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Abstract

This thesis investigates a dynamic programming approach to word hypothesis in the context of a

speaker independent, large vocabulary, continuous speech recognition system. Using a method known

as Dynamic Time Warping, an undifferentiated phonetic string (one without word boundaries) is parsed

to produce all possible words contained in a domain specific lexicon. Dynamic Time Warping is a

common method of sequence comparison used in matching the acoustic feature vectors representing an

unknown input utterance and some reference utterance. The cumulative least cost path, when compared

with some threshold can be used as a decision criterion for recognition. This thesis attempts to extend

the DTW technique using strings of phonetic symbols, instead.

Three variables that were found to affect the parsing process include: (1) minimum distance thres

hold, (2) the number of word candidates accepted at any given phonetic index, and (3) the lexical

search space used for reference pattern comparisons. The performance of this parser as a function of

these variables is discussed. Also discussed is the performance of the parser at a variety of input error

conditions.
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CHAPTER 1

INTRODUCTION

Spoken language is one of the mental faculties that most identifies us as human [WINS84], and

thereby becomes a prime area of consideration for artificial intelligence research. George White

identified speech communication research as a "major force" in man-machine interaction, justified by

that fact that "speech remains unrivaled as the fastest and most convenient way for human beings to

communicate
interactively" [WHTnol. Martin's study [MART87] of the utility of speech input in

user-computer interfaces found evidence to support two claims: (1) speech provides a more efficient

response channel than typed input, and (2) speech supplies an added response channel increasing user

productivity, particularly in situations where parallel tasks are distributed across multiple mental

resources. Martin also suggested that continued research in speech recognition technologies was war

ranted by the future utility of speech input

This thesis is a part of an ongoing project at Rochester Institute of Technology Research Corpora

tion. The project's aim is to conduct research in the development of a speaker-independent, large voca

bulary, continuous speech understanding system, applying techniques of artificial intelligence in addition

to other disciplines.

As will be explained in the following sections, some speech recognition methods provide a

sequence of phonetic symbols that are representative of some utterance. The sequence is searched for

conceptually larger forms (words) that are consistent with a dictionary (lexicon). The search involves

selection of phonetic reference patterns from the lexicon, then their comparison against the phonetic

representation of the input utterance. Based on a measure of similarity (to be defined in later sections),

the presence of reference words in the input utterance is hypothesized or rejected. The collection of

these procedures is known as the process of lexical access.

The principal goal of this thesis was to implement and investigate a method of searching a

phonetic string from an unknown utterance for the occurrence of words consistent with those contained



in a domain-specific lexicon. This required the establishment of knowledge sources, determining their

representations, and the provision of some search procedure to progress through the unknown utterance

to produce hypotheses of words contained within the utterance. The search procedure used was based

on the concept of dynamic programming, which is described as follows. When searching from an ini

tial state to a goal state, all paths from the initial state through an intermediate state can be ignored

except the least-cost path to that intermediate state. Therefore, the use of dynamic programming prunes

away non-vital paths, reducing the time and computational resources for the search. Details of this

search concept are presented in Chapters 2 and 3.

Chapter 2 is a discussion of issues in the field of speech understanding. Some previous systems

are overviewed, followed by a presentation of the architecture of the R.LT. Research Corporation

Speech Understanding project. Approaches to string comparison are covered with an explanation of the

principal methods currently in use.

Chapter 3 covers the experimental methods of the thesis project itself. Topics include the

knowledge sources used and their preparation, recognition techniques, algorithm constraints and condi

tions, evaluation criteria, and the software/hardware tools used.

Chapter 4 presents a discussion of the results obtained during experimentation. Conclusions and

suggestions for further study are found in Chapter 5.



CHAPTER 2

SPEECH UNDERSTANDING

2.L Concepts of Speech

Speech is a process used for message transfer from one individual to another, involving the gen

eration and reception of complex acoustical signals. The process may be thought of as a coding and

decoding operation over a hierarchy of levels [HYDE72].

At the highest level we have the formation of fundamental concepts, or thoughts, which are

encoded as words on the linguistic level. These words are encoded on successively lower levels,

involving neural processing and articulatory movements1, until we reach the lowest level - the acoustic

signal. Speech understanding is the reverse process, trying to take the acoustic level information and

work back up the hierarchy to some meaningful interpretation.

These hierarchical levels in effect describe some of the basic knowledge sources available for the

task of speech understanding, including semantic, syntactic, prosodic, and acoustic knowledge sources

rWHn76, REDD76]. Semantic knowledge includes word meanings and their relationships, while syn

tactic knowledge refers to the structural aspects of the language (e.g. word order). Prosodic sources are

speech features like stress, intonation, and rhythm. Acoustic signal characteristics like energy level,

fundamental and formant frequencies, and zero-crossing rates form yet another source of knowledge.

Although the speech levels and events can be described, it is often unclear how the knowledge from

one level is transformed into the type of information used on a successive level Not knowing these

transformation methods is an inherent difficulty in developing an Automatic Speech Understanding Sys

tem (ASU) |WHn76]. The degree of difficulty depends on what type of speech understanding system

is desired or required.

1ArticuUion are structures in themouth that influence sounds by modulating the flow of air. They include the tongue, teeth,
lips, and structures that form the roof of the mouth. Neural processes send messages to control other physical structures that parti
cipate in producing sound waves rWITT82].



22. Automatic Speech Understanding Systems

2^.1. Difficulties in ASU

Three primary factors control the level of difficulty of the automatic speech understanding prob

lem, and in effect categorize the types of systems that have been, and continue to be investigated

[REDD76. PARS86]. The first factor concerns whether the system is designed to recognize speech pro

duced by one, or more than one speaker (speaker dependent vs. speaker independent).
Speech signals

contain talker-dependent information which results in a large disparity between acoustic patterns

representing the same utterance when spoken by different individuals [PARS86]. This (hspanty

between individuals is primarily caused by differences in characteristics like vocal tract size and

configuration, voice pitch, and dialect Single speaker recognition systems do not have to account for

these differences to the same degree as multiple speaker systems. The variations are minor by com

parison and can be compensated for by effective training techniques.

The second factor is whether the system is intended to recognize isolated words (discrete) or con

tinuous speech. Words in isolation provide the easiest opportunity to identify the start and end of a

word in an acoustical pattern [PARS86]. When people talk in a continuous fashion, boundaries between

words become blurred except in a high level cognitive sense. In addition, words are strongly influenced

by, and can themselves influence surrounding words. This is due to coarticulation and phonological

recoding [KLAT75. OSKI75, REDD76, SMTT80. ZUE80, WnT82]. Words in isolation tend to be pro

nounced more carefully, suggesting a more consistent acoustic pattern [PARS86].

The third factor concerns the issue of small or large vocabularies. Small vocabularies limit the

amount of confusibility [REDD76]. As the vocabulary size increases, the degree of similarity between

words grows, so the ability to distinguish small differences needs to be increased. Computational

requirements of search procedures also grow as the vocabulary size expands. Finally, as the size of the

vocabulary increases, considerations must be given to organizational issues. System performance

degrades and storage requirements increase as vocabulary size increases [REDD76, SH1P82].



222. Extensibility

The techniques for single speaker, small vocabulary, isolated word recognition systems are well

understood [TTAK75, MART75, WHTT75]. However these techniques are not likely to work well with

large vocabulary, multiple speaker, continuous word understanding systems [REDD76]. Speaker depen

dent isolated word recognition systems with small vocabularies use template matching methods of

low-level acoustic patterns, where the unit of recognition is a word, or short utterance [REDD76,

ZUE80, LEVI83, PARS86]. An unknown word is analyzed to its representative acoustic pattern, and

then compared to patterns stored in a lexicon. These reference patterns are a result of the speaker

repeating the vocabulary one or more times and storing the acoustic pattern, in effect training the sys

tem. It is significant to note that there is a direct mapping between the input utterance and the lexicon.

Extending the above approach to large vocabulary, multiple speaker systems presents problems.

The principle problem is that the search space (using acoustical template knowledge sources) grows too

large for reasonable efficiency [REDD76]. An acoustic pattern representing one word requires 560

bytes for storage (TTAK75]. A 2000 word vocabulary would require over one megabyte of storage

space. As the vocabulary grows, the lexicon size becomes cumbersome. Adding duplicate patterns for

all vocabulary words to account for the variability between multiple speakers would expand the search

space to an unmanageable size.

Additionally, words in continuous speech are affected by the contextual influences of surrounding

words, so the lexicon would have to store all potential reference patterns reflecting these influences. It

would take 10 million reference patterns to account for all possible 7 digit sequences in a 10 word

vocabulary [REDD76]. At 560 bytes/pattem from the earlier example, over five gigabytes of storage

would be required. This is unsuitable both computationally and from a storage organization standpoint

It has been suggested [WINS84,WHrT76] that many search problems may be reduced by using a

better knowledge representation. This can be accomplished by noticing that spoken words are per

ceived as a succession of elemental sound units called phonemes [WATE86, SHOU80]. Categorized as

vowels, liquids, glides, stops, fricatives, affricates and nasals, there are approximately 40 in the English

language. The use of phonemes transforms continuous acoustic input into a discrete symbolic represen-



tation, ehminating extraneous information whfle preserving that which is important [HYD J. mce

words average 10 phonemes [WHn76] and require one byte of storage, a 2000
word lexicon could be

reduced to approximately 20 Kbytes. A phonetic representation provides a knowledge source that is

over an order of magnitude smaller than the acoustic representation. Also, if one designs a talker-

independent phonetic analyzer, many speaker variability problems go away (not dialect problems,

though).

223. Previous Systems

Speech understanding systems all use a hypothesize-and-test paradigm for the recognition problem

[WHn76. SMTT80]. The general process can be guided in either a top-down or predictive fashion (as

was typical in early systems) [WOLF77. LOWE80], a bottom-up or data driven approach, or a mixture

of both [LESS75]. The top-down approach uses pragmatic, semantic and syntactic knowledge sources to

guide the hypothesization of words; phrases and sentences, based on task-dependent knowledge and

grammatical constraints. Bottom-up or
"data-driven" hypothesization attempts to deduce words based

on acoustical representations in the utterance. Both predictive and data-driven methods have their draw

backs. As task domains, vocabularies and acceptable grammatical forms increase, the predictive

methods can become overwhelmed with potential choices. On the other hand, if the acoustic data

become more corrupt the data-driven approach will hypothesize incorrect words without being able to

recover.

Of the continuous word recognition systems developed in conjunction with the ARPA research

effort [KLAT76], Harpy [LOWE80] performed best (Le., meeting the ARPA criteria). All knowledge

sources (semantic, syntactic, lexical, phonetic, and acoustic) were compiled into a 15,000-state transition

network. A beam search traversed the network (bottom-up) looking for optimal sequences as compared

to the utterance. A major problem with this representation was its rigidity. Changes to any knowledge

source as a result of expanded constraints (changes in vocabulary size, number of speakers, task domain

and grammar) required a 13 hour re-compilation of the state transition network. One should note that

of the ARPA systems, Harpy had the most restrictive syntax, biasing the performance comparison.



Hearsay-n [LESS75], also developed at Carnegie-Mellon, attempted to take advantage of potential

parallelism by using asynchronous, independent knowledge sources (semantic, syntactic, lexical,

phonetic, and acoustic) communicating via a global data structure called a blackboard. Predictive

hypotheses from semantic and syntactic constraints could be used to verify hypotheses from data-driven

knowledge sources, and visa versa. At any given time a knowledge source may present information to

the blackboard, providing an opportunity for other knowledge sources to be activated.

22.4. Current System Architecture

This thesis is part of a speaker independent large vocabulary, continuous speech understanding

system under development at RXT. Research Corporation. The system is primarily data-driven and is

void of complex control structures such as the blackboard approach of Hearsay-n. The belief is that

given accurate phonetic transcriptions, a bottom-up paradigm is sufficient This view is shared by Rud-

nicky [RUDN87], who developed a word hypothesizer at Carnegie-Mellon University.
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Figure 1 shows the software architecture of the entire speech project An input utterance is pro

cessed to produce a speech spectrogram, which is a mapping of input signal frequency and intensity

over time. These spectrograms preserve all speaker dependent information in addition to the phonetic

characteristics of the utterance [SMTT80]. Then a set of parallel feature extractors build frames of

feature vectors consisting of information such as formant frequencies, pitch, total energy and zero cross

ing counts. The purpose of this data compression is to preserve information that is most closely associ

ated with phonetic content These feature frames are subjected to a knowledge based phoneme builder

to produce strings of undifferentiated phonemes (strings with no word boundary markers). Through the

process of lexical access, words are hypothesized from the undifferentiated phoneme string using the

string comparison technique of Dynamic Time Warping. This technique is the focus of the thesis and

will be described in greater detail later. In the final stage, syntactic and semantic knowledge sources

(natural language analysis, semantic networks) use the hypothesized words in an attempt to form a syn

tactically correct utterance and ascertain its meaning.

23. Lexical Access

The proposed lexical access process will parse a sequence of phonemes representing an unknown

utterance, hypothesizing all words in the utterance that are consistent with the lexicon. This can be

accomplished by comparing reference patterns in a phonemic lexicon with the unknown sequence.

However, there are three areas of complexity which prevent the lexical access procedure from

being a simple lexicon lookup. Front end errors, and the effects of phonological recoding, are two

areas which alter the symbolic representation of an utterance. Ambiguity that results in multiple pars

ings from a single phonetic representation is the third area.



23.1. Error Conditions

The front-end2
of a speech understanding system will at times exhibit an inability to distinguish

between similar sounding phonemes [PARS86]. As a result of this
confusibitity, the string of

phonemes

representing the unknown utterance will contain errors. Not only does this create a major problem

when trying to match reference patterns, but any speech segment may represent
three different types of

errors including: insertion, deletion, or substitution errors. Finding a method that manages all three

error types is not simple. Shown below are examples of the three error types.

Insertion Error - chauffeur : Jofr-Jolfr

Deletion Error - hallway : lOIwe - IOwe

Substitution Error - tell : t e 1 - k e 1

In continuous speech, there are rule governed variations in pronunciation, especially across word

boundaries [REDD76, KLAT75, OSKT75]. Figure 2a contains spectrograms of the utterance "Did you

see it on the refresh screen?", spoken both in continuous speech, and as isolated words. The enlarged

view in figure 2b shows the significant difference in acoustic patterns when words are spoken in isola

tion vs continuous speech. These variations are not random and can be described by a set of phonolog

ical rules [KLAT75, OSKT75, COHE75], following the general form: W -> X / Y_Z, meaning thatW

becomes X in the environment where it is preceded by Y, and followed by Z.

An system components or modules from initial utterance to the knowledge based phoneme builder are known collectively
as the "front end" [REDD76].

10



Figure 2a Spectrograms ofContinuous vs Isolated Speech
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Figure 2b Continuous vs Isolated Speech (enlarged)
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Finding lexical search methods that compensate for phonological receding
has not proven to be a

simple matter. The following example shows the condition where a phonological rule
applies within a

word boundary. Specifically, the
"t" is deleted when in the context of an

"n" followed by an

unstressed voweL Phonological rules that apply within a word boundary can be bandied by creating
an

alternative base forms in the lexicon.

identify -* idenify

rule : t -> 0 : n_V

A more difficult problem arises when working with phonological rules that apply across word

boundaries. The phrase - Did you see it?, illustrates when an obstruent phoneme is
followed by a pala

tal phoneme, the actual realization is reduced to a single and different palatal. Adding another

baseform to the lexicon for the word
"you"

(starting with the palatal "j"), could provide for an

erroneous recognition of "you", when the utterance may in fact be "judge".

representation when spoken in isolation : did yu si it

V
representation when spoken continuously : dldjdsidt

rules : [dy] - J and [u4] - 9

Even with this potential problem, many recognition systems have built lexicons where each word may

have alternative representations generated by application of phonological rules to its dictionary base

form representation [WOLF77, LOWE80. LESS75, RUDN87, WOOD75].

