar. Even though the biochar used in the current study had
CEC values similar to that of the Newdale clay loam, application of biochar significantly
increased the CEC even in the clay loam. Increase of CEC with the addition of biochar will
have both agronomic and environmental benefits. Greater retention of cationic nutrients
through increasing CEC in the sandy soil would increase nutrient availability in soils as well
as reduce nutrient leaching and runoff losses.

478 Changes in carbon dioxide emission during incubation

479 Increased soil microbial activity promotes microbe-mediated processes in soils such as 480 mineralization, and P solubilisation, resulting in an enhanced bioavailability of nutrients that 481 improves soil fertility, whereas increased immobilization of nutrients may also take place 482 reducing nutrient availability in the short term, thus negatively affecting soil fertility. In our 483 study, the cumulative microbial respiration pattern did not show a significant change with the 484 incorporation of biochar in either soil. Our results are consistent with previous observations 485 with black Chernozems (Wu et al. 2013; Cheng et al. 2012) showing that biochar addition did 486 not result in a significant increase in CO₂ emissions, very likely because of the slow 487 decomposition of biochar during incubation (Stainer et al. 2007; Jones et al. 2011). Biochars

derived from manure or crop residue feedstock tend to promote microbial abundance more

than wood-derived biochars.

490

CONCLUSIONS

The two alkaline Chernozems responded slightly differently to biochar amendment at different rates with and without fertilizers, with greater fertility benefits in the less fertile soil. The results indicate that biochar can be effectively used in combination with fertilizer for slightly alkaline soils to improve soil fertility parameters in alkaline chernozems without significantly increasing pH, but the initial pH of soils and biochar need to be considered.

496	Application of biochar resulted in higher wet aggregate stability in the loamy sand, but not in
497	the clay loam. In general, biochar application resulted in an increased soil CEC, and
498	enhanced P availability measured as Olsen P and labile P fractions in both soils. Overall, this
499	study confirms that amendment of soils with biochar improved soil fertility parameters in the
500	two alkaline chernozems, but biochar amendment at a high rate (20 g kg ⁻¹) with synthetic
501	fertilizer was more effective than applying biochar or fertilizer alone, or at a low rate (10 g
502	kg ⁻¹) with fertilizer. However, long-term studies under field conditions are needed to evaluate
503	biochar effects on soil properties and sustainable crop production for alkaline Chernozems on
504	the Canadian prairies.
505	ACKNOWLEDGEMENT
506	The authors acknowledge the Canadian Bureau of International Education for awarding a
507	Canadian Commonwealth Scholarship to the senior author to conduct this study in Canada.
508	We acknowledge Ryan Banman for providing the biochar for the study, Anthony Buckley for
509	the technical support and Geethani Amarawansha for assisting with the statistical analysis.
510	REFERENCES
511	Ahmed, H.P. and Schoenau, J.J. 2015. Effects of Biochar on Yield, Nutrient Recovery,
512	and Soil Properties in a Canola (Brassica napus L)-Wheat (Triticum aestivum L)
513	Rotation Grown under Controlled Environmental Conditions. Bio Energy
514	Research. 8: 1183-1196.
515	Ajiboye, B., Akinremi, O.O. and Racz, G.J. 2004. Laboratory characterization of phosphorus
516	in fresh and over-dried organic amendment. J. Environ. Qual. 33: 1062-1069.
517	Akinremi, O.O., Armisen, N., Kashem, A. and Janzen, H.H. 2003. Evaluation of analytical
518	methods for total P in organic amendments. Commun. Soil Sci. Plant Anal. 34: 2981-
519	2991.

