

Wool -- A C library for OSE
PowerPC Multi-Core system

 Yang Wang

Master's thesis at: System on-chip design
 Royal Institute of Technology

Conducted at: ENEA

Supervisors: Qiang Chen,

ICT, Royal Institute of Technology
Detlef Scholle, Barbro Claesson

 ENEA

Examiner: Lirong Zheng
 ICT, Royal Institute of Technology

 Stockholm, May, 2012

 3

Abstract

With the requirement of high property processor rapidly increasing, ordinary
single-core processors can hardly deal with the task it faces due to the limitation of
frequency, power consumption, heat dissipation and etc. Under this circumstance
multi-core processor technology turns out to be a reasonable solution for this problem.
While multi-core processors will improve the performance like clock frequency,
parallel threads and etc, a certain research illustrate that the improvement of the
performance is not linear with the number of cores. This is because the overhead of
scheduler, unbalanced load and the architecture of the multi-core processors. When
operating system gives good model like SMP, AMP and industry like X86 and
PowerPC design kind of architecture for multi-core, author’s direction naturally focus
on a light overhead scheduler which is a C language scheduler “Wool” researched in
this paper originally designed by Mr. Karl-Filip Faxen in SICS. Wool is a library
providing lightweight tasks on top of pthreads. [4]

In order to understand the principal and structure of “Wool”, author does several
pre-study about multi-core schedule and decides the platform and operating system to
design some tests. The first part of this master thesis report give an overview of
modern technology of multi-core architecture, parallel programming, task parallelism
strategy and etc. The second part specified the “Wool” scheduler. PowerPC e500 core
and Enea OSE operating system for the test design and use case. The last part
conclude the results of the tests and point out the probably direction for future
research.

 4

 5

Table of Contents

1 Introduction 8

1.1 Background 8

1.2 Problem statement 8

1.3 Method 9

1.4 Delimitations 9

1.5 Purpose 9

1.6 Goals 9

2 Multi-core processor 1 0

2.1 Introduction 10

2.2 Property of multi-core 1 0

2.3 Architecture 10

2.3.1 Cache 11

2.3.2 Memory 11

2.3.3 Interconnection networks 11

2.3.4 Homogeneous and heterogeneous processors 12

2.4 Summary 12

3 Parallel programming 1 3

3.1 Introduction 13

3.2 Parallel programming models 13

3.2.1 Shared Memory (without threads) 13

3.2.2 Threads 14

3.2.3 Distributed memory/ Message passing 15

3.3 Designing parallel 15

 3.3.1 Partitioning 15

 3.3.2 Communications 15

 3.3.3 Data dependencies 16

 3.3.4 Load balancing 16

 3.3.5 Granularity 16

 6

3.4 Summary 17

4 CPU architecture 18

4.1 Introduction 18

4.2 Operation bits architecture 18

4.3 Instruction set architecture 18

4.3.1 CISC 18

4.3.2 RISC 19

4.4 Familiar CPU architecture 19

4.5 Summary 20

5 Scheduling methods 21

5.1 Introduction 21

5.2 Basic concept 21

5.2.1 Parallel pattern 21

5.2.2 Centralized and distributed task queue 21

5.2.3 Eager and lazy scheduling 22

5.3 Software and hardware task queue implementation 22

5.4 Task stealing 23

5.5 Summary 23

6 QorIQ P4080 platform 2 4

6.1 Queue manager 24

6.2 Resource partitioning 25

6.3 e500mc core 25

6.4 Summary 26

7 Wool 2 7

7.1 Introduction 27

7.2 Parallelism 27

7.3 Work stealing in Wool 28

7.3.1 Parking 28

 7

7.3.2 Leapfrogging 29

7.4 Test 29

7.5 Summary 31

8 Design and Implementation 32

8.1 Wool for PowerPC 32

8.1.1 Memory and storage fence 32

8.1.2 Exchange and CAS 33

8.2 Wool for OSE 34

8.3 Modify Wool with OSE process 34

8.4 Summary 34

9 Discussion and future work 35

References 3 6

Appendix:

Enea OSE 37

1 OSE fundamentals 37

1.1 Native versus Cross development 37

1.2 OSE Memory pool 37

2 OSE architecture 38

3 OSE processes and IPC 40

3.1 Process states 40

3.2 Process categories 41

3.3 Process types 41

3.4 IPC concepts 42

4 Summary 43

 8

Chapter 1

Introduction

1.1Background

As the Moore’s Law stated, the performance of computer doubled every 18 months
which is concluded in David House’s reversion [5] in the past decade years until the
single core come to its bottleneck. Then naturally people turn to multi-core to find a
solution and inspiringly the multi-core processor run at a lower frequency and
perform better than single core because “two heads are better than one.”[6] At the
same time new problem about reducing overhead of concurrent program and keeping
load balance for parallelism task begin to confuse engineer when parallel software
start to widely be used on multi-core architecture.

Wool is a library providing lightweight tasks on top of pthreads [4] in other words it is
a C task scheduler for concurrent program especially on multi-core architecture. The
corporation between Karl-Filip Faxen, the author developed Wool and Enea give birth
to my master thesis work which is running “Wool” on OSE operating system under
PowerPC to derive characteristics of “Wool”.

1.2 Problem statement

This master thesis concentrates on the “Wool” task parallelism strategy, PowerPC
assembly instruction set and OSE operating system. One problem is to investigate
how “Wool” reduce overhead and execute an efficient balance load. The other one is
that “Wool” only works on Linux under CISC (Complex Instruction Set Computing)
architecture like X86. If author want to launch it on OSE operating system under
RISC (Reduced Instruction Set Computing) architecture—PowerPC, the primary
thing to do is getting familiar with the OSE architecture and having an overview of
the difference of assembly code between CISC and RISC.

Questions that should be answered:

Q1 What kind of task parallelism strategy does “Wool” use?

Q2 What is the difference in program under CISR and RISC architecture?

Q3 Can “Wool” be modified to run under PowerPC architecture?

 9

1.3 Method

The whole thesis work is 20 weeks in which pre-study, test, report and presentation
should be involved. First 10 week theoretical papers, manual and instruction will be
primary to study which aim to solve the questions mentioned above. After then deeper
investigation on “Wool” structure and Macro inside could discover more detail and
secret of it. When it comes to the second half, more practical work with PowerPC
assembly code, research on OSE operating system and the chosen platform should be
done. In the end, come out with design and test to make some conclusion of the
characteristics of “Wool”. A new modified “Wool” then will be born for the
combination of two features—OSE operating system and PowerPC architecture.