Lasdy, one needs to consider the potential problem of a single phonetic string with multiple

interpretations as a sentence. Ambiguous parsings can map a single phoneme sequence into different

strings of words. The next two sentences have nearly identical phonetic representations, yet map onto

two entirely different word sequences [COLE80].

Remember, a spoken sentence often contains many words that were not intended to be heard.

Ream ember, us poke can cent tense off in contains men knee words that were knot in tend did tube bee
herd.

Matching against entries in the lexicon will not contribute to solving this problem. There is a need for

syntax and semantic knowledge to differentiate meanings [REDD76]. Incorporation of syntax and

domain knowledge is beyond the scope of this project

12



232. Approaches To String Comparison

The two basic approaches to string comparison in isolated speech recognition are Hidden Markov

Models (HMM) [LEVI83] and Dynamic Time Warping (DTW) [1TAK75]. Both methods operate on

the general principle of dynamic programming (search for optimal paths) [LEVI85, KRUS83, WATB81].

Although both approaches have been extended into the domain of continuous word recognition

rWOLF77. LOWE80, LOWE80, BAKE75. MYER81, NEY84, LEVI87. WATA86], it is not certain if

they are extensible to large vocabulary, speaker independent continuous speech understanding systems.

232.1. HiddenMarkov Models

Hidden Markov Models (HMM) use probabilistic techniques to model a stochastic process (Mar

kov sources) that is not direcdy observable, but can be examined through a sequence of output symbols

[RABI86]. Conceptually, the underlying process can be modeled with a collection of states connected

by transitions; from these transitions, a finite set of symbols is produced. Through empirical testing and

observation, distributions can be calculated for the probability of all state transitions, and also for the

probability of symbol output given a particular transition [JELI74, JELI76, RABI86, LEVI83]. During

the recognition process, a system is presented a sequence of symbols. The object whose model has the

highest probability of generating the observed sequence is the one recognized.

In simplest terms, phonemes and words can be thought of as the observed output dependent on

the probabilistic changes (transitions) in acoustic signals and phonemes respectively. Through the use

of training utterances and empirical observation of a system's front-end performance, one can model the

process of phoneme and word generation, taking into account front-end errors, speaker variation, coarti-

culatory and phonological receding effects. Words within the unknown utterance would be

hypothesized as those whose models had the greatest probability of generating the observed phonemes

[LEVI83, BAKE33]. This statistical modeling technique was the focus of an extensive study in

automatic recognition of continuous speech by Jelinek et al [JELI76] at IBM's Speech Processing

Group.

13



The Dragon system by Baker [BAKE75] incorporated the concept of chaining
Markov processes

in a hierarchical fashion, not only at the word level, but at the phrase and sentence level as welL The

result was a finite state network of Markov sources in which the recognition procedure looked for an

optimal path of transitions that would most likely account for the observed
utterance.

2322. Dynamic Time Warping

Dynamic Tune Warping (DTW) is a method of sequence comparison, derived from a time sam

pling of some quantity that is subject to variations. DTW has been successfully used in isolated

rrrAK75.WAIB81] and connected word recognition [MYER81, NEY84,WATA86].

In most common applications, the unknown input utterance and reference utterance are

represented as two time varying sequences of acoustic feature vectors defined [TTAK75, PARS86,

WAD381, NEY84] as:

Unknown : A = alf a^ a3^..xti, au

Reference : B = blt 62 by^-bj, bN

Each sequence defines the axis of a matrix mapping the feature vectors (per unit time) against one

another. At each coordinate C(ij) is a measure of distance or dissimilarity d(ij) between the acoustic

features. The goal is to find a path (with index k) from C(l,l) to C(MJ>1) whose distance D is minimal.

This cumulative distance can then be used as a decision criterion for recognition.

K

D(A3) = Minimum dO(k)j(k))
*=i

l

Ney [NEY84] applied the concepts of dynamic programming to the above minimization problem,

and concluded the following:

If the best path goes through a grid point..., then the best path includes, as a portion of it, the best partial
path to die grid point...

Therefore, to obtain the best path, one only has to select the predecessor with the rninimum total dis

tance.

14



Following the constraints that the warping function is monotonic and continuous, a recurrence

relation minimizing the number of points considered at any one time follows [KRUS83, NEY84,

PARS86. SAK078].

Dfa.6>) = Min
/(a,_i. bj) + w(a,, 0) deletion of aj
^(a,-!, >y_,) + w(a,-,fr;) substitution of ai by bj
d(aitbj^i) + w(0, bj) insertion of bj

Weighting coefficients are added to penalize for deletions, substitutions and insertions. However, search

ing all possible paths is computationally expensive. Other constraints include controlling the degree of

slope allowed in the warp, and setting some maximum permissible path distance help to control this.

As shown in Figure 3 [PARS86], both constraints will prune paths that would otherwise grow exces

sively large.

W.N)

(.M.N)

A B

Figure 3 (A) Slope and (B) Total Distance Constraints

This thesis attempts to extend the above DTW technique using strings of phonetic symbols

iphonemes) to represent the unknown and reference utterances instead of acoustic feature vectors. With

this extension comes two basic differences. One is that although phoneme strings are time ordered,

each symbol may represent one or more arbitrary units of time. Therefore we are not strictly warping

along a time axis. The second difference relates to a central requirement of the DTW method: the need

for a measure of distance or dissimilarity. When using acoustic features, these distances (commonly a

simple spectral distance - e.g. distance between linear prediction coefficients [ITAK75]) are

15



straightforward. This is not the case when using phonetic strmgs.
The nitric that was used for phonetic

string matching will be discussed in an upcoming section.

Once this measure has been determined, the proc^ of sequence
comparisw c^ proceed. There

is no requirement for any training utterances (a priori knowledge) in the recognition process as with

Hidden Markov Models. Figure 4 shows two examples of the optimum pam trace when using the DTW

method to compare an input utterance to a reference pattern. Figure 4a demonstrates an insertion error

while figure 4b shows a substitution error. The values at each coordinate indicate a
measure of dissimi-

larity between the represented phonemes.

Reference

Inp

ot

utUtfc

n

trance

m d

K. 7 7 10

n 7
N.
0^

-2-N 10

d 10 10 10 Os

Fig. 4a

Reference

Input Utterance

d I j u

d o\ 9 3 9

\
I 9 <N 9 9

d 0 9 * 9

Fig. 4b

2323. Comparison of HHM and DTW

The Hidden Markov Model is a recognition method that requires the collection of empirical statis

tics that describe the response of the recognition system's front-end. The determination of states, transi

tions, and associated probabilities is a complex optimization problem [JELI76, LEVI83]. DTW, on the

other hand, needs only receive the strings for comparison and the provision of some distance metric.

The principal drawback of DTW is the large number of distance calculations that are required. It

has been estimated that HMM, which uses a simpler likelihood evaluation function, requires an order of

magnitude less computation time than DTW [LEVI83]. Also noted was that both systems achieved

comparable error rates when applied to isolated word, template matching.
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It has been noted that with a full natural language there is an infinite number of word order com

binations and associated contextual influences [COHE75]. This implies that as the vocabulary size and

task domain become larger, the number of HMM states needed to model multiple word forms in the

lexicon grows. Since DTW methods represent each reference word with a limited number of base

forms, the lexicon may grow at a more modest rate.
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CHAPTER 3

EXPERIMENTAL METHOD

3.1. Software Tools

The principle part of this study was implemented in COMMON LISP, due to the predetermining

fact that the project is being developed on a LISP machine. COMMON LISP is one of but many

dialects of LISP (LISt Programming). LISP is a functional programming language, oriented for the

manipulation symbols, and thus a favorite in AI applications. Using LISP in an interpreted fashion

allowed rapid prototyping, giving the programmer quick confirmation of the success or failure of code.

As a list processing language, it was well suited in manipulating sequences of tokens (phonemes).

COMMON LISP was developed in an effort to combine the features of the other dialects in an optimal

way, and to promote the commonality among diverging new dialects [STEE84].

Several utility programs were written in C on a Sun Microsystem workstation. The reason for

this is that the initial base form phonemic representations were derived from the output of the DECtalk

synthesis system which was physically separate from the LISP environment Several small filters

transformed that output into the basic LISP forms for use in the lexicon. Another program was coded

to provide an interactive utility used during construction of the confusion matrix. It enabled the opera

tor to adjust the phoneme distance matrix and view the effect on phoneme confusion probabilities as

distances are varied.

32. Hardware Tools

The project took place on both Texas Instruments Explorer1 I and B LISP machines. The Explorer

is a microprogrammed, dedicated LISP workstation, providing a comprehensive AI environment for fast

'Explorer is a trademark of Texas Instruments Incorporated
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symbolic processing. Additionally, the Explorer contains a TMS 32020 Signal Processor Board that

allows low-level feature extraction to proceed in parallel using four independent signal processors.

These characteristics allow the integration of low-level processing with the high level control mechan

isms typical in AI applications. The primary difference between the Explorer 1 and B is that the LISP

microcode on the Explorer I is distributed over a series of integrated circuits, whereas on the Explorer

B it is reduced to a single chip. An increase in performance of approximately four to one was observed

for roughly equivalent tests during this study.

33. Distance and Confusion Matrices

Implementation of the warping procedure in DTW requires some measure of distance between

phonemes. Predictable confusibility patterns are exhibited by the acoustic-phonetic (Le., front-end)

modules of speech recognition systems. Ideally, a comprehensive inter-phoneme distance matrix would

be based upon the system's front-end response characteristics in classifying all phonemes; however,

vowel classification is the only portion of the front-end for which data exists. Figure 5a represents the

response of the vowel classification portion of the Research Corporations front-end [HILL87] and Fig

ure 5b shows the corresponding vowel vs vowel distances. Distance data for consonants were extracted

from studies of human confusibility [SHEP80]. Studies by Miller and Nicely [MTT.T.55] demonstrated

that humans typically confuse particular consonants in a consistent fashion. In the Miller and Nicely

study, listeners were asked to identify stimuli drawn from a set of 16 English consonants. The results

(Figure 6a) from Shepard's [SHEP80] multidimensional scaling analysis show clusters of consonants

that are similar and likely to be confused. Distances between these clusters were measured and are

shown in Figure 6b.
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MVD Output

iy
iy ih eh ae er ah aa ao uh uw

95.8 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ih 7.7 85.2 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

eh 0.0 12.0 85.9 2.1 0.0 0.0 0.0 0.0 0.0 0.0

Input ae 0.0 0.0 10.6 88.7 0.0 0.7 0.0 0.0 0.0 0.0

to er 0.0 1.4 1.4 0.7 94.4 1.4 0.0 0.0 0.0 0.7

MVD ah 0.0 0.0 0.0 0.0 0.7 88.7 7.7 2.8 0.0 0.0

aa 0.0 0.0 0.0 0.0 0.0 8.5 84.5 63 0.7 0.0

ao 0.0 0.0 0.0 0.0 0.0 0.7 7.0 85.9 42 2.1

uh 0.0 0.0 0.0 0.0 0.7 1.4 0.0 1.4 83.8 12.7

uw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 14.8 84.5

Figure 5a Vowel Classification Response - Confusion matrix showing the

distribution of both correct and incorrect choices made by the
MVD recognition algorithm using parameter set consisting of

formant's FO, Fl, F2, F3.

iy ih eh ae er ah aa ao uh uw

y 0.0 7.5 22.9 62.1 57.0 88.4 121.1 112.0 763 85.9
ih 73 0.0 4.7 28.2 252 46.2 70.4 67.8 423 54.3
ch 22.9 4.7 0.0 9.8 17.0 263 43.3 50.1 33.6 49.9
ae 62.1 28.2 9.8 0.0 20.1 133 19.8 39.6 35.7 S8.1
er 57.0 25.2 17.0 20.1 0.0 18.1 32.4 313 17.8 283
ah 88.4 46.2 263 133 -18.1 0.0 3.0 7.4 10.2 233
aa 121.1 70.4 433 19.8 32.4 3.0 0.0 10.1 203 363
ao 112.0 67.8 50.1 39.6 313 7.4 10.1 0.0 5.0 10.3
uh 763 42.5 33.6 35.7 17.8 10.2 20.5 5.0 0.0 2.9
uw 85.9 543 49.9 58.1 283 233 36.5 10.3 2.9 0.0

Figure 5b. Vowel Distances - Measured spectral distances based on formant's
F0, Fl, F2, F3 using a maximum likelihood distance measure.
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Figure 6a Shepard's Multidimensional Scaling

(Masaij

Voiceless stops Voiced steps

O jo.

Voiceless
fricatives

m sh dh zfa

k

P 8.0

t 13.0 123

f 27XJ 20.0 31.0 -

tfa 25.0 17.5 26.0 8.0

s 333 26.0 28.0 223 153

sh 41.0 35.5 293 403 323 19.0

V 553 473 55.5 30.0 303 31.0 48.0

dh 643 563 63.0 393 39.0 363 513 10.0
i

z 70.0 62.0 66.0 483 46.0 383 48.0 23.0 15.0

zh 87.0 79.0 823 653 63.0 543 61.0 39.0 293 17.5

8 82.0 74.0 80.0 573 563 523 64.0 28.0 18.0 16.5 18.0

d 86.0 78.5 85.0 603 61.0 583 71.0 31.0 22.0 25.0 25.5 9.0

b 61.0 54.0 633 343 38.0 423 603 133 18.0 33.0 46.5 313 30.0

m 66.5 62.0 75.0 45.0 523 643 833 44.5 513 66.0 79.0 63.0 59.5 333

n 803 75.5 87.5 56.5 63.0 723 91.0 47.0 503 65.0 75.5 58.0 52J 34.0 163

Figure 6b. Consonant Distances - based on Shepard's MDS ofMiller/Nicely's
Perceptual Confusion Data
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The reason for using distances from the aforementioned studies was that algorithm performance

can be tested and tuned as development proceeds with the rernaining front-end modules. Once all

modules are complete, distance data representing actual system performance can be incorporated in the

distance matrix.

One problem encountered when constructing the distance matrix was that we were missing

phonetic distances: (1) relating vowels and consonants, (2) vowels not in the Research Corporation

study and (3) of consonants not in the Shepard study. Based on discussions with Dr. Hillenbrand, the

following assumptions were made to account for the missing data:

Distance between vowels and consonants (with the exception of liquids and glides) was con

sidered sufficiently large to assume a confusion probability of zero.

Diphthongs can be thought of as transitional combinations of singular vowels (Figure 7). Instead
of approximating phonetic distance over this transition, the component vowels of each diphthong
(for which data exists) were substituted within the transcription of a word each time they oc

curred.

Syllabic resonants were treated similarly to diphthongs. Each occurrence within a word was sub
stituted with a similar consonant counterpart (Figure 7).

