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Abstract

Speech recognition systems have used the concept of states as

a way to decompose words into sub-word units for decades. As

the number of such states now reaches the number of words

used to train acoustic models, it is interesting to consider ap-

proaches that relax the assumption that words are made of

states. We present here an alternative construction, where words

are projected into a continuous embedding space where words

that sound alike are nearby in the Euclidean sense. We show

how embeddings can still allow to score words that were not in

the training dictionary. Initial experiments using a lattice rescor-

ing approach and model combination on a large realistic dataset

show improvements in word error rate.

Index Terms: embeddings, deep learning, speech recognition.

1. Introduction

Modern automatic speech recognition (ASR) systems are based

on the idea that a sentence to recognize is a sequence of words,

a word is a sequence of phonetic units (usually triphones), and

each phonetic unit is a sequence of states (usually 3). Linguis-

tic expertise is then used to transform each word of the dictio-

nary into one or many possible phonetic transcriptions, and one

can then construct a graph where the nodes are states of these

phonetic units, connected to form proper words, such that the

best path in the graph (according to some metric) corresponds

to the best sequence of words uttered for a given acoustic se-

quence [13, 17]. The basic ASR architecture is shown in Fig-

ure 1.

Figure 1: Architecture of a modern ASR system.

The total number of unique states can vary depending on

the task, but is usually very high. In our experimental setup,

it is around 14,000. The best ASR approaches nowadays use

deep architectures [3, 4, 6, 8, 14] to estimate the probability of

being in each state at every 10ms of signal, given a surrounding

window of acoustic information. This usually means training a

neural network with a softmax output layer of around 14 thou-

sand units. Such a neural network is trained from data aligned

using a previously trained model used to force-align the training

sentences to states, that is, estimate for each time frame which

state the model should be in, in order to produce the right se-

quence of states, hence the right sequence of words.

We propose in this paper to replace the basic ASR ar-

chitecture (the shaded box in Figure 1) with a suitable deep

neural network. This leads to fully data-driven approach that

avoids the rigid model assumptions of (3-state) HMMs (includ-

ing the frame independence assumption) and does not require

any linguistic expertise through the lexicon or phonetic decision

tree [17]. On the down side, jointly learning all these compo-

nents from data is a very hard learning problem. However, we

argue that the original task in Figure 1 may be harder than the

final task of recognizing word sequences: indeed humans would

usually fail to properly segment an acoustic sequence of words

into phonetic units, let alone into states, as the boundaries be-

tween them are hard to assess. It is certainly easier for humans

to segment such acoustic sequence into words instead. More-

over, training dictionaries often contain about the same number

of words (tens of thousands) as there are states in the model,

so it might actually be about as hard to train a model to distin-

guish full words rather than states. We present a first attempt at

such a task in the next section, based on a deep convolutional

architecture.

While such a model would then require a special decoder

(to account for the fact that words have variable duration), it can

more easily be used as a second phase lattice rescoring mecha-

nism: using a classical pipeline (based on phonemes and states),

one can obtain, at test time, not only the best sequence of words

given the acoustic, but the k-best such sequences, often orga-

nized as a lattice in the induced word graph. Each arc of the lat-

tice can then be rescored using the proposed word-based model

efficiently.

One problem of a model directly trained on words is ar-

guably to be able to generalize to words that were not available

at training time. Using models based on states lets linguists ar-

bitrarily construct new words, as long as they are made up of

known phonetic units. We present in this paper an alternative

construction, based on word embeddings, that can be used to

score any new word for any acoustic sequence, and that hence

can generalize beyond the training dictionary.

Several researchers have been working on (partial) solu-

tions toward a more data-driven approach and to automate

and simplify the standard speech recognition architecture as

depicted in Figure 1. A recent line of work includes seg-

mental conditional random fields [18] with word template fea-

tures [12, 5], for example. Just to mention a few, other exam-



ples include grapheme-to-phoneme conversion [2], pronuncia-

tion learning [15, 10], and joint learning of phonetic units and

word pronunciations [1, 9].

We show in the experimental section initial results on a

large proprietary speech corpus, comparing a very good state-

based baseline to our proposed word embedding approach used

as a lattice rescoring mechanism, which improves the word er-

ror rate of the system.

2. Model

The classical speech recognition pipeline using a deep archi-

tecture as an acoustic model follows a probabilistic derivation:

Let A = {a}T1 be an acoustic sequence of T frames at and

W = {w}N1 be a sentence made of a sequence of N words wn.