1.4 Delimitations

There will be a lot of theoretical material to read and also a bunch of practical
problem to solve. Since the whole thesis work is 20 weeks, author can only use QorIQ
P4080 platform with OSE operation system on it as research target.

1.5 Purpose

The purpose for this master thesis is to transplant “Wool” onto OSE operating system
in PowerPC architecture. Furthermore, investigate the property of “Wool” running in
that environment and give some conclusions.

1.6 Goals

G1. Make “Wool” fit for PowerPC instruction set.

G2 Modify “Wool” to run on OSE operating system

 10

Chapter 2

Multi-core processors

2.1 Introduction

The trend of increasing a processor’s speed to get a boost in performance is a way of
the past. [6] The heat dissipation problem, clock frequency limit and also the general
trend of parallelism software program force engineer developing new solution. As
multi-core processor is a brand new architecture to increase the performance without
the limited clock frequency, it begins to be widely used in industry. A multi-core
processor is an integrated device with more than one independent computing units and
all of these units are able to execute instructions.

2.2 Property of multi-core

The advantage of multi-core processors is obvious when compare the computing
speed, clock frequency and data rate. The benefit could be divided into two parts,
immediate benefit and long term benefit. Immediate benefit is especially significant in
areas like processor-intensive tasks, concurrent program with multi-threads, and
diversity of structure for industry. A new direction for next generation software and
hardware design is the long term benefit. Like every micro-processor, multi-core
processor has its own advantages and drawback. The disadvantages include the
complexity of the architecture, overhead in software program, hardly handling the
communication between cores and load balance.

But as L. Peng referred in his paper, due to advances in the circuit technology and
performance limitation in wide-issue, super-speculative processors,
Chip-Multiprocessors (CMP) or multi-core technology has become the mainstream in
CPU design. [7]

2.3Architecture

Multi-core processor architecture include caches/shared caches, memory,
interconnection and cores. In this thesis multi-core processor can be considered a
processor with multi-cores inside. Figure 1 identifies a normal structure of a
multi-core processor. In this figure, the cores work with two levels of cache, which L1
cache is private while L2 cache is shared. A system bus connects processor 0,
processor 1 and a system memory. The interconnection transfers data and instruction

 11

between processors/caches and system memory. These cores here can have either the
same position or a master-slave relationship.

Figure 1 A multi-core multi-processor system architecture [8]

2.3.1 Cache

Cache is designed to reduce the memory access time. Its access time is much faster
than memory and it could save data or instruction which will be used frequently or
iterative, so it is located between memory and core as kind of buffer. Usually two or
three levels of cache are used, i.e. L1 cache, L2 cache and L3 cache and L1 cache is
private for one core while L2, L3 cache are normally public. Cache is made of SRAM
which is expensive and especially L1 cache is smallest, faster and most expensive.
Because of the value of size of cache, L2 and L3 caches are always shared by cores.
The benefit is obvious which is to reduce cache under-utilization, cache coherency
complexity, and false sharing penalty, data storage redundancy at the L2 and L3 cache
level and front-side bus traffic. [8]

2.3.2 Memory

A memory is connected to processors by system bus (interconnection) and much
larger than caches. A memory normally store big files which are currently executing
but too big to store in cache. Compared to hard disk, the access time to memory is still
less and when it comes to multi-core processor the memory is necessarily required.
Because a global memory is a good and easy solution for communication between
cores by writing and reading the memory. It is useful but also leaves problem to
interconnection when there are approximately 32 cores. [6]

2.3.3 Interconnection networks

The interconnection work plays a central role in determining the overall performance
of a multi-computer system. If the network cannot provide adequate performance, for
a particular application, nodes will frequently be forced to wait for data to arrive. [9]
This will affect the whole system vitally because communication between cores is the
primary condition to remain the system smooth and stable. For a given number of
cores, the “best” interconnection architecture in a given chip multiprocessing

 12

environment depends on a myriad of factors, including performance objectives,
power/area budget, bandwidth requirements, technology, and even the system of
software.[10]

2.3.4 Homogeneous and heterogeneous processors

Homogeneous cores are all exactly the same: equivalent frequencies, cache sizes,
functions, whereas each core in heterogeneous environment could have a specific
function and run its own specialized instruction set. [6]

There always is an argument about which is better and it still remain suspended.
Homogeneous cores are easy to use because the structure and the instruction set are
all the same. The work load can be allocated at any of the core so the scheduler, load
balance and parallelism task are convenient to achieve. But when it comes to
specialized task this environment may be not the most efficient one. A special tailored
task runs on a specific core with the proper structure and instruction set will
performance much better. At the same, the complexity is the vital technical barrier for
common purpose tasks. So both these two environment have their own special ability
for variety tasks, like two sides of a coin.

2.4 Summary

Multi-core processor opens a new window to solve the frequency limit, heat
dissipation and power consumption problems of traditional single-core processor. On
the other hand, because of using shared cache, memory, the requirement of
interconnection bandwidth and complexity increases rapidly. To control the growth of
the complexity of the structure, a homogeneous core environment shares the same
hardware structure and instruction set is widely used in most of recent systems.
However, a tradeoff always exists between complexity and efficiency. At some
special cases, increasing the complexity by utilizing heterogeneous core environment
will enhance the capability of the system significantly.

 13

Chapter 3

Parallel programming

3.1 Introduction

Parallel programming is normally based on the structure of multi-core processors as it
breaking a program into several task/threads which can execute simultaneously.
Running several parts of the program parallel will shorten the run-time and speed up
the system response. Parallel programming makes good use of the multi-core
hardware architecture and keeps every core busy. This technology has been widely
used in supporting scientific research and even in our daily life like weather forecast.
But as the particularity of parallel programming author mentioned above, only a
problem satisfies some requirement is able to be parallel programming.

a) Be able to be broken apart into discrete pieces of work that can be solved
simultaneously.

b) Be able to execute multiple program instruction at any moment in time.

c) Be able to be solved in less time with multiple compute resources than with a
single compute resource.[11]

It seems like that the more cores a CPU has the faster the program will be executed.
Unfortunately the result is not ideal and actually with number of cores the increasing
the performance draws an opposite “U” curve. This is because an overhead is imposed
which includes software overhead, breaking program down, synchronization,
communication between tasks and assembling program back. Now we can see parallel
programming is a tricky problem and tradeoff often occurs between different models
and solutions.

