
■ Woodrow Wilson (Woody) Bledsoe died on 4
October 1995 of ALS, more commonly known as
Lou Gehrig’s disease. Woody was one of the
founders of AI, making early contributions in
pattern recognition and automated reasoning. He
continued to make significant contributions to AI
throughout his long career. His legacy consists
not only of his scientific work but also of several
generations of scientists who learned from
Woody the joy of scientific research and the way
to go about it. Woody’s enthusiasm, his perpetual
sense of optimism, his can-do attitude, and his
deep sense of duty to humanity offered those
who knew him the hope and comfort that truly
good and great men do exist.

Woodrow Wilson (Woody) Bledsoe
died on 4 October 1995 of ALS,
more commonly known as Lou

Gehrig’s disease. Woody was one of the
founders of AI, making early contributions in
pattern recognition and automated reasoning.
He continued to make significant contribu-
tions to AI throughout his long career. His
legacy consists not only of his scientific work
but also of several generations of scientists
who learned from Woody the joy of scientific
research and the way to go about it. Woody’s
enthusiasm, his perpetual sense of optimism,
his can-do attitude, and his deep sense of duty
to humanity offered those who knew him the
hope and comfort that truly good and great
men do exist.

Early Years
Woody was born on 12 November 1921 on a
little farm near Maysville, Oklahoma. His
father, Thomas, had run a turpentine planta-
tion in Alabama, but in 1917, a fire burned
him out. He moved to Oklahoma to try his
luck at farming. Woody was the fourth child
born to Thomas’s second wife Eva, his first

wife having died after raising six children.
Two more siblings followed. There were many
mouths and precious little money. However,
because they lived on a farm, there was plenty
of good food.

Although Thomas had only a couple years
of formal schooling, both he and Eva, who
had been a school teacher, “always empha-
sized education and encouraged learning”
(Bledsoe 1976). Woody’s schools consisted of
one- or two-room buildings:

We didn’t know we were being
deprived in those one and two room
schools. We spent a lot of time reading by
ourselves, because most of the time the
other grades were having their classes.
But we DID learn, and had some pretty
good teachers (Bledsoe 1976).

Early on, Woody was enthralled by mathemat-
ics and recalls spending “hours just roaming
around, sometimes working mathematics
problems mentally” (Bledsoe 1976).

When Woody was 12, his father died. It was
a devastating blow both emotionally and
financially. As Woody recalled, “We were poor
before, but after papa died in January 1934,
things got worse” (Bledsoe 1976). He and the
rest of his brothers and sisters worked dreary
10-hour days to make ends meet.

Woody ran away from home at 16. He
found work in north Texas driving a tractor all
night. After a month, he hopped a freight
train to Colorado to visit his brother, who was
working in a Civilian Conservation Corps
camp. After a few weeks, he made his way to
the south Texas town of Calliham, where he
lived with some friends for a year. He graduat-
ed from high school during that year (1939).
Woody then returned to live with his mother,
who had moved to Norman, Oklahoma. He
took a job as a dishwasher, working 12-hour
days 7 days a week. He enrolled at the Univer-
sity of Oklahoma in the spring of 1940, cut-
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for his heroic activities in arranging the
transportation of troops across the Rhine
in March, 1945. At that time, all the
Rhine bridges except the one at Remagen
had been destroyed by the retreating Ger-
man army. Patton’s Third Army decided
to cross the Rhine by boats near Frank-
furt rather than suffer the delay of wait-
ing for bridge construction. Therefore the
Army Corps of Engineers hauled naval
landing craft (designed for beach land-
ings) by truck across Europe to ferry
troops across the Rhine. Bledsoe, by then
an Army captain, recalls that there was
only light enemy fire during the crossing;
his main contribution was figuring out
how to get the very large landing craft
down narrow roads and actually into the
water. His first “research” was experi-
menting with techniques for launching
the craft from trucks into the Mosel Riv-
er; initial experiments were disastrous,
but ingenuity prevailed. The simple idea
of backing the trucks into the water,
floating off the boats, and hauling the
trucks back out with tractors turned out
to be key (p. 4).

While Woody was in Europe, his wife gave
birth to a daughter, Margaret, who died less
than a month later. He would later father a
son, Greg, born in March 1947. He eventually
had two more children, Pam and Lance.

In October 1945, Woody returned to his
wife in Salt Lake City. He could not enter the
University of Utah until December, so he took
a couple of correspondence courses. In
December, he enrolled in the university. His
first major was electrical engineering, but he
switched to physics. After taking a course
from mathematician Ferdinand Biesele, he
changed again, this time to mathematics.
After 2-1/2 years, Woody earned his B.S. in
June 1948.

Woody planned on attending the Califor-
nia Institute of Technology for graduate
school, but when the University of California
at Berkeley offered a full fellowship, he went
there instead. Among the many well-known
mathematicians that Woody took classes from
were Alfred Tarski, J. Kelley, and A. P. Morse.
Morse was his Ph.D. adviser. While a graduate
student, Woody published several papers on
his mathematics research. Woody continued
this research long after beginning his work in
AI. Among his mathematical publications
were Bing, Bledsoe, and Mauldin 1974; Bled-
soe and Wilks 1972; Bledsoe and Morse 1963,
1955; Bledsoe, Norris, and Rose 1954; and
Bledsoe 1952a, 1952b.

ting his work load back to 8 hours a day. In
April, the restaurant owner forced him back
into working 12-hour days, which was too
much even for Woody’s fortitude. He left the
university without saying good-bye and
joined the United States Army.

