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This article introduces and evaluates several different word-level confidence measures for ma-
chine translation. These measures provide a method for labeling each word in an automatically
generated translation as correct or incorrect. All approaches to confidence estimation presented
here are based on word posterior probabilities. Different concepts of word posterior probabilities
as well as different ways of calculating them will be introduced and compared. They can be
divided into two categories: System-based methods that explore knowledge provided by the
translation system that generated the translations, and direct methods that are independent
of the translation system. The system-based techniques make use of system output, such as
word graphs or N-best lists. The word posterior probability is determined by summing the
probabilities of the sentences in the translation hypothesis space that contains the target word.
The direct confidence measures take other knowledge sources, such as word or phrase lexica,
into account. They can be applied to output from nonstatistical machine translation systems
as well.

Experimental assessment of the different confidence measures on various translation tasks
and in several language pairs will be presented. Moreover, the application of confidence measures
for rescoring of translation hypotheses will be investigated.

1. Introduction

The work presented in this article deals with confidence estimation for machine trans-
lation (MT). Because sentences generated by a machine translation system are often
incorrect but may contain correct substrings, a method for identifying these correct
substrings and finding possible errors is desirable. For this purpose, each word in
the generated target sentence is assigned a value expressing the confidence that it
is correct.

Confidence measures have been extensively studied for speech recognition. Only
recently have researchers started to investigate confidence measures for machine trans-
lation (Gandrabur and Foster 2003; Ueffing, Macherey, and Ney 2003; Blatz et al.
2004; Quirk 2004). In this article, we will develop a sound theoretical framework for
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calculating and evaluating word confidence measures. Possible applications of confi-
dence measures include:

� marking words with low confidence as potential errors for post-editing

� improving translation prediction accuracy in TransType-style interactive
machine translation (Gandrabur and Foster 2003; Ueffing and Ney 2005a)

� combining output from different machine translation systems: Hypotheses
with low confidence can be discarded before selecting one of the system
translations (Akiba et al. 2004), or the word confidence scores can be used
in the generation of new hypotheses from the output of different systems
(Jayaraman and Lavie 2005), or the sentence confidence value can be
employed for reranking (Blatz et al. 2003).

The article is organized as follows: In Section 2, we briefly review the statistical
approach to machine translation. The phrase-based translation system, which serves as
the basis for one of the direct confidence measures, will be presented. Section 3 gives an
overview of related work on confidence estimation for machine translation. Moreover,
word posterior probabilities will be introduced, and we will explain how they can be
used as word-level confidence measures. In Section 4, we describe so-called system-
based methods for confidence estimation, which make use of the output of a statistical
machine translation system, such as word graphs or N-best lists. In Section 5, we present
confidence measures based on direct models. The combination of several confidence
measures into one is described in Section 6. Experimental evaluation and comparison
of the different confidence measures is provided in Section 7. Section 8 deals with the
rescoring of translation hypotheses using confidence measures. The article concludes in
Section 9.

2. Statistical Machine Translation

2.1 General

In statistical machine translation (SMT), the translation is modeled as a decision process:
Given a source string f J

1 = f1 . . . fj . . . fJ, we seek the target string eI
1 = e1 . . . ei . . . eI with

maximal posterior probability:

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1 | f J
1 )

}
= argmax

I,eI
1

{
Pr( f J

1 | eI
1) · Pr(eI

1)
}

(1)

Through this decomposition of the probability, we obtain two knowledge sources:
the translation model Pr( f J

1 | eI
1) and the language model Pr(eI

1). Both can be mod-
eled independently of each other. The translation model is responsible for linking the
source string f J

1 and the target string eI
1. It captures the semantics of the sentence.

The target language model captures the well-formedness of the syntax in the target
language.

Nowadays, most state-of-the-art SMT systems are based on bilingual phrases (Och,
Tillmann, and Ney 1999; Koehn, Och, and Marcu 2003; Tillmann 2003; Bertoldi et al.
2004; Vogel et al. 2004; Zens and Ney 2004; Chiang 2005). A more detailed description of

10



Ueffing and Ney Word-Level Confidence Estimation for MT

a phrase-based approach to statistical machine translation will be given in the following
section.

2.2 Review of the Phrase-Based Translation System

For the confidence measures which will be introduced in Section 5.1, we use a state-
of-the-art phrase-based translation approach as described in Zens and Ney (2004).
The key elements of this translation approach are bilingual phrases. Note that these
phrases are sequences of words in the two languages and not necessarily phrases in
the linguistic sense. The bilingual phrases are extracted from a word-aligned bilingual
training corpus.

In this translation approach, the posterior probability Pr(eI
1 | f J

1 ) is modeled directly
using a weighted log-linear combination of a language model, a phrase translation
model, and a word-based lexicon model. The translation models are used for both
directions: p( f | e) and p(e | f ). Additionally, a word penalty and a phrase penalty are
applied. With the exception of the language model, all models can be considered as
within-phrase models as they depend only on a single phrase pair, but not on the context
outside the phrase.

In the following, we will present the generation criterion for the phrase-based trans-
lation approach. This will be done for a monotone search in order to keep the equations
simple. The extension to the non-monotone case is straightforward. Let ( jK0 , iK0 ) be a
segmentation of the source sentence into phrases, where jk−1 < jk and ik−1 < ik for
k = 1, . . . , K. The corresponding (bilingual) phrase pairs are denoted as

( f̃k, ẽk) = ( f jk
jk−1+1, eik

ik−1+1), k = 1, . . . , K

Assume a trigram language model. The phrase-based approach to SMT is then ex-
pressed by the following equation:

êÎ
1 = argmax

jK0 ,iK0 ,I,eI
1

{ I∏
i=1

[
c1 · p(ei | ei−1

i−2)
λ1

]
·

K∏
k=1

[
c2 · p( f̃k | ẽk)

λ2 · p(ẽk | f̃k)
λ3 · (2)

·
jk∏

j=jk−1+1

p( fj | ẽk)
λ4 ·

ik∏
i=ik−1+1

p(ei | f̃k)
λ5

]}

where p( f̃k | ẽk) and p(ẽk | f̃k) are the phrase lexicon models in both translation directions.
The phrase translation probabilities are computed as a log-linear interpolation of the
relative frequencies and the IBM model 1 probability. The single word–based lexicon
models are denoted as p( fj | ẽk) and p(ei | f̃k), respectively. p( fj | ẽk) is defined as the
IBM model 1 probability of fj over the whole phrase ẽk, and p(ei | f̃k) is the inverse
model, respectively. c1 is the so-called word penalty, and c2 is the phrase penalty,
assigning constant costs to each target language word/phrase. The language model
is a trigram model with modified Kneser–Ney discounting and interpolation (Stolcke
2002). The search determines the target sentence and segmentation that maximize the
objective function.
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As Equation (2) shows, the sub-models are combined via weighted log-linear in-
terpolation. The model scaling factors λ1, . . . , λ5 and the word and phrase penalties
are optimized with respect to some evaluation criterion (Och 2003) such as BLEU
score.