3.2 Parallel programming models

Parallel programming models exist as an abstraction above hardware and memory
architecture. [11] Different models have their own advantage and of course drawbacks.
Here present several common models and give a brief introduction.

3.2.1 Shared Memory (without threads)

Shared memory is a certain memory space which is able to be accessed by different
software in order to communicate with each other and save the memory space. A
same storage unit like global variable can be visited by a collection of individual tasks.
By writing and reading the unit, data and communication instruction exchange

 14

between tasks. Indeed, it presents a simple communication method, since ownership
of this data does not have a notion. However there are a few of drawbacks discussed
below.

3.2.1.1 Racing problem

Race condition happens when several processes or threads try to access a shared state.
Because no notion exists, any of task win the race can write or read the data. If one
task changes a variable unexpectedly, it will result in another task fetching wrong data
without noticing. Avoiding this problem is essentially important in the situation of
data dependency, which is difficult to debug.

3.2.1.2 Deadlock

Usually locks/semaphores are imposed to solve the racing problem.
Locks/semaphores are kind of resource that only the task has the resource is able to
deal with the data and other tasks are not permit to access until the resource is
released or recycled. Well-constructed locks/semaphores dominate if the program
works efficient, otherwise a deadlock will occur.

When two or more threads or processes endlessly waiting for each others to release
certain shared resource, this scenario is a deadlock.

In order to avoid the deadlock happening, four conditions should be treated seriously.

a) Mutual exclusion: Each resource is either currently allocated to exactly one
processors or it is available.

b) Hold and wait: Processes currently holding resources, it cannot be taken away by
another process or the kernel.

c) No preemption: Once a process holds a resource, it cannot be taken away by
another process or the kernel.

d) Circular wait: Each process is waiting to obtain a resource which is held by
another process.[12]

3.2.2 Threads

In a threads model, a process is divided into several threads. These threads share the
same resource of the process possess of. The communication between threads is
sharing a global memory and they are able to call, synchronize and terminate other
threads. Once the threads finish, they release the clock slice and give the resource
back to the process. POSIX defines a standard for C language threads and APIs are
supported in the pthread.h library.

 15

3.2.3 Distributed memory/ Message passing

Message passing is a concept of communication between two processes with only
local memory. Normally a sending operation always is matched with a receiving
operation by another process. This model fits multi-core hardware best since every
core has its own memory like caches and they are connected by on-chip bus or
network. At the same time, it requires that the programmer build an even clearer
model about the interaction between tasks and the whole architecture of the problem
to avoid race condition, dead lock and etc.

Point-to-point communication and collective communication are two basic
communication models. P2P communication naturally the first idea comes in mind
because the idea is simple and easy to handle. But if a collect of tasks send massage at
the same time, a traffic problem will occur in the interconnection which bottlenecked
the speed of the system. Sometimes a same massage is sent over and over and this
causes unnecessary overlap and decrease the efficiency. Collective communication is
based on a concept that a member collects massage first and sends them until some
condition is satisfied. Three types of collective operations include synchronization,
data movement and collective computation. Broadcast, scatter and all-to-all are three
mainstream technology of data movement. [13]

3.3 Designing parallel

The efficiency and speed of the parallel programming accompany a collector of
problems. Some problems only impact on the efficiency, and others may cause vital
error which could hard be debugged.

3.3.1 Partitioning

Partitioning is breaking down a problem into smaller tasks which can be executed on
several cores and this is the first step for parallel programming. Meanwhile, this
partitioning work is the main overhead of start-up time. Domain decomposition and
functional decomposition are two kind of partitioning methods depend on the
specified problems. Domain decomposition concentrates on the tasks that have similar
data structure for example array and cube. However, functional decomposition
focuses on the instruction set and collect similar ones together to a core.

3.3.2 Communications

In the case of communications, data is shared between tasks and also instructions are
sent.

3.3.2.1 Blocking and non-blocking

 16

In non-blocking communication, a task continues to do its work as soon as it sends a
message. This kind of communication sending a lot of small massages add the latency
up and lead to heavy overhead. To reduce the latency and increase the efficiency of
bandwidth, collecting the message and sending them once is a good solution, and this
brings out the concept of blocking communication. In blocking communication, tasks
need to “handshaking” before they continue to work and also the waiting time for
“handshaking” cause another kind of overhead

3.3.3 Data dependencies

A dependency exists between program statements when the order of statement
execution affects the results of the program and a data dependence results from
multiple use of the same location in storage by different tasks.[11] Data dependencies
need to be carefully treated in partitioning and it is the primary inhibitor in parallel
programming.

3.3.4 Load balancing

The high performance of multi-core processor is because every core takes a part of a
problem. In the other word, if some cores are just standing by, the multi-core will
become meaningless. Load balancing tries to guarantee that every core is busy. If the
problem is simple for instance array/matrix and loop, allocating same size of work to
each core is able to work efficiently. Otherwise, some complex or unpredictable tasks
need use dynamic scheduling. Here introduce two familiar strategies.

Task-pool: No task is assigned to cores at beginning, and all cores go and fetch a task
from the task-pool. If one core finish its own work, is will go and fetch another work
until the task-pool empty.

Task-stealing: Each core owns a stack of tasks at first. If a certain core has done with
its stack, it will steal tasks from other cores by random or other algorithm.

3.3.5 Granularity

Granularity is the ratio of computation/communication and it can be divided into
fine-grain parallelism & coarse-grain.

Fine-grain Coarse-grain

Low ratio of computation/communication High ratio of
computation/communication

Relatively easy for load balancing Relatively hard for load balancing

High communication overhead Low communication overhead

Low potential to enhance performance High potential to enhance performance

 17

This table shows a tradeoff between load balancing and communication overhead. A
final decision should depend on the algorithm and the hardware environment. In other
words, compare load balancing overhead and communication overhead for the
system.

3.4 Summary

In this chapter, parallelism coding seems to be a difficult job. Choosing the most
suitable model for specific hardware environment is the first step. Then in practical
programming like partitioning, communication, load balancing and granularity, a
decision of tradeoff need to be given which require a solid knowledge for a platform
and instruction flow.