520	Al-Showk, A.M., Westerman, R.L. and Weeks, D.L. 1987. Influence of phosphorus sources
521	and rates on soil pH, extractable phosphorus, and DTPA-extractable micronutrients.
522	Soil Sci. 144: 36-42.
523	Angst, T.E., Six, J., Reay, D.S. and Sohi, S.P. 2014. Impact of pine chip biochar on trace
524	greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in
525	California. Agric. Ecosyst. Environ. 191:17-26.
526	Asai, H., Samson, B.K., Haefele, S.M., Songyikhangs, K., Homma, K., Kiyono, Y., Inoue,
527	Y., Shiraiwa, T. and Horie, T. 2009. Biochar amendment techniques for upland rice
528	production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield.
529	Field Crops Res. 111: 81-84.
530	Atkinson, C.J., Fitzgerald, J.D. and Hipps, N.A. 2010. Potential mechanisms for achieving
531	agricultural benefits from biochar application to temperate soils: A review. Plant Soil.
532	337 : 1-18.
533	Ball, D.F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-
534	calcareous soils. J. Soil Sci. 15: 84-92.
535	Busch, D. and Glaser, B. 2015. Stability of co-composted hydrochar and biochar under field
536	conditions in a temperate soil. Soil Use Manage. 31 : 251-258.
537	Canadian Agricultural Services Coordinating Committee. 1998. Soil Classification Working
538	Group, National Research Council Canada, Canada. Agriculture and Agri-Food
539	Canada. Research Branch. The Canadian system of soil classification (No. 93). Third
540	Edition. NRC Research Press.
541	Case, S.J., McNamara, N.P., Reay, D.S. and Whitaker, J. 2012. The effect of biochar addition
542	on N_2O and CO_2 emissions from a sandy loam soil-The role of soil aeration. Soil Biol
543	Biochem. 51 : 125-134.

https://mc.manuscriptcentral.com/cjss-pubs

544	Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A. and Joseph, S. 2008. Using poultry
545	litter biochars as soil amendments. Aust. J. Soil Res. 46: 437-444.
546	Cheng, Y., Cai, Z.C., Chang, S.X., Wang, J. and Zhang, J.B. 2012. Wheat straw and its
547	biochar have contrasting effects on inorganic N retention and N ₂ O production in a
548	cultivated Newdale clay loam. Biol. Fert. Soils. 48: 941-946.
549	Davidson, D. 2014. Evaluating the quality of your soil. Crops and Soils 47:4-13.
550	Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am.
551	J. 38 :150–151.
552	DeLuca, T.H., MacKenzie, M.D. and Gundale, M.J. 2009. Biochar effects on soil nutrient
553	transformations. Pages 251-270 in J. Lehmann and S. Joseph, eds. Biochar for
554	Environmental Management Science: Science and Technology. Earthscan
555	Publications Inc, Sterling, VA, USA.
556	Farrell, M., Lynne, M., Macdonald, Butler, G., Chirino-Valle, I. and Condron, L.M. 2014.
557	Biochar and fertiliser applications influence phosphorus fractionation and wheat yield.
558	Biol Fert. Soils. 50: 169–178
559	Gee, G.W. and Bauder. J.W. 1986. Particle-size analysis. Pages 383-411 in A. Klute, ed,
560	Methods of soil analysis. Part 1. 2nd ed. Agron.Monogr. 9. American Society of
561	Agronomy, Crop Science Society of America, Soil Science Society of
562	America, Madison, WI. USA.
563	Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties
564	of highly weathered soils in the tropics with charcoal-a review. Biol. Fert. Soils. 35:
565	219-230.
566	Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V. and Deng, H. 2015. Physico-chemical
567	properties and microbial responses in biochar-amended soils: Mechanisms and future
568	directions. Agric. Ecosyst. Environ. 206: 46-59.

569	Hanson, R.L. and Westfall, D.G. 1985. Orthophosphate solubility transformations and
570	availability from dual applied nitrogen and phosphorus. Soil Sci. Soc. Am. J. 49:
571	1283-1289.
572	Jeffery, S., Verheijen, F.G.A., van der Velde, M. and Bastos, A.C. 2011. A quantitative
573	review of the effects of biochar application to soils on crop productivity using meta-
574	analysis. Agric. Ecosys. Environ. 144: 175-187.
575	Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edwards-Jones, G. and DeLuca, T.H.
576	2011. Short-term biochar-induced increase in soil CO ₂ release is both biotically and
577	abiotically mediated. Soil Biol. Biochem. 43:1723-1731.
578	Kashem, M.A., Akinremi, O.O. and Racz, G.J. 2004. Phosphorus fractions in soil amended
579	with organic and inorganic phosphorus sources. Can. J. Soil Sci. 84: 83-90.
580	Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger,
581	M., Gerzabek, M.H. and Soja, G. 2012. Characterization of slow pyrolysis biochars:
582	Effects of feed stocks and pyrolysis temperature on biochar Properties. J. Environ.
583	Qual. 41 : 990-1000.
584	Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F. and Soja, G. 2014. Biochar
585	application to temperate soils: Effects on soil fertility and crop growth under
586	greenhouse conditions. J. Plant Nutr. Soil Sci. 177: 3-15.
587	Kumaragamage, D., Flaten, D., Akinremi, O. O., Sawka, C. and Zvomuya, F. 2011. Soil test
588	phosphorus changes and phosphorus runoff losses in incubated soils treated with
589	livestock manures and synthetic fertilizer. Can. J. Soil Sci. 91: 375-384.
590	Kumaragamage, D., Flaten, D.N., Akinremi, O.O., Sawka, C.A. and Ige, D. 2012. Impact of
591	manure phosphorus fractions on phosphorus loss from manured soils after incubation
592	J. Environ. Qual. 41: 845-54.