The phrase-based translation model will be needed later to define the different
confidence measures. We therefore introduce the following notation: Let QPM( f̃k, ẽk) be
the score of the phrase pair, which consists of the phrase penalty c2, the phrase lexicon
scores, and the two word lexicon model scores (see Equation (2)):

QPM( f̃k, ẽk) := c2 · p( f̃k | ẽk)
λ2 · p(ẽk | f̃k)

λ3 ·
jk∏

j=jk−1+1

p( fj | ẽk)
λ4 ·

ik∏
i=ik−1+1

p(ei | f̃k)
λ5 (3)

3. Confidence Measures for MT

3.1 Related Work

In many areas of natural language processing, confidence measures have scarcely
been investigated. The exception is automatic speech recognition, where an exten-
sive amount of research on the topic exists. Confidence measures are widely used in
this area—for example, in dialogue systems and in unsupervised training. Recently,
researchers have started to investigate confidence measures for machine translation
(Blatz et al. 2003, 2004; Gandrabur and Foster 2003; Ueffing, Macherey, and Ney 2003;
Quirk 2004; Sanchis 2004). This section gives an overview of confidence estimation for
machine translation on the word level as well as the sentence level and discusses its
applications.

The first work that studied confidence estimation for statistical machine transla-
tion was Gandrabur and Foster (2003). Their confidence measures consist of a com-
bination of different features in a neural network. The confidence is estimated for a
sequence of up to four words in an interactive machine translation environment. The
probability of being a correct extension of a given sentence prefix is computed for this
word sequence. The authors report significant improvement in quality of the predicted
translations.

In 2003, a team at the yearly summer workshop at the Center for Language and
Speech Processing (CLSP) at Johns Hopkins University, Baltimore, MD, developed
confidence measures for machine translation. The combination of several confidence
features using neural networks and a naive Bayes classifier was investigated. The
workshop team studied confidence estimation on the word level as well as on the sen-
tence level, though the focus was on the sentence level. The features applied included
new features as well as those that had previously been developed by team members
(Gandrabur and Foster 2003; Ueffing, Macherey, and Ney 2003). Among them were also
some of the word posterior probabilities, which will be presented here. Additionally,
heuristic and semantic features were studied. For a description of the features and
results, see Blatz et al. (2003, 2004).

Following the work of the summer workshop team, Quirk (2004) presented an
investigation of different approaches to sentence-level confidence estimation. A set of
features is computed for each sentence generated by an MT system, and these features
are combined using several different methods: modified linear regression, neural nets,
support vector machines, and decision trees. Many of the sentence features are similar to
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those presented in Blatz et al. (2003); the others are specific to the underlying MT system
that generated the translations. Quirk (2004) also investigated the use of manually
tagged data for training the confidence measures. The author found that using a small
amount of manually labeled training data yields better performance than using large
quantities of automatically labeled data.

Akiba et al. (2004) reported the application of confidence measures to the selection
of output on N-best lists produced by different MT systems. Word-level confidence mea-
sures, namely the rank-weighted sum as described in Section 4.1 (and first introduced
in Ueffing, Macherey and Ney [2003]), are used to discard low-quality system output
before selecting a translation from the various MT systems.

Zens and Ney (2006) presented an extension of the word posterior probabili-
ties presented in this article: Posterior probabilities are calculated not only on the
word level, but also for n-grams, and are successfully applied to the rescoring of MT
hypotheses.

3.2 Word Posterior Probabilities

The confidence of a target word can be expressed by its posterior probability, that is, the
probability of the word occurring in the target sentence, given the source sentence. Word
posterior probabilities are the basis of all approaches to confidence estimation presented
here. The following explains how they can be determined. The different methods can be
classified into two categories: system-basedmethods, which make use of system output
such as word graphs or N-best lists; and directmethods, which use external knowledge
sources such as statistical word or phrase lexica.

The system-based approaches derive the word posterior probability from the sen-
tence posterior. The posterior probability of a sentence eI

1 can be approximated by the
joint probability p( f J

1, eI
1), which the statistical machine translation system assigns to

a generated translation. The sentence probabilities employed in the search (see Equa-
tion (1)) are not normalized, which does not affect the result of the search. But for use in
confidence estimation, they need to be normalized in order to obtain a probability distri-
bution over all target sentences (see Equation (6)). From the sentence posterior probabil-
ities, the word posterior probabilities can be calculated by summing up the probabilities
of all sentences containing the target word. For an exact quantification of word posterior
probabilities, we need to consider the following problem: How can we define a criterion
for the occurrence of a word in a sentence? The answer to this question is not at all triv-
ial. Due to ambiguities, the word position in the sentence is not fixed. Sentences can have
different numbers of words because of deletions and insertions. Additionally, the words
can be reordered in different ways during the translation process. The posterior proba-
bility of a target word e can depend on its occurrence in position i of the target sentence,
for example, or on the number of times the word is contained in the sentence. Thus, sev-
eral different definitions of posterior probabilities will be introduced and investigated in
the following discussion. The basic concept of calculating the posterior probability will
be explained for the target word e occurring in a fixed position i of the sentence. This is
a rather strict and simple criterion; it will be used here mainly to illustrate the idea. Sec-
tion 4 will describe several different concepts of word posterior probabilities that relax
this condition.

Let p( f J
1, eI

1) be the joint probability of source sentence f J
1 and target sentence eI

1.
Here, this is approximated by the probability that an SMT system assigns to the
sentence pair (see Section 2). The word posterior probability of e occurring in position
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i is calculated as the normalized sum of probabilities of all sentences containing e in
exactly this position:

pi(e | f J
1 ) =

pi(e, f J
1 )∑

e′
pi(e′, f J

1 )
(4)

where pi(e, f J
1 ) =

∑
I,eI

1

δ(ei, e) · p( f J
1, eI

1) (5)

Here δ(·, ·) is the Kronecker function. The normalization term in Equation (4) is

∑
e′

pi(e
′, f J

1 ) =
∑
I,eI

1

p( f J
1, eI

1) = p( f J
1 ) (6)

This definition of word posterior probabilities raises the question of how to calculate the
sums over the target sentences in Equations (5) and (6). This problem can be solved by
approximating the summation space via a word graph or an N-best list. The summation
is then performed explicitly over all sentences given in this restricted space. In the case
of an N-best list, this is straightforward because the sentences are already listed. On a
word graph, the forward–backward algorithm can be applied to carry out the summa-
tion efficiently. In these system-based approaches, the calculation depends on the output
of the SMT system that generated the translations. The sentence probabilities summed
in Equations (5) and (6) are the scores assigned by the underlying SMT system. The
summation space is restricted to those hypotheses that are assigned a high probability
by the SMT system, and the others are not considered.

The second approach to the calculation of word posterior probabilities is summa-
tion using direct models such as IBM model 1 or a phrase-based translation model.
These methods do not consider the whole target sentence. The summation of prob-
abilities is carried out over single words or phrases without context. These model-
based word posterior probabilities are independent of the system generating the
translations. They do not require the MT system to assign a probability to the translation
hypothesis. Thus, they can also be used for confidence estimation on hypotheses from
a non-statistical MT system or if only the single best translations without any scores
are given.