 18

Chapter 4

CPU architecture

4.1 Introduction

CPU architecture is given to the same series of CPU products by manufacturer.
Recently, Intel CPU and AMD CPU occupy the CPU market and they present
different architecture. CPU architecture can be divided in two ways. One depends on
the operation bits (32-bit & 64-bit) and the other depends on instruction set (CISC &
RISC).

4.2 Operation bits architecture

32-bit architecture is the mainstream in CPU market. 64-bit architecture breaks some
traditional IA32 architecture limit and owns a position in high performance computer.
IA-32, x86-32, x86-64 all belong to x86, i.e. Intel 32-bit x86 architecture. IA-64 is a
64-bit architecture developed by Intel and Hp in order to fully enhance the
performance of formal IA-32bit CPU. It abandons x86 architecture since it restricts
the enhancement of CPU, but it is not able to solve the problem of compatibility for
32-bit application.

4.3 Instruction set architecture

Instruction set architecture is part of computer system structure and relates to program
design. It includes the management for data type, instruction, registers, addressing
mode, memory architecture, interrupt, exception handling and I/O. Instruction
architecture works based on micro-architecture which exists in CPU. Without
micro-architecture, instruction set architecture is nothing but opcode. Different
micro-architecture can execute a same instruction for example Intel Pentium and
AMD Ahtlon, because they use the same x86 instruction set. Depending on the
difference of instruction set, instruction set architecture can be divided into CISC and
RISC.

4.3.1 CISC

In a long term, the enhancement of computation performance relies on increasing the
complexity of hardware. Under this background, hardware engineers continuously
add complex functional instruction and flexible addressing mode. In order to achieve
complicated operation, micro-processors provide programmer not only register and
machine instruction but also micro programs which are stored in ROM.

 19

Micro-processors execute a serious of elementary instruction after analyzing every
instruction and this kind of design is called Complex Instruction Set Computer-CISC.
In general, CISC models include at least 300 instructions and some have even more
than 500 instructions.

4.3.2 RISC

A computer using CISC have the strong capability to deal with high level language
which is benefit for increasing the performance of the computer. However, somebody
refuse to go with the stream when the design of computer develops along this way. In
1975, IBM Jhomasl Wason research center starts to organize the investigation of the
rationality of CISC, because at that moment, scientists notice that more and more
complicated instruction system is difficult to achieve and can reduce the performance
of the system. In 1979, one research carried out by a group of scientists from UC
Berkeley lead by Professor Paterson shows that CISC has a collection of drawbacks.

Firstly, the usage of varieties of instructions differs massively: 80% instructions in a
typical program are only 20% in the processor instruction system. Actually, the most
frequently used instructions are simple instructions like fetching, writing, adding and
etc. In other words, the design of CISC instruction system people concentrate for long
term is indeed an instruction system processor which is rarely used in practical work.
Meanwhile, complex instruction system will bring the complexity of structure. This
increases the cost of design and the opportunity of mistake as well.

Secondly, in despite of the high level technology of VLSI, it is difficult to package all
hardware of CISC on one chip which affects the development of single-chip
micro-computer. In CISC, many complicated instructions require special complicate
operation which are kind of copy of some high level language, so the compatibility is
not satisfied. Aiming at these problem, Professor Paterson came up with the concept
of reduced instruction which is a instruction system should include small amount of
high frequently used instructions and provide a few necessary instructions to support
operating system and high level language. Computers developed based on this
principle are called Reduced Instruction Set Computer-RISC.

4.4 Familiar CPU architecture

In general, several CPU architectures are the mainstream in industry as kind of
development model and thousands of application based on them.

 X86 SPARC PowerPC

Designer Inter, AMD Sun Microsystems AIM

Bits 16-bit, 32-bit,
and/or 64-bit

64-bit (32→64) 32-bit/64-bit
(32→64)

 20

Design CISC RISC RISC

Type Register-Memory Register-Register Load-Store

Encoding Variable Fixed Fixed/Variable

Branching Status Register Condition Code Condition Code

4.5 Summary

Generally CPU architecture mainly means the operation bits and instruction set. 32-bit
architecture is primary used right now and 64-bit architecture owns more capability to
enhance performance. However the compatibility problem remains to be fixed.

The stable and fast instruction execution and low cost of manufacture are the
advantages of RISC while most software supports CISC at present. There is also a
compatibility demand. Three types of most common CPU architectures have different
operation bits and instruction sets. The type of instruction sets matters the software
program most and the compatibility between different X86 and PowerPC is hard to
handle.

 21

Chapter 5

Task Queue

5.1Introduction

In order to implement problems parallel, many of them need to breakdown into small
executable units. However, the problems today have more and more amount of tasks
and become more efficiently concurrency-dependent. These kinds of applications
have the same characteristics which is dynamic task number and size. To handle these
tasks, a powerful scheduler is required to assign tasks to every core and keep load
balancing. Task queue is a well-known mechanism that is primarily designed to
address the load imbalance problem. [1] Task Queue is defined as a mechanism to
synchronously distribute a sequence of tasks among parallel threads of execution. [14]

5.2 Basic concept

5.2.1 Parallel pattern

Loop-Parallelism: A loop problem is able to breakdown into iteration of small tasks
which can be executed parallel. This kind of task has the property of statically length.

Task-Parallelism: Split a normal problem into small executable units. It widens the
concept of loop-parallelism in which the task length could be variable and a data
dependency exists between tasks.

Memory-Parallelism: Based on the idea of assign tasks shared same data to one
processor’s memory, this can increase the locality of tasks and reduce the
communication overhead.

These three parallel patterns based on different models and come out with
corresponding strategy to achieve low overhead and more scalability.

5.2.2 Centralized and distributed task queue

Centralized and distributed task queues are two methods to enqueue and dequeue
tasks.

Centralized task queue is described as one processor own a global task queue and
others processor call for tasks from it. This scheduling operation of assign tasks is
handled by operating system. As one can imagine, it is a simple way to assign tasks
without considering much about the task dependency because this is the only global
queue the system have. Meanwhile, the interaction between processors is simple too
since every processor only communicates with the master processor. However, the
negative influence is obvious at the same time. A bottleneck will form when the

 22

communication is too busy. To conclude the usability of centralized task queue, three
factors should be considered: task size, communication latency and number of
processors.[14] A big task size can hide the overhead of communication while small
number of processors have less possibility to form a bottleneck.