We are thus looking for the best such sentence agreeing with the

acoustic sequence:

W
⋆ = argmax

W

P (W,A) = argmax
W

P (A|W )P (W ) (1)

where we then decompose the prior probability of a sentence

P (W ) into the product of the conditional probabilities of each

of the underlying words as follows:

P (W ) =

N
∏

n=1

P (wn|w
n−1

1 ) (2)

for a sequence of N words, which is usually taken care of by a

separate language model (often estimated by a so-called n-gram

model on a very large corpus of text). For HMMs, the acous-

tic term decomposes into a series of conditionally independent

state-based factors (Viterbi approximation):

P (A|W ) =

T
∏

t=1

p(at+k

t−k
|st)P (st|st−1) (3)

where k is a hyper-parameter representing the width of the in-

put acoustic provided as input to the neural network, and the

sequence of HMM states st follows the sequence of words wn

in W . In order to use a neural network to model the emission

term, we then rewrite it as follows:

p(at+k

t−k
|st) ∝

P (st|a
t+k

t−k
)

P (st)
(4)

where we ignore the p(at+k

t−k
) terms since they are the same for

all competing sequences of words, inside the argmax of Equa-

tion (1). The prior probability of each state P (st) is usually

estimated on the training set, and the term P (st|a
t+k

t−k
) is esti-

mated by a neural network (usually deep) that ends with a soft-

max layer over all possible states s.

2.1. A Deep Neural Network over Words

Assuming a provided segmentation τN

0 where τn corresponds

to the last frame of word wn and τ0 = 0, one can rewrite Equa-

tion (4) in terms of words instead of states, as follows:

P (A|W ) ∝
P (W |A)

P (W )
=

N
∏

n=1

P
(

wn|a
τn

1+τ
n−1

)

P (wn)
. (5)

We ignore the P (A) term since it is the same for all competing

sequences of words, inside the argmax of Equation (1). Fur-

thermore, note that P (W ) here is estimated on the training set,

while P (W ) from Equation (2) is estimated on a large corpus of

text. Here, P (wn) is the prior probability of word wn estimated

on the training set, and P
(

wn|a
τn

1+τ
n−1

)

is the probability to

see word wn given the acoustic of the word, estimated by a

deep architecture whose last layer is a softmax over all possible

words of the training dictionary.

As explained in the introduction, such a model can then

be used easily in combination with a classical speech decoding

pipeline, by adding a lattice rescorer which produces, for each

test acoustic sequence, a lattice of several potential sequences of

words, together with their expected start time and end time. One

can then rescore each of the arcs of the lattice using the ratio of

P
(

wn|a
τn

1+τ
n−1

)

and P (wn) and output the best sequence in

the lattice accordingly.

Unfortunately, this approach can only consider sequences

made of words that were available at training time, which is

often a subset of what is expected to be seen at test time. The

next section considers an extension in order to solve this issue.

2.2. Word Embeddings

The layer right below the softmax layer of a deep architec-

ture trained to estimate P (wn|acoustic) usually contains a good

compact representation of the input acoustic, such that a deci-

sion over which word it is can be made. We argue that this rep-

resentation is such that two words that sound similarly will have

a similar representation in this space. We call this layer an em-

bedding layer, similarly to various embedding approaches that

have been proposed in the literature, in order to represent words,

images, etc. [11, 16], except that in the latter, words are nearby

if they have similar meanings, while in the former words are

nearby if they sound alike.

Thus, we propose to train a separate deep architecture that

will have as input some features extracted from the words (such

as letters or features of them), and that will learn a transforma-

tion into the embedding of the corresponding word 1. We used

letter-n-grams as input features representing words, adding spe-

cial symbols [ and ] to specify start and end of words, such that

letter-n-gram [I] represents the word I, and letter-n-gram ing]

represents a commonly seen end-of-word. We can actually ex-

tract all possible such letter-n-grams and keep the most popular

ones, counting their occurrences over the training set. This can

be done efficiently using a trie. We kept around 50,000 of them,

and represented each word as a bag-of-letter-n-gram. As an ex-

ample, the word hello is then represented as the set of features

{h, e, l, o, [h, he, el, lo, o], [he, hel, ell, llo, lo], . . .}. As a san-

ity check, we trained a neural network to predict a word given

its bag-of-letter-n-gram, and succeeded with around 99% accu-

racy, showing that this representation is often unique and rich

enough.

In order to train a mapping between letter-n-gram word rep-

resentations and word embeddings obtained from the softmax

model predicting words from acoustics, we use the deep archi-

tecture shown in Figure 2. The left block (Deep Convolution

Network) is the learned transformation between an acoustic se-

quence and a posterior probability over words. We first train this

block independently, as described in Section 2.1. After that, we

fix its parameters and train a second block (Deep Neural Net-

work, represented in two copies sharing their parameters in the

figure), which takes as input the letter-n-gram representation of

1A similar approach for representing rare words by their letter tri-
grams was used in [7]