Distances for singular vowels not in the Research Corporation's study was provided using ap
propriate adjustments to existing data for similar vowels (Figure 7).
Singular consonants not in Shepard's study include liquids, glides, flaps and affricates. These
were added to suggested locations [HBX88] in Figure 6a, and their distances approximated.
Liquids and glides were unique in that they mapped to both consonants and vowels (Figure 7).
Their positions relative to other consonants in Figure 6a, and their similarity to specific vowels,
influenced the distances that were approximated.
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Missing - Equivalent

Diphthongs

ay - aa + fli
ux iy + uw

ey -> eh + ih

oy - ao + ih
aw -* aa + uh

Syllabic resonants

el -> 1
em - m

en - n

Vowels

ow -+ ao

ax - ah

ix -* ah/ih

Liquids and Glides

w > uw

y -* y
r -* er

1 ao

Figure 7. Mapping ofMissing Phonemes to Similar Phonemes based on
Perceptual Confusion

In addition to simulating the front-end, testing requires that errors be simulated in a way that

approximates the front-end response characteristics from which the inter-phoneme distance matrix is

derived. Since most of the phoneme distance data is based on perceptual confusion between phonemes,

there is a need for probability data reflecting how often an input phoneme is confused with zero or

more phonemes, producing insertion, deletion and substitution errors. Vowel confusion probabilities

were obtained directly from the vowel classification study [HCLL87]. For consonants, however, only

their perceptual distance existed. IT a relation between distance and confusion probability could be

found to approximate the vowel study results, this could be applied to the consonant distances from

Shepard's analysis [SHEP80] of Miller and Nicely's consonant confusion data, yielding approximate

confusion probabilities.
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Examination of confusion probabilities and distances from the vowel classification study yielded

an approximation to the following exponential relationship (Base =
130):

. base
Confusion Probability ( input vs output ) =

j-

^ base*"""

aOvowtb

Applying this formulation to all phonemes, it was discovered that the overall probability of confusion

between phonemes was too low and did not reflect what could be expected in reality [fflLL88]. Based

on discussions with Dr. Hillenbrand and Robert Gayvert [fflLL88] the formula relating phonetic dis

tance to confusibility was modified as follows:

, . _ , . . distance
Confusion Probability ( input vs output ) =

An iterative process of adjusting inter-phousme distances and recalculating the confusion proba- -

bilities led to the creation of a second phoneme versus phoneme matrix. The confusion probabilities in

this matrix were then used in error generation during test data creation. The final distance and confu

sion matrices can be found in the Appendix A and Appendix B, respectively.

3.4. Lexicon Construction

The vocabulary for this study was taken from a United States Air Force Cockpit Natural

Language study [LEZ87]. The study provides a vocabulary of 656 words, their frequency of

occurrence, and the number of times a word is preceded or followed by other words. This information

may be valuable in determining the types of contextual effects to expect

All words from the Air Force study were input into a text-to-speech synthesis system (DECtalk2).

Output from this system was in the form of a synthesized utterance and phonetic transcription of each

word using Digital Equipment Corporation's symbol set Words whose auditory output did not accu-

ZDECtalk is a trademark ofDigital Equipment Corporatio
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lately reflect a generally accepted pronunciation were corrected. The entire transcriptipn output was

reviewed for correctness, with special attention to those words that were pronounced incorrecdy. The

transcriptions were then converted to the Carnegie-Mellon University phonetic symbol set which is used

in conjunction with other ongoing projects at the RTT Research Corporation. Appendix C shows a com

parison of the symbols used in both the DEC and CMU symbol sets.

For each word transcribed, a lexicon entry was constructed containing the transcription length, the

transcription, and the English representation of the transcribed word. These entries (see Appendix E)

are grouped based on word-initial phoneme. Placement within the group is in descending order of

phoneme count yielding the longest reference pattern first when any particular group is accessed during

the search procedure. The significance of this will be explained later. Homonyms form a single lexical

entry with multiple English representations. Words with multiple, but generally accepted pronuncia

tions (eg. hostile: hh aa s t ay I vs hh aa s t el), are given a lexical entry for each pronunciation.

33. Test Data Creation

The Air Force Cockpit Natural Language study [LIZZ87] served as the source of test utterances

to use as input strings for the DTW process. A set of 42 test phrases was selected from the study that

combined a wide variety of words available from the lexicon. The average length of phonetic transcrip

tion over the 42 phrases was 26. Test phrases were translated first to their phonemic representations

with no errors, allowing some benchmark performance levels to be determined. After this, an increas

ingly large percentage of errors was induced into the input strings. It is important to note that errors

were simulated in a manner that accurately reflected the simulated front-end response characteristics.

Therefore, a key component in the error generation process was the phoneme confusion matrix. Using

this matrix, the following method would generate the three different errors types, at some user defined

percentage level (for each type), and at some total error rate.

While advancing through a phonetic input string, and based on the total error rate, a random

number generator selected the type of error (substitution, deletion, or insertion) to occur at a given

phoneme in the string. If a no-error condition is selected for the particular input phoneme, it maps
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one-to-one into the output sequence. A deletion error results in the phoneme at that current
location

being dropped from the output string. If a substitution error is selected, the phoneme at the
current

input string location indexes into the cifurion matrix, and based on tte

phoneme, another phoneme is chosen for
inclusion into the output string. Generation of insertion errors

would also use the error matrix. The input phoneme would index into the matrix, and based on it's

confusion probabilities, a phoneme would be selected for
insertion into the output phoneme string.

Error types were assumed independent since it is not clear how, or if these
error types are interre

lated. Studies at IBM [JELI76] showed that in most cases, substitutions accounted for the majority

(80% to 90%) of errors, followed by deletions and insertions. Therefore, this study concentrates on the

success of the word hypothesis process using substitution errors primarily. Appendix D contains the set

of test 42 test phrases with 10% substitution errors induced.

3.6. Dynamic Time Warping Process

3.6.1. Constraints and Considerations for DTW

This study used the Dynamic Time Warping technique for the hypothesis procedure. As previ

ously described, DTW provides a method to model a warping function that maps two speech patterns

onto one another. This mapping or alignment is considered optimal when the function reaches a

minimum value. This function value can be used as a basis for recognition. Word hypothesis involves

comparing phonemic representations of words in a lexicon to the phonemic representation of an unk

nown utterance, looking for those words that have an optimal alignment (minimum warping function) in

consecutive time intervals not to exceed some given threshold.

A major factor that affects system performance during DTW is the value of the minimum dis

tance threshold. Too low a value reduces the tolerance for errors and results in the premature rejection

of a potential reference-to-unknown match. Too high a value will result in the acceptance of incorrect

matches and the increased consumption of computational resources. A benchmark threshold value must

first be established with error-free input patterns. Note that when comparing an error-free unknown to a

reference pattern, any increase over zero in the accumulated distance indicates a difference in alignment
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- a basis for rejecting the reference. This establishes an initial threshold for testing purposes. As the

threshold for rejection is raised, it is expected that beyond some limit the ratio of incorrect hypotheses

to correct ones will increase. An optimum value for error-free patterns provides a starting point from

which to investigate ths effect of a minimum distance threshold on DTW performance (ratio of

incorrect hypotheses to correct hypotheses, percentage of correct hypotheses) when used with error-full

input patterns.

Sakoe and Chiba describe five general conditions that typically restrict the warping function

[SAK078]. The first two are that the function be monotonia and continuous. Phonemes in the refer

ence and unknown patterns are assumed to be time-ordered with their intervals relatively uniform, satis

fying the first two conditions. The three remaining conditions (established endpoints, adjustment win

dow, and slope constraint) are variable and can affect the relative performance of the warping pro

cedure.

Sequence endpoints are fully known for both the reference and unknown patterns in isolated word

recognition. However, in continuous speech, endpoints (at the word level) in the unknown utterance are

not fully established, and can be highly variable in number and position. Therefore criteria must be

established for selecting the appropriate length of the unknown sequence for DTW comparison. Assum

ing the front-end's performance is not totally corrupt one can expect that there is a maximum number

of phonemes (including insertion, deletion, and substitution errors) in the unknown pattern which must

be examined in order to find a word, or exhaust all possibilities. This value would be equal to the

phoneme count of the reference word, plus a buffer to allow for insertion errors that can extend the

unknown sequence. For this study, the assumption was made that no more than 100% errors were

expected. The buffer value would then be equivalent to the number of phonemes in the reference pat

tern.

The adjustment window and slope constraint conditions affect the manner in which the DTW pro

cedure deals with insertion and deletion errors. When finding a least cost path through the distance

matrix, the warping path will cut a diagonal line with a slope of one if both patterns are aligned. The

further this path deviates from the diagonal, the larger the difference between the two patterns. The

adjustment window as defined by Sakoe and Chiba [SAK078] is an area in the matrix bounded such
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that the absolute difference between the indexes of both patterm; is less than or equal to some
constant

value. This area is a diagonal corridor somewhat parallel to the warping function. This window con

stant has the effect of limiting the number of acceptable insertion
and deletion errors. Excessively long

horizontal or vertical paths indicate that unusual expansion or
compression is required to match two pat-

terns - an indication of poor correspondence.

Kruskal and Sankoff [KRUS83a], Myers et al. [MYER81], and Sakoe et aL [SAK078] use the

common concept of a slope constraint to limit the number of consecutive insertion or
deletion errors.

This results in a parallelogram that defines limits to the warping path direction (Sec322 - figure 3).

Sakoe and Chiba's [SAK078] study defined a measure of slope (P) as the maximum number of hor

izontal or vertical steps (m) that could be taken before some number (n) of diagonal steps. Their study

showed that optimum DTW performance maximized at P = 1 in a range from 03 to 2. Therefore, a

slope value of one is used in this study.

Associated with the DTW equation presented in Sec2322 was a weighting coefficient This

coefficient allows one to apply an additional reward or penalty to the accumulated distance, accounting

for path deviations. Kruskal and Sankoff [KRUS83a] illustrate the use of positive weights as a measure

of quality to be included into the DTW equation that penalize for insertion, deletion, and substitution

errors. For example, any movement in a horizontal or vertical direction (insertion and deletion errors)

results in a positive value being added to the accumulated distance, indicating a decrease in the quality

of the string match. The same is true if movement is in a diagonal direction without both string ele

ments matching (substitution error). A diagonal move with matching string elements receives no

penalty. There was not a good understanding of how to set arbitrary weighting factors of phonetic dis

tance in response to errors. With this in mind, and in consideration of the many other variables within

the DTW process, a weighting coefficient was not used in this context However, averaging the total

accumulated distance over the reference pattern length could be used to normalize distances between

hypotheses whose reference patterns differ in length. This type ofweighting favors a heuristic that looks

for the longest pattern with minimum distance. The DTW matrix indices at the current point of com

parison can be used as a divisor to average out the length traveled.
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Using Sakoe and China's [SAK078] symmetric DTW equation of slope P = 1 results in the fol

lowing recurrence relation to be used in calculating minimum distances during the DTW process:

/(a,_i, bj.{) + d(ai% bj)
d(ai.2,bj.1) + d(ai.1,bJ) + d(ai%bj)

D(ai,bj) = Min

3.7. Recognition Technique

3.7.L Sentence Parsing

Conceptually, the DTW procedure moves from left to right processing sections of the unknown

sequence. A phoneme reference pattern is selected from the lexicon (its selection method will be dis

cussed below) and time-warped with an initial portion of the unknown utterance, producing a time-

normalized distance. This procedure is applied repeatedly to the same section of the unknown, until all

acceptable word hypotheses are determined. Hypotheses that exceed a preset minimum distance thres

hold during DTW calculations are pruned early. Hypotheses that do not exceed the threshold are

placed into an array at an index corresponding to the position of their word-initial phoneme in the unk

nown phonetic string. This array forms a word lattice.

For each hypothesized word (in the set generated from the initial unknown sequence), another

segment of the unknown utterance is selected (left to right) for DTW comparison against reference pat

terns in the lexicon. The starting point of each
"new"

unknown sequence portion is taken from just

after the last point of comparison between the previous unknown sequence, and the reference pattern of

the word hypothesized. However this is only adequate for testing against substitution errors. Insertion

and deletion errors can affect the location of the word junctures. Consider the following two unknown

sequences and their representations:

(1) this may - dh ih s / m ey

(2) this set -> dh ih s / s eh t

Example one does not present a problem. The hypothesis of this is made, and DTW would resume at
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the phoneme "m". However, in example two the front-end would merge the
"s" from both words

(creating a deletion error), resulting in the sequence:

dh ih seh t

Now when this is hypothesized, the algorithm advances past the phonemic representation of this in the

unknown string to begin DTW again. The new comparison starts at the phoneme "eh", providing a

more ambiguous, if not incorrect point to start the DTW procedure from. Therefore, successive DTW

procedures can begin from some number of phonemes prior to the point corresponding to where each

successful hypothesis ends. Although this requires additional computation, it may prevent ignoring a

significant starting point for DTW.

This process continues until there is zero or more word sequences hypothesized from the unk

nown utterance. The lattice of hypothesized words (rank ordered based on length of phonetic transcrip

tion, then total overall accumulated distance), is sent to a syntactic and semantic parser for further pro

cessing.

The above procedure is based on the level building algorithms developed for use in connected-

word recognition [MYER81, NEY84, SAK084]. They also move from left to right through the unk

nown utterance, finding the collection of reference patterns whose global (phrase) DTW distance is at a

minimum over the concatenation of local (word) DTW minima. Note that given an utterance of fixed

length, and given an equivalent distance between all reference and unknown patterns, a small number of

large words will have less total accumulated distance (globally) than a larger number of small words,

indicating a possible heuristic that favors use of large reference patterns for DTW prior to smaller pat

terns. Smith [SMTT80] also suggested that large words should be hypothesized prior to smaller words

since larger words usually contain more syntactic and semantic value. Ordering the lexicon entries by

descending transcription length is another way of exploiting this heuristic.
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The top level algorithm for the word hypothesis procedure (parse-sentence) is as follows:

(DEFUN parse-sentence (input-phrase phonetic-index threshold )

IF anymore of the input-phrase to process

I
IF word-lattice [phonetic-index] contains hypotheses

{
complete = true

)
)

LOOP until complete

{
IF at end of the input-phrase

I
complete = true

1
ELSE

{
hypotheses = find-eval-candidates (input-phrase phonetic-index threshold)

1

IF complete, and no hypotheses found

(
(RETURN noil)

)

IF no hypotheses are found

{
advance to next position in input-phrase

IF we have advanced beyond a specified point

{
increment the threshold

return to position in input-phrase where last successful search ended

)
}

ELSE

{
word-lattice [ phonetic-index ] = hypotheses

LOOP for all hypotheses

{
parse-sentence (input-phrase (phonetic-index + candidate-length) threshold )

1
complete = true

}
}

(RETURN word_lattice)

The primary function of parse-sentence is in guiding the left to right motion searching for hypotheses.

Due to the recursive nature of parse-sentence, a previous iteration may have already found hypotheses
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to exist at a particular index. Therefore, when entering the function, one must examine the word lattice

at the starting index. If hypotheses already exist in the lattice at that index, there is no need to search

from that index again. Otherwise, it proceeds to find all candidates in the unknown at the current

phonetic index. IT none are found, the index is incremented and the search process is repeated. Multi

ple advances without finding any candidates will eventually cause the process to back up, dynamically

increase the threshold, and repeat the search. Raising the threshold provides an increased possibility of

finding hypotheses by reducing the chance that they will be pruned during the DTW process. Once a

set of hypotheses is located, the entire procedure is repeated using the endpoint of each hypothesized

word as the next position from which to begin the search.

The function find-eval-candidates has two responsibilities. The first is to select reference patterns

from the lexicon and initiate the time-warping process to compare each against the unknown utterance.

Exhaustive search of all lexical entries is not practical with lexicons numbering in the tens of

thousands. However, in order to minimize the number of factors which would influence the DTW pro

cess, complex search strategies were not investigated. The search strategy used developed from a brute

force method to one in which subsets of the lexicon were selected and then compared to the unknown

via DTW. This method gathers reference candidates based on the word-initial phoneme of the unknown

utterance segment to be warped. As described earlier, all words in the lexicon are grouped according to

word-initial phoneme. During recognition, the first phoneme in the unknown pattern is used as a key
into a similarity table. In the table at each key is a list of three to five phonemes. These phonemes

have the highest probability of being confused with the key. This association list can be recursively

processed to provide & family of phonemes that are most highly confused with the initial index. How

the size of this confusion-family relates to recognition rate and performance is one of the major vari

ables evaluated in this study. It is important to note that this method of obtaining reference patterns

relies on the premise that the first phoneme in the unknown sequence can be identified accurately.