3.3 Word Confidence Measures

The idea behind word-level confidence estimation is to be able to detect possible errors
in the output of a machine translation system. Using confidence measures, individ-
ual words can be labeled as either correct or incorrect. This additional information
can be used in, for example, interactive TransType-style machine translation systems
(Gandrabur and Foster 2003; Ueffing and Ney 2005a).

Two problems have to be solved in order to compute confidence measures. First,
suitable confidence features have to be computed. Second, a binary classifier has to be
defined, which decides whether a word is correct or not. The word posterior proba-
bilities introduced in Section 3.2 can be interpreted as the probability of a word being
correct. That is, the probability can directly be used as a confidence measure. For this
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purpose, it is compared to a threshold t. All words that have confidence above this
threshold are tagged as correct, and all others are tagged as incorrect, translations. Thus,
the binary classifier is defined as

class(e) =




correct if p(e | f J
1 ) ≥ t

incorrect otherwise
(7)

The threshold t is optimized on a distinct development set beforehand.
The question of how the correctness of a word in MT output is determined is not at

all an easy one. We will address this issue in Section 7.2.

4. System-Based Confidence Measures

In this section, we will present confidence measures that are calculated over N-best
lists or word graphs generated by an SMT system. Several different models for the
occurrence of a target word in a sentence will be defined and experimentally evaluated.
These are the models that proved most promising from a theoretical viewpoint and in
the experimental evaluation:

� Target word e occurs in position i of the target sentence (see Section 4.1).
The calculation of word posterior probabilities over word graphs and
N-best lists is explained in detail for this concept.

� The word is considered if it occurs in a window around the position:
i ± t, t ∈ N, for some position i (see Section 4.2).

� The Levenshtein alignments between the hypothesis under consideration
and all other possible translations are determined. The target word e (in
some position i) is taken into account if it is Levenshtein-aligned to itself
(see Section 4.3).

� e is contained in the sentence at least n times, n ∈ N (see Section 4.4).

Section 4.5 will treat the issue of scaling the probabilities that the SMT system assigns
to the translation hypothesis.

4.1 Approach Based on the Fixed Target Position

In this approach, the word posterior probability is determined for word e occurring in
target position i as shown in Equation (4). This variant requires the word to occur exactly
in the given position i. Hence, a probability distribution over the pairs (e, i) of target
words e and positions i in the target sentence is obtained. This type of word posterior
probability was first introduced in Ueffing, Macherey, and Ney (2003).

The concept of word posterior probabilities based on the fixed target position allows
for easy calculation over word graphs and N-best lists. However, this concept is rather
restrictive. In practice, the target position of a word varies between different translation
alternatives. The method presented here is a starting point for more flexible approaches
that perform summation over a window of target positions.

In the following, we will show how the word posterior probabilities based on fixed
target positions are calculated over word graphs and over N-best lists.
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Calculation using word graphs. A word graph represents the most promising hypotheses
generated by the translation system (Ueffing, Och, and Ney 2002; Zens and Ney 2005).
It has the advantage of being a compact representation of the translation hypothesis
space, which allows for efficient calculation of word posterior probabilities. A word
graph is a directed acyclic graph G = (V, E) with vertex set V and edge set E. It has
one designated root node n0 ∈ V, representing the beginning of the sentence. Each
path through the word graph represents a translation candidate. The nodes of the
graph contain information such as the set of covered source positions and the language
model history. Two hypotheses can be recombined if their information is identical.
Recombination is carried out during decoding to accelerate the search process. If two
hypotheses represent the same information with respect to translation and language
models, they will be assigned the same probabilities by these models in the future.
Therefore, the outcome of the search is not altered, but the processing time can be
significantly decreased if only the more promising of the two hypotheses is considered
for further expansion. If no recombination were carried out, the word graph would have
the structure of a tree.

The edges in the word graph are annotated with target words. Additionally, they
contain weights representing the part of the probability that is assigned to each particu-
lar word as part of the target hypothesis. When multiplying the scores along a path, the
probability of the corresponding hypothesis is obtained. The sentence position of a word
refers to the path length in the word graph: Consider an edge (n, n′) that is annotated
with word e. If a path leading from source node n0 into n has i edges, then e will
be the (i + 1)-th word in the corresponding sentence. Note that due to recombination
this position is not unambiguous. If two hypotheses of different lengths i and i′ are
recombined in node n, then e will be in position i + 1 in the one resulting sentence, and
in i′ + 1 in the other sentence.

For an example of a word graph, see Figure 1. The source sentence is Wir können
das machen!, and the reference translation is We can do that!. The leftmost node
is the root node n0. The other nodes represent different states with respect to the set
of covered source positions and language model history. In this example, a trigram

Figure 1
Example of forward–backward calculation on a word graph. The posterior probability of can
in the second position is obtained by multiplying the total probability of all incoming paths
(dashed lines) and outgoing paths (dotted), separately for the two edges, and summing the
products.
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language model is applied, that is, all paths leading into a node share the last two words.
The translation alternatives contained in this word graph represent different reorderings
of the words in the sentence: The monotone translation that do as well as the correctly
reordered sequence do that occur. Note that in order to limit the size of the graph and
keep the presentation simple, an example was chosen where all target sentences have
the same length.

The posterior probabilities of word e in position i can be computed by summing up
the probabilities of all paths in the graph that contain an edge annotated with e in posi-
tion i of the target sentence. This summation is performed efficiently using the forward–
backward algorithm (Jurafsky and Martin 2000). This algorithm also determines the
total probability mass that is needed for normalization, as shown in Equation (6). In
the following, we will present the exact equations for a word graph generated by the
phrase-based translation system described in Section 2.2. In such a word graph, the
first word of a target phrase is assigned the score for the whole phrase. That is, when
translating a source phrase f̃k by a target phrase ẽk = eik−1+1 . . . eik , the full contribution
of all sub-models for this phrase is included for the first word eik−1+1. All following
words eik−1+2 . . . eik are assigned probability 1.

The forward–backward algorithm works as follows: Let QPM( f̃k, ẽk) be the phrase
model score of a phrase pair as defined in Equation (3) in Section 2.2. In order to keep
the notation simple, we assume a bigram language model. The extension to higher-order
language models is straightforward. The forward probability Φi(ei ; ẽk, f̃k) of word ei is
the probability of reaching word ei from the sentence start, where ei occurs in position
i of the sentence. It depends on the phrase pair ( f̃k, ẽk) for which ei ∈ ẽk. Because the
full score of this phrase pair is included at the first word eik−1+1, two cases have to
be distinguished in the calculation: Either ei is the first word in the phrase, that is,
i = ik−1 + 1, or ik−1 + 1 < i ≤ ik. The forward probability can be determined by sum-
ming the probabilities of all partial hypotheses of length i − 1. This allows for recursive
calculation in ascending order of i. We obtain the following formula:

Φi(ei ; ẽk, f̃k) =

=




QPM( f̃k, ẽk) ·
ik∏

i′=i+1

c1 · p(ei′ | ei′−1)
λ1 ·

∑
ẽk−1

p(ei | eik−1
)λ1

·
∑
f̃k−1

Φi−1(eik−1
; ẽk−1, f̃k−1) if i = ik−1 + 1

Φi−1(ei−1 ; ẽk, f̃k) if ik−1 + 1 < i ≤ ik

The backward probability Ψi(ei ; ẽk, f̃k) expresses the probability of completing a sen-
tence from the current word on. It can be determined recursively in descending order
of i. Again, we distinguish two cases:

Ψi(ei ; ẽk, f̃k) =

=




∑
ẽk+1

ik+1∏
i′=i

c1 · p(ei′ | ei′−1)
λ1 ·

∑
f̃k+1

QPM( f̃k+1, ẽk+1) · Ψi+1(ei+1 ; ẽk+1, f̃k+1)

if i = ik

Ψi+1(ei+1 ; ẽk, f̃k) if ik−1 < i < ik
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Using the forward–backward algorithm, the word posterior probability of word e in
position i is determined by combining the forward and backward probabilities of all
hypotheses containing e in this position. We carry out a summation over all correspond-
ing phrase pairs ( f̃k, ẽk). This yields

pi(e, f J
1 ) =

∑
ẽk

∑
f̃k

Φi(e ; ẽk, f̃k) · Ψi(e ; ẽk, f̃k) (8)

To obtain a posterior probability, a normalization (as shown in Equation (4)) has to
be performed. The normalization term p( f J

1 ) :=
∑
e′

pi(e
′, f J

1 ) corresponds to the probability

mass contained in the word graph and can be calculated by summing the backward
probabilities of all words that occur in the first sentence position:

p( f J
1 ) =

∑
ẽ1=e1...ei1

∑
f̃1

Ψ1(e1; ẽ1, f̃1)

Figure 1 illustrates the forward–backward algorithm. Assume the word posterior
probability of the word can appearing in the second position of the target sentence is
to be calculated. There are two edges in the graph that contain this word in the desired
target position. Thus, the probabilities of the paths leading through these edges have
to be summed. The forward probabilities are the probabilities of the incoming edges,
shown by dashed lines. The backward probabilities are those of the paths marked by
dotted lines. They are combined (separately for each edge) and then summed to obtain
the word posterior probability of can in position 2.

Calculation using N-best lists. An N-best list contains the n most promising translation
hypotheses generated by the statistical machine translation system. The N-best list
is extracted from a word graph. The hypotheses are sorted by their probability in
descending order. This representation allows for easy computation of the sum given in
Equation (5). Furthermore, the calculation of more complex variants of word posterior
probabilities, such as the approach based on Levenshtein alignment (see Section 4.3),
is feasible.

Let en,In
n,1 , n = 1, . . . , N, be the target hypotheses in the N-best list. The word pos-

terior probabilities presented in Equation (4) are calculated by summing the sentence
probabilities of all sentences containing target word e in target position i. The sentence
probability p( f J

1, en,In
n,1 ) is given in the N-best list. The word posterior probability is then

determined as

pi(e | f J
1 ) =

N∑
n=1

δ(en,i, e) · p( f J
1, en,In

n,1 )

∑
e′

N∑
n=1

δ(en,i, e′) · p( f J
1, en,In

n,1 )

The normalization term in the denominator equals the probability mass contained in
the N-best list.
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Instead of the sum of probabilities, one can also determine the relative frequency or
the rank-weighted frequency of a word as follows: The relative frequency of e occurring
in target position i in the N-best list is computed as

hi(e | f J
1 ) := 1

N

N∑
n=1

δ(en,i, e) (9)

The rank-weighted frequency is determined as

ri(e | f J
1 ) := 2

N(N + 1)

N∑
n=1

δ(en,i, e) · (N + 1 − n) (10)

Here, the inverted ranks N + 1 − n are summed up because an occurrence of the word
in a hypothesis near the top of the list will score better than one in the lower ranks.
This value is normalized by the sum of all ranks in the list. Note that the values in
Equations (9) and (10) could also be calculated over N-best lists that do not contain the
sentence probability.

4.2 Approach Based on a Window over Target Positions

One way of accounting for slight variations in the target position i of word e is the intro-
duction of a window i ± t, t ∈ N, around position i. The word confidence is determined
as the sum of the word posterior probabilities calculated for the positions within this
window. This leads to

pi,t(e | f J
1 ) =

i+t∑
k=i−t

pk(e | f J
1 ) (11)

The window can easily be integrated both into the N-best list and the word graph–based
implementation: The target position-dependent word posterior probabilities are calcu-
lated as stated in Equation (4), and the summation over the positions in the window is
performed in an additional step.

4.3 Approach Based on the Levenshtein Alignment

Another way of accounting for variations in the target position of a word is to perform
the Levenshtein alignment (Levenshtein 1966) between sentence eI

1 under consideration
and the other possible target sentences. The summation in Equation (5) is then per-
formed over all sentences containing e in a position Levenshtein-aligned to i (Ueffing,
Macherey, and Ney 2003).

The implementation of this summation over N-best lists is straightforward: The
Levenshtein alignment is performed between the hypothesis eI

1 and every sentence
en,In

n,1 contained in the N-best list individually, and then the summation is carried out.
For word graphs, no efficient way of determining the Levenshtein alignments and
the resulting word posterior probabilities is known.
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Let L(eI
1, en,In

n,1 ) be the Levenshtein alignment between sentences eI
1 and en,In

n,1 , and
Li(e

I
1, en,In

n,1 ) that of word e in position i in eI
1. Consider the following example: Cal-

culating the Levenshtein alignment between the sentences eI
1 =”A B C D E” and

en,In
n,1 =”B C G E F” yields

L(eI
1, en,In

n,1 ) = “ − B C G E′′

Using this representation, the word posterior probability of word e occurring in a
position Levenshtein-aligned to i is given by

plev(e | f J
1, eI

1,L) =
plev(e, f J

1, eI
1,L)∑

e′
plev(e′, f J

1, eI
1,L)

(12)

where plev(e, f J
1, eI

1,L) =
N∑

n=1

δ(e,Li(e
I
1, en,In

n,1 )) · p( f J
1, en,In

n,1 )

The probability depends on all target words in the hypothesis eI
1 under consideration,

because the Levenshtein alignment of the whole sentence, L(eI
1, en,In

n,1 ), is determined.
This concept of word posterior probabilities is inspired by the error measure Word
Error Rate (WER). It can be shown that the word posterior probabilities form a part
of the Bayes risk for WER: Formulating the loss function and deriving the risk yields a
minimization criterion consisting of the word posterior probabilities defined previously,
one term representing the sentence length, and one for the deletion operations in the
Levenshtein alignment. For more details, see Ueffing and Ney (2004) and Ueffing (2006).