593	Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B. and Karlen, D.L. 2010. Impact
594	of biochar amendments on the quality of a typical Midwestern agricultural soil.
595	Geoderma. 158 : 443-449.
596	Lehmann, J. 2007. Bio-energy in the black. Front. Ecol. Environ. 5: 381-387.
597	Lehmann, J., Gaunt, J. and Rondon, M. 2006. Bio-char sequestration in terrestrial
598	ecosystems-A review. Mitigation Adapt. Strateg. Glob. Chang. 11: 403-427.
599	Liang, B., Lehmann, J. and Solomon, D. 2006. Black carbon increases cation exchange
600	capacity in soils. Soil Sci. Soc. Am. J. 70: 1719-1730.
601	Major, J., Rondon, M., Molina, D., Riha, S.J. and Lehmann, J. 2010. Maize yield and
602	nutrition during 4 years after biochar application to a Colombian savannah oxisol.
603	Plant Soil. 333 : 117-128.
604	Manitoba Soil Fertility Advisory Committee. 2007. Manitoba soil fertility guide [online]
605	Available at http://www.gov.mb.ca/agriculture/crops/soil-fertility/soil-fertility-
606	guide/fertilizer-guidelines-for-soil-tests.html#table17.[2016 June 15]
607	Mandal, S., Verma, B.C., Ramkrushna, G.I., Singh, R.K. and Rajkhowa, D.J. 2015.
608	Characterization of biochar obtained from weeds and its effects on soil properties of
609	North Eastern Region of India. J. Environ. Biol. 36: 499-505.
610	Méndez, A., Gómez, A., Paz-Ferreiro, J. and Gascó.G. 2012. Effects of sewage sludge
611	biochar on plant metal availability after application to a Mediterranean soil.
612	Chemosphere. 89: 1354-1359.
613	Mete, F. Z., Mia, S., Dijkstra, F. A., Abuyusuf, Md. and Hossain, A. S. M. I. 2015.
614	Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil.
615	Pedosphere. 25: 713-719.
616	Mulvaney, R.L. 1996. Nitrogen - Inorganic forms. Pages 1123-1184 in D. L. Sparks et al.,
617	eds. Methods of Soil Analysis. Part 3 - Chemical Methods. American Society of

618	Agronomy, Crop Science Society of America, Soil Science Society of America
619	Madison, WI. USA.
620	Munkhbat, B., Frogner, K.J., Byatshandaa, J., and Sunjidmaa. 2013. Low Tech Production
621	and Application of Biochar in Mongolia. [online] Available: http://www.biochar-
622	international.org/sites/default/files/Low_Tech_Production_and_Application_of_Bioc
623	har_Mongolia.pdf. [2016 June 15]
624	Murphy, J. and Riley, J.R. 1962. Modified Single Solution Method for the Determination of
625	Phosphate. Analytica Chimica Acta. 27: 31-36.
626	Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W. and Niandou, M.A.S.
627	2009. Impact of biochar amendment on fertility of a South-eastern Coastal plain soil.
628	Soil Sci. 174 : 105–112.
629	Olsen, S., Cole, C., Watanabe, F. and Dean, L. 1954. Estimation of available phosphorus in
630	soils by extraction with sodium bicarbonate. United states Department of Agriculture
631	Circular No 939, US Gov. Print. Office, Washington, D.C., USA.
632	Ouyang, L., Wang, F., Tang, J., Yu, L. and Zhang, R. 2013. Effects of biochar amendment on
633	soil aggregates and hydraulic properties. Soil Sci. Plant Nutr. 13: 991-1002.
634	Peng, X., Ye, L.L., Wang, C.H., Zhou, H. and Sun, B. 2011. Temperature- and duration-
635	dependent rice straw-derived biochar: Characteristics and its effects on soil properties
636	of an Ultisol in southern China. Soil Tillage Res. 112: 159-166.
637	Rabileh, M. A., Shamshuddin, J., Panhwar, Q. A., Rosenani, A. B. and Anuar, A. R. 2015.
638	Effects of biochar and/or dolomitic limestone application on the properties of Ultisol
639	cropped to maize under glasshouse conditions. Can. J. Soil Sci. 95: 37-47.
640	Rhoades, J.D. 1982. Cation exchange capacity. Pages 149-158 in A.L. Page, ed, Methods of
641	soil analysis. Part 2. Agron. Monogr. 9. American Society of Agronomy, Crop
642	Science Society of America, Soil Science Society of America Madison, WI, USA.