When a reference pattern successfully completes the warping process without exceeding the dis

tance threshold, the following information is returned and eventually placed in the word lattice:

(reference_word warping_distance reference_patternjength next_searchjndex )
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The reference word is the basic data component of the word lattice expected as input by upper level

semantic/syntactic parsers. Warping distance serves as a measure of confidence in the accuracy of

hypothesis for the reference word, and is used in a final selection process detailed nexL The length of

the reference pattern provides an evaluative measure used in the selection process as well. Both warp

ing distance and reference pattern length are measures that may be beneficial to the the upper level

parsers in guiding their syntactic and semantic parsing procedures. The fourth value represents the

phonetic index within the unknown phrase where the next search process is to begin.

Find-eval-candidates second task is to choose a subset of hypotheses from those generated above

which have the greatest confidence measure, based on minimum phonetic distance and phonetic

representation length. Selection is accomplished by performing two sorts on the hypotheses found at a

given index within the unknown phoneme string. The first sort rank orders hypotheses by increasing

minimum distances. All but the best (lowest minimum distance) N hypotheses are discarded. Those

that remain are sorted again based on decreasing phonetic representation length. This final list of

hypotheses is placed in the word lattice (at the given phonetic index) allowing access to the longest

hypothesis first The parsing process as outlined above would use these hypotheses as starting points

for continued analysis. This is consistent with the previous suggestion by Smith [SMTT80] that large

words be hypothesized prior to smaller words since larger words usually contain more syntactic and

semantic value. Find-eval-candidates outlines as follows:

(DEFUN find-eval-candidates (input-phrase current-index threshold )

ref-words = get-candldates-based-oo-shnllar-phonerae ( phoneme-at-current-index )

(LOOP for all ref-words

{
get section of unknown phrase based on reference pattern length

hypotheses = process-DTW ( reference-word unknown -phrase-section threshold )

sort-on-DTW-distance ( hypotheses )
trim-list-of-candidate ( hypotheses )
son-on-reference-pattern-fength ( hypotheses )
)

(RETURN hypotheses)
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CHAPTER 4

RESULTS

4. Initial Findings

Initial tests of the DTW process were conducted using phrases with no errors and a
minimum dis

tance threshold of zero. These tests used a brute force search through the lexicon, comparing all words

against the unknown sequence. Although all phrases were parsed successfully, it became apparent that

the DTW process was computationally expensive. Processing time for an unknown sequence (average

length of 20 phonemes) was approximately ten seconds per sequence. A design deficiency in the pars

ing procedure was discovered and corrected. Within recursive calls to the function parse-sentence,

alternative parses were duplicating effort in searching identical sections of the sequence To eliminate

this, a global array was implemented to store the results from searching specific segments of the unk

nown at a given index. IT an additional parse were to begin at the same index, previously found

hypotheses Of any) would be immediately available. With this change, processing times for errorless

strings were reduced by approximately 50%.

Pilot results with errorful strings showed even further degradation in efficiency. Processing of

errorful strings requires that the minimum distance threshold be set to some positive value to accommo

date minor mismatches in the reference-to-unknown alignment due to the three error types. As that

minimum value was increased, the DTW process had more opportunity to progress through the string

before exceeding the threshold, adding computations. In addition, an increased threshold also allowed

more hypotheses to be found, which in turn increased the number of endpoints that would serve as new

positions for further search.

In the context of only substitution errors, initial tests performed so poorly that the entire sequence

of words was not found in any of 51 unknown phrase tests. Of all words hypothesized, only 46% of

those found were the original words. Observations made from the examination of these trials are dis-
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cussed in the following paragraphs.

It was noted earlier that searching the entire lexicon posed performance problems. In an attempt

to reduce the computational overhead, the strategy for selecting reference patterns for DTW comparison

was altered from the brute force approach. The procedure was changed so that the unknown sequence

was compared with those reference patterns starting with either the initial phoneme of the unknown, or

any of the three phonemes that had the highest degree of confusion with the initial phoneme. This

reduction in calculations improved overall efficiency, but was too selective. More often than not the

reference pattern required to match the unknown would not even be selected for comparison. It became

apparent that some larger segment of the lexicon is necessary for reference selection. The effect of lex

ical search space on DTW performance was one of the three major variables used in the series of tests

discussed in the next section.

Another observation made during pilot testing was that different criteria (weighting factors) were

necessary when warping with short (ie., three or less phonemes) reference patterns as opposed to larger

ones. Initially the same weighting scheme was used for all words when calculating the average dis

tance for comparison against the threshold. It became difficult however, to find a threshold value that

would be low enough to screen against warping differences early into the comparison, yet not be so

sensitive as to prune the search when encountering moderate differences. In the case of short reference

words, a decision to prune the search in the event of any deviation between reference and unknown had

to be made quickly. On the other hand, it was desirable to allow longer patterns to continue warping

even in the event of an error. For example, the warping process proceeds with an identical match

between reference and unknown until the very last phoneme which contains a substitution error of

significant magnitude. Although the difference may be large, the majority of the reference pattern has

been accepted by the warping process and is most likely a good hypothesis. This large distance is

probably a spurious front-end error that should be discounted. Therefore, examining the effect of a

range of minimum distance thresholds on DTW performance was selected as a second major variable to

test

A third observation was that many times the parsing procedure was not able to locate any

hypotheses at a given index within the unknown. In this case, it advanced to the next position and
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started the search again. This occurred several times, skipping over significant sections. Applying the

following heuristic to the parsing process improved results.
If the recognition process continues too far

without finding any hypotheses, it backs up some distance within the utterance and searches again,

dynamically increasing the distance thresholi This r^
words at any given

index. The third variable examined in the test series was me number of acceptable word candidates

allowed at any given phonetic index within the utterance. Intuitively, as the number of hypotheses

increases, so does the probability that the correct one is included.

Insertion and deletion errors introduced significant problems in the word recognition process.

One of the most noticeable was that they could change the starting phoneme of a word. Since this

study based reference pattern selection on the word-initial phoneme of the unknown sequence, deletions

or insertions at word boundaries had a negative impact on successful hypothesis. Selection of reference

patterns based on either the second or third phoneme of a word (in the case of deletion errors), or an

inserted phoneme, would be from areas in the lexicon that did not include the required reference pattern

for successful match. Another difficult problem was encountered when working with deletion errors in

the case of small words (two phonemes). Accurate hypothesis from a single phoneme without setting

thresholds to such a level as to cause massive acceptance of motefalse-positives is a problem.

Problems with the DTW process were not as severe if deletion and insertion errors occurred

within word boundaries, but in comparison, deletion errors proved more difficult to account for than

insertion errors. To explain this, one must look at how these errors are generated in the test utterances.

Deletion errors are introduced randomly into the test utterances, as opposed to insertion errors which are

based on data from the confusion matrix. As a result the insertion error will create an additional

phoneme, but of similar phonetic classification. In contrast a deletion error can cause a sharp change

in phonemic character not previously present An example is when one of two vowel sounds sur

rounded by consonants is deleted. When warping the reference against this unknown, the consonant is

now encountered prior to normal causing the average distance to exceed the threshold. As was previ

ously pointed out an IBM study [JELI76] showed that of the three error types, substitutions accounted

for the majority. Given the above problems, and the results of the IBM study, this project worked pri

marily with substitution errors.
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4.1. Test Series 1

A comprehensive series of tests was run against a group of 42 phrases containing 10% substitu

tion errors. Each successive test varied one of three primary variables (holding the other two constant)

found to affect performance of the word hypothesis process. These variables included: the minimum

distance threshold, the number of candidate words accepted at any one phonetic index, and the size of

the lexical search space when obtaining reference patterns for the DTW process. Five threshold values

were used ranging from zero to 1000. Values ranging from 5 to 30 were used as the number of candi

dates accepted at any index. Two possible values, large and small, were tested for lexical search space

size A small search space provided access to approximately 20% to 30% of the word-initial phoneme

groups in the lexicon, whereas a large search space was approximately double that of the small space.

Results of the Series 1 tests at threshold values of 500 and 1000 are for only the small lexical search

space. Initial trends in parallel tests indicated that differences in search space did not have a significant

impact on total recognition. As will be detailed later, this observation proved to be inaccurate

The performance of each test was evaluated using the following criteria. First the final word lat

tice returned from each parsing was examined for the presence of the intended utterance. Finding all

utterance words in their correct order was considered a complete match. The number of complete

matches from N test utterances provided the total percent recognition. A second measure of success

was the average percentage ofwords hypothesized per phrase. This gives a relative idea of how well

the parsing process is working on a phrase basis. It relates the number of correct words found to the

number in the originals in the utterance over all phrases. The last two performance measures are used

as indicators of noise in the word hypothesis procedure. The process of word hypothesis attempts to

interpret speech information passed up from the lower levels of a speech recognition systems front-end.

Ideally, no information should be lost in the transfer of this information to higher levels. It is therefore

desirable that as errors do occur, they should be of the false-positive type (words found but not present)

rather than errors of omission. The two noise measures are: (1) the ratio of correct to incorrect words

found, and (2) the ratio of total words found vs total words in the utterance.
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From a computational perspective, the run-time performance of the
Series 1 tests was much lower

than expected. On an Explorer I, times ranged from 4 to 21 hours per test Equivalent tests on the

Explorer B yielded an approximately five-fold reduction in computation time There was a positive

correlation between inaeasing run times over the series of tests and increases in all three variables.

Larger threshold values allowed the warping process to further continue comparisons of reference pat

terns to unknowns before exceeding the minimum threshold levels that result in process termination.

Increasing the number of word candidates allowed per index produced additional starting
points for new

searches which also use more computational resources. Lastly, widening the search space served to

increase the number of reference patterns available for DTW comparison, requiring even more DTW

comparisons.

Figure 8 shows the total percent recognition achieved as a function of the DTW threshold used.

In general, as the threshold was raised, the percentage of complete phrase recognition also increased.

Raising the threshold causes the DTW comparison to be less restrictive and thus, provides an increased

likelihood that the DTW process would complete and provide a hypothesis. A maximum recognition

level of 66% occurred at threshold levels of 275, 500 and 1000. Correspondingly, both the number of

accepted candidates per index, and the lexical search space variables were at their greatest values

(thirty, large, respectively) when this maximum recognition level was achieved. As indicated by the

plateau in total recognition rate, it did not look as if further increases in threshold would yield improved

results.

Also shown are the high and low percentage recognition levels obtained for each threshold value.

The variances in recognition reflect the effect of underlying changes in the other two variables (Le,

candidates accepted per phonetic index and size of lexical search space). With the exception of the

zero threshold level test the range of recognition levels for a particular threshold class was relatively

close at five percent This indicated that although some improvement in recognition is possible by

adjusting the candidate per index and search space variables, the increase appears to be modest The

wide fluctuation in the zero level threshold test can be attributed to the heuristic that causes the parser

to backup and increase the threshold in the event of multiple advances without success. As the threshold
increases (in increments smaller than the differential in test category levels), it becomes large enough
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for discovery of more hypotheses than at the zero threshold, but not in quantities equivalent to those

tests starting with a large value initially.

Figure 9 shows how the percentage of complete recognition was related to the number of candi

date hypotheses allowed at a given index in the unknown utterance. Figure 10 shows how the average

percentage hypothesized per phrase was related to the number of candidate hypotheses allowed at a

given index in the unknown utterance. Increases in complete recognition of two to three percent were

realized as the number of candidates increased. Individual phrase recognition percentages for the Series

1 tests fluctuated between the range of 85% and 90%. As was true for total recognition figures, the

average percentage of a single phrase rose two to three percent as the candidate count was increased.

However, beyond 20 candidates per index, further increases appeared not to be beneficial. This indi

cates that some other limiting factor must exist which affects recognition capability. Also illustrated in

these graphs is a clustering effect for results with thresholds at the 0 to 175 level, and those at the 225

to 1000 leveL The cause for this is unknown.

Measures of noise in the Series 1 tests are shown in Figures 11 and 12. As expected, increasing

the threshold level for a given test resulted in larger noise levels during word hypothesis. When the dis

tance threshold was raised, more candidate words were able to pass this minimum difference and were

therefore accepted. Tests with threshold levels under 500 demonstrated that the hypothesis of between

six and 32 words was necessary to find an original utterance word. In contrast as the number of word

candidates accepted per index approached 20, the noise ratios began to stabilize, still increasing but at a

decreasing rate. As the number of allowed words per index increased, so did the chance that the actual

word desired would be present Keeping in mind that the candidates allowed per index were

specifically sorted, the manner in which the sort was conducted has the potential to substantially affect

success of hypothesis. Tests at threshold levels above 500 produced much higher noise levels. Tests at

these levels required the hypothesis of between two and three times as many words for every correct

word, as did tests using lower thresholds. Tests providing the largest percentage of complete phrase

recognition (55% to 66%) resulted in ratios of total words found vs total utterance words, as high as

74:1.
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In terms of lexical search space, examination of the Series 1 test results showed that there was no

difference in total recognition success until the minimum distance threshold was 225 or above. At

these threshold levels, changing from a small to large search space accounted for increases in total

phrase recognition of five to six percent Based on the small increase observed here, the reader is cau

tioned not to discount the significance of search space size as it relates to total recognition percentages.

Results from the most successful Series 1 test were selected for more thorough examination.

Understanding the causes of recognition failure in these results would identify possible changes to the

procedure that might improve the total phrase recognition results. The combination of parameter set

tings that produced the largest percentage of complete matches and the highest average percentage of

words hypothesized per phrase was selected for further study. Based on these considerations, the fol

lowing parameter settings were chosen: (1) a threshold level of 500, (2) 20 candidates allowed per

index, and (3) a small lexical search space With these parameter settings, total recognition rate was

66% and the average percentage hypothesized per phrase was at 93%. Isolating the specific problem

areas would be made easier when examining test results with a large average percentage word recogni

tion per phrase. Although large, a noise ratio (total words found vs total utterance words) of 67:1 was

accepted in light of the objective to provide a method that would find the entire original phrase from

from the errorful phrase.

An immediate observation was that in most cases, words not hypothesized were of short transcrip

tion length (under four phonemes). Aware that there are several points within the hypothesis procedure

that a potential candidate may be pruned before acceptance, the missed words were submitted individu

ally for parsing and monitored to determine when they were dropped. These locations where pruning

may take place include the DTW comparison process, and the two sorting processes based on distance

and transcription length.

It was discovered that the DTW comparison procedure was penalizing small words severely and

pruning them early on. Early on in empirical testing it was noticed that words with significandy

different transcription lengths should be treated differendy. As reference pattern length grows, distance

generated by a single mismatch in the warping process (when used in comparison to the threshold) has

less impact on possible rejection due to averaging. Therefore, the decision to prune shorter words
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based on distance must be made earlier than longer words. An adjustment was made to the divisor

responsible for averaging distance over reference pattern length (in the case of short transcriptions) and

the following test set repeated (threshold at 500 and 1000, twenty candidates per index, small search

space).

As is shown in Figure 13 (Tl), the percentage for total phrase recognition increased from 66% to

80%. The average percentage hypothesized per phrase increased to approximately 97%. This was

accompanied with a thirteen percent increase in the noise ratio of total words found to total utterance

words. The results were again examined to determine the reasons that eight phrases remained only par

tially parsed. It was discovered that if the larger lexical search space had been used, the needed refer

ence patterns would have been supplied for successful DTW of four phrases. Adding these four (now

correct) parses to the count of totally correct parses increases the percentage of total phrase recognition

to 88% for this test (see Figure 13 - T2). One phrase tost the correcdy hypothesized word during the

sorting process based on reference length. The three remaining phrases had word-initial errors such that

even the larger lexical search did not access the needed reference pattern for comparison. Any further

improvement in the process would have to be acheived by enlarging the lexical search to include more

reference patterns. Figure 14 shows the percentage total phrase recognition as a function of lexical

search space size.
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42. Test Series 2

A subset of the Series 1 tests was run to confirm the positive effect on recognition of the reduced

time warping penalty used in conjunction with short reference patterns. The same distance threshold

levels were used, while only a subset of previous values was used for the candidates per phonetic index

variable (eg. 5, 20, 30). This series of tests used only the large category for the lexical search space

variable. It was this value that produced the best results in the previous series of tests.