The army suited Woody. By the time he
went to Officer’s Candidate School (OCS)
in 1942, he had been promoted to sec-

ond lieutenant. While at OCS, Woody had an
experience that had a profound effect on him:

Another experience at OCS at Fort
Belvoir left a lasting impression on me.
One day we were to do Map Reading, but
it was raining pretty hard as we traveled
to the training place in the back of a cov-
ered army truck. We thought, “Well this
rain is a blessing, no one can do map
reading on a day like this.”

Shortly after we stopped, the sergeant
opened the flap and said, “Get out here.
Let’s do the map reading.” One trainee
said, “How can we do it if it is raining?”
The sergeant replied, “If we have to do it,
then we DO IT. GET OUT OF THERE
(caps ours)!” Well we did it. It took a lot
of struggling to try to keep our maps dry,
to get on with the work, to finish the
training. It taught me that “if we have to
do it, then we DO IT.” Nothing seems to
have delayed me much since that day,
even some very challenging times when
we crossed the Rhine River (Bledsoe
1976).

While on leave in the summer of 1943,
Woody went to Ogden, Utah, to visit his
mother, who had moved there several years
previously. On this trip, he went to Salt Lake
City to visit an army buddy, Richard Nor-
gaard. Woody met Richard’s sister Virginia
and canceled a date with someone else so that
he could take Virginia out instead. Woody lat-
er recalled, “I did not see much of my mother
during the rest of that leave” (Bledsoe 1976).
In November 1943, Woody was sent for train-
ing to Fort Belvoir, Virginia. On the way, he
stopped in Salt Lake City and proposed to Vir-
ginia. On his return, Virginia accepted. They
were married the following January.

Woody was sent to Europe in August 1944
as a member of Patton’s Third Army, in the
Corps of Engineers. The Boyers, in their bio-
graphical sketch of Woody (Boyer and Boyer
1991), give the following account of Woody’s
wartime efforts:

Bledsoe received the Bronze Star medal
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Sandia
Woody received his Ph.D. in 1953. Turning
down teaching offers at the universities of
Utah, Virginia, and Michigan, he decided to
“try his hand at atomic research” (Bledsoe
1976); so, he and his family moved to Albu-
querque, where Woody went to work for the
Sandia Corporation. Sandia was supported
entirely by the Atomic Energy Commission
for the purpose of defense research. Woody
worked in the mathematics department on
systems analysis. Boyer describes his work as
follows (Boyer and Boyer 1991, p. 8):

Systems analysis is a term used to express
engineering concerned with the interac-
tions of components in a “system” that is
itself composed of many other systems,
e.g., a telephone system or a modern bat-
tlefield.

Almost all Woody’s research during this peri-
od remains classified. In 1956, he witnessed a
hydrogen bomb test on Eniwetock Island in
the northwest Marshall Islands. 

In 1959, Woody teamed with polymath and
fellow Sandia employee Iben Browning to
work on pattern recognition. The result of

their work was the Bledsoe-Browning or N-
tuple method (Bledsoe and Browning 1959).
The primary impetus of this work was to rec-
ognize letters, both printed and handwritten.
Some of the features of this system were that
“(1) it handles all kinds of patterns with equal
facility; (2) because it does not depend on
absolute pattern matching, it can identify a
pattern that is not exactly like, but only simi-
lar to, a pattern it has previously learned; (3)
it does not depend significantly on the loca-
tion of a pattern on the photomosaic for iden-
tification; and (4) it is only partially depen-
dent on the orientation and magnitude of a
pattern for identification” (Bledsoe and
Browning 1959, p. 225).

The original N-tuple experiment used a 10 X
15 photocell mosaic partitioned into 75 ran-
domly chosen, exclusive pairs (elements).
When an image is projected onto the grid,
each cell can assume a value of either 0 or 1.
Thus, each element can be in one of four
states. The device is “trained” by presenting
characters from multiple alphabets. Each
character is presented in slightly different
positions and orientations. For each of the
300 (75 X 4) possible states, there is associated
a string of n bits, where n is the size of the set
of characters to be distinguished. (This set of
strings was referred to as the memory matrix).

When training the device to recognize the ith
character, the ith bit of each of the 75-bit
strings associated with the 75 states is set to 1.
When presenting a character for recognition,
a score for each possible character j is comput-
ed by summing the jth-bit values of the
strings associated with the 75 states represent-
ed by the pixel values on the photocell. The
character corresponding to the highest score
is the winner.

Bledsoe experimented with many variants
of this scheme (Bisson 1962; Bledsoe and Bis-
son 1962; Bledsoe and Browning 1959).
Increasing the size of the tuple improves read-
ability, although it increases the training time.
Storing averages, rather than binary values,
also improves readability. Careful layout of
the tuples on the grid can also improve read-
ability. After discussing some of these
improvements in Bledsoe and Bisson (1962),
Bledsoe asks,

How much more readability can be
expected with further improvements in
the matrix? Clearly an optimum set of
stored matrix values exists for any given
pattern set. Indeed, learning can be
described precisely as the attempt to
obtain the optimum matrix for specified
sets, some methods being superior to
others (p. 414).

Panoramic Research, Inc.
In 1960, Woody, along with Browning and
Lloyd Lockingen, left Sandia to start Panoram-
ic Research, Inc. (PRI), in Palo Alto, California.
The majority of the work involved AI-related
contracts from the U.S. Department of
Defense and various intelligence agencies. 

We were constantly, repeatedly, searching
for, proposing and trying out ideas which
we hoped would “move the world.” That
was one of the first AI groups before the
term “Artificial Intelligence” came into
use (Bledsoe 1976).