643	Saarnio, S., Heimonen, K. and Kettunen, R. 2013. Biochar addition indirectly affects N2O
644	emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 58: 99-106.
645	Sample, E. C., Soper, R.J. and Racz, G.J. 1980. Reactions of phosphate fertilizers in soils.
646	Pages 263-310 in F.E. Khasawneh, E.C. Sample and E.J. Kamprath, eds. Phosphorus
647	in Agriculture. American Society of Agronomy, Crop Science Society of America,
648	Soil Science Society of America. Madison, WI, USA.
649	SAS Institute. 2011. Version 9.3. SAS Inst., Cary, NC.
650	Schmidt, M.W.I., Skjemstad, J.O., Gehrt, E. and Kogel-Knabner, I. 1999. Charred organic
651	carbon in German chernozemic soils. Eur. J. Soil Sci. 50: 351-365.
652	Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang W. and Zhang, F. 2011.
653	Phosphorus dynamics: from soil to plant. Plant Phys. 156: 997-1005.
654	Sohi, S.P., Krull, E. Lopez-Capel, E. and Bol, R. 2010. A review of biochar and its use and
655	function in soil. Adv. Agron.105: 47-82.
656	Soinne, H., Hovi, J., Tammeorg, P. and Turtola, E. 2014. Effect of biochar on phosphorus
657	sorption and clay soil aggregate stability. Geoderma. 219: 510-528.
658	Soil Science Society of America. 2001. Glossary of Soil Science Terms. Soil Science Society
659	of America. Madison, WI, USA.
660	Steiner, C., Teixeira, W.G., Lehmann, J. and Zech, W. 2004. Microbial response to charcoal
661	amendments of highly weathered soils and amazonian dark earths in central Amazonia-
662	preliminary results. Pages 195-212 in G. Glaser, and W.I. Woods, eds. Amazonian dark
663	earths: explorations in space and time. Springer Verlag, Heidelberg, Germany.
664	Sukartono, S., Utomo, W.H., Kusuma, Z. and Nugroho, W.H. 2011. Soil fertility status,
665	nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure
666	application on sandy soils of Lombok, Indonesia. J. Trop. Agric. 49: 47-52.

667	Sun, F. and Lu, S. 2014. Biochars improve aggregate stability, water retention and pore-space
668	properties of clavey soil. J. Plant Nutr. Soil Sci. 177: 23-33.

- 669 United States Environmental Protection Agency. 1986. Test methods for evaluating solid
- waste, laboratory manual physical/chemical methods, Vol.1A, 3rd Ed. SW-846, USA.
- 671 Government Printing Office, Washington, DC.
- Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A. and Nishihara, E. 2011. Effect
- of cow manure biochar on maize productivity under sandy soil condition. Soil Use
 and Management. 27: 205–212.
- van Bavel, C.H.M. 1949. Mean weight diameter of soil aggregates as a statistical index of
 aggregation. Soil Sci. Soc. Am. Proc. 14: 20-23.
- 677 Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S. and
- Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on
 agronomic performance and soil fertility. Plant Soil. 327: 235-246.
- Warnock, D. D., Lehmann, J., Kuyper, T.W. and Rillig, M.C. 2007. Mycorrhizal responses to
 biochar in soil-Concepts and mechanisms. Plant Soil. 300: 9-20.
- 682 Wu, F., Jia, Z., Wang, S., Chang, S.X. and Startsev, A. 2013. Contrasting effects of wheat
- straw and its biochar on greenhouse gas emissions and enzyme activities in a
- 684 Chernozemic soil. Biol. Fertil. Soils. **49**: 555–565.
- Xie, R.J. and Mackenzie, A.F. 1990. Mechanisms of pH decrement in three temperate soils
 treated with phosphate. Soil Sci. 150: 602-612.
- Ku, G., Sun, J.N., Shao H.B. and Chang, S.X. 2014. Biochar had effects on phosphorus
- 688 sorption and desorption in three soils with differing acidity. Ecol. Eng. 62: 54- 60.
- 689 Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S. and Ogawa, M. 2006. Effects of the
- application of charred bark of Acacia mangium on the yield of maize, cowpea and