Figure 15 illustrates the results of these tests. Compared with the Series 1 test results (Figure 8),

the percentage of total phrase recognition increased substantially for threshold levels between 125 and

1000. Similar to the Series 1 results, the percentage recognition grew larger as a function of increases

in the distance threshold. Increases in recognition stabilized at a maximum level of 88% despite further

increases in threshold values. The level zero threshold test did not show as much improvement due to

the backtracking and dynamic threshold adjustment that was described previously.

The relationship of total phrase recognition and average percentage hypothesized per phrase to the

number of candidates per index is the same as that observed in the Series 1 tests. What differs is the

relative level of overall recognition. For the Series 2 tests, this increased between ten and fifteen per

cent (Figures 16 and 17). The same held true in terms of results representing noise measures of the

recognition process (Figures 18 and 19). The noise value representing the effort required to find correct

hypotheses increased by a significant amount In tests with the threshold at 275, ratios of total words

found to total words in the utterance were as high as 93:1.

Comparing Series 1 and 2 noise level trends (Figures 11 and 18, respectively) as they related to

candidate count, it was discovered that for threshold levels of 275 and below, the Series 2 results had

not stabilized as well This means that increasing the number of candidates accepted at a given index

(based on minimum distance and reference length) was not increasing the probability of correct

hypothesis. Instead, it was acting to dilute the pool of correct hypotheses which is represented as

increased noise levels. This suggests that some factor other than minimum distance comparisons was

responsible in finding the correct hypothesis. What was found to play a more significant roll in suc

cessful hypothesis is described next
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Another series of tests was conducted, this time examining the ability of the current algorithm to

parse phrases with different percentages of substitution errors. As Figures 20 and 21 illustrate, there was

a gradual decrease in the overall level of phrase recognition as the level of errors increased. One con

tributing factor is that as more errors occur, there is an increase in the probability of exceeding the dis

tance threshold during warping. A more severe problem relates to how reference patterns are selected.

Based on the method of reference pattern retrieval from the lexicon, there was a significant chance that

the reference pattern would never have an opportunity to be time warped with the unknown. This

specific problem accounted for 82 of the failed phrase parses in a test of 148 phrases containing ten

percent substitution errors. The remaining phrases not fully parsed reflected another problem. Various

reference words had passed the DTW comparison, but a decision was made later to drop the candidate

based on rank-order distance and reference pattern length.

Figure 20 also shows the results of a test evaluating the ability of this program to deal with

mixed errors at a total rate of 15%. The mix of error types were in the following proportions: insertion

and deletion errors each at four percent, and substitution errors at 92%. The ability to completely

hypothesize all phrases ranged from 30% to 50%. The two common causes preventing correct

hypotheses in the mixed error tests were also observed in the test of the 148 phrase sample containing

ten percent substitution errors. Restricted access of reference patterns due to the limitations of the

larger lexical search process was one problem. The second problem occurred as hypotheses (passing

the warping process) were sorted based on reference length and accumulated warping distance. Out of

the 27 phrases not completely parsed in a mixed error test (threshold = 500, candidate count = 5, large

lexical search), 62% had found the correct words but then subsequently trimmed them from the list of

candidates. Many smaller words were hypothesized with zero or low accrued distances, pushing larger

words (with comparatively larger distances) out of the candidate list. As was typical with previous

tests, enlarging the candidate group would lessen this problem. The problem of not accessing portions

of the lexicon containing the necessary reference patterns was exemplified in the remaining forty per

cent of test phrases not fully parsed.
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CHAPTER 5

CONCLUSIONS

From various viewpoints, the dynamic time warping method of this study has proven not to be

entirely satisfactory. Examined from the standpoint of real-time speech recognition,
the time to process

a single phrase was not good. It took approximately three minutes per phrase in the test conditions that

provided the greatest percentage of complete phrase recogrution. This is several magnitudes greater

uian human processing times. Some reduction in these processing times might be gained by reducing

the code to assembly language, or perhaps embedding it as a utility in firmware. However, as the size

of the lexicon increases we would expect the computational resource to grow as well. Assuming the

current method of reference pattern selection, the number of DTW comparisons required would increase

as each word-initial phoneme group enlarges.

Based on studies of broad phonetic representation by Huttenlocher [HUTT84] and Shipman and

Zue [SHIP82], one would expect the similarity of words to increase with increases in lexicon size.

Therefore, increased resolution is necessary to determine subde differences between various references.

Without this ability, more candidate words could be hypothesized at a given phonetic index. This

presents problems for the syntactic and semantic parsers that would use the word lattice as input

It was shown that noise levels (measured as the total number of words required to identify a sin

gle correct word) experienced during tests demonstrating the best level of hypothesis success,

approached 90:1. Large numbers of word candidates would obviously impose severe demands on

higher level parsing algorithms. The best performance of word hypothesis occurred at a candidate level

of twenty phonemes per index. Assuming that twenty words were hypothesized at each of ten phonetic

indices, there are 2010
possible phrases in which to find the actual phrase. This places a large burden on

the remainder of the recognition procedure. It is hoped that supplying some measure of confidence

(distance and reference length) to these upper level processes will be of assistance.
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Of the three primary factors tested (threshold, candidate count lexical selection), variance in dis

tance threshold provided moderate gains in recognition but then quickly leveled out The remaining two

variables were responsible for the majority of missed candidates. Later tests showed that reference pat

tern selection from the lexicon was too restrictive. In many cases, the reference pattern required for a

successful comparison was not included. This in turn is reflective of two more acute problems (1)

working without any definitive word boundaries and (2) the possibility of an inaccurate mapping from

phonetic distance to confusion probability.

Provision of word boundaries would have an immediate benefit of reducing overall effort The

incremental searching of an unknown phrase gathers many candidates that are not necessary. These can

didates then spawn additional sites for continued search. The provision of endpoints would help reduce

this by concentrating effort at known intervals.

The selection of reference patterns for DTW comparison assumed that the most potentially

confusing words could be associated with the word-initial phoneme of an unknown sequence. It was

discovered that in many cases, errors induced at the word-initial phoneme were not within the family of

40 to 60 percent most closely associated phonemes. One might be tempted to incrementally add more

phonemes to the list (based on confusion probabilities); however, eventually the list could grow to

represent the entire lexicon (i.e, a brute force search). Therefore, some other method is necessary to

help guide this procedure. A confidence measure supplied by the lower level phoneme classifiers might

be used as a guide for selecting the members of the similarity list In addition, the establishment of

islands of certainty via confidence measures might provide points in which to use parallel processing

techniques to simultaneously search from several sections of the unknown.

Another procedure that deserves additional consideration is that of pruning the candidate list

Many times in doing so, the correct hypothesis was lost The sorting procedure as it relates to reference

pattern length and distance bears further examination. It was found that often words should be rank-

ordered by reference length prior to a sort by accumulated distance. Due to the prevalence of short

words and their propensity to have small accumulated distances, many longer candidates were rejected.

Due to the large noise levels required for successful hypothesis at even modest error rates, it is

suggested that alternative methods be investigated for the process of word hypothesis in continuous
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speech. This could include incorporation of higher level knowledge sources to help prune the searching

process. Given a differenct organization or additional information within the lexicon, syntactic and

semantic constraints might be used to predict which words are most likely to be present in the unk

nown. Another possibility would involve implementing word hypothesis using Hidden Markov Models,

comparing the computational resources required. The confusion matrix would provide a way to model

the behavior of the system front end.
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APPENDICIES

APPENDIX A: Inter-phoneme Distance Matrix
used in DTW comparisons, (part 1 of 2)

Output Phoneme

ae ah eh ih ix iy uh

er 0 324 201 181 315 211 170 252 265 570 33S 178 .285 500 240 670 465
aa 324 0 198 30 101 60 433 704 400 1211 131 205 365 28S 604 1300 510
ae 201 198 0 133 396 163 98 282 235 621 420 357 581 600 5S0 785 740
ah 181 30 133 0 74 30 263 462 262 884 110 102 235 220 360 884 42S
ao 315 101 396 74 0 104 S01 678 395 1120 60 50 103 165 410 1060 29S
ax 211 60 163 30 104 0 293 492 200 910 370 132 265 310 430 1090 480
eh 170 433 98 263 501 293 0 47 366 229 530 336 499 700 340 440 7S0
lh 252 704 282 462 678 492 47 0 210 75 690 425 543 800 498 270 760
ix

*

265 400 235 262 395 200 360 210 0 420 370 280 410 610 440 60 30

iy S70 1211 C21 884 1120 910 229 75 420 0 1120 765 8S9 1300 920 4S0 1000
ov 335 131 420 110 60 370 530 690 370 1120 0 85 123 170 430 12S0 270

I uh 178 20S 357 102 SO 132 336 425 280 765 85 0 29 200 330 8S0 170
n uw 285 365 S81 23S 103 265 499 543 410 8S9 123 29 0 205 330 859 195

P 1 500 285 600 220 165 310 700 800 610 1300 170 200 20S 0 118 104. 145
u r 240 604 550 360 410 430 340 498 440 920 430 330 330 118 0 133 110
t y 670 1300 785 884 1060 1090 440 270 660 450 1250 850 859 104 133 0 123

w 465 S10 740 425 295 480 750 760 630 1000 270 170 19S 14S 110 123 0
dx * * * * 34S 345 26S 280

P "9 * * * * * * * * 260 195 300 260
h b * * * * * 280 205 2S0 170

o t * * * * * * 900 820 885 805
n d * * * * * * * 345 345 26S 280
e Jc * * * * * * * * * 865 775 85S 77S
m 9 * * * * * * * 41S 405 33S 335

e n * * * * * * 340 275 390 335

n * * * * * * * * 210 185 280 255

p * * * * * * * * * 805 710 765 705
hh * * * * * * * 615 530 565 SOS

f * * * * * * * * 605 SIS S85 SOS

v * * * * * 400 335 355 290

th * * * * * * * 650 S60 62S S45

zh * * * * * 590 580 515 SOS

dh * * * * * * * * 395 345 335 290

s * * * * * * * 705 62S 665 S90

z * * * * * * * * * * 525 490 4S5 440

sh * * * * * * * * * * 880 805 83S 765

ch * # * * * * * * * * 885 800 855 775

jh * * * * * * * * * * 295 255 213 175
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APPENDIX A: Inter-phonoa* Distance tutrix

used In DTW comparison*, (part 2 of 2)

dx ng b

Output Phoneae

n p hh f tb zn dh z h ch jh

ah

h

lh
ix

iy
ow

I oh

n tm

P 1
a r

t y
H

dx
* g
h b
o t

n d
e k
> g
e a

n

P
hh
f
v

th

zh

dh
s

z

sh

ch

345
34S
26S
280
0

530
300
850
30
860
90
600
530
7S0
550
C10
310
610
260

220
590
2S0

720
800
160

260 280
19S 20S
300 250
260 170
530 300
0 290

290 0
780 635
530 300
710 610
570 31S
95 335

100 340
610 540
540 340
480 34S
420 13S
550 380
740 460
470 180
6S0 425
620 330
840 60S
790 610
400 15S

900 345
820 34S
88S 265
805 280
850 30
780 530
635 300
0 850

850 0
130 860
800 90
7S0 595
875 525
125 78S
320 550
310 60S
555 310
260 610
82S 255
630 220
280 585
660 2S0
295 715
110 00
740 160

86S
77S
SSS
77S
860
710
610
130
860
0

820
66S
805
80

330
270
SSS
250
870
C4S
33S
700
410
220
730

415
40S
335
33S
90
570
315
800
90
820
0

630
580
740
500
575
280
565
180
180
525
165
640
740
175

340
27S
390
335
595
95

335
750
S95
665
630
0

165
620
S40
450
445
525
790
SIS
645
660
830
770
460

210
1SS
280
2SS
525
100
340
870
52S
80S
580
165
0

755
620
56S
470
630
755
SOS
725
6S0
910
880
430

80S
710
76S
705
785
660
540
125
78S
80
740
620
7SS
0

250
200
47S
175
790
S6S
260
620
355
190
660

615 60S
530 SIS
565 585
SOS SOS
SS0 60S
540 480
340 345
320 310
SSO 60S
330 270
500 S7S
540 4SO
620 S6S
250 200
0 140

140 0
2S0 300
90 80
560 6S5
330 39S
120 22S
380 48S
310 40S
280 320
420 470

400 650
33S 560
3SS 62S
290 S4S
310 610

420 SSO
135 380
SSS 260
310 610
SSS 250
280 S6S
44S 52S
470 630
47S 17S
2S0 90

300 80

0 30S
30S 0
390 630
100 390
310 1SS
230 460
480 325
520 250
180 490

590 39S
580 34S
SIS 335
SOS 290
2SS 220

740 470
46S 180
825 630
2SS 220
870 64S
180 180
790 SIS
7SS SOS
790 S6S
560 330
6SS 395
390 100
630 390
0 29S

295 0
S4S 36S
17S ISO
610 SIS
750 580
34S 12S

70S
62S
66S
590
58S
6S0
42S
280
S8S
335
525

64S
725
260
120
22S
310
1SS
545
36S
0

38S
190
220
490

525
490
4SS
440
250
620
330
660
250
700
165
660
6S0
620
380
485
230
460
17S
ISO
38S
0

480
590
250

80 885
80S 800
835 855
765 775
715 800
840 790
COS 610
295 110
715 800
410 220
640 740
830 770
910 880
790 190

310 280
40S 320
480 520
32S 250
610 750
51S 580
190 220
480 590
0 220

210 0
640 690

29S
2SS
213
175
160
400
160
740
160
730
180
460
425
660
420
470
180
490
350
130
490
2S0
640

C90
0
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APPENDIX 8: Inter-pnoneae Confusion Matrix derived
froa Distance Matrix, and usd In the

creation of test phrases, (part 1 of 2)

Output Phoneae

er aa ae ah ao ax h lh ix iy ow uh uw 1 r y V

er - 5.2 8.5 9.4 5.4 8.1 10.0 6.7 6.4 3.0 5.1 9.6 6.0 3.4 7.1 2.S 3.7
aa 3.1 - S.l 33.9 10.1 17.0 2.4 1.4 2.5 0.8 7.8 S.O 2.8 3.6 1.7 0.8 2.0
ae 8.5 8.6 - 12.8 4.3 10.4 17.3 6.0 7.2 2.7 4.0 4.8 2.9 2.8 3.1 2.2 2.3
ah 4.0 24.1 5.4 9.8 24.1 2.8 1.6 2.8 0.8 6.6 7.1 3.1 3.3 2.0 0.8 1.7
ao 3.0 9.4 2.4 12.9 - 9.2 1.9 1.4 2.4 0.9 15.9 19.1 9.3 s.e 2.3 0.9 3.2
ax 4.S IS.9 5.9 31.9 9.2 - 3.3 1.9 4.8 1.1 2.6 7.2 3.6 3.1 2.2 0.9 2.0
eh 8.3 3.3 14.4 5.4 2.8 4.8 - 30.0 3.9 6.2 2.7 4.2 2.8 2.0 4.2 3.2 1.9
ih 5.8 2.1 5.2 3.2 2.2 3.0 31.3 - 7.0 19.6 2.1 3.5 2.7 1.8 3.0 S.S 1.9
ix 7.9 5.3 9.0 8.0 5.3 10.5 5.8 10.0 - S.O 5.7 7.5 5.1 3.4 4.8 3.2 3.3

iy 4.9 2.3 4.5 3.2 2.S 3.1 12.2 37.2 6.6 - 2.S 3.6 3.2 2.1 3.0 6.2 2.8
ow 3.7 9.4 2.9 11.2 20.6 3.3 2.3 1.8 3.3 1.1 - 14.S 10.0 7.3 2.9 1.0 4.6

I oh 4.6 4.0 2.3 8.0 16.4 6.2 2.4 1.9 2.9 1.1 9.6 - 28.2 4.1 2.S 1.0 4.8
n uw 3.9 3.0 1.9 4.7 10.8 4.2 2.2 2.0 2.7 1.3 9.0 38.3 - 5.4 3.< 1.3 5.7