One interesting nongovernment contract
was with McCalls magazine. At that time, each
address on a magazine mailing jacket was
printed from a metal plate onto which the
subscriber’s name and address were punched.
McCalls wanted to switch to a computer and
commissioned Woody to use his pattern-
recognition programs to read all these
addresses into the computer. If his program
achieved recognition within a small fixed-
error tolerance, then his company was to
receive a small fee for each address processed.

After some improvements to the recogni-
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gence [Edelman 1987; Holland 1975])
but for neural nets it turned out to be an
optimization problem of extraordinary
computational requirements, due to the
very large numbers of synaptic weights
that are involved (p. 121).

Woody (Bledsoe 1962b, 1962c, 1961a) ana-
lyzed how mating, mutations, and gene inter-
action would affect the convergence rate to an
optimum. Goldberg (1989) assesses Woody’s
role in the creation of the genetic algorithm:

The studies of Bledsoe and Bremermann
came closest to the modern notion of a
genetic algorithm. Both suggested binary
string codings. Bledsoe presented results
of a scheme that combined individual-
by-individual generation, mutation, and
save-the-better selection (p. 104).

Another interesting result originating
from the collaboration with Bremer-
mann is found in Bledsoe (1962b).

Using quantum theoretic methods, Bremer-
mann had proposed a lower bound on the
number of bits of information that could be
contained in any computer of a given volume.
Using the Heisenberg uncertainty principle,
Bledsoe obtained a lower bound on the mem-
ory-access time of a computer of a fixed densi-
ty and memory size. He shows, for example,
that any computer that has a memory capaci-
ty of 109 bits of information and a density of
20 grams/cm3 must have an access time in
excess of 10–18 sec. To overcome this limita-
tion, Woody proposed that computers of the
future might contain a great many local pro-
cessing units distributed uniformly through-
out the memory storage area and under the
general control of a central processing unit.

During 1964 and 1965, Bledsoe, along with
Helen Chan and Charles Bisson, worked on
using the computer to recognize human faces
(Bledsoe 1966a, 1966b; Bledsoe and Chan
1965). He was proud of this work, but because
the funding was provided by an unnamed
intelligence agency that did not allow much
publicity, little of the work was published.
Given a large database of images (in effect, a
book of mug shots) and a photograph, the
problem was to select from the database a
small set of records such that one of the
image records matched the photograph. The
success of the method could be measured in
terms of the ratio of the answer list to the
number of records in the database. Bledsoe
(1966a) describes the following difficulties:

This recognition problem is made
difficult by the great variability in head

tion algorithms, he eventually satisfied the
contractual restrictions on the error rate using
the sample data provided. When the program
was tried on the real production data, howev-
er, it failed. The problem resulted from
reusing old address plates left from canceled
subscriptions: New addresses were punched
on top of old addresses. The extra noise result-
ing from the remnants of previous impres-
sions confused the algorithm so that the error
rate was exceeded in production.

Many other early AI pioneers were frequent
guests at PRI. Among them were John
McCarthy, Marvin Minsky, Saul Amarel, and
Hans Bremermann. Many of Woody’s early
publications at PRI were inspired by conversa-
tions with Bremermann. 

Much of Woody’s early efforts at PRI con-
centrated on improving the N-tuple algo-
rithm:

If “number of images correctly read” is
accepted as the definition of “readability,
readability for a given pattern set can be
regarded as a function of many variables,
the variables being values recorded in the
matrix. In this light, optimization tech-
niques can be employed to seek the opti-
mum matrix for a given set. The actual
matrix which proved optimum will
depend naturally on the particular n-
tuples selected, as well as on other system
parameters, including n itself. Optimiza-
tion, therefore, must at least include:
finding the “best” n, finding the “best”
set of n-tuples, and finding the “best”
corresponding memory matrix (Bledsoe
and Bisson 1962, p. 415).

In Bisson (1962), a gradient search tech-
nique was successfully used to improve the N-
tuple algorithm. A more interesting effort at
optimization involved the use of evolutionary
techniques. Bremermann and Anderson
(1991) discuss the early attempts to optimize
pattern-recognition algorithms:

Around 1960–61, however, we both
experimented with the idea of applying
“genetic algorithms” to optimize the per-
formance of perceptrons: Treat the
synaptic weights like nucleotides of DNA;
mutate, recombine cross over and select,
as in Darwinian evolution. HJB spent sev-
eral weeks during the summer with Frank
(Rosenblatt) in Ithaca. Subsequently
Woody and HJB tried it in earnest, but on
simpler and well-defined objective func-
tions (Bremermann 1962; Bledsoe 1961b;
Bledsoe and Browning 1959). The
method works in principle (and is current-
ly a popular method in Artificial Intelli-
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rotation and tilt, lighting intensity and
angle, facial expression, aging, etc. Some
other attempts at facial recognition by
machine have allowed for little or no
variability in these quantities. Yet the
method of correlation (or pattern match-
ing) of unprocessed optical data, which is
often used by some researchers, is certain
to fail in cases where the variability is
great. In particular, the correlation is very
low between two pictures of the same
person with two different head rotations.

This project was labeled man-machine
because the human extracted the coordinates
of a set of features from the photographs,
which were then used by the computer for
recognition. Using a GRAFACON, or RAND TABLET,
the operator would extract the coordinates of
features such as the center of pupils, the inside
corner of eyes, the outside corner of eyes,
point of widows peak, and so on. From these
coordinates, a list of 20 distances, such as
width of mouth and width of eyes—pupil to
pupil, were computed. These operators could
process about 40 pictures an hour. When
building the database, the name of the person
in the photograph was associated with the list
of computed distances and stored in the com-
puter. In the recognition phase, the set of dis-
tances was compared with the corresponding
distance for each photograph, yielding a dis-
tance between the photograph and the
database record. The closest records are
returned.