Distributed task queue present each processor its own queue and the tasks have been
assigned at first. A well-performed scalability is the most significant advantage, i.e. it
is more suitable for large amount of processors. At the same time, the communication
overhead is relatively huge when some processor’s queue is empty and it asks for new
tasks. Another problem is the difficulty to handle the task dependency, so sometimes
the system need to synchronize between tasks which bring waiting time and
communication overhead too. Here illustrates the importance of locality mentioned in
memory parallelism because it guarantees less synchronization and deals with task
dependency locally. To distinguish the dependency of tasks, an addition priority
marked on tasks is a solution. Meanwhile it brings more software overhead and
increase the complexity of scheduling.

Hierarchical task queue is designed by combining both the concept of centralized task
queue and distributed task queue. Each processor owns a relatively small local queue
and the whole system owns a global queue. First enqueue tasks into each local queue
and then enqueue the rest tasks into the global queue. When the local queue is empty,
the processor takes tasks from the global queue. If the amount of available parallelism
is limited or the amount of local memory is small, hierarchical task queue can
sometimes perform better. [1]

5.2.3 Eager and lazy scheduling

Eager scheduling and lazy scheduling are two completely opposite scheduling
methods. Eager scheduling can be described as the operating system keeps assigning
tasks to processors while observing the status of each processor. Apparently, eager
scheduling performance well in load balancing since no processor will be idle or
starvation. On the other hand, this also impose overhead of checking every processor.
In contrast, lazy scheduling will not give tasks to any processor until someone is idle
and ask for tasks. Without checking the status all the time, low overhead is imposed
by lazy scheduling. But the load balancing is not efficient compared to eager
scheduling. In extreme situation, due to the variety of task size and big number of
processors, some processor will ask for tasks and waste lot of time waiting.

5.3 Software and hardware task queue implementation

Software task queue implementation presents both portability and a high overhead of
task management. The impact of the overhead will be significant unless each task is
big enough to hide the latency. If a specific hardware has a task queue structure, the
implementation will be accelerated massively. Also, the support software is able to be

 23

simplified which will reduce the overhead of software queue management. However,
a specified program needs to be produced for a different hardware platform

5.4 Task stealing

Task stealing is a strategy for distributed task queue. In this model, the underlying
work is to guarantee the locality of private queue, because the most significant
overhead of this strategy is communication between processors.

Processors enqueue and dequeue a task from the head of the queue, as known FILO
(First In Last Out). If a processor has finished its private queue, it will try to steal a
task from other processor at the tail place. Generally the stealing target is random.

The advantages are described below:

a) It has been shown to be provably efficient both in terms of execution time and
space usage.[1]

b) By scheduling the child tasks on the same processor as the parent task we get
better cache locality since it supports significant data sharing between parent and
child tasks.[2]

5.5 Summary

Task queue presents a good solution for parallel task management. According to the
task size, communication latency and number of processors, a tradeoff requires to be
balanced between centralized and distributed task queue. Because of the increasing
processors number on platform design, distributed task queue will be the trend
promisingly. Task stealing is a strategy based on distributed task queue in which
locality is the most importance factor. By using a stack, the executing order and
stealing order are well organized.

 24

Chapter 6

QorIQ P4080 platform

The P4080 QorIQ communications processor combines eight Power Architecture
processor cores with high-performance Data Path Acceleration Architecture (DPAA),
CoreNet fabric infrastructure, and network and peripheral bus interfaces required for
networking, telecom/datacom, wireless infrastructure, and mil/aerospace
applications.[3] It is a powerful environment and can process in routers, switches,
base station controllers, and general-purpose embedded computing systems.[3] The
performance is really satisfied compared to multiple discrete devices and the
improvement of board design is significant.

P4080 block diagram

6.1 Queue manager

P4080 platform supports hardware queue manager which can improve the
performance compared to common software manager and also increase the
complexity for porting. The queue manager (QMan) is the main component in the
DPAA that allows for simplified sharing of network interfaces and hardware
accelerators by multiple CPU cores. [2] It also provides a simple and consistent
message and data passing mechanism for dividing processing tasks among multiple
CPU cores. [2] Considering OSE signal passing communication pattern, this kind of
hardware architecture is able to improve the performance of the operating system.

 25

6.2 Resource partitioning

Porting discrete CPUs into a single system-on-chip raises both unexpected problems
and newly advantages. A multi-core system might work unstable if no effectively
resource partitioning and sharing methods are used. However, P4080 supports a new
level of hardware partitioning, in order to ensure the software access the resource they
are authorized to access. This method is relatively easier in P4080 than other
environments, due to P4080 consists eight e500mc cores which build up a SMP
environment. Otherwise, when it comes to be a SMP environment, the complexity of
OS on different cores or even multi-OSes on different cores may increase rapidly. In
the other words, the difficulty of distinguishing authorized software might be a
bottleneck for OS protection.

6.3 e500mc core

Defined by Power ISA, e500mc cores are low-power embedded processors and work
on 32-bit implementation which consist 32 32-bit general purpose registers. In every
clock cycle, the superscalar processor assigns and operates two instructions.
Furthermore, the core is capable to execute six instructions in parallel. Generally, the
storage is in order and there also exists an optional out of order mode. The
Load/Store unit (LSU) supports 32-bit integer and 64-bit floating-point operands. At
the same time, it includes L1 cache which is independent on-chip, 32-kbyte,
eight-way set associative, physically addressed and a unified 128-kbyte, eight-way set
associative, physically addressed, backside L2 cache for instructions and data.

The design of the e500mc aims at multi-core integrated devices. The features ensure
multi-core implementation and multi operating systems within a integrated devices by
partitioning the cores.

 26

Example Partitioning Scenario of a Multicore Integrated Device

6.4 Summary

The P4080 platform is an SMP system which includes eight e500mc cores and applies
RISC instruction set. It also consists hardware Queue manager, resource partitioning
and three level caches. Therefore, in this case, this platform is a typical multi-core
platform on which task scheduling test will be suitable.