691	peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr.
692	52 : 489-495.
693	Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J. and Peressotti, A.
694	2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-
695	term study. Appl. Soil Ecol. 50: 45-51.
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	
707	
708	
705	
711	
712	
713	
714	
715	

Table 1. Properties of biochar and two soils used for the study

Property	Almasippi loamy sand ^a	Newdale clay loam ^a	Biochar ^b
Sand %	88.4 (0.1)	35.8 (1.4)	
Silt %	4.6 (1.4)	31.0(0.2)	
Clay %	7.0 (1.4)	33.2 (1.2)	
pH (1:2, soil: H ₂ O)	8.0 (0.1)	7.6 (0.1)	9.7
Cation exchange capacity (mmol $_{c}$ kg ⁻¹)	136 (2)	273 (23)	200
Electrical conductivity (dS m ⁻¹)	$0.18(0.01)^c$	$0.41(0.02)^{c}$	16.9^{d}
Organic C (g kg ⁻¹)	9.3 (0.6)	33.4 (1.1)	312
Total C (g kg ⁻¹)			314
Olsen P (mg kg ⁻¹)	3.5 (0.7)	5.5 (0.7)	297
Nitrate N (mg kg ⁻¹)	11 (1)	53 (1)	
Exchangeable Ca (mg kg ⁻¹)	2348 (21)	3823 (384)	1500
Exchangeable Mg (mg kg ⁻¹)	192 (7)	907 (46)	410
Exchangeable K (mg kg ⁻¹)	49 (4)	203 (1)	3510
Exchangeable Na (mg kg ⁻¹)	23.5 (0.7)	16.5 (0.7)	30
Total N (mg kg ⁻¹)			1080
Total P (mg kg ⁻¹)	185 (8)	354(12)	569
Total K (mg kg ⁻¹)	ND	ND	8244
Total Ca $(mg kg^{-1})$	ND	ND	8476
Total Mg (mg kg ⁻¹)	ND	ND	2073

^{*a*}Means of two replicates. Values in parentheses are standard deviations. ^{*b*}Biochar properties were measured only in one replicate. ^{*c*}Measured in 1:2 soil:water extract

^{*d*}Measured in saturated extract.

7	3	6	
_	-	_	

Table 2. ANOVA for soil pH, electrical conductivity and Olsen extractable P during 70 d of incubation with different amendment treatments in Almasippi loamy sand and Newdale clay loam.

EFFECT	pН	Electrical	Olsen
		conductivity ^a	extractable P
		$(\mu S \text{ cm}^{-1})$	$(mg kg^{-1})$
Soil			
Almasippi loamy sand	7.97	244	8.8
Newdale clay loam	7.62	541	9.2
Amendments			
Control	7.76	333 ^b	6.3
SF	7.61	456 ^a	8.4
BC1	7.89	341 ^b	7.6
BC2	7.96	348 ^b	8.7
BC1 + SF	7.75	448 ^a	10.7
BC2 + SF	7.83	429 ^a	12.2
		P values	
Soil	< 0.0001	< 0.0001	0.02
Time	< 0.0001	< 0.0001	< 0.0001
Treatment	0.03	< 0.0001	0.0004
Soil ×time	< 0.0001	< 0.0001	< 0.0001
Soil × treatment	0.002	0.08	< 0.0001
Time × treatment	0.01	0.62	< 0.0001
Soil × time × treatment	0.005	0.09	< 0.0001