This brief description is an over-
simplification that fails in general
because it is unlikely that any two pic-

tures would match in head rotation, lean, tilt,
and scale (distance from the camera). Thus,
each set of distances is normalized to repre-
sent the face in a frontal orientation. To
accomplish this normalization, the program
first tries to determine the tilt, the lean, and
the rotation. Then, using these angles, the
computer undoes the effect of these transfor-
mations on the computed distances. To com-
pute these angles, the computer must know
the three-dimensional geometry of the head.
Because the actual heads were unavailable,
Bledsoe (1964) used a standard head derived
from measurements on seven heads.

After Bledsoe left PRI in 1966, this work was
continued at the Stanford Research Institute,
primarily by Peter Hart. In experiments per-
formed on a database of over 2000 pho-
tographs, the computer consistently outper-

formed humans when presented with the
same recognition tasks (Bledsoe 1968). Peter
Hart (1996) enthusiastically recalls the project
with the exclamation, “It really worked!”

The Mormon Church
Woody was a devout member of the Church
of Jesus Christ of Latter Day Saints, more
commonly known as the Mormon Church. In
his youth, he joined several churches but
became disillusioned with them. In his auto-
biographical sketch, he declared, “I was deter-
mined to have nothing to do with any of
them ever again” (Bledsoe 1976). After marry-
ing Virginia, who was a Mormon, Woody
began attending church with her. Woody did
not join immediately, however. He described
his hesitation: “I really got involved in the
Mormon Church in Richmond. I expected to
join then but just did not have the testimony,
so I delayed” (Bledsoe 1976). It took Woody
another 15 years to join. When he did, the
church became a focus in his life. The Mor-
mon Church does not have paid clergy; its
leadership positions are occupied by laymen
who have other jobs. The church expects its
members to take an active role. Woody twice
served two-year appointments as bishop of
the congregation. The role of bishop is similar
to that of a pastor in other Protestant religions
or a priest in the Catholic Church. The bishop
is responsible for the administration of the
congregation as well as the welfare of each
member of the congregation. The Mormons
generally do not accept government aid, and
it is the bishop’s role to determine what
church assistance the congregation members
need. During his first term as bishop, his
administrative talents were also being chal-
lenged as chair of the Mathematics Depart-
ment. 

Woody also served as a counselor to the
stake president, the administrative head of a
stake, which is a local collection of congrega-
tions. While serving these appointments,
Woody was also a scout leader. His last church
appointment was as stake patriarch. The patri-
arch gives patriarchal blessings to church
members. These blessings provide inspired
guidance and direction. Although a bishop
and a stake president must be deemed worthy
individuals, they are chosen in large part
because of their dedication and administrative
skills. The patriarch is selected because he
lives life according to the highest moral and
spiritual principles—he is always a revered
individual.

In 
experiments
performed 
on a 
database of
over 2000
photographs,
the computer
consistently
outperformed
humans 
when present-
ed with 
the same
recognition
tasks 
(Bledsoe
1968). 
Peter Hart
(1996) 
enthusiasti-
cally recalls
the project
with the
exclamation,
“It really
worked!”

Articles

SPRING 1996   11



Articles

12 AI MAGAZINE

University of Texas
In 1965, Bledsoe decided to return to universi-
ty life:

By 1965 it looked like PRI was doing
pretty well, and I saw no reason why we
couldn’t make some money with it. But
as president, I was spending more and
more of my time administering, going to
Washington, Albuquerque, or wherever,
and less time with the thing I loved,
namely science. Also, I had a latent
desire to get back to university life, so I
accepted an offer as Professor of Mathe-
matics at the University of Texas at
Austin (Bledsoe 1976).

Lockingen, one of Bledsoe’s partners at PRI,
had left PRI for the University of Texas (UT)
in 1963. Wilson Stone, a prominent geneticist
at UT and an expert on speciation, had met
Bledsoe several years previously and had been
trying to woo Bledsoe to Texas. Stone, vice-
chancellor of research, was in the process of
forming a quantitative genetics faculty and
wanted Bledsoe as a principal member. Bled-
soe finally accepted Stone’s invitation and
joined the Mathematics Department in Jan-
uary 1966.

During the early 1970s, Bledsoe collaborat-
ed with R. H. Richardson, a geneticist who

was also brought to UT by Stone. They
worked on a project to provide the geneticist
with automated tools for discovering near
replications of large chunks of genetic materi-
al on the large chromosomes of Drosophila.
One of the primary goals of this work was to
analyze the hypothesis that speciation
occurred by modifying and reusing large
functional assemblies of genes. Thus, within
the chromosomes of an organism should be
many large groups of genes that occur several
times in slightly modified form. Some of these
groups should also be found across species.

At the time, genetic material on these chro-
mosomes was identified primarily by the
banding patterns. The bands at a particular
locus, however, would vary from cell to cell
and from one developmental stage to another
as genes were turned on and turned off. The
computer was enlisted to process the micro-
scopic images of the chromosomes; straighten
them out; and, with the aid of the geneticist,
identify the bands. The computer could then
try to find a match for specified regions in the
same or other chromosomes from the sample
or from chromosomes in a database of sam-
ples. In this project, as in the earlier faces pro-
ject and as we see in later theorem-proving
projects, Bledsoe has the human in the loop.