Figure 2: Deep architecture used to train word embeddings

a word and returns a real valued vector of the same size as the

word embeddings from the left column. The model is trained

using a so-called triplet ranking loss, similar to the one used

in [16], where we randomly select an acoustic sequence from

the training set, the word that we know it represents, and a ran-

domly selected other word (dubbed WrongWord in the figure),

and apply the following loss:

L = max(0,m− Sim(e, w+) + Sim(e, w−)) (6)

where m is a margin parameter to be selected (often set to 1),

e is the word embedding vector obtained at the layer below the

softmax of the Deep Convolution Network, w+ is the embed-

ding representation obtained at the end of the Deep Neural Net-

work for the correct word, while w− is the embedding repre-

sentation obtained similarly for the wrong word; Sim(x, y) is a

similarity function between two vectors x and y, such as the dot

product. Training the Deep Neural Network with this loss tends

to move the embedding representation of letter-n-gram near the

embedding representation of the corresponding acoustic vector.

In order to train such a model faster, we actually use the so-

called WARP loss [16], which weighs every triplet according to

the actual estimate of the rank of the correct word (w+), which

has been shown to improve performance when measuring rank-

ing losses such as precision-at-k.

Using such a trained model, one can then compute a score

between any acoustic sequence and any word, as long as one

can extract letter-n-gram features from it. Empirical evidence

that such an approach appears to be reasonable can be seen by

examining the nearest neighbors, in the underlying embedding

space, of the embeddings of some letter-n-gram. Table 1 shows

examples of such neighbors. It can be seen that, as expected,

neighbors of any given word arguably sound like it. In order to

show that it also works for new words, the last example shows

a target word (“chareety”) that does not exist, but its neighbors

still make sense.

Table 1: Nearest neighbor examples in the acoustically similar

embedding space.

Word Neighbors

heart hart, heart’s, iheart, hearth, hearted, art

please pleased, pleas, pleases, pleaser, plea

plug plugs, plugged, slug, pug, pluck

chareety charity, sharee, cheri, tyree, charice, charities

3. Experiments

We describe in this section an initial attempt at learning word

embeddings suitable for automatic speech recognition. We first

describe the dataset we used as well as the baseline model; then

we describe the model we used to predict words given acoustic

features; following this, we describe the model we used to be

able to generalize to words unknown at training time; finally,

we show word error rate results on a speech decoding task.

3.1. Dataset and Features

The training set consists of 1,900 hours of anonymized, hand-

transcribed US English voice search and dictation utterances.

Word Error Rate (WER) evaluations were carried out on a dis-

joint test set of similar utterances, amounting to 137,000 words.

3.2. Baseline Deep Neural Network

The input for the baseline network is 26 contiguous frames (20

on the left and 5 on the right to keep the latency low) of 40-

dimensional log-filterbank features [8]. The log-filterbanks are

computed every 10ms over a 25ms window. The network con-

sists of eight fully connected rectified linear unit layers (so-

called ReLUs) with 2560 nodes each, and a softmax layer on

top with the 14000 states as the output labels. Such an architec-

ture has been shown to reach state-of-the-art performance [6, 8].

3.3. Description of the Acoustic Deep Architecture

The training set contains a total of 48,310 unique words that

were seen at least 4 times each in the corpus. Using a previ-

ously trained model, we obtain a training set aligned at the word

level, which provides an estimate of where each word utterance

starts and ends. Using this information we computed statistics

of the length of words and found that more than 97% of word

utterances were shorter in duration than 2 seconds. We thus de-

cided to consider context windows of 200 frames of 10ms each.

When a word was longer, it was cut (equally on both ends)

while when a word was smaller, we filled the remaining ends

with zeros, which corresponds to the mean feature value. We

also considered filling the vector with the actual frames around

the word, but results were slightly worse, presumably because

the variability of the contexts around training set words was not

enough to encompass the particular examples of the test set.

The deep architecture used to predict a word given a sequence

of 200 acoustic frames stacks the following layers:

1. a convolution layer of 64 units over blocks of 10 frames

by 9 features;

2. a ReLU;

3. a max pooling layer of 4 by 4, with a stride of 2 by 2;

4. a mean subtraction layer over blocks of 3 by 3;

5. a convolution layer of 64 units over blocks of 10 frames

by 4 features;

6. a ReLU;

7. a max pooling layer of 4 by 4, with a stride of 2 by 2;

8. a mean subtraction layer over blocks of 3 by 3;

9. two fully connected layers of 1,024 units using ReLUs;

10. a softmax layer over all 48,310 words of the training dic-

tionary.

The model was trained on 90% of the training set, for about

5 days on a single machine, using stochastic gradient descent



and a learning rate that was slowly decreasing during the pro-

cess (this can be compared to the baseline model, which took

one week on 100 machines to train). At the end of training, we

used the remaining 10% of the training set to measure the per-

formance of the model, which was 73% accuracy. This number

is difficult to compare to other approaches as this does not corre-

spond to any classical speech recognition task (since it assumes

perfect alignment, during decoding). Nevertheless, given the

high number of classes (more than 48,000), an accuracy of 73%

seems quite good. Furthermore, this number includes errors

such as homonyms which are impossible to set apart without

the context and a language model.