^aMean comparison shown only when the interaction is not significant. Means within the same

column followed by the same letter are not significantly different at P<0.05

SF – synthetic fertilizer; BC1- biochar at 10 g kg⁻¹; BC2 – biochar at 20 g kg⁻¹

at

Table 3. ANOVA and mean soil organic carbon concentration (OC), wet aggregate stability

measured as mean weight diameter (MWD), and cation exchange capacity (CEC) in the

control, biochar at 10 g kg⁻¹ (BC1) and biochar at 20 g kg⁻¹ (BC2) treatments after 70 d of

757 incubation in Almasippi loamy sand and Newdale clay loam

EFFECT	OC ^z (%)	MWD ^{ab}	CEC ^a
		(mm)	(mmol _c kg ¹)
Main effects			,
Soil			
Almasippi loamy sand	1.22 ^b	0.36	116 ^b
Newdale clay loam	3.43 ^a	1.33	247^{a}
Biochar rate			
Control (0 g kg ⁻¹)	2.30	0.76	174 ^b
BC1	2.32	0.83	205 ^a
BC2	2.35	0.97	207^{a}
Interaction Effects			
Almasippi loamy sand			
Control	1.18	0.27 ^b	99
BC1	1.18	0.28^{b}	124
BC2	1.26	0.54^{a}	126
Newdale clay loam			
Control	3.41	1.24^{a}	249
BC1	3.41	1.38^{a}	285
BC2	3.47	1.34 ^a	287
ANOVA		P value	
Soil	< 0.0001	< 0.0001	< 0.0001
Biochar rate	0.10	0.0004	< 0.0001
Soil × biochar rate	0.58	0.02	0.44
^{<i>a</i>} Means within the same column	followed by the s	ame letter are not	significantly diffe
P < 0.05 according to the Tukev	-Kramer test. Mea	in separation for m	ain effects presen

only in the absence of significant (P < 0.05) interaction effects.

- ⁷⁶² ^bBack-transformed (geometric) means

780	
781	Figure captions
782	Fig. 1. Mean soil pH showing the three-way interaction between soil, amendment and
783	incubation time (a) Almasippi loamy sand and (b) Newdale clay loam. (SF – Synthetic
784	fertilizer; BC1 - Biochar at 10 g kg ⁻¹ ; BC2 – Biochar at 20 g kg ⁻¹). Error bars represent the
785	standard error of the mean $(n=3)$.
786	
787	Fig. 2. Mean EC values showing the two-way interaction between soil and incubation time.
788	(a) Almasippi loamy sand and (b) Newdale clay loam. (SF – Synthetic fertilizer; BC1 -
789	Biochar at 10 g kg ⁻¹ ; BC2 – Biochar at 20 g kg ⁻¹). Error bars represent the standard error of
790	the mean (n=3).
791	
792	Fig. 3. Mean Olsen P concentration showing the three-way interaction between soil,
793	amendment and incubation time (a) Almasippi loamy sand and (b) Newdale clay loam. (SF –
794	Synthetic fertilizer; BCI - Biochar at 10 g kg ⁻ ; BC2 – Biochar at 20 g kg ⁻). Error bars
795	represent the standard error of the mean $(n=3)$.
796	Fig. 4. Interaction of soil and amondment for malyhdata reactive D (D (D) concentrations in
797	difference fraction of soil and of 70 d incubation period (a) water extractable B . (b) NeHCO
798	unreferice fractions at the end of 70 -d incubation period (a) water extractable $P_{1}(0)$ NaffCO ₃ extractable $P_{2}(0)$ NaffCO ₃
200	amended: SE Synthetic fertilizer: BC1 Biochar at 10 g kg ⁻¹ : BC2 Biochar at 20 g kg ⁻¹)
800 801	Lowercase letters above the bars indicate significant differences among treatments within a
801	soil ($P < 0.05$) according to Fisher's protected I SD method
803	son (1 < 0.05) decording to 1 isler 5 protected LSD method.
804	Fig. 5. Cumulative emission of CO_2 by microbial respiration during the 70-d incubation
805	period for (a) Almasippi loamy sand (b) Newdale clay loam (C - un-amended: SF - Synthetic
806	fertilizer; BC1 - Biohar at 10 g kg ⁻¹ ; BC2 – Biochar at 20 g kg ⁻¹). Bars indicate the standard
807	error of the mean (n=3).
808	
809	

Fig. 1

Fig 3

Fig 4.

Fig. 5.