4.4 Count-Based Approach

Inspired by Bayes risk for Position-independent Word Error Rate (PER), the word
posterior probability can be defined by taking the counts of the words in the generated
sentence into account (Ueffing and Ney 2004). The probability of target word e occurring
in the sentence n times is determined as

pe(n| f J
1 ) =

pe(n, f J
1 )

nmax∑
n′

=0

pe(n
′ , f J

1 )
(13)

where pe(n, f J
1 ) =

∑
I,eI

1

δ(ne, n) · p( f J
1, eI

1)

Here, ne is the count of word e in sentence eI
1, and nmax is the maximal count that is

observed. This term does not depend on the actual word sequence, but only on the
counts of the target words. Let nE

1 be the counts of all target words 1, . . . , E in sentence
eI
1. Analogously, ñE

1 denotes the count sequence for sentence ẽĨ
1. In practice, many of

these counts will be zero, of course. The posterior probabilities can then be expressed
by the distribution over the count sequences:

pe(n, f J
1 ) =

∑
nE

1

δ(ne, n) · p(nE
1 , f J

1 )
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where the distribution over the count sequences is determined by summing up the
probabilities of all sentences with these counts:

p(nE
1 , f J

1 ) =
∑
Ĩ,ẽĨ

1

δ(ñE
1 , nE

1 ) · p( f J
1, eI

1)

Using this concept, the target position of the word is not taken into account, but the first
occurrence of a word in the sentence will obtain a word posterior probability different
from that of the second occurrence.

In Ueffing (2006), it is shown that the posterior risk for PER comprises one term
related to the count-based word posterior probabilities defined here and one term
related to the posterior probability of the sentence length. We can thus expect the count-
based word posterior probabilities to perform especially well if the word correctness
is defined on the basis of PER. The experimental results presented in Section 7.4 will
confirm this assumption.

The summation in Equation (13) can be performed over N-best lists (analogously
to the word posterior probability variants described so far), but it cannot efficiently
be determined over the word graph. The problem is that the number of occurrences
of a word on the whole path is needed. Because the word graph stores only local
information, this count cannot be determined efficiently. The normalization term in
Equation (13) corresponds to the total probability mass contained in the N-best list,
because the case n′ = 0 is also included.

4.5 Scaling the Probabilities

During the translation process, the different sub-models (such as the language model
and the lexicon model) are weighted differently. These weights or scaling factors can
be optimized with respect to some evaluation criterion (Och 2003). Nevertheless, this
optimization determines only the relation between the different models, and not the
absolute values of the scaling factors. The absolute values are not needed for the
translation process, because the search is performed using the maximum approximation
(see Equations (1) and (2)). In contrast to this, the actual values of the weights make a
difference for confidence estimation, because the summation over the sentence proba-
bilities is performed. To account for this and to find the optimal values of the scaling
factors, a global weight Λ is introduced, which scales the sentence probability. The
word posterior probability based on the fixed position i, for example, is then calculated
according to

pi(e | f J
1 ) =

∑
I,eI

1

δ(ei, e) · pΛ( f J
1, eI

1)

∑
e′

∑
I,eI

1

δ(ei, e′) · pΛ( f J
1, eI

1)
(14)

When determining the system-based word posterior probabilities, this scaling factor is
optimized with respect to some metric for confidence estimation on a development set
distinct from the test set.
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5. Confidence Measures Based on Direct Models

In the following, confidence measures based on direct models will be described. These
approaches model the word posterior probability directly instead of summing the prob-
abilities of sentences containing the target word. Confidence measures based on IBM
model 1 and phrase-based translation models were developed and will be presented
here. They make use of knowledge sources such as statistical word or phrase lexica for
estimating the word confidence. Unlike the system-based word posterior probabilities
presented so far, these confidence measures are completely independent of the target
sentence position in which the word e occurs. They determine the confidence of e being
contained anywhere in the sentence.

5.1 Direct Approach to Confidence Estimation Using Phrases

The statistical models presented in Section 2.2 can be used to estimate the confidence of
target words as first described in Ueffing and Ney (2005b). In contrast to the approaches
presented in Section 4, the direct phrase-based confidence measures do not use the
context information at the sentence level, but only at the phrase level.

For a given source sentence f J
1 and a target word e, we want to determine a sort

of marginal probability Q(e, f J
1 ). Therefore, we extract all source phrases f j+s

j that occur
in the given source sentence f J

1. For these source phrases, we find the possible transla-
tions ei+t

i in the bilingual phrase lexicon. The confidence of target word e is then calcu-
lated by summing over all phrase pairs ( f j+s

j , ei+t
i ) where the target part ei+t

i contains e.
Let QPM( f̃k, ẽk) be the phrase model score of a phrase pair as defined in Equation (3)

in Section 2.2. Analogously, we define QLM(ei+t
i ) as the language model score of the

target phrase together with the word penalty c1 for each word in the phrase, that is,

QLM(ei+t
i ) :=

i+t∏
i′=i

c1 · p(ei′ | ei′−1
i′−2)

λ1 (15)

Note that this is the within-phrase language model probability, which does not include
the context of the phrase. The language model probability at the phrase boundary is
approximated by a unigram and bigram.

The (unnormalized) confidence of target word e is then determined by summing
the product of the language model and the phrase model score of all phrase pairs
containing e:

Q(e, f J
1 ) :=

J∑
j=1

min{smax,J−j}∑
s=0

∑
ei+t

i

δ(e , ei+t
i ) · QLM(ei+t

i ) · QPM( f j+s
j , ei+t

i ) (16)

where s ≤ smax and t are source and target phrase lengths, smax being the maximal source
phrase length. δ(e, ei+t

i ) denotes an extension of the Kronecker delta:

δ(a, A) =

{
1 if a ∈ A

0 otherwise
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The value calculated in Equation (16) is not normalized. In order to obtain a probability,
this value is divided by the sum over the (unnormalized) confidence values of all target
words:

pphr(e | f J
1 ) =

Q(e, f J
1 )∑

e′
Q(e′, f J

1 )
(17)

As shown in Equations (3) and (15), the different sub-models of the phrase-based
translation approach are combined in a log-linear manner. The weights λ1, . . . , λ5 and
the penalties c1, c2 are optimized in the translation process with respect to some eval-
uation criterion such as WER or BLEU. This is done using the Downhill Simplex
algorithm (Press et al. 2002). The resulting values of the weights express the relation
between the sub-models, but not their absolute values. They are usually normalized so
that they sum to 1. For use in confidence estimation, two different aspects thus have to
be considered:

� The relation of the sub-models that is optimal for translation quality
is not necessarily optimal for classification performance. Therefore, the
sub-model scaling factors are optimized with respect to some confidence
evaluation measure (see Section 7.3). The direct phrase-based confidence
measures provide a framework for optimizing the sub-model weights
efficiently. The optimization is performed analogously to the procedure
for machine translation: The confidence values are determined for all
words in the development corpus. Then, classification is carried out as
described in Section 3.3, and the result is evaluated. The weights are
then modified and the confidence estimation is repeated, until optimal
classification performance on the development set is achieved. Again,
the Downhill Simplex algorithm is used for optimization.

� For MT, only the relation between the different sub-models, but not the
actual values of the scaling factors, are important. Confidence measures,
however, also depend on these actual values. In MT, the sub-model scaling
factors are normalized such that they sum to 1. For the use in confidence
estimation, the value of this sum,

Λ :=
5∑

i=1

λi + c1 + c2

is also optimized. This Λ is analogous to the global scaling factor for the
system-based confidence measures introduced in Section 4.5.