P 1 1.8 3.1 l.S 4.0 5.3 2.8 1.3 1.1 1.4 0.7 S.2 4.4 4.3 7.4 8.4 6.0
a r 3.7 l.S 1.6 2.S 2.2 2.1 2.6 1.8 2.0 1.0 2.1 2.7 2.7 7.6 - 6.7 8.2
t y 1.6 0.8 1.3 1.2 1.0 1.0 2.4 3.9 1.6 2.3 0.8 1.2 1.2 10.0 7.8 - 8.5

V 1.9 1.7 1.2 2.0 2.9 1.8 1.2 1.1 1.4 0.9 3.2 S.l 4.S 6.0 7.9 7.1 -

dx - - - - - - - - - - - - - 2.9 2.9 3.7 3.5
P n - - - - - - - - - - - s.s 7.4 4.8 S.S
h b - - - - - - - - - - - - - 4.4 6.0 4.9 7.3
o t - - - - - - - - - - - - 1.8 1.9 1.8 2.0
n d - - - - . - - - - - - - - - 2.9 2.9 3.7 3.S
e k - - - - - - - - - - - - - 1.9 2.1 1.9 2.1
a fl - - - - - - - - - - - - - 2.9 3.0 3.7 3.7

e a - - - - - - - - - - - - - 4.9 6.0 4.3 5.0

n - - - - - - - - - - - - - 7.5 8.5 5.6 6.1

P - - - - - - - - - - - - - 1.8 2.0 1.9 2.0
hh - - - - - - - - - - - - - 2.1 2.4 2.3 2.S

f - - - - - - - - - - -
'

- - 2.2 2.6 2.3 2.7

v _ _ _ - ._ - - - - - - - - 3.1 3.6 3.4 4.2

th _ _ _ - - - - - - - - - 1.9 2.2 1.9 2.2

zh - . - - - - - - - - - - 3.1 3.2 3.6 3.6

dh _ - - - - - - - - - - - 3.0 3.4 3.S 4.0

s _ _ - - - - - - - - - - 2.0 2.3 2.1 2.4

z _ - - - - - - - - - - - 2.8 3.0 3.2 3.3

sh _ _ _ _ - - - - - - - - - 2.2 2.4 2.4 2.6

ch ,. _ _ - - - - - - - - - 1.9 2.0 1.9 2.1

Jh - - - - - - - - - - - - - 4.0 4.6 S.S 6.7
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APPENDIX B: Inter-phoneae Confusion Matrix derived

froa Distance Matrix, and used in the

creation of test phrases, (part 2 of 2)

Output phoneae

dx ng b t d k fl a n P hh f v th zh dh s z h ch Ih

er

aa

ae

ah

ao

ax

eh

ih
ix

iy
ow

I uh

n uw

P 1 2.S 3.4 3.1 1.0 2.S 1.0 2.1 2.6 4.2 1.1 1.4 1.4 2.2 1.3 l.S 2.2 1.2 1.7 1.0 1.0 3.0

u r 2.6 4.6 4.4 1.1 2.6 1.2 2.2 3.3 4.8 1.3 1.7 1.7 2.7 1.6 l.S 2.6 1.4 1.8 1.1 1.1 3.5

t y 3.9 3.5 4.2 1.2 3.9 1.2 3.1 2.7 3.7 1.4 1.8 1.8 2.9 1.7 2.0 3.1 1.6 2.3 1.2 1.2 4.9
w 3.1 3.3 S.l 1.1 3.1 1.1 2.6 2.6 3.4 1.2 1.7 1.7 3.0 1.6 1.7 3.0 1.5 2.0 1.1 1.1 S.O

dx - 1.9 3.3 1.2 32.9 1.1 11.0 1.7 1.9 1.3 1.8 1.6 3.2 1.6 3.9 4.S 1.7 3.9 1.4 1.2 6.2
P no 2.7 - S.O 1.8 2.7 2.0 2.S 1S.1 14.4 2.2 2.7 3.0 3.4 2.6 1.9 3.1 2.2 2.3 1.7 1.8 3.6

h b 4.1 4.3 - 1.9 4.1 2.0 3.9 3.7 3.6 2.3 3.6 3.6 9.1 3.2 2.7 6.8 2.9 3.7 2.0 2.0 7.7

o t 1.9 2.0 2.5 - 1.9 12.2 2.0 2.1 1.8 12.7 5.0 5.1 2.9 6.1 1.9 2.S S.7 2.4 S.4 14.4 2.1
n d 32.9 1.9 3.3 1.2 - 1.1 11.0 1.7 1.9 1.3 1.8 1.6 3.2 1.6 3.9 4.5 1.7 3.9 1.4 1.2 C.2
e k 1.9 2.3 2.6 12.3 1.9 - 2.0 2.4 2.0 20.0 4.9 5.9 2.9 6.4 1.8 2.S 4.8 2.3 3.9 7.3 2.2
a fl 13.6 2.1 3.9 1.5 13.6 l.S - 1.9 2.1 1.7 2.4 2.1 4.4 2.2 6.8 6.8 2.3 7.4 1.9 1.7 6.8
e a 2.8 17.5 S.O 2.2 2.8 2.5 2.6 - 10.1 2.7 3.1 3.7 3.7 3.2 2.1 3.2 2.6 2.S 2.0 2.2 3.6

n 3.0 IS.7 4.6 1.8 3.0 1.9 2.7 9.5 - 2.1 2.S 2.8 3.3 2.5 2.1 3.1 2.2 2.4 1.7 1.8 3.7

P 1.8 2.4 2.7 11.5 1.8 18.0 1.9 2.3 1.9 - 5.8 7.2 3.0 8.2 1.8 2.S 5.S 2.3 1.8 7.6 2.2
hh 2.3 2.4 3.7 4.0 2.3 3.9 2.S 2.4 2.1 S.l - 9.1 5.1 14.1 2.3 3.9 10.6 3.4 4.1 4.S 3.0
f 2.2 2.8 3.9 4.3 2.2 5.0 2.3 3.0 2.4 6.7 9.6 - 4.5 16.8 2.0 3.4 6.0 2.8 3.3 4.2 2.9
V 3.9 2.9 9.0 2.2 3.9 2.2 4.4 2.7 2.6 2.6 4.9 4.1 - 4.0 3.1 12.2 3.9 S.3 2.S 2.3 6.8
th 2.0 2.2 3.2 4.7 2.0 4.9 2.2 2.3 1.9 7.0 13.5 15.2 4.0 - 1.9 3.1 7.9 2.6 3.7 4.9 2.S
ih 7.0 2.S 4.0 2.2 7.2 2.1 10.2 2.3 2.4 2.3 3.3 2.8 4.7 2.9 - 6.2 3.4 10.5 3.0 2.4 5.2
dh S.3 2.5 6.S 1.9 5.3 1.8 6.S 2.3 2.3 2.1 3.6 3.0 11.7 3.0 4.0 - 3.2 7.8 2.3 2.0 9.0
s 2.4 2.2 3.4 S.l 2.4 4.3 2.7 2.2 2.0 S.S 11.9 6.3 4.6 9.2 2.6 3.9 - 3.7 7.5 6.S 2.9
z

'

5.8 2.3 4.4 2.2 5.8 2.1 8.8 2.2 2.2 2.3 3.8 3.0 6.3 3.2 8.3 9.7 3.8 _ 3.0 2.S 5.8
sh 2.7 2.3 3.2 6.7 2.7 4.8 3.1 2.4 2.2 S.S 6.3 4.8 4.1 6.0 3.2 3.8 10.3 4.1 8.9 3.1
ch 2.0 2.1 2.7 14.9 2.0 7.4 2.2 2.1 1.9 8.6 s.e S.l 3.1 6.6 2.2 2.8 7.4 2.8 7.8 2.4
Jh 7.3 2.9 7.5 1.6 7.3 1.6 6.7 2.S 2.7 1.8 2.8 2.5 6.S 2.4 3.4 9.3 2.4 4.7 1.8 1.7 -
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APPENDK C: Phonetic Symbols DECtalk1 vs Carnegie-Mellon University

VOWELS STOPS

DEC CMU

er

example

bird

DEC CMU example

rr nx ng sing
yu ux beauty b bob
aa cot t tot

ae bat d dad
ah butt k kick
ao bought g gag
aw bough m mom

ax the n non

ay bite P pop
eh bet

ey bait FRICATIVES
ih bit
ix roses

beat
DEC CMU example

y
oy boy hx hh hay
ow boat f fief
uh book V very

uw boot th thief

ir ihr beet zh measure

ar aar bar dh they
or.ur ao r poor s sis

er ehr

UQUIDS

bare z

sh

AFFRICATES

zoo

shoe

DEC CMU example

1 t led
DEC CMU example

r t red ch t church

jh t judge
GLIDES

SYLLABIC RESONANTS
DEC CMU example

t
DEC CMU example

y yet

w t wet el t bottle
em t ransom

FLAPS en t button

DEC CMU example

dx t rider

t indicates equivalent symbol used

'DECtalk is a trademark of Digital Equipment Corporation
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Appendix D: Test Phrases Created with 10% Substitution Errors

Template for Each Entry:

Phrase Transcription with Errors

Phrase Transcription with No Errors

English Representation of Phrase

CTAXIHMAENDLOWPEHfflSHAXNAXVRAANDlXVtJW)

(TAAfflMAENDLOWKEHIHSHAXNAXVRAANDIXVUW)

CITME AND LOCATION OF RENDEZVOUS)

(AHPDEHIHTDHAXAELAAIHDVTEHIHPAXS)

(AHPDEHIHTDHAXAELAAIHDSTEHiHTAXS)

(UPDATE THE ALLIED STATUS)

(WEHRRRDHAXAHDHERPLEHIHNZ)
(WEHRAARDHAXAHDHERPLEHJHNZ)
(WHERE ARE THE OTHER PLANES)

(RIYKWEHSTMAAIHAAPSHAXNZAENDRAANDDCVUWDEH1HTOW)

(RIYKWEHSTMAAfflAAPSHAXNZAENDRAANDlXVUWDEHIHTAX)

(REQUESTMY OPTIONS AND RENDEZVOUS DATA)

(DDCSPLEHDCHHOWRDCZAAMTLSIHCHREHIHSHNAXVSFRAAIHKERZ)
(DDCSPLEHIHHHOWRDCZAANTLSIHCHUWEHIHSHNAXVSTRAAIHKERZ)
(DISPLAY HORIZONTAL SITUATION OF STRIKERS)

(PAOIHNTNAHMBERAELAAjHDSTEHIHCHAXS)
(PAOTHNTNAHMBERAELAAIHDSTEHIHTAXS)
(POINT NUMBER ALLIED STATUS)

(STEHIHTDEHIHTAXAENGDSHOWMIYAXTAEKFLAAIHT)
(STEHIHTDEHIHTAXAENDSHOWMIYAXTAEKFLAAIHT)
(STATE DATA AND SHOW ME ATTACK FLIGHT)

(STEHIHTAXSAXVSHTDXAA1HKFOWAA1HT)
(STEHIHTAXSAXVSTRAAIHKFLAAmT)
(STATUS OF STRIKE FLIGHT)

(KAENAAIHKIHLHHIHZUWRKAEDXAAIHAXVAOIHDHHIHM)
(KAENAAIHKIHLHH1HMOWRKAENAAIHAXVAOIHDHH1HM)
(CAN I KILL HIM OR CAN I AVOID HIM)

(DDCCHKRAAIHBTHREHTAENDDlXSPLEHIHTHREHTRUWIHDri'AXS)
(DDCSKRAAIHBTHREHTAENDDDCSPLEHrHTHREHTREHIHDlYAXS)
(DESCRIBE THREAT AND DISPLAY THREAT RADIUS)

(GfflNGMIYMOWRDCNFERKEHIHSHlXNAANDHAXTHREHT)
(GfflVMIYMOWRDCNFERMEHIHSHIXNAANDHAXTHREHT)
(GIVE ME MORE INFORMATION ON THE THREAT)

(IHZIHTIHNAENAEKTKVMOWDX)
(IHZIHTIHNAENAEKTKVMOWD)
OS IT IN AN ACTIVE MODE)

(PREHSAXNTDHAXTHREHTDEHIHTAX)
(PREHSAXNTDHAXTHREHTDEHIHTAX)
(PRESENT THE THREAT DATA)
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(NOWTAXFAAIHWIHNGGMAXNTUHSTAHRTDHAX1HNTAASEHPT)
(NOWTAXFAAIHWIHNGGMAXNTUWSTAARTDHAXIHNTERSEHPT)
(NOTIFY WINGMAN TO START THE INTERCEPT)

(REHNfflNREHEHNJHLAXKAENDDCNFOWRMMIY)
(WEHNIHNREHIHNJHLAAKAENDIXNFOWRMMJY)
(WHEN IN RANGE LOCK AND INFORM ME)

(AAAEMTUWMIHSLZNIHVMIHIHNGREHIHNJHAANBOWTH)
(AARMTUWMIHSLZGIHVMIYIHNREHIHNJHAANBOWTH)
(ARM TWO MISSILES GIVE ME IN RANGE ON BOTH)

(AAIHTEHrHKDHAXNUWRAAUHTAEZHZHFEHLDHAXFLAAIHT)
(AAIHTEHIHKDHAXNUWRAAUHTAENDTEHLDHAXFLAAIHT)
0 TAKE THE NEW ROUTE AND TELL THE FLIGHT)

(THEHLDHAXREHSTAXVGAXFRAAIHTH)
(TEHLDHAXREHSTAXVDHAXFLAAIHT)
(TELL THE REST OF THE FLIGHT)

(DIXSPLEHIYSAXLEHKTDCMAXTAETJHIYAAMAXTRIY)
(DDCSPLEHIHSAXLEHKTDCDAXTAEKJHIYAAMAXTRIY)
(DISPLAY SELECTED ATTACK GEOMETRY)

(LAA K AA N T AA R G UW T AA N DH AX N ER Z TH ER TIY F AA IY VM AA IY LZ)
(LAAKAANTAARGDCTAANDHAXNOWZTHERTIYFAAIHVMAAIHLZ)
(LOCK ON TARGET ON THE NOSE THIRTY FIVEMILES)

(NAteYMAEPAXKSPAENDXAANEHLAAREHHHTHREHT)
(NAEVMAEPAXKSPAENDAANEHLAAREHSTHREHT)
(NAV MAP EXPAND ON LRS THREAT)

(WAXTKAAEHNDAXVMIHSLDDAXAAIHHHAEV)
(WAXTKAAIHNDAXVMIHSLZDUWAAIHHHAEV)
(WHAT KIND OF MISSILES DO I HAVE)

(CHAEFFLEHRZSERLFOWTUWSEHKAXNDZ)
(CHAEFFLEHRZSAELVOWTUWSEHKAXNDZ)
(CHAFFHARES SALVO TWO SECONDS)

(GIHFMIYJHAHMIXNGAENDCHAEF)
(GfflVMIYJHAEMrXNGAENDCHAEF)
(GIVE ME JAMMING AND CHAFF)

(REHIHNJHEHMDBEHIHRrXNGAXBSCHRAAIHFERZ)
(REHIHNJHAENDBEHIHRDfNGAXVSTRAAIHKERZ)
(RANGE AND BEARING OF STRIKERS)

(RIYKWEHSTFAAIHTERPAXSIHSHAXN)
(RIYKWEHSTFAAIHTERPAXSIHSHAXN)
(REQUEST FIGHTER POSITION)

(SHOWMEHEHNIYHHAAIHDEHIHNJHERTHRAATSAENDEHRTUWEHRTHREHTS)
(SHOWMIYEHNIYHHAAIHDEHIHNJHERTHREHTSAENDEHRTUWEHRTHREHTS)
(SHOW ME ANY HIGH DANGER THREATS AND AIR TO AIR THREATS)

(REHOWDAHREHJHRERTDAEKWAAIHLSKAHNTAARGDCTHHEHLAXKAAPTER)
(REHIHDAAREHNTERTRAEKWAAIHLSK AENT AARGDCTHHEHLAXKAAPTER)
(RADAR ENTER TRACK WHILE SCAN TARGET HELICOPTER)

(WAXTKAAIHNDXAXVBIHSLZDUWAAIHHHAEV)
(WAXTKAAIHNDAXVMIHSLZDUWAAIHHHAEV)
(WHAT KIND OF MISSILES DO I HAVE)
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(DTXSPTEHIHREHPAHNZPRAEMAXTERZ)

(DDCSPLEHIHWEHP AXNZP ER AEM AX T ER Z)
(DISPLAY WEAPONS PARAMETERS)

(G ffl V M IYM ffl S L T AA R G DC T D K SK G N^EHffl SHAAN aa r.