 27

Chapter 7

Wool

7.1 Introduction

Wool provides lightweight tasks based on pthreads and it is also defined as a work
stealing C library. The overhead of scheduling is reduced by the Wool macro and
inline functions. Generally, the Wool library initials itself with one thread per physical
processor. However, it is optional in the command line when the program starts. In
Wool, a thread is called worker and each worker own a data structure which
particularly in Wool is a task pool. The pool consists tasks that are ready to be
executed and shared equally between workers.

7.2 Parallelism

The parallelism is achieved by spawning and sync tasks which are likely to be an
asynchronous function call.

TASK_1(int, pfib, int, n)

{

 if(n < 2) {

 return n;

 } else {

 int m,k;

 SPAWN(pfib, n-1);

 k = CALL(pfib, n-2);

 m = SYNC(pfib);

 return m+k;

 }

}

TASK_2(int, main, int, argc, char **, argv)

{

 int n,m;

 if(argc < 2) {

 28

 fprintf(stderr, "Usage: fib <Woolopt>... <arg>\n"),

 exit(2);

 }

 n = atoi(argv[1]);

 m = CALL(pfib, n);

 printf("%d\n", m);

 return 0;

}

example fib.c

In this fib example:

- TASK_1(int, pfib, int, n): Initialize fib (n)

- SPAWN(pfib, n-2): Do fib (n-1) in parallel

- m = SYNC(pfib): Ensure that SPAWNed task done. Otherwise do it.

- a = CALL(fib, n-1): Optimization of SPAWN+SYNC.

In this way, the task pool will grow in the shape of a tree with balanced sub-trees.

7.3 Work stealing in Wool

In Wool, work stealing is based on spawning and sync. Spawning take care of
allocating space for tasks, initializing it and inserting it into the task pool.(efficient
work stealing for fine grained parallelism) When tasks need to be sync, Wool will
check the if the task is stolen. If not, Wool will finish this task and remove it from the
task pool. Otherwise, the worker has to wait. What to do during this time is significant
and may affect the performance seriously. Therefore, here raises two strategies.

7.3.1 Parking

In modern treading implementation scenario, workers might be more than cores. In
this way, another worker will implement while a worker wait. However, problems
occurs when several running in a single core. The scheduling overhead and cache
misses increase while the locality decreases. Therefore, parking is a strategy to avoid
this problem. The basic idea is in the most of time to keep the same number of
workers and cores. In other words, the active workers are equal to cores and other
worker are parking or sleeping. Once an active worker waiting, it will wake up a
sleeping one. Sometimes, the number of worker may be more than cores. At this

 29

moment, as soon as a worker finish its task and notice that there are more active
workers than cores, it will park itself.

7.3.2 Leapfrogging

In leapfrogging, when a worker A needs to wait for joining a task stolen from worker
B, it could possibly steal task only from worker B. The task from pool of B must be
done before the task from A. In this way, A is not occupied when B finishes.

7.4 Test

In order to investigate the effect of Wool, a test is running on a Linux single-core PC.
The test is a compare of simple loop function with and without Wool.

The test supply loop2.c with Wool and myloop.c without Wool. However, the
algorithm is unique and the structure is the same. Therefore, the result will present the
difference obviously.

Loop2.c

#include "Wool.h"

#include <stdlib.h>

#include <stdio.h>

extern int loop(int);

LOOP_BODY_1(work, 100, int, i, int, n)

{

 loop(n);

}

TASK_2(int, main, int, argc, char **, argv)

{

 int grainsize = atoi(argv[1]);

 int p_iters = atoi(argv[2]);

 int s_iters = atoi(argv[3]);

 int i;

 for(i=0; i<s_iters; i++) {

 FOR(work, 0, p_iters, grainsize);

 30

 }

 printf("%d %d %d\n", grainsize, p_iters, s_iters);

 return 0;

}

Myloop.c

#include <stdlib.h>

#include <stdio.h>

extern int loop(int);

LOOP_BODY_1(int i, int n)

{

 int t;

 for(t=0;t<i; t++)

 {

 loop(n);

 }

}

main(int argc, char ** argv)

{

 int grainsize = atoi(argv[1]);

 int p_iters = atoi(argv[2]);

 int s_iters = atoi(argv[3]);

 int i;

 for(i=0; i<s_iters; i++) {

 LOOP_BODY_1(p_iters, grainsize);

 }

 printf("%d %d %d\n", grainsize, p_iters, s_iters);

 return 0;

}

Myloop

(10,10,1

Loop2

(10,10,1

Myloop

(100,100,10

Loop2

(100,100,10

Myloop

(1000,1000,100

Loop2

(1000,1000,100

 31

0) 0) 0) 0) 0) 0)

Real

0m0.002
s

Real

0m0.002
s

Real

0m0.004s

Real

0m0.003s

Real

0m2.424s

Real

0m0.548s

User

0m0.000
s

User

0m0.000
s

User

0m0.000s

User

0m0.000s

User

0m2.376s

User

0m0.536s

Sys

0m0.000
s

Sys

0m0.000
s

Sys

0m0.004s

Sys

0m0.000s

Sys

0m0.004s

Sys

0m0.000s

Loop function is able to create a balanced tree and in this result we can see the
advantage of Wool increase with the tree growing. The reason is Wool arrange the
threads in low overhead by increasing the locality and cache hits.

7.5 Summary

The Wool library is hardware dependent and the macros in Wool are also big amount.
In spite of the complexity of Wool seemed like, it is based on pitheads. In other words,
all the parallelism and work stealing come from the threads. Recently, the Wool
supports several hardware, i.e. X86, SPARC and IA64. The Operating Systems are
more flexible, besides Linux, OSes that support POSIX pthreads will work.

 32

Chapter 8

Implementation

8.1 Wool for PowerPC

The target board P4080 is a product of PowerPC. Thus, since the Wool is hardware
dependent, a modification of Wool requires to be done for the specific target board.
Moreover, the hardware dependency is built on several macros defined in Wool.h and
these macros are replaced by hardware based assembler code.

8.1.1 Memory and storage fence

Memory and storage fence ensure the complier adding an ordering constraint before
and after the barrier. This method takes place because sometimes the compiler
optimizes the code out-of-order. In other words, the order of code is reorganized to
improve the performance. Although this optimization can not be noticed in one thread
code, it may cause unpredictable problem in multi-thread code or multi-core system.
Wool is a working stealing library and based on threads, therefore it is a serious
problem in concurrency programming with Wool. Also, the memory fence is
hardware dependent as well and always defined in architecture’s memory ordering
model. These codes are low level machine code which include synchronization
primitives and lock-free data structures.