5.2 Confidence Measure Based on IBMModel 1

Another type of confidence measure that does not rely on system output and is thus
applicable to any kind of machine translation system is the IBM model 1–based confi-
dence measure that was introduced in Blatz et al. (2003). We modified this confidence
measure because we found that the average lexicon probability used there is dominated
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by the maximum. Therefore, we determine the maximal translation probability of the
target word e over the source sentence words:

pibm1(e| f J
1 ) = max

j=0,...,J
p(e| fj) (18)

where f0 is the “empty” source word (Brown et al. 1993). The probabilities p(e| fj) are
word-based lexicon probabilities.

Investigations of the use of the IBM model 1 for word-level confidence estimation
showed promising results (Blatz et al. 2003, 2004). Thus, we apply this method here
and compare it to the other types of confidence measures. Ueffing and Ney (2005a)
report on the use of this IBM model 1–based confidence measure in a TransType-style
interactive MT system. The work presented there shows that even this relatively simple
confidence measure yields a significant gain in the quality of the predictions proposed
by the interactive system.

6. Combination of Confidence Measures

In related work in MT as well as in speech recognition, the combination of numerous
confidence features has been suggested (Gandrabur and Foster 2003; Blatz et al. 2004;
Quirk 2004; Sanchis 2004). Among the methods used for combination are multi-layer
artificial neural networks, naive Bayes classifiers, and modified linear regression.

Because the combination of several confidence measures proved successful, the
different word posterior probabilities proposed here were combined with each other.
The combination was performed in a log-linear manner. Let pm(e | f J

1, . . .) , m = 1, . . . , M,
be the word posterior probabilities of e determined using different approaches. The
word confidence resulting from their combination is calculated as

c(e) = exp

{
−

M∑
m=1

λm · log pm(e | f J
1, . . .)

}

The interpolation weights λm are optimized with respect to some confidence evaluation
metric on the development corpus using the Downhill Simplex algorithm (Press et al.
2002). With this approach, the confidence error rates were reduced over the best single
confidence measure consistently on all corpora we examined. The experimental results
will be presented in Section 7.4. This section also contains details on which confidence
measures were combined.

However, the focus of this work is on word posterior probabilities as stand-alone
confidence measures. It was shown that they are the best single features for confidence
estimation (Blatz et al. 2004). Moreover, they are closely related to Bayes risk, which
yields a sound theoretical foundation (Ueffing and Ney 2004).

7. Experiments

7.1 Experimental Setting

The experiments were performed on three translation tasks in different language pairs.
The corpora were compiled in the EU projects TransType2 (TransType2 2005) and
TC-STAR (TC-STAR 2005), and for the NIST MT evaluation campaign (NIST 2004). The
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TransType2 corpora consist of technical manuals for Xerox devices such as printers.
They are available in three different language pairs. This domain is very specialized
with respect to terminology and style. The corpus statistics are given in Table 1. The
TC-STAR corpus consists of proceedings of the European Parliament. It is a spoken
language translation corpus containing the verbatim transcriptions of the speeches in
the European Parliament Plenary Sessions (EPPS). The domain is basically unrestricted
because a wide range of different topics is covered in the sessions. The translation
direction is from Spanish into English. For corpus statistics, see Table 2. The NIST corpus
was compiled for the yearly MT evaluation campaign carried out since 2001. Chinese
news articles are translated into English. Similarly to the EPPS data, the domain is
basically unrestricted, because a wide range of different topics is covered. However,
the vocabulary size and the training corpus are much larger than in the EPPS collection,
as the corpus statistics presented in Table 3 show. Additionally to the bilingual data, a
monolingual English corpus consisting of 636M running words was used for language
model training. The SMT systems that generated the translations for which confidence
estimation was performed were trained on these corpora. The same holds for the
probability models that were used to estimate the word confidences.

We translated the development and test corpora using several different MT systems
for testing the confidence measures:

� The phrase-based translation system described in Section 2.2 (denoted as
PBT in the tables); a large part of the results will be presented for output
of this system.

Table 1
Statistics of the training, development, and test corpora for the TransType2 task.

French English Spanish English German English

TRAIN Sentences 53,046 55,761 49,376
Running words 680,796 628,329 752,606 665,399 537,464 589,531
Vocabulary 15,632 13,816 11,050 7,956 23,845 13,223

DEV Sentences 994 1,012 964
Running words 11,674 10,903 15,957 14,278 10,462 10,642

TEST Sentences 984 1,125 996
Running words 11,709 11,177 10,106 8,370 11,704 12,298

Table 2
Statistics of the training, development, and test corpora for the TC-STAR EPPS Spanish–English
task. Both development and test corpus are provided with two English references.

Spanish English

TRAIN Sentences 1,652,174
Running words 32,554,077 31,147,901
Vocabulary 124,192 80,125

DEV Sentences 2,643
Running words 20,289 40,396

TEST Sentences 1,073
Running words 18,896 37,742
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Table 3
Statistics of the training, development, and test corpora for the NIST Chinese–English task. Both
development and test corpus are provided with four English references.

Chinese English

TRAIN Sentences 7M
Running words 199M 213M
Vocabulary 223K 351K
Dictionary entries 82K

DEV (2002 evaluation set) Sentences 878
Running words 25K 105K

TEST (2004 evaluation set) Sentences 1,788
Running words 52K 239K

� The alignment template system (Och and Ney 2004) (denoted as AT in the
tables), which is also a state-of-the art phrase-based translation system.

� The Systran version available at http://babelfish.altavista.com/tr in
June 2005. These hypotheses were used to investigate whether the direct
confidence measures perform well on translations generated by a
structurally different system.

The translation quality on the TransType2 task in terms of WER, PER, BLEU score
(Papineni et al. 2002), and NIST score (NIST 2002) is given in Table 4. We see that
the best results are obtained on Spanish to English translation, followed by French to
English and German to English. The reason that Systran generates translations of much
lower quality than the SMT systems is due to the fact that the technical manuals are very
specific in terminology. The SMT systems were trained on similar corpora so that they
are familiar with the terminology. The table additionally shows the translation quality
achieved by the system PBT on the NIST test set.

Table 4
Translation quality of different MT systems on the TransType2 and the NIST test corpora.

Task Language pair System WER[%] PER[%] BLEU[%] NIST

TransType2 F → E PBT 54.9 43.4 31.3 6.62
AT 54.8 43.7 31.5 6.64
Systran 81.5 71.7 12.5 4.23

S → E PBT 26.1 17.5 66.9 8.98
AT 29.6 20.1 63.4 8.80
Systran 78.0 62.3 23.4 4.77

G → E PBT 61.6 49.6 25.7 5.72
AT 62.7 49.8 26.6 5.92
Systran 79.2 66.4 12.0 4.09

NIST C → E PBT 61.8 42.9 31.1 8.47

C = Chinese; E = English; F = French; G = German; S = Spanish.
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On the EPPS task from TC-STAR, the confidence measures were tested on output
from the phrase-based translation system. The hypotheses are generated by the version
of the system that participated in the TC-STAR evaluation round in March 2005 and
that was ranked first there. The translation quality can be seen in Table 12 later in
this article.