(GIVE ME MISSILE TARGET DESIGNATION ONWHEN TO TAKE THE SHOT)

(ALTER COURSE TO REROUTE NOTIFYWTNGMAN AND PACKAGE)

(AAIHTEHIHKDHAXNUWRAHUHTAENDTEHLDHAXFLAOfflT)

(AAIHTEHIHKDHAXNUWRAAUHTAENDTEHLDHAXFLAAIHT)

Q. TAKE THE NEW ROUTE AND TELL THE FLIGHT)

(FUWKOWZHSSAXLEHKTDCDDEHIHTRLIHNGT)

(NUWKOWRSSAXLEHKTDCDDEHIHTAXLIHNGK)

(NEWCOURSE SELECTED DATA LINK)

(PAESRIYRAAUHTIHNFOWTUWFOWRMEHIHSHAXN)

(P AE S R IY R AA UH T IH N F OW TUW F OW R M EH TH SH AX N)
(PASS REROUTE INFO TO FORMATION)

(SEHNDHHOWRTXZAONTLSIHVUWEHIHSHNTUWAHDHERFLAAIHTMEHMBERJH)

(S EH N D HH OW R DC Z AA N T L S TH CH UW EH TH SH N T UW AH DH ER F L AA IH TM EHM B ER Z)
(SEND HORIZONTAL SITUATION TO OTHER FLIGHTMEMBERS)

(STHNDNUWDKHIHTAXPUWWIHNGGMAXNFLAAIHT)
(SEHNDNUWDEHTHTAXTUWWIHNGGMAXNFLAAIHT)
(SEND NEW DATA TOWTNGMAN FLIGHT)

(EHRTAEIHRSEHLEHSTTHPYROWAARM)
(EHRTUWEHRSEHLEHKTSPEHROWAARM)
(ATR TO AIR SELECT SPARROW ARM)

OXVEHLrYUWEHTYTTHREHTrHNTIYSEHPTPRAABAXBrHLUHTrY)
(DC V AE L IY UW EH TH T TH R EH T ffl N T ER S EH P T P R AA B AX B TH LTX T TY)
(EVALUATE THREAT INTERCEPT PROBABILITY)

(AATHDIYIHRKRAXFZHTYNAXKLAOCHTUWHHAHNDRAXDMAAIHLZ)
(AAIHDiYEHRKRAXFTTEHNAXKLAAKTUWHHAHNDRAXDMAAIHLZ)
QD AIRCRAFT TEN OCLOCK TWO HUNDRED MILES)

(RAXmDAAREHNTERTAXRGTXTSIHNTUWTRAEKFAAIHL)
(REHfflDAAREHNTERTAARGTXTSIHNTUWTRAEKFAAIHL)
(RADAR ENTER TARGETS INTO TRACK FILE)

(SEHLEHKSHSHAAAHNTERMEHZHYERFFOWREHRTUWEHRTHREHT)
(SEHLEHKTKAAUHNTERMEHZHYERZFOWREHRTUWEHRTHREHT)
(SELECT COUNTERMEASURES FOR AIR TO AIR THREAT)
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Appendix E: Lexicon constructed from Air Force study [LTZZ87]

(DEFVAR aa-cat '((15aaihdaxntixfixkehihshaxn( identification ) )
(10aaihdehntixfaaih( identify ) )
(10aardahbliyuwaar( rwr ) )
(9aapercfaihsh ax n 1 ( operational ) )
(8aaihaarehftiy (int))
(turmnmnDt (armament) )
(8aaptixmaaih z( optimize))
(7aaptixmaxm( optimum ) )
(6 aap tix m 1 ( optimal ) )
(6upihunt( optioni ) )
(6aartiybiy(ffb))
(5 aap th ax n ( option ) )
(4 aarm d (armed))
(4 aarm i(umi))
(4 aarviy

(rv))-

(4*aihehm(im))
( 4 aa ih A iy ( id ) )
(4 aaih aar(ir))
(3aaihv(ive))
(3 aa rm ( arm ) )
(3 aauht(out))
(3 aa w er(our) )
(3aapt (ops))
(2aan(<a))
(2aar(are))
(2aaih(ieye))))

(DEFVAR ae-cat '((8aeksehptixd( accepted ) )
(8aektixvehiht( activate ) )
(7aeknaalixjh( acknowledge ) )
( 7 ae 1 1 ix t uw d ( altitude ) )
(7aenaxlaaihz( analyze ) )
(6 aem r aem z (amraams ))
( 6 ae f p eh k t ( aspect ) )
(5aekshaxn( action ) )
(5 aek tix v (active) )
(5 aem r aem (amraam))
( 5 ae 1 aa ih d ( allied ) )
(3aend(and))
(2aem (am))
(2aen(an))
(2aet(at))
(2aez(as))))

(DEFVAR ah-cat ,((8ahpdehihdxixd( updated ) )
( 8 ah p d eh ih t ix d ( updated ) )
(8ahpdehihtixng (updating ) )
(6ahpdehiht( update ) )
( 3 ah dh er ( other ) )
(2ahp(up))))

(DEFVAR ao-cat '( ( 9 ao 1 1 er n ix t ix v ( alternative ) )

( 8 ao 1 1 er n ax t( alternates ) )
(8aolternihtt( alternates ) )
(8aotaxmaetixk( automatic ) )
(7aofehniixv( offensive ) )
(7aolternaxt( alternate ) )
( 7 ao 1 1 er n ih t ( alternate ) )
(5aofehns( offense ) )
( 5 ao f s eh t ( offset ) )
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( 4 ao Iter (alter))
(3 aotow(auto))
(2aof(off))
(2aol(all))))

(DEFVAR ax-cat ,((10axsaaihnmaxnts(
assignments ) )

( 9 ax k w ih p m ax n t ( equipment ) )
(9axsaaihnm ax n t ( assignment ) )
(8axtehmptixd (attempted ))
(8axsehsmaxnt( assessment ) )
(8axnaelixsixs( analysis ) )
( 8 ax k tm v ix t ry ( activity ) )
(8axkaamplix sh ( accomplish ) )
( 8 ax v eh ihl ax bl (available))

( 8 ax v ao ih d ax n s ( avoidance ) )
(7 axtehmpt s (attempts))
(7 xksprchs( express ))
(7 axk spehnd (expend))
( 7 ax k s p ae n d ( expand ) )
(7axfehnsixv( offensive ) )
( 7 ax d ih sh ax n 1 ( additional ) )
( 7 ax v eh ih zh ax n ( evasion ) )
(7axvaoihdixng( avoiding ) )
(6 ax t eh mp t ( attempt) )
( 6 ax t ae k er z ( attackers ) )
(6axnlaarjb( enlarge ) )
( 6 ax g eh n s t (against))
(6axb reh st (abreast))
(6 axd v aa ih z ( advise ) )
(6axraauhnd (around) )
(5 ax n n ow n (unknown))
(Saxklaak(pdock))
(5axfehns( offense ) )
(Saxvaoihd( avoid ) )
(5axsaaihn( assign ) )
(5 axbaauh t (about))
( 4 ax t ae k ( attack ) )
( 4 ax t ae ch ( attach ) )
(4 ax s eh s (assess ) )
( 4 ax hh eh d ( ahead ) )
(2axv(of))
(2axs(us))))

(DEFVAR b-cat '(( 8 b rehih k aauht (breakout) )
(7baendixts ( bandits ) )
(6 b iy viy aar (bvr))
(6baendixt( bandit ) )
( 6 b 1 aa ih n d ( blind ) )
(6biydiyehih (bda ) )
(6 b eh ih s ix z( bases ) )
( 6 b eh ih r ix ng ( bearing ))
(5bowgiyz( bogeys ) )
(5blowahp( blowup ) )
(5baxgihn( begin ) )
(S b ah zerz (buzzers ))
( 5 b aa m er z ( bombers ) )
( 5 b r eh ih k ( break ) )
( 4 b r ih ng ( bring ) )
( 4 b ow g iy ( bogey ) )
(4btydiy(bd))
( 4 b er s t ( burst ) )
( 4 b eh t er ( better ) )
( 4 b eh s t ( best ) )
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( 4 b ae 1 1 ( battle ) )
( 4 b ae n d ( band ) )
( 4 b aa m er ( bomber ) )
( 4 b aa k t ( box ) )
(4behihs(base))
( 3 b ow th ( both ) )
( 3 b ow r ( bore ) )
( 3 b iym ( beam ) )
(3biht(bit))
(3bihg(big))
(3bahg(bug))
( 3 b ae k ( back ) )
(3baaih(by))))

(DEFVAR ch-cat *((7chehihn^iixz( changes ) )
(5chehihnji( change ) )
(4 ch aa p er ( chopper ) )
( 3 ch uw z ( choose ) )
(3chiyf(chief))
( 3 ch eh k ( check ) )
( 3 ch ae f ( chaff ) ) ) )

(DEFVAR d-cat '((lldixsixgnehihshaxn( designation ) )
(9dehzixgn eh ih t ( designate ) )
(8dixtehksh ax n ( detection ) )
(8dixfehnsixv( defensive ) )
(8dixs k r aa ih b ( describe ) )
(7dixspehns( dispense ) )
(7derehicshaxn (direction ) )
(7daogfaaihl( dogfight ) )
( 7 d iy t eh ih 1 z ( details ) )
( 7 d ix t eh ih 1 z ( detafls ) )
(7dixsplehih( display ) )
( 6 d ix f eh n d ( defend ) )
(6daxfehns( defense ) )
(6dixfaaihn (define ))
(6daa3ivert( divert ) )
(6diytehihl(detail))
( 6 d ix t eh ih 1 ( detail ) )
(6dehihnjher( danger ) )
(6dixplaoih( deploy ) )
(Sdixfiyt(defeat))
(Sderehkt(direct))
(5 d ax v er t ( divert ) )
(5daemixjh( damage ) )
( 5 d eh ih t ax ( data ) )
( 4 d uw ix ng ( doing ) )
( 4 d r aa p ( drop ) )
(3dowp(dope))
(2duw(do))))

(DEFVAR dh-cat *( ( 3 dh ae t (that ) )
(3 dhehm( them))
( 3 dh eh r ( there their ) )
( 3 dh ow z ( those ) )
( 3 dh eh ih ( they ) )
(2dhax(the))))

(DEFVAR eh-cat *((llehkspehndaxblz( expendables ) )
(9ehksehlerehiht( accelerate ) )
(9ehihviyaanixks( avionics ) )
(8ehvriybahdiy( everybody ) )
(8ehksehkiyuwt( execute ) )
(8ehrplehihnz( airplanes ) )
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(7ehvriythixng( everything ) )
( 7 eh r k r ax f t ( aircraft ) )
(7ehnvehlowp( envelope ) )
( 7 eh r p 1 eh ih n ( airplane ) )
(7ehihpiyehks(apx))

(7ehihchehsdiy(hsd))

(7ehlaxmaxnt( element ) )
( 6 eh s k ow r t ( escort ) )
(6ehsaarehm( srm ) )
(6ehrbowrn( airborne ) )
(6ehmplaoih( employ ) )
(6ehmaarehm (mrm ) )
( 6 eh 1 aa r eh s ( In ) )
( 6 eh k s eh p t ( accept ) )
( 6 eh ih ch t iy iy ( hte ) )
( 5 eh ih t iy n ( eighteen ) )
(5 ehih riy ax ( area ) )
(5ehnehmiy( enemy ) )
( 4 eh n t er ( enter ) )
( 4 eh s eh ih ( sa ) )
( 4 eh ih m z( aims ) )
(3 ehihm (aim) )
( 3 eh ih d ( aid ) )
( 3 eh n iy ( any ) )
(2ehr(air))
(2ehih(a))))

(DEFVAR e.-cat *( ( 3 er s t ( irst ) ) ) )

(DEFVAR f-cat '((9fowrmehihshaxn( formation ) )
8frehndliyz( friendnes ) )
7f r eh n d 1 iy ( friendly ) )
6fowrgeht( forget ) )
6faalowixng( following ) )
6faaihterz( fighters ) )
5 f r eh n d ( friend ) )
5 f rahnt (front) )
5 f ow r t iy ( forty ) )
Sflehrz(fiares))
Sfihftiy(fifty))
5 flaaiht( flight))
5 f aa ih t er ( fighter ) )
5 f iy uw ch er ( future ) )
4flehr (flare))
4fehns(fence))
4 f ae s t ( fast ) )
4 f aa 1 ow ( follow ) )
4flaaih(fly))
4 f aa ih v ( five ) )
4 f aa ih t ( fight ) )
4 f aa ih r ( fire ) )
4 f aa ih 1 ( file ) )
4 f iy uw 1 ( fuel ) )
3fuhl(full))
3 f ow r ( four for ) )
3fiyt(feet))
2fow(foe))
2fer(for))))

(DEFVAR g-cat '((7graentixd( granted ) )
'6graauhnd( ground ) )
:4griyn(green))
! 4 g ow ih ng ( going ) )
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(4 g ih m iy (gimme))
( 4 g ah n z ( guns ) )
(4gaadz(gods))
( 4 g aa ih z ( guys ) )
(3guhd(good))
(3giyr(gear))
( 3 g ih v ( give ) )
(3geht(get))
(3gahn(gun))
(3gaes(gas))
(3gaat(got))
(2gow(go))))

(DEFVAR hh-cat '((9hhowrixzaantl( horizontal ) )
(9hhehlaxkaapter( helicopter ) )
( 8 hh aa s t aa ih 1 z ( hostinles ) )
(8hhowmplehiht( nomeplate ) )
(7hh ah nd rax d (hundred))
( 7 hh aa s t aa ih 1 ( hostile ) )
( 7 hh aa ih 1 aa ih t ( highlight ) )
( 6 hh ih 1 1 er iy ( history ) )
(6hhaastlz( hostffiles ) )
(6hh aaihax st (highest))
(5hhehdixng( heading ) )
( 5 hh aa s 1 1 ( hostile ) )
( 4 hh ow 1 d ( hold ) )
( 4 hh iy t er ( heater ) )
( 4 hh iy 1 ow ( bek> ) )
( 4 hh eh 1 p ( help ) )
( 4 hh aa ih d ( bide ) )
( 4 hh aa uh z ( hows ) )
( 3 hh uh k ( hook ) )
( 3 hh ow m ( home ) )
( 3 hh iy t ( heat ) )
(3hhihm(him))
( 3 hh ae v ( have ) )
( 3 hh ae d ( had ) )
(3hhaat(hot))
( 3 hh aa n ( hahn ) )
( 3 hh aa ih ( high ) )
( 3 hh aa uh ( how ) )
(2hhiy(he))))

(DEFVAR ih-cat *((9ihmplaxmaxnt( implement ) )
(8ihntersehpt( intercept ) )
(6ihnggraxs( ingress ) )
(6ihnraauht ( inroute ))
(5 ih n r uw t (inroute) )
(5ihnfrax( infra ) )
( 4 ih n t uw (into) )
( 4 ih n t ax ( into ) )
( 4 ih n f ow ( info ) )
(2ihz(is))
(2iht(it))
(2ihn(m))))