#if defined(__sparc__)

 #define SFENCE asm volatile("membar #StoreStore")

 #define MFENCE asm volatile("membar #StoreLoad|#StoreStore")

 #elif defined(__i386__)

 #define SFENCE asm volatile("sfence")

 #define MFENCE asm volatile("mfence")

#elif defined(__x86_64__)

 #define SFENCE asm volatile("sfence")

 #define MFENCE asm volatile("mfence")

In the code above, Wool defines memory and store fence for Sparc, i386 and x86.
Similarly, assembler codes for P4080 require to be defined in the same place.

 33

Pseudo code for powerpc:

defined(__powerpc__)

 #define SFENCE /* */

 #define MFENCE asm volatile("sync")

// wait for the memory to be updated

8.1.2 Exchange and CAS

In Wool, the task stealing basically is an exchange operation between memory and
task pool. Since it is also a low level operation, it is defined with assembler code as
well. An advanced operation called CAS (compare and swap) is an improvement of
an Exchange operation. The thieves using CAS have to compare the value it read with
the previous value before an exchange operation.

defined(__i386__)

 #define EXCHANGE(R,M) asm volatile ("xchg %1, %0" : "+m" (M), "+r" (R))

#elif defined(__x86_64__)

 #define EXCHANGE(R,M) asm volatile ("xchg %1, %0" : "+m" (M), "+r" (R))

 #define CAS(R,M,V) asm volatile ("lock cmpxchg %2, %1" \

 : "+a" (V), "+m"(M) : "r" (R) : "cc")

In the code above, Wool defines exchange for i386 and exchange and CAS for x86.
Similarly, assembler codes for P4080 require to be defined in the same place.

Pseudo code for powerpc:

defined(__powerpc__)

 #define EXCHANGE(R,M)

 asm volatile("loop: lwarx r5,o,r3 //Load and reserve

stwcx r4,0,r3 //Store new value if still reserved

bne- loop") // Loop if lost reservation

Explanation: Assume r4 contains the new value to be stored and r3 contains the
address of the word. Then in the end, the new value is stored and old value returns to
r4.

 #define CAS(R,M,V)

asm volatile("Loop: lwarx r6,0,r3 //Load and reserve

 34

cmpw r4,r6 //Compare the first two operands

bne- exit // Go to exit if not equal

stwcx r5,0,r3 //Store new value if still reserved

bne- Loop //Loop if lost reservation

exit: mr r4, r6") //Return value from storage

Explanation: Assume r5 contains the new value to be stored if match and r3 contains
the address of the word. The value to be compared with the value in memory is in r4.
Then in the end, the new value is stored after a successful match and old value returns
to r4.

8.2 Wool for OSE

OSE is an operating system with powerful feature of OSE process and massage
passing communication. However, in order to satisfy costumers to transplant their
code directly on OSE, it also supplies OSE pthreads. Therefore, the possibility for
Wool on OSE depends on the difference between OSE pthreads and POSIX pthreads.
OSE now supports most of the pthreads APIs which cover the Wool, therefore Wool
is able to run on OSE directly.

8.3 Modify Wool with OSE process

In Wool, the worker always steals the task from the bottom of victim task pool. The
task pool is made of fixed size task descriptors. Although it will simplify the memory
management, this kind of method is not as usual as TBB and Cilk++. TBB and
Cilk++ have a list of free allocation task memory size which fit the OSE task pool
management. Thus, it could be the first step to transfer Wool worker into an OSE
process. Moreover, the stolen task is probably to be modified as an OSE signal and
push into the OSE signal queue. In this way, the process is able to even select the
potential victim by the massage filter.

8.4 Summary

Modifying Wool on P4080 and OSE is definitely possible. The hardware defining
work in Wool.h is massive and complex. Low level machine knowledge requires to be
investigated. The Wool’s structure and working algorithm are the significant problem
to understand. However, Wool for OSE is rather simple since OSE supports most of
pthreads APIs. In the future, it will be a trend to fix Wool worker into a OSE process.

 35

Chapter 9

Discussion and future work

Wool is a C library rather than a compiler code generator and preprocessors.
Comparing with Cilk and TBB, it is competitive in light overhead and growing new
technology utilizing. OSE are also a powerful Operating System and so far less
potential in OSE signals are developed.

In the future, here gives some directions for information:

- Investigate the possibility of modifying the OSE process to a Wool worker and the
Wool task data to an OSE message. And also allocate the task pool directly in the
OSE user’s pool.

- Adding hardware debugging feature on the System which will help to increase the
transparency of the system.

- Improve the Wool’s victim selection method. For instance, check the timestamp
of a worker instead of random select.

- Figure out the possibility for Wool on a heterogeneous system and how is the
performance.

 36

Reference:

[1] Kumar, S., Hughes, C. J., and Nguyen, A. 2007. Carbon: architectural support
for fine-grained parallelism on chip multiprocessors. SIGARCH Comput.
Archit. News 35, 2 (Jun. 2007), 162-173.

[2] P4080 reference manual

[3] P4080 QorIQ intergrated multicore communication processor family reference
manual

[4] Wool user’s guide

[5] Video Transcript, “Excerpts from a Conversation with Gordon Moore: Moore‟s
Law”, Intel Corporation, 2005

[6] Multicore Processors – A Necessity By Bryan Schauer

[7] L. Peng et al, “Memory Performance and Scalability of Intel‟s and AMD‟s
Dual-Core Processors: A Case Study”, IEEE, 2007

[8] Effective use of the shared cache in multi-core architectures By Tian Tian,
Intel Corp., January 23, 2007

[9] Interconnection Networks www.cs.cf.ac.uk/Parallel/Year2/section5.html

[10] Interconnections in multi-core architecture: understanding mechanisms,
overhead and scaling ;Rakesh Kumar

[11] Introduction to parallel computing Author: Blaise Barney, Lawrence
Livermore national laboratory

[12] CSCI. 4210 Operating systems Deadlock
http://www.cs.rpi.edu/academics/courses/fall09/os/c15/

[13] MHPCC(Maui High Performance Computing Center) SP Parallel
programming workshop message passing overview

[14] Task Queue Implementation Pattern Ekaterina Gonina (Author), Jike Chong
(Shepherd), UC Berkeley ParLab

 37

Appendix:

Enea OSE

Enea OSE is a widely used real time operating system, optimized for distributed,
fault-tolerant and embedded systems.