7.2 Word Error Measures

In order to evaluate the classifier built from the confidence measures as described in
Section 3.3, reference tags are needed that define the true class of each word. In machine
translation, it is not intuitively clear how to determine the correctness of a word.
Therefore, a number of different measures for identifying the reference classes for single
words in a translation hypothesis were implemented (Ueffing 2006). They are inspired
by different translation evaluation measures like WER and PER. All of them compare
the translation hypothesis to one or—if available—several references to determine the
word errors. In this article, we will present results for the following error measures:

� WER: A word is counted as correct if it is Levenshtein-aligned to itself in
one of the references.

� PER: A word is tagged as correct if it occurs in one of the references. The
number of occurrences per word is taken into account, but the position of
the word in the sentence is completely disregarded.

Both word error measures exist in two variants: First, each translation hypothesis is
compared to the pool of all references (in case there exist different reference translations
for the development and test corpus). Second, the reference with minimum distance to
the hypothesis according to the translation evaluation measure under consideration is
determined. The true classes of the words are then defined with respect to this nearest
reference. For example, if the PER metric is applied, the pooled variant labels all those
words as correct that occur in any of the references (with this count). The second variant
considers as correct only those words that are contained in the nearest reference (with
this count). The latter corresponds to the procedure used for m-WER and m-PER in MT
evaluation (Nießen et al. 2000).

Table 5 shows the percentage of words that are labeled as correct according to the
different error measures on the development and test corpora of the EPPS task. It can
be seen that WER is the stricter error measure: It considers fewer words as correct
than PER does. A comparison of the pooled and the nearest reference shows that the
pooling yields a significant increase in the number of words labeled as correct. Note
that the figures in the table do not directly correspond to the translation error rates for
the system output. They are calculated only for the words contained in the generated

Table 5
Ratio of correct words (%) in the EPPS Spanish → English development and test corpora,
according to different word error measures.

Error Measure WER PER
pooled nearest pooled nearest

DEV 78.6 72.9 81.5 77.4
TEST 76.5 69.8 81.5 76.5
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translation hypotheses and do not take deleted words into account. Moreover, they
are normalized by the hypothesis lengths. If WER and PER are applied as translation
evaluation measures (on the sentence level), deletions are counted as well, and the
number of errors is divided by the number of reference words.

7.3 Evaluation Metrics

After computing the confidence measure, each generated word is tagged as either
correct or incorrect, depending on whether its confidence exceeds the tagging thresh-
old that was optimized on the development set beforehand. The performance of the
confidence measures is evaluated using the following three measures:

� Classification or Confidence Error Rate (CER): This is defined as the
number of incorrect tags divided by the total number of generated words
in the translated sentence. The baseline CER is determined by assigning
the most frequent class (in the whole development or test corpus) to all
words. Assume that the correct classes of the words are defined on the
basis of WER. If the overall WER on the considered development or
test corpus is below 50%, the baseline CER is calculated by tagging all
words as correct. The baseline CER then corresponds to the number
of substitutions and insertions, divided by the number of generated
words. The CER strongly depends on the tagging threshold. Therefore,
the tagging threshold is adjusted beforehand (to minimize CER) on a
development corpus distinct from the test set. Moreover, we will present
significance bounds for the baseline CER. They were determined using
the bootstrap estimation method described in Bisani and Ney (2004).1

� Receiver Operating Characteristic (ROC) curve (Duda, Hart, and Stork
2001):2 The ROC curve plots the correct rejection rate versus the correct
acceptance rate for different values of the tagging threshold. The correct
rejection rate is the number of incorrectly translated words that were
tagged as false, divided by the total number of incorrectly translated
words. The correct acceptance rate is the ratio of correctly translated words
that were tagged as correct. These two rates depend on each other: If one
of them is restricted by a lower bound, the other one cannot be restricted.
The further the ROC curve lies away from the diagonal (and away from
the point of origin), the better the performance of the confidence measure.
Unlike the CER, the ROC curve is independent of the prior probability of
the two classes correct and incorrect. This means that ROC curves from
different data sets can be compared directly.

� Integral of the ROC curve (IROC): ROC curves provide for a qualitative
analysis of classifier performance; a related quantitative metric is IROC,
defined as the area under a ROC curve. The IROC takes on values in [0, 1],
with 0.5 corresponding to a random separation of correct and incorrect
words, 1.0 corresponding to a perfect separation, and 0.0 the opposite.

1 The tool described in this paper is freely available from http://www-i6.informatik.rwth-aachen.de/
web/Software/.

2 A variant of the ROC curve is the Detection Error Tradeoff (DET) curve which plots the false rejection rate
versus the false acceptance rate.
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7.4 Experimental Results

TransType2 task. Table 6 compares the classification performance of several confidence
measures on the TransType2 French–English task. The CER and the IROC values are
given for WER- and PER-based classification. Note that lower CER and higher IROC
values express better performance. It is interesting to see that, in most of the cases, the
tendencies are consistent for the two evaluation metrics: Lower CER is accompanied by
higher IROC.

In general, one can see that the very simple approach that sums over sentences
in the N-best list or word graph considering the fixed target position of the word
clearly performs worst. This is to be expected, and the method was included only for
comparison. It can be considered as a simple baseline method. The other system-based
measures discriminate significantly better in both settings.

The system-based confidence measures show much better discriminative power
than the direct IBM model 1. The N-best list based measure with Levenshtein alignment
and the word posterior probabilities calculated over word graphs using a window
perform similarly well. For WER-based classification, they are outperformed only by
the direct phrase–based approach, which achieves the best CER and IROC values.

It is interesting to compare the two methods that were applied to both word
graphs and N-best lists: the approach based on the fixed target position and the one
summing over a window of positions. In both cases, the word graph–based calculation
is slightly superior to that based on 10,000-best lists. However, the difference in CER is
not significant.

The count-based method working on N-best lists is clearly the best confidence
measure for PER-based classification. This result was to be expected because the count-
based word posterior probability was derived from the Bayes risk for PER (Ueffing
and Ney 2004). Even if its CER does not differ much from that of the direct phrase-
based measure, there exists a clear predominance in terms of IROC. The IBM-1–based
confidence measure performs rather poorly compared to the other methods. This is not
surprising because the IBM model 1 is a very simple model.

Table 6
Classification performance in terms of CER (%) and IROC (%) for different confidence measures.
TransType2 French → English test set. References based on WER and PER, confidence measures
optimized accordingly. Hypotheses from the phrase-based system.

Model WER PER
CER IROC CER IROC

baseline 42.2 − 34.2 −
99% confidence interval ±2.3 − ±2.0 −

10,000-best lists, fixed position 39.7 66.2 33.3 66.2
Levenshtein 31.3 72.6 28.1 74.8
window ±3 31.6 70.7 28.3 73.4
count-based 31.9 71.6 27.0 76.5

word graphs, fixed position 38.6 70.5 33.1 67.6
window ±3 31.1 72.4 27.3 75.4

IBM-1 (max.) 39.2 67.0 31.5 71.0
direct phrase-based 30.6 74.4 27.4 73.7
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The comparison of the IROC values for WER- and PER-based classification shows
that PER is easier to learn than WER: The IROC values for PER are higher for most
confidence measures. This is consistent with the results obtained in the CLSP workshop
(Blatz et al. 2003). The classifiers investigated there also show better discriminative
power for reference classes based on PER than for WER.