Bledsoe was twice appointed to two-year
stints as chair of the Mathematics Depart-
ment. Woody recalled that “things were
buzzing in the Math Department at UT when
I came and I was soon in the middle of it”
(Bledsoe 1976). When Woody first became
chair in 1967, the department was divided
into two camps: One group followed the
teaching methods of R. L. Moore, and the
other used more conventional methods.
Moore, who in 1967 was in his late 80s, used
the Socratic method, where teaching was
accomplished exclusively by means of ques-
tion and answer. There were no lectures, and
the use of books was forbidden. According to
Leonard Gillman (1996), who succeeded
Woody as chair, “The Moore group tried to
prevent the library from buying any mathe-
matics books.” Although Moore had his share
of detractors, he also had his share of support-
ers. He could count among his former stu-
dents three members of the National Acade-
my of Sciences. Elaborating on the buzzing
metaphor, Gillman (1996) said that “Woody
really walked into the hornet’s nest but some-
how managed to hold the whole thing
together.” Woody was entirely sympathetic to
the Moore method. In fact, as an undergradu-
ate at UT, he decided to become a mathemati-
cian, during a Moore-style course, because of



the thrill he derived by proving himself the
theorem that the Riemann integral exists for
continuous functions. Woody’s second
appointment began in 1973. By 1975, the
math faculty had doubled in size.

Students
Woody was an active teacher and a thesis
adviser. The following individuals received
their Ph.D. under him; many of them went on
to become first-rate scientists: John Wade
Ulrich, 1968, computer sciences; Stephen
Charles Darden, 1969, computer sciences;
Charles Edward Wilks, 1969, mathematics;
James Bertram Morris, 1969, computer sci-
ences; Robert Brockett Anderson, 1970, mathe-
matics; Robert Stephen Boyer, 1971, mathe-
matics; Dallas Sylvester Lankford III, 1972,
mathematics; Vesko Genov Marinov, 1973,
computer sciences; Mark Steven Moriconi,
1977, computer sciences; John Threecivelous
Minor, 1979, computer sciences; Peter Leonard
Bruell, 1979, computer sciences; William
Mabry Tyson, 1981, computer sciences; Tie
Cheng Wang, 1986, computer sciences; Larry
Marvin Hines, 1988, computer sciences; Don
Simon, 1990, computer sciences; and Guo Wei
Feng, 1994, computer sciences.

MCC 
In 1983, a group of 20 computer companies
formed a consortium for the purpose of doing
advanced research in computer science. This
consortium was, in part, a response to the per-
ceived threat of the Japanese fifth-Generation
Project, the goal of which was to build high-
performance inference machines for running
AI applications. Austin, Texas, was selected as
the site for the consortium, and Bobby Ray
Inman, former deputy director of the Central
Intelligence Agency and former director of the
National Security Agency, was chosen to lead
the effort. Among the major research areas
were packaging, software technology,
database, natural language, and AI. 

In response to Woody’s offer of assistance,
Inman proposed that he become a vice presi-
dent in charge of the AI group. Woody accept-
ed the job in the spring of 1984 and quickly
got to work building the AI group. One of the
most conspicuous projects was CYC, headed by
Doug Lenat, with whom Woody had collabo-
rated while on sabbatical at Carnegie Mellon
University. Lenat (1996) describes how CYC

came about as well as what its goals were:

Woody and Virginia spent a semester’s
sabbatical visiting me at CMU in

1977–78, where I was an assistant profes-
sor, and we kept in touch during my
ensuing years as a Stanford professor. In
the early 80s, I published a series of four
“Nature of Heuristics” articles in the AI
Journal, which gradually came to the con-
clusion that machine learning, theorem
proving, natural language and speech
understanding, etc., were all hitting a
brick wall, for lack of a large
commonsense knowledge base. When he
came to work for Bob Inman, as head of
AI at MCC, in early 1984, Woody realized
that this was exactly the sort of grand
enterprise that the MCC consortium was
set up to pursue. He gave me a call, and I
came and talked with him about my
dream, and met Inman. The combination
of the two of them was irresistible, not to
mention the long-term high-risk high-
payoff charter of MCC itself, and I moved
to Austin and started the CYC Project.

CYC, which lasted as an MCC project for
more than 10 years, involved dozens of staff
members (ontological engineers) explaining
the everyday world in a formal language that
computers could manipulate. In January
1995, it spun off from MCC as an indepen-
dent company, Cycorp, whose charter is to
commercialize and foster the widespread use
of the technology, both for the expected
applications (such as English front ends) and
for others that we didn’t expect (such as
database integration).

Woody’s former student and fellow UT pro-
fessor Robert Boyer took a leave from UT and
also joined Woody at MCC. 

IJCAII, AAAI, and I Had a
Dream

Woody served the AI professional organiza-
tions in various administrative roles. He was
chairman of the International Joint Confer-
ence on Artificial Intelligence, Inc. (IJCAII), in
1977 and a member of the IJCAII board of
trustees from 1978 to 1983.

Bledsoe was named president-elect of the
American Association for Artificial Intelli-
gence (AAAI) in 1983. The following year, he
helped organize the annual AAAI meeting in
Austin, Texas. In 1985, he gave the presiden-
tial address at the annual meeting held at the
University of California at Los Angeles (Bled-
soe 1986). He began his address with a
description of his conversion to AI:

Twenty-five years ago I had a dream, a
daydream if you will. A dream shared
with many of you. I dreamed of a spe-
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cation, employment, facilities. Pursue it
with vigor—and impatience. Want it
today. I’ve never seen a content re-
searcher who was worth his salary. Don’t
be easily deterred by those who don’t
have your insight and training. Work
hard, provide momentum, don’t give up
easily. Don’t spend too much time
extolling the work of others; you will
never be properly recognized or satisfied
until you make your own personal con-
tribution. Compare and compete. These
are rules for a researcher in any field. My
conviction is that the field of AI is worth
your finest efforts.