1 OSE fundamentals

There are two kernel types in the OSE family. One is called the OSE Real Time
Kernel, designed for embedded systems. The other, which is similar to the Real Time
Kernel, is called the OSE Soft Kernel and is intended to run in a host computer, such
as a UNIX workstation, Linux or PC. Both kernels are developed for use in
single-CPU and multi-CPU systems. Much effort has been put into OSE to make an
application look the same irrespective of the number of CPUs involved.

1.1 Native versus Cross development

Native Development:

- Application is developed and executed on the same computer

- Usually using the same operating system environment for both

Cross Development

- Application is developed on one computer

- Will run on another computer

 Soft Kernel Real Time Kernel

 Windows Solaris Target/Freeze Mode or Run
Mode

Compiler VisualC++ gcc DIAB GreenHills

SCD VisualC++ DDD(gdb) SingleStep Multi

SCD-Source Code Debugger

1.2 OSE Memory pool

- In OSE, the basic type of memory area is the pool. It is an area of memory from
which signal buffers, stacks and kernel areas are allocated.

 38

- Always one global memory pool: system pool. System processes and data reside in
this pool, which must be located in kernel memory.

- Possible to create “local” pools using the same memory space as the processes they
support. Pools can be created dynamically by a call to create_pool () or statically by
declaring it in OSEMAIN.CON.

- ose_set_pool_max_size() added from OSE5.5 for dynamic change of pool max size
and fragment size.

A signal containing a pointer to the memory pool of sender is usually fast but
dangerous. To avoid this danger, one or several pools can be grouped in a separate
“domain”. This way, while sending a signal across segment boundaries the user is
able to choose to copy the signal buffer from the sender segment to receive segment.

2 OSE architecture

OSE Architecture includes Init, Kernel, Core, core extensions and Platform.

The Init layer architectural responsibilities are:

- Target initialization, which brings the system to a known, safe state

- Run-time interface for persistent configuration management

- Run-time interface for low-level logging

The kernel layer architectural responsibilities are:

 39

- Process scheduling services

- Logical and physical memory management

- Process management and synchronizations services

- Inter-process communication (IPC) services (using OSE signals)

- Basic time and time-out service

- Debug and kernel monitoring services

- Centralized error handler plug-in interface

- Link handler plug-in interface

The core layer architectural responsibilities are:

- C/C++ run-time environment

- Heap memory service

- Clock and calendar services

- File system plug-in interface

- Login shell service

- Program management plug-in interface

The core extension layer extends the core services for different markets and customer
applications

The platform layer consists of a number of OSE platform components that use the
OSE API and SPI to provide the application layer with additional interfaces.

- Higher-level network protocols, such as FTP or HTTP

- Internet routing algorithms, such as RIP or OSPF

- Java and other virtual machines

 40

3 OSE processes and IPC

OSE process is the fundamental building block within OSE which is a function with
its “context”, i.e. its own stack and s set of specific variables and register values.
Processes share the CPU time allocated by the kernel and they are divided into
categories (static and dynamic) and types (interrupt, time-interrupt, prioritized,
background and phantom). Therefore, in one word, an OSE process is a thread with
some special features.

3.1 Process states

Since CPU time has to be shared by all the existing processes within a system, a
process is not always running. Therefore, there exists three states for an OSE process:
Ready, Waiting, Running.

 41

States diagram

3.2 Process categories

Static processes are created at the system start by the kernel, or at the start of a load
module. They are globally visible, supposed to exist for all the life of the system or
load module and it is not allowed to kill a static process.

As opposed to static processes, there are dynamic processes which can be created,
configured and killed freely in run-time, using system calls. Furthermore, dynamic
processes can be created as multiple instances of the same code.

3.3 Process types

Interrupt processes

- Called in response to a hardware interrupt or software event (trap)

- Run from beginning to end each time

- May be interrupted by another interrupt process with higher priority

This process is designed for response-time critical task.

Timer interrupt processes

- Called in response to change in the system timer

- Act in exactly the same way as ordinary interrupt processes

This process is designed for high priority cyclic task.

Both processes above are Non-blocking system calls.

Prioritized processes

 42

- Common process type

- Written as infinite loops

- Run as long as no interrupt process or another prioritized process with higher
priority is ready to run, or it is blocking itself by a system call, or its time slice is
over.

This process is designed for longer task than interrupt processes, not directly tied to
some external events.

Background processes

- Run in a strict time-sharing mode at the lowest priority level (Usually
Round-Robin)

- Written as infinite loops

- It may use blocking system calls

This process is designed for lowest priority level processes, used to spend leftover
CPU time.

Phantom processes

- Not really a “process”

- Contain no code

- Unable to receive signals

- Contain only a signal redirection table

- Mainly used as part of a logical channel when communicating across target
boundaries

This process is designed for special purpose, e.g. local “proxy” for remote processes,
used by link handles.

3.4 IPC concepts

General OSE/IPC usually based on signals passing. OSE signals are not like Unix
signals and it is more like a message passing communication. A signal is a message
that is sent from one process to another. The signal contains some form of information
that the originating process wishes to convey to the destination process. The signal
also has some additional attributes that are set by the operating system. The signal
attributes keep track of which process sent the signal (the sender), which process it
was sent to (the addressee), which process owns the signal (the owner), its size, signal
number and a few other things. These signals will be popped into the massage queue
of the receiver process.

 43

A process has only one signal queue which is created and administered by the kernel.
The kernel also owns the signal queue and every signal in the queue are treated
equally. The order, in which the signals are retrieved from the signal queue, is decided
from within the receiving process and only the owner of the signal can modify the
contents of the buffer.

In OSE, inter process synchronization and communication is done perfectly with
signals. A signal is a synchronization primitive which can be used as a notification or
acknowledge message as well as a data-carrying message. Signals can be used to
implement other RT primitives such as semaphores, barriers or monitors.

4 Summary

OSE has its own specific development track and it utilizes message passing for inter
communication which is quite different with Unix/Linux. It does support threads;
however the OSE process is more powerful for embedded system. This feature adapts
to multi-core platform and task parallelism which are the most important concentrated
point in this research project.