(DEFVAR ix-cat '( ( 11 ix n s t r ah k sh ax n z ( instructions ) )
(llixntehihraxgehiht( interrogate ) )
(10ixnggehihjhmaxnt( engagement ) )
(10ixnfermehihshixn( information ) )
( 9 ix v ae 1 iy uw eh ih t ( evaluate ) )
(8ixnihshiyehiht( initiate ) )
(8ixnduwraxns( endurance ) )
(8ixngkaauhnrer( encounter ) )
(7ixvehihsixv( evasive ) )
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(7ixnggehihjhd( enagaged ) )
(6ixnfowrm( inform ) )
( 6 ix m p ae k t ( impact ) )
(6ixnggehihjh( engage ) )
( 5 iy g r eh s ( egress ) )
( 5 iy s iy eh m (eom ))
(3iyst(east))))

(DEFVAR iy-cat '( ( 2 iy uw ( you ) ) ) )

(DEFVAR jh-cat '((8jhiyaamaxtriy( geometry ) )
(6jhiysiyaaih(gci))
( 5 jh ae m ix ng (jamming ) )
(5jiKm er z (jammers ) )
( 4 jh ae m er ( jammer ) )
(4 jh ao ih n (join))
(3jhaez(jazz))
(3jhaem(jam))
(3jhehih(j))))

(DEFVAR k-cat '((12kaauhntermehzhyerz(i
(11 kaauhntermehzhyer( countermeasure ) )
(Ukaauhnermeh zh y er z ( countermeasures ) )
(10kaauhnermehzhyer( countermeasure ) )
(9 k r aa ih t iy r iy ax ( criteria ) )
(9 k ae Ik y 1 eh ih t ( calculate))
(8kaxnverzhaxn ( conversion ) )
(8kaxnfihgyer( configure ) )
(8kaxntihniyuw( continue ) )
( 7 k 1 ow s ix s t ( closest ) )
(7 k ax n trow 1( control))
(7kaxnsehnt( consent ) )
(7kaxnferm d ( confirmed ) )
( 7 k ax m p 1 iy t ( complete ) )
(6kraosixng (crossing))
(6klih2faaxn( collision ) )
(6k ax n ferm (confirm ))
(6kaxmehns (commence) )
(6kaxmaend (command ) )
( 6 k aa m b ae t ( combat ) )
(6kaauhnter( counter ) )
(5 k low zher (closure))
( 5 k 1 ow s er ( closer ) )
(5kliy rd(cleared))
(5 k ax m ih t (commit) )
( 5 k 1 aa ih m ( climb ) )
( 5 k aa ih n d ( land ) )
( S k aa uh n t ( count ) )
( 4 k w ih k ( quick ) )
( 4 k r uw z ( cruise ) )
(4k raos (cross ))
( 4 k ow r s ( course ) )
( 4 k 1 ow z ( dose ) )
(4kliyr(dear))
( 4 k ih 1 er ( killer ) )
(3kiyp(keep))
(3kihl(kffl))
( 3 k ao 1 ( call ) )
( 3 k ah m ( come ) )
(3kaen(can))
( 3 k iy uw ( cue ) ) ) )

(DEFVARl-cat '((8 lowk eh ih sh ax n (location ) )
( 5 1 aa ih m ax ( lima ) )
( 4 1 iy th 1 ( lethal ) )
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4 1 iy m ax ( lima ) )
41iyder(leader))
41ihngk(link))
41ehvl(level))
4 1 eh t s ( lets ) )
4 1 eh f t ( left ) )
4 1 ao n sh ( launch ) )
4 1 aa k t ( locked ) )
4 1 aa ih n ( line ) )
4 1 aa ih k ( tike ) )
3 1 uh k ( look ) )
31owd(load))
31iyn(lean))
31iyd(lead))
31eht(let))
3 1 ao ng ( long ) )
31aak(lock))
21ow(low))))

(DEFVAR m-cat *( (7 m ah It ixpl (multiple) )
[6 m iy d iy ax m (medium ) )
[6mehmberz( members ) )
[6 m axn uw v er (maneuver ) )
[6 m ae g n ax m (magnum))
[6 m aan ix t er (monitor ) )
6 m ae o iy ow I (manual ) )

[ 5 m ah dh er z (mothers ) )
[ 5 m ih sh ax n (mission ) )
[ 5 m ih s 1 z ( missile* ) )
[5 m eh s ix jh (message))
5 m ae s t er (master ) )
[5 m aa ih 1 z (miles) )
[4m ih s 1 (missile))
[4m aek s (max))
[ 4 m aa ih n ( mein ) )
[4 m eh ih n (main))
[3 m uw v(move) )
[3 m ow r(more) )
[3 m ow d (mode) )
[ 3 m ih g ( mig ) )
[ 3 m ah d (mud ) )
[3 m aep (map))
[3 m sen (man ) )
[ 3 tn aa k (mach ) )
[3maaih(my))
[ 2 m iy ( me ) ) ) )

(DEFVAR n-cat *((10naevixgehihshaxn( navigation ) )
[7nehgixtixv( negative ) )
[7nowtaxfaaih( notify))
[6 n iy r ax s t (nearest) )
[6nahmberz( numbers ) )
[6n aa fli n t iy ( ninety ) )
[ 5 n uw ax s t ( newest ) )
[ 5 n ah m b er ( number ) )
[ 4 n ow r th ( north ) )
[4 n eh row (narrow ))
[4 n aa ih n ( nine ) )
'

3 n ow z ( nose ) )
[ 3 n eh t ( net ) )
[3naev(nav))
[ 3 n aa n ( non ) )
[ 3 n aa uh ( now ) )
[ 2 n uw ( new ) )
[ 2 n ow ( know ) ) ) )
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(DEFVAR ow-cat *((7owrdnaxns( ordnance ) )
(6owverviyuw( overview ) )
( 5 ow v er ao 1 ( overall ) )
( 4 ow n 1 iy ( only ) )
( 4 ow k eh ih ( ok ) )
(2owr(or))))

(9praaihaorixtiy( priority ) )
(8plaetfowrm( platform ) )
( 8 p er ae m ax t er z ( parameters ) )
(8 prow faaihlz( profiles))
( 8 pr aaihm eh r iy (primary ))
(7 prow g r ae m ( program ) )
(7 p reh s ax nt (present))
(7 p r aa jh eh kt (project))
(7 p ax s ih sh ax n ( position ) )
( 7 p r ow f aa u 1 ( profile ) )
( 6 p r iy p eh r ( prepare ) )
(7praaihmeriy( primary ) )
(6praxsiyd( proceed ) )
(6pihjhaxnz( pigeons ) )
(6perfowrm( perform ) )
(6 pi eh ihn z( planes))
( 5 p ihn s er ( pincer) )
(Spihkch er ( picture) )
(5 peh rax t( parrot ))
(5paesixv( passive ) )
(5psekixjh( package ) )
(5 p aa s ix t (posit ))
( 5 p 1 eh ih t ( plate ) )
(5piykehih(pk))
(5paomnt( point ) )
( 4 p r eh s ( press ) )
( 4 p 1 ae n ( plan ) )
(4plaat(plot))
(4p ihn sh (pinch))
(4p aa d z ( pods ))
(3puht(put))
(3pihn(pin))
(3paeth(path))
(3paes(pass))
(3paad(pod))))

(DEFVAR r-cat '( ( 1 1 r iy ix aa ih n maxnt( reassignment ) )
(Uriykaekiyuwlehiht( recalculate ) )
(10rixtaargihtixng( retargeting ) )
(10rixkixnfihgyer( reconfigure ) )
(8riytaargaxt( retarget ) )
(8raemstaaihn( ramstein ) )
(7riykwehst (request))
(7rixkwehs t (request ))
(7rixkahveriy( recovery ) )
( 7 r eh 1 ix t ix v ( relative ) )
(7raandixvuw( rendezvous ) )
(7riyixsaaihn( reassign ) )
(7rehihdiyaxs( radius ) )
(6rixzowrt( resort))
(6rixpow rt (report))
(6rixkahver( recover ) )
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6rehihdiyow( radio ) )
6 r eh ih d aa r ( radar ) )
6riyjhaoihn( rejoin ) )
6 riy r aa uh t (reroute))
6 r aauh tixng (touting) )
5 r uw t ix ng ( routing ) )
5 riy tern (return ))
5 r iy r uw t ( reroute ) )
5 r iy d ix ng (reading) )
Sriylehih(relay))
5 rix t ern ( return))
5 r ix p iy t (repeat) )
5 rix m ow d ( remode ) )
S r iy 1 eh ih ( relay ) )
5 r eh ih n jh (range))
5 r aa uh 1 1 (routes))
4 ruw ts (routes ))
4 reh s t(rest))

-

4 r eh d iy (ready ) )
4 r aa ih t ( right ) )
4 r aa ih n (them))
4 reh ihn (rain ) )
4 r eh ih d ( raid ) )
4 r aauh t (route))
3 r uw t ( route ) )
3 rihng (ring))
3rehd(red))
3 raem (ram ))
2rao(raw))))

(DEFVAR s-cat '((14saaihmliehihniyaxtliy( simultaneously ) )
[llsaaihmltaeniyaxs( simultaneous ) )
10saaihdwaaihnder( sidewinder ) )
[8 s ax 1 eh k tix d( selected))
[8 s ax 1 eh k sh ax n ( selection ) )
[8spaxsihfixk (specific))
[8 s traa ih k er z ( strikers ))
8ttaendbaaih( standby ) )
[8 speh s ax f aa ih ( specify ) )
[8 s p aa t laa ft t (spotlight))
'8tihchuwehihthn( situation ) )
[7sflistaxmz( systems ) )
[7 s ih g nax ch er ( signature ) )
[ 7 s eh p ax r ax t ( separate ) )
[7 s ehkaxnd z( seconds))
[7saxgjhehst( suggest ) )
7straaihker( striker ) )
7 s ten flit ax s (status ))

[ 7 s eh ih f ax s t ( safest ) )
[ 7 s eh p er eh ih t ( separate ) )
[ 6 s uw t ax b 1 ( suitable ) )
[6 s trihpt (stripped) )
[6 s tiyrixng (steering))
[ 6 s p aa r k 1 ( sparlkle ) )
'

6 t ow r t ix d ( sorted ) )
[ 6 s k eh d y 1 ( schedule ) )
[6skaenerz( scanners ) )
[ 6 s ih s t ax m ( system ) )
[ 6 s ih k s t iy ( sixty ) )
[6sehprixt( separate ) )
[ 6 1 1 r aa ih k ( strike ) )
[ 6 s aa ih d ix d ( tided ) )
[6 s n eh ih k s (snakes))
[ 6 s eh I eh k t ( select ) )
[ 5 s t ow r z ( stores ) )
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( 5 s t ae t s ( stats ) )
(5 staart(start))

( 5 t p 1 Oi t ( split ) )
( 5 s p eh r ow ( sparrow ) )

( 5 s k r iy n ( screen ) )
( 5 s ih ng g 1 ( single ) )

( 5 s ih g n 1 ( signal ) )
( 5 s eh v ax n ( seven ) )
( 5 s eh t ix ng ( setting ) )
( 5 s eh n s er ( sensor ) )
( 5 s ah k er z ( suckers ) )
( 5 s aem p 1 ( sample ) )
(5saelvow( salvo ) )
( 5 s t eh ih t ( state ) )
( S s k eh ih 1 ( scale ) )
(5sehihber(saber))

( 4 s w iy p ( sweep ) )
( 4 s w ih ng ( swing ) )
(4s w ih ch ( switch ) )
( 4 t w aa p ( swap ) )
(4 stow r (store))

( 4 s t iy r ( steer ) )
( 4 s p iy k ( speak ) )
( 4 s p iy d ( speed ) )
(4sowrt(sort))

( 4 s n ae p ( snap ) )
( 4 s k ow p ( scope ) )
(4 skaen (scan))
( 4 s iy t ei ( seater ) )
( 4 s ih k s ( six ) )
(4sehnd(send))
(4sehlf(self))
( 4 s aa ih t ( site ) )
( 4 s eh ih f ( safe ) )
( 3 t er ch ( search ) )
(3seht(set))
(3sahb(sub))
(3 s aem ( sam ) )
( 3 s eh ih ( say ) )
(2siy(seec))))

(DEFVAR sh-cat '( ( 4 sh ow r t ( short ) )
( 3 sh aa t ( shot ) )
(3 sh ehr (share))
(3sherk(sWrk))
( 3 sh uw t ( shoot ) )
( 2 sh ow ( show ) ) ) )

(DEFVAR t-cat ((lOtiydahbliyuwehs(tws))

(8tiyehftiyehih(tfta))
( 8 t r ax n z m ih t ( transmit ) )
(8taargixtixng( targeting ) )
(8taargixtixd( targeted ) )
(7traentfer( transfer ) )
(7taektixks( tactics ) )
(7taektixkl(tactical))
(7taargixts( targets ) )
(6twehntiy( twenty ) )
(6traekixng( tracking ) )
( 6 1 iy eh f aa r ( tfr ) )
(6taengkerz( tankers ) )
(6taektixk( tactic ) )
( 6 t aa r g ix t ( target ) )
(6trehihler( trailer ) )
(5twehlv( twelve ) )
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( 5 t r ah b 1 ( trouble ) )
( 5 t r eh ih 1 ( trail ) )
(5 1 er eh ih n (terrain ))
(4 t w aa z( twos ))
( 4 1 r ae k ( track ) )
(4tiyehf(tf))
( 4 1 eh s t ( test ) )
(4taaihp(type))
(4 taaih m (time) )
( 4 1 eh ih k ( take ) )
(3 towt(tot))
(3 tern (turn ) )
(3 tehn (ten ))
(3tehl(tell))
( 2 t uw ( two to ) )
(2tuh (two to))
(2tix(to))
(2t(to))))

(DEFVAR uVcat ( ( 5 th r eh t s ( threats ) )
(4 thertiy (thirty ))
(4 th reht (threat))
(3 th riy (three))
(3 thruw (through))))

(DEFVAR v-cat '(( 8 verb ax laa ih z( verbalize))
[7viysahbsiy ( vsubc))
[6 v eh k t er z ( vectors ) )
[ 5 v eh k t er ( vector ) )
[5 v ih zh uw 1 (visual) )
[4vaamd(vid))
[ 3 v iy uw ( view ) ) ) )

(DEFVAR w-cat '((8wflnggmaxnz( wingmans ) )
[7wihnggmehn( wingmen ) )
[7wihnggmaxn( wingman ) )
[6 w eh pax n z( weapons ))
[5 w ih n d ow (window ) )
[ 5 w ih 1 k ow ( wilco ) )
[ 5 w er k ix ng ( working ) )
[ 5 w eh pax n ( weapon) )
[ 4 w er s t ( worst) )
[4 wen rz( wheres ) )
[4 w ax t s ( whats ) )
[4 w ah n z (ones ) )
[4 w aa n t ( want) )
[ 4 w aa n ax ( wanna ) )
[ 4 w aa ih 1 ( while ) )
[ 4 w aa ih d ( wide ) )
[3 win th( with))
[ 3 w ih ng ( wing ) )
[3 wihl(will))
[ 3 w ih ch ( which ) )
[ 3 w eh r ( where ) )
[3 w eh n ( when ) )
[ 3 w eh 1 ( well ) )
[3 wax t( what))
[ 3 w ah n ( one ) )
[ 3 w eh ih ( way ) )
[ 2 w iy ( we ) )
[ 2 w er ( were ) ) ) )

(DEFVAR y-cat '((4 y aa uh v (yoove) )
(3yehs(yes))
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( 3 y ow r ( your ) )
(2yer(your))))

(DEFVAR z-cat '( (4 ziy row (zero))
(3 zaep(zap))

( 3 z ow n ( zone ) )
(3 zuwm(zoom))))
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