Return to the University
Woody returned to UT in 1987, where he
remained until his retirement in 1994. Woody
held the Ashbel Smith Professorship of Math-
ematics and Computer Science for several
years and the Peter O’Donnell Jr. Chair in
Computing Systems from 1987 to his retire-
ment. In 1991, he received the IJCAI Distin-
guished Service Award and the third “mile-
stone” award from the American
Mathematical Society. These awards are pre-
sented to individuals who perform outstand-
ing research in the area of automatic theorem
proving. The citation on the award reads

The Milestone Award of 1991 goes to
Woodrow W. Bledsoe, who has been a
central figure in Automatic Theorem
Proving, inspiring and guiding this field
for over twenty years. His broad view of
the subject, using resolution and nonres-
olution techniques, his deep study of
theorem proving in analysis with
inequalities, and his work on interactive
theorem provers distinguish him as a
major innovator in the field.

In 1991, a conference celebrating Woody’s
seventieth birthday was held at the university,
with researchers coming from around the
world. The papers presented at this confer-
ence, as well as another biographical account
of Bledsoe’s life, are found in Boyer (1991). 

Automated Reasoning
Bledsoe spent part of the summer of 1966 back
at Sandia, where he began to implement a
proof checker for A. P. Morse’s (1965) set theo-
ry with his friend E. J. Gilbert. In discussing
this work (Bledsoe and Gilbert 1967), Bledsoe
makes the following observation, which was
to provide the underlying impetus for almost
all his work in automated reasoning:

cial kind of computer, which had eyes
and ears and arms and legs, in addition
to its “brain.”

When I awoke from this daydream, I
found that we didn’t have these things
but we did have some remarkable com-
puters, even then, so I decided then and
there to quit my job and set about spend-
ing the rest of my life helping bring this
dream to reality (p. 57).

He then described how many of the grand
goals were still unaccomplished: “SHAKEY liked
shaking more than running” (Bledsoe 1986, p.
58). He emphasized that progress had been
made and that progress will be made, albeit
slowly, if researchers persist in their efforts.

First, let me express my annoyance with
some of the distracted individuals who
criticize AI researchers for not “jumping
to infinity” in one leap. Somehow, to
them it is OK to work step by step on the
dream of obtaining controlled thermonu-
clear energy or a cure for cancer or a cure
for the common cold, but no such step-
by-step process is allowed for those try-
ing to (partially) duplicate the intelligent
behavior of human beings. To these cyn-
ics, a natural language system that con-
verses with us in a restricted form of
English is somehow not a legitimate step
toward passing the Turing test. I know of
no case in the history of science where
such “naysayers” actually helped with a
new discovery (Bledsoe 1986, p. 58).

Bledsoe then enumerated several areas he
felt should be researched. Among these were
large knowledge bases, machine learning, and
analogical and commonsense reasoning. He
closed his address with some advice to young
researchers (Bledsoe 1986, p. 61):

The principle I want to make is this:
when you have what looks like a good
idea, give it your best shot, waste a little
money to get some early feedback. Don’t
take forever to study the problem,
because that is even more expensive (and
less exciting). Of course, this strategy
(this scientific method) requires character
on the part of the researcher. He/she
must be willing to analyze those experi-
ments, reformulate theories, and press
on. Otherwise, that person does not
qualify for the work and should not be
entrusted with research funds.

So, again, I would say to young people,
set a dream. Set a goal (your part of
bringing about the dream). Tool up: edu-

Much of 
Bledsoe’s

efforts were
spent in 

getting his
mechanical

provers to
make larger

and larger
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steps.
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Logic systems usually state a certain min-
imal set of rules of inference, which
might include detachment (modus
ponens), substitution, and universaliza-
tion (generalization), and from which all
theorems are derivable. However, if just
this minimal set of rules of inference is
used, proofs become very long and
tedious, and consequently, provers usual-
ly begin making larger steps in their
proofs. This tendency to larger steps is
increased as one proceeds further away
from elementary logic into other areas of
mathematics, until a sort of “steady-
state” proof step size is reached (p. 6).

Much of Bledsoe’s efforts were spent in get-
ting his mechanical provers to make larger
and larger inference steps.

When Bledsoe began his work in automatic
theorem proving or automated reasoning,
nearly all research in this area was based on
the resolution procedure (Robinson 1965). To
determine whether a statement follows from a
set of axioms with resolution, one places the
axioms and the negation of the statement
into a normal form, called clause form, and,
using a simple rule of inference (resolution)
that combines modus ponens with matching,
generates new clauses from old clauses. These
new clauses are called resolvents. After all pos-
sible resolvents are generated from the origi-
nal set, they are thrown into the pot, and the
algorithm proceeds by resolving these new
resolvents against the original clauses and one
another. This process can repeat round after
round indefinitely. If the empty clause is
eventually generated (by resolving S and not
S), then the original statement is a theorem.
Much of resolution’s appeal stems from its
simplicity and the fact that it is a complete
proof procedure, meaning that if a statement S
logically follows from a set of axioms, then
resolution applied to the clause form of the
axioms, along with the negation of S, will
eventually generate the empty clause and pro-
nounce S to be a theorem. This simplicity
came with a price; a naive implementation of
this basic procedure soon swamps the com-
puter with generated clauses. 

Researchers applying the resolution method
tried to limit the explosion of generated claus-
es. One of the first of these restrictions, or
refinements, was the set of support strategy
(Wos, Robinson, and Carson 1965) that forbid
the generation of new clauses by resolving
between clauses derived solely from the
axioms. When limiting the generation of new
clauses, it is important to ensure that the
restrictions are not so great that the algorithm

fails to prove statements that are theorems,
thus the emphasis on completeness proofs.