3.4. Description of the Letter-N-Gram Deep Architecture

As explained in Section 2, the previous model cannot be used

in a speech recognition task unless it is known in advance that

all words to be decoded were part of the training set dictionary,

which is often not a realistic setting. For our experiments, al-

though the training set contained 48,310 unique words, the de-

coder we used at test time contained 2.5 million unique words.

Looking a posteriori at the test set for further analysis, we found

that around 12% of the word utterances in the test set were not

in the training dictionary. We thus trained a second model, as

explained in Section 2.2, following Figure 2.

The deep architecture used to represent a word from a se-

quence of letters into the word embedding space is as follows:

1. a layer that extracts all valid letter-n-grams from the

word, from a total dictionary of 50,000 letter-n-grams;

2. three fully connected layers of 1,024 units using ReLUs.

We trained this model to optimize the loss described in

Equation (6) where the embedding vector (e in the equation)

was obtained from the acoustic representation of a word, w+

and w− were respectively the output of the letter-n-gram deep

architecture for the correct and incorrect words. Incorrect words

were selected randomly from the training set dictionary.

The model was trained on 90% of the training set, for about

4 days on a single machine, using stochastic gradient descent

and a learning rate that was slowly decreasing during the pro-

cess. At the end of training, we used the remaining 10% of the

training set to measure the performance of the model, which

was 53% word accuracy. Comparing this number to the 73%

word accuracy obtained by the first model, it is clearly worse,

but on the other hand, this second model can now be used to

score any word for any acoustic sequence, and not just one of

the words of the training dictionary. Furthermore, when mak-

ing a mistake, the selected words often have very similar pho-

netic sequences to the correct word, and one can hope that a full

decoder using a language model should help disambiguate the

errors.

3.5. Results and Discussions

Equipped with the complete word embedding model, one can

now use it for lattice rescoring, after a classical decoder has

been applied to test sentences. Such a lattice can be obtained by

selecting how large the beam should be at every stage of the de-

coder: the larger the beam, the bigger the lattice. We considered

two such beams, 11 and 15, to see how it impacted the perfor-

mance, measured in Word Error Rate (WER). Table 2 shows

WER for three different approaches: the baseline model is the

state-of-the-art deep neural network based speech recognizer;

the Word embedding model shows the performance of the pro-

posed approach; finally, we considered a combination approach,

where we blended results from both the initial decoder and the

lattice rescorer by averaging their score. As can be seen, the

embedding approach by itself gets worse performance than the

baseline model, but when combined together, the result beats

the baseline, either for beam sizes of 11 or 15. Although the

differences in WER seem small, they are significant for this test

set.

Table 2: Word Error Rates for the three compared models, with

two different values of the beam search parameter.

Model
WER

beam=11 beam=15

Baseline 10.16 9.70

Word embedding model 11.2 11.1

Combination 10.07 9.59

It is interesting to analyze the kind of errors the proposed

approach makes. Table 3 shows the top few such mistakes, as

well as the number of times they actually happened. As can

be seen, most mistakes are due to the language model and are

somehow reasonable. As expected, many words expected to

be decoded in the test set were not in the training dictionary;

for instance, the test sentence acrostic poems including similes

and metaphors contained the word acrostic which was not in

the training dictionary but was in the much bigger decoder dic-

tionary, and was properly decoded thanks to the letter-n-gram

approach.

Table 3: Top errors made by the proposed approach.

Target Obtained Count Comment

it’s its 167 fault of the language model

and in 52 short words are harder to

capture

okay ok 50 fault of the language model

five 5 43 fault of the language model

’cause cuz 26 ’cause was not a word in the

decoder

4. Conclusion

Acoustic modeling for ASR systems have recently changed

paradigm, from mixtures of Gaussians to deep neural networks.

They have however continued to model states of an underlying

hidden Markov model. We have revisited this assumption in this

paper, proposing to directly model words using deep neural net-

works. This yields a latent representation of words where words

that sound alike are nearby. Using this fact, we have shown how

to extend this approach to model any word, even those that were

not available at training time. We have then shown initial exper-

iments on a large vocabulary speech recognition task, reporting

improvements in word error rate when such an approach was

used as a lattice rescorer in combination with a baseline.

While the proposed approach can readily be used in classi-

cal speech recognition pipelines, a better solution would be to

write a complete decoder that could completely remove the de-

pendency with state-based systems. A naive implementation of

such a decoder would be prohibitive, as it would have to con-

sider all possible word durations, but with some word duration

modeling, it is worth considering.
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