Along with his student Robert Anderson,
Bledsoe invented a powerful restriction
(Anderson and Bledsoe 1970). They intro-
duced (Anderson and Bledsoe 1970) the excess
literal method, a simple but general approach
for establishing completeness of resolution
restrictions. Boyer (1971) discovered a resolu-
tion restriction called locking and proved its
completeness also using the excess literal
method. Although these restricted resolution
algorithms tend to generate fewer clauses on
each round, it often takes more rounds to find
a proof if one exists. Thus, what is saved on
breadth is often conceded to depth. 

Because the semantics of the equality rela-
tion introduces axioms that generate so many
resolvents, the resolution method, as original-
ly described, could not deal effectively with
the equality relation. Woody’s student James
B. Morris (1969) overcame this limitation by
defining an extension of resolution called E-
Resolution. The basic idea behind E-Resolution
is that when trying to unify two terms, if at
some point they don’t match, try to use
occurrences of the equality predicate to
rewrite them into terms that do match. Notice
that E-Resolution essentially builds equality
handling into the unification algorithm.

During the late 1960s and 1970s, the
majority of theorem-proving researchers
focused on improving the performance of the
resolution method. The primary approach was
to improve the efficiency of the new clause-
generation process itself. Much improvement
was made along this line by cleverly indexing
clauses or compiling them. A direct result of
clause compilation was the Prolog program-
ming language based on David H. Warren’s
(1987) beautiful abstract machine. Some
impressive theorems were produced by these
fast inference machines, but typically, they
were of a restricted form. The initial clause set
was always small, meaning that inference pro-
ceeded from a small hand-picked set of
axioms or other theorems. Defined terms such
as continuous function were usually expand-
ed away in advance, and the theorems typi-
cally did not require algebraic manipulations.
In recent years, improvements in resolution
search strategies and implementation tech-
niques have led to provers that have settled
open questions in mathematics (Wos and
McCune 1992; also see URL http://www.
mcs.anl.gov/home/mccune/ar/new_results).

Although Bledsoe continued to work at
improving resolution, most of his time was
spent studying nonresolution methods, as
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lemmas to add to the hypothesis, specify a
term to define away, provide instantiations for
existential variables, and abort the current
goal. This prover and its variants were used
over the course of nearly a decade. Some
interesting applications were proofs of the
standard-limit theorems from analysis (Bled-
soe, Boyer, and Henneman 1972) using the
limit heuristic and the proofs of many
difficult theorems in analysis (Ballantyne and
Bledsoe 1977) using nonstandard analysis.
PROVER, augmented with special rules to han-
dle integer linear inequalities (Bledsoe 1975),
was the proof engine for a very large program-
verification project (Good 1985; Good, Lon-
don, and Bledsoe 1975).

In Ballantyne and Bledsoe (1982), PROVER

was used to study how mathematicians create
examples and counterexamples to conjectures
and how they are used to guide proofs. The
program tried to mimic a mathematician at a
board drawing pictures of a problem. It was
successful at discovering minimal finite coun-
terexamples to a number of conjectures in
topology.

We list a few of the areas in automated rea-
soning where Bledsoe and his students made
contributions. Many of these methods were
used either in PROVER or in resolution proof
systems.

Simplification
Although an equation such as x + 0 = x can in
theory be used in either direction, in practice,
it is almost always used left to right. An intu-
itive justification is that the term resulting
from such an application is simpler. Similarly,
the equation x * (y + z) = x * y + x * z is also
almost always used from left to right,
although the criteria by which one can say
the resulting term is simpler are not as obvi-
ous as in the previous case.

A group of equations that are used only in
one direction for the purpose of simplifying
expressions is called a set of simplifiers or reduc-
ers. When simplifying an expression, all the
simplifiers are applied to each term in the
expression until no more simplifications can
be made. Notice that the act of reducing a for-
mula is a large inference step. The use of sim-
plifiers in automatic theorem proving was pio-
neered by Wos (Wos et al. 1967), Bledsoe
(1971), and Slagle (1974). Simplification was
used as one of the primary computational
tools by Bledsoe’s student Boyer in the BOYER-
MOORE PROVER (Boyer and Moore 1988, 1979).

To be truly useful, a set of simplifiers E
should have the property that if the equality s
= t follows from E viewed as a set of equa-

described in his survey article (Bledsoe 1977b).
In this article, he describes how he became dis-
enchanted with his earlier approach:

The author was one of the researchers
working on resolution type systems who
“made the switch.” It was in trying to
prove a rather simple theorem in set the-
ory by paramodulation and resolution,
where the program was experiencing a
great deal of difficulty, that we became
convinced that we were on the wrong
track. The addition of a few semantically
oriented rewrite rules and subgoaling
procedures (Bledsoe 1971) made the
proof of this theorem, as well as similar
theorems in elementary set theory, very
easy for the computer. Put simply, the
computer was not doing what a human
would do in proving this theorem. When
we instructed it to proceed in a “human-
like” way, it easily succeeded (p. 2).

Bledsoe used the term nonresolution in a
general sense. Rather than implying a particu-
lar logical proof method such as natural
deduction, Bledsoe used nonresolution to
mean any technique whatsoever that could be
considered mathematical reasoning. Bledsoe
was a working mathematician who wanted to
build mechanical tools for assisting mathe-
maticians. Proving well-formulated theorems
is only a small part of a mathematician’s
activities. Someone once remarked, “To say
that a mathematician’s job is proving theo-
rems is like saying that a writer’s job is writing
sentences.” Among a mathematician’s activi-
ties are formulating theorems to be proved
and defining terms of mathematical interest.
A mathematician looks at examples. A mathe-
matician computes when necessary. A mathe-
matician constantly refers to a large corpus of
mathematical and commonsense knowledge.
Bledsoe considered all these activities worthy
of study under the automatic theorem prov-
ing or automated reasoning umbrella and
indeed investigated a number of these areas.

The UT PROVER

The primary research vehicle for this explo-
ration of nonresolution theorem proving was
a program called the UT PROVER (Bledsoe and
Tyson 1975; Bledsoe and Bruell 1974). This
prover was based on a natural deductionlike
logic. PROVER worked by splitting a problem
into subgoals, backtracking whenever it
looked to be on a wrong path. The program
was designed to have the human in the loop.
Among the many methods the human could
employ to guide the proof were to specify
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tions, then the fully reduced form of s should
be identical to the fully reduced form of t.
Given an arbitrary system of equations, the
reduced are not identical. For example, the
axioms of group theory

1. (x + y) + z = x + (y + z)
2. x + (–x) = 0
3. x + 0 = x

do not have this property. It is an elementary
theorem of group theory that 0 + x = x. How-
ever, both sides of this equation are fully
reduced. Thus, if one uses these equations
solely as simplifiers, then valid group-theoret-
ic equalities will not be identified as such. In a
landmark paper (Knuth and Bendix 1970),
Donald Knuth formalized the notion of sim-
plifier and described a means for testing a set
of simplifiers to see whether it has the proper-
ty described. Moreover, in the case where it
fails, Knuth’s test will often transform the
original set into an equivalent set that does.
Such sets are called complete sets of reducers (or
complete term-rewriting systems). In a series of
papers, Bledsoe’s student Dallas Lankford
(1975a, 1975b) and Michael Ballantyne (Lank-
ford and Ballantyne 1977) generalized Knuth’s
work and incorporated it into general proof
procedures such as resolution. 

Chaining
Although early researchers in automated rea-
soning concentrated their efforts on proving
theorems in obscure formal systems such as
ternary Boolean algebras, Bledsoe early on
focused on proving hard theorems in analysis
(Bledsoe 1990, 1984; Bledsoe, Boyer, and Hen-
neman 1972). We have already seen how he
used simplifiers to handle the arithmetic
axioms of the real numbers. The order
axioms, such as transitivity of the less-than
predicate, presented an equally difficult chal-
lenge for resolution systems. The transitivity
axiom states that for real numbers a, b, and c,
if a is less than b and b is less than c, then a is
less than c. One difficulty with this axiom
when presented to resolution is that it
resolves with itself, producing longer and
longer clauses. Another problem is that virtu-
ally any other clause containing the less-than
predicate will resolve with it. Another axiom
of the real numbers that is often required in
proofs states that between any two real num-
bers, there is another real number. If these
axioms are allowed to participate unchecked
in an attempt at a resolution proof of some
theorem in analysis, they will almost immedi-
ately swamp the computer.

Bledsoe (1989) devoted an entire paper to
illustrating the pathology of these
axioms when used in a resolution set-

ting. To combat this proof devastation, Bled-
soe proposed the variable-elimination and
chaining rules (Bledsoe and Hines 1980),
which, when incorporated into resolution,
eliminate the need for explicitly adding the
axioms mentioned. (This statement is only
true if the less-than relation is total, as it is for
real numbers.) Although this new super infer-
ence rule is simple in form, proving its com-
pleteness was difficult. A partial result along
these lines was obtained in Bledsoe, Kunen,
and Shostak (1985), and the proof was com-
pleted by Bledsoe’s student Larry Hines (1992).
We list some of the theorems proved by this
method (Hines and Bledsoe 1990): First, the
limit of sums is the sum of limits. Second, the
composition of continuous functions is a con-
tinuous function. Third, nonempty, closed,
and bounded sets have a maximum element.
Fourth is the intermediate-value theorem. A
similar approach to dealing with transitivity in
elementary set theory and the theory of the
integers also showed considerable promise
(Hines 1994, 1990; Bledsoe 1975).

Set-Variable Instantiation
When proving theorems in many branches of
mathematics, one must often have to find a
set that satisfies certain properties. For exam-
ple, when using the least–upper-bound axiom
of the real numbers, one must instantiate the
axiom with some bounded set. Huet (1973)
described a complete proof procedure for a
formulation of higher-order logic. Unfortu-
nately, this procedure suffered from all the
inefficiencies of resolution and then some. For
example, two terms could possibly have an
infinite number of most general unifiers. Bled-
soe (1977a) discovered a method that lacks
the generality of Huet’s method but that
works well enough on a subset of second-
order logic to enable his provers to prove
many theorems in topology and analysis that
required the instantiation of a set variable.
The method was called a maximal method
because it always instantiates the set variable
with the largest possible solution. Bledsoe
(Bledsoe and Feng 1993) extended the
method and proved a form of completeness.

Analogy
Bledsoe’s last years focused primarily on the
task of building analogical reasoning into his
provers. He considered this task one of the
most important tasks confronting the field.
Analogy is the heart and soul of intelligent
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until he felt he could no longer do so without
hurting himself. He taught until he thought
his poor speech impaired his ability to lecture,
and he pursued his research on analogy until
he could no longer hold a pen.

He was perhaps the most wonderful person
we have ever known. He was the sort of per-
fect embodiment of faith, hope, and charity.
It’s almost as though he was not subject to the
common human frailties. We never saw him
discouraged, we never saw him depressed, and
we never saw him unkind.

Leonard Gillman (1996) described Woody
thusly:

He was universally calm and fair—a mod-
el citizen of the world.
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