To further illustrate the classification performance of the different confidence mea-
sures, the ROC curves for some of them are given in Figure 2. In each, the diagonal
line refers to random classification of words as correct and incorrect. The left curve
shows the results for WER-based classification, and the right one for PER, respectively.
The N-best list-based method considering the fixed target position is again given for
comparison. One can see that the IBM-1–based confidence measure is clearly better than
this baseline for PER, but not for WER. The curves for the direct phrase-based model and
the best N-best list-based method lie relatively close to each other. These two confidence
measures clearly dominate all others.

Because the direct phrase-based confidence measures perform so well on the output
of the phrase-based translation system, we were interested in finding out whether this is
due to the fact that the translation system and the confidence measure explore the same
statistical models. Therefore, the system-independent confidence measures (i.e., those
based on IBM model 1 and the direct phrase-based method) were tested on output from
different machine translation systems, including Systran as a non-statistical MT system.
The experimental results are shown in Table 7. They can be summarized as follows:

� In all settings, both measures distinctly decrease the CER compared to the
baseline. In one case (Spanish to English, Systran), the achieved CER is as
much as 60% lower than the baseline CER.

� On French to English and German to English, all improvements are
significant at the 1% level. On Spanish to English, which is the language
pair yielding by far the lowest baseline CER, only the phrase-based
measure achieves a reduction at this level of significance.

� In all but one case, the direct phrase-based approach outperforms the
IBM-1–based method significantly. This tendency is consistent for both
CER and IROC. The relative difference in CER is up to 20%.

Figure 2
ROC curves for different confidence measures. TransType2 French → English test set. References
based on WER (left) and PER (right). Hypotheses from the phrase-based system.
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Table 7
Classification performance in terms of CER (%) and IROC (%) for different system-independent
confidence measures. TransType2 test sets. Reference based on WER. Hypotheses from different
MT systems.

Task Model AT PBT Systran
CER IROC CER IROC CER IROC

F → E baseline 42.5 − 42.2 − 32.8 −
99% confidence interval ±2.3 − ±2.3 − ±1.7 −
IBM-1 (max.) 34.1 68.3 35.6 66.9 26.0 81.3
direct phrase-based 30.2 73.0 30.6 74.4 22.7 83.2

S → E baseline 20.8 − 19.2 − 43.7 −
99% confidence interval ±1.9 − ±2.0 − ±1.5 −
90% confidence interval ±1.2 − ±1.3 − ±1.0 −
IBM-1 (max.) 20.0 66.8 18.3 73.2 21.7 85.5
direct phrase-based 17.5 76.0 16.4 77.0 17.3 87.5

G → E baseline 49.2 − 48.4 − 37.4 −
99% confidence interval ±2.2 − ±2.4 − ±1.4 −
IBM-1 (max.) 32.7 73.3 32.8 72.2 23.6 80.7
direct phrase-based 27.6 79.1 26.4 80.3 24.3 81.4

� On the German to English Systran hypotheses, both confidence measures
discriminate similarly well. In terms of CER, the IBM model 1 is slightly
better, whereas the phrase-based method achieves the highest IROC value.

EPPS task. Further experiments comparing the classification performance of the differ-
ent confidence measures were carried out on the EPPS data task, which is structurally
different from the Xerox task. The EPPS collection consists of speeches given in the
plenary sessions of the European Parliament, translated from Spanish into English. The
EPPS task is more challenging than the Xerox manuals because the domain is almost
unrestricted and the translation has to cope with effects of spontaneous speech. The goal
of these experiments is to find out whether the confidence measures perform equally
well on this challenging task as on the Xerox task. The development and test set of the
EPPS data are provided with two references each. This makes it possible to compare the
two ways of handling multiple references: As explained in Section 7.2, the true class of a
word can be determined either with respect to the pooled references or to the reference
with minimal distance.

Table 8 presents the CER and IROC values for different confidence measures on the
EPPS task. The classification with respect to m-WER and m-PER (i.e., considering only
the nearest reference) as word error measures was investigated. The confidence mea-
sures based on the fixed position were not calculated because the previous experiments
showed that they perform significantly worse than the other measures. It can be seen in
the table that the word posterior probabilities derived from the Bayes risk for the word
error measures perform best: The Levenshtein-based confidence measure discriminates
best for m-WER and the count-based approach for m-PER. They are clearly superior to
all other confidence measures, especially in terms of IROC. For WER-based classifica-
tion, the word graph-based method performs similarly well to the Levenshtein-based
measure in terms of CER, but significantly worse if IROC is considered.

The results achieved by the direct phrase-based approach on this task are not as
good as on the Xerox data. The reason for this is that the domain of the EPPS collection
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Table 8
Classification performance in terms of CER (%) and IROC (%) for different confidence measures.
EPPS Spanish → English test set. Reference based on m-WER and m-PER, confidence measures
optimized accordingly. Hypotheses from the phrase-based system.

Model m-WER m-PER
CER IROC CER IROC

baseline 30.2 − 23.5 −
99% confidence interval ±1.2 − ±1.0 −

15,000-best lists, Levenshtein 25.7 75.4 21.6 74.2
window ±3 26.7 69.9 21.4 71.8
count-based 27.6 71.4 21.2 78.3

word graphs, window ±3 25.6 72.1 21.9 73.2

IBM-1 (max.) 27.7 68.7 21.5 72.5
direct phrase-based 26.8 67.5 21.2 70.9

is almost unrestricted. We found in a data analysis that the phrase models do not
capture the data as well as they do in the Xerox domain (Ueffing 2006). Nevertheless, for
m-PER–based classification, the direct phrase-based measures achieve the same reduc-
tion in CER over the baseline as the system-based method using count information.
Because the direct phrase-based confidence measures completely disregard the target
position of the word, they are better suited for PER-based classification than for WER.

As is to be expected, the IBM model 1–based confidence measure performs better
for reference tags defined by m-PER than for m-WER. However, it is among the methods
with the worst discriminative power in both cases.

In general, the improvements over the CER baseline are not as high on these
EPPS data as on the TransType2 corpora. The relative gain in CER is 15% for the best
confidence measure. But because the test corpora are large—with 20,000 running words
they are about twice as big as the TransType2 test sets—all achieved improvements
are significant at the 1% level. The IROC values are comparable to those achieved on
TransType2 data. The fact that the IROC is independent of the baseline error allows
for the conclusion that the confidence measures are well-suited for this challenging
translation task as well.

Figure 3
ROC curves for different confidence measures. EPPS Spanish → English test set. References
based on m-WER (left) and m-PER (right). Hypotheses from the phrase-based system.
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The ROC curves shown in Figure 3 further illustrate the classification performance
of the different measures. The left curve shows the results for m-WER–based classifi-
cation, and the right one for m-PER. One can see that for m-WER, the IBM-1–based
and the direct phrase-based confidence measures perform very similarly. There is no
clear difference between these two approaches and the one calculated over a window
of target positions. The discriminative power of the direct model is higher for a lower
correct acceptance ratio, whereas the system-based measure performs better for a high
correct acceptance ratio. The Levenshtein-based word posterior probabilities are clearly
superior to all other approaches. The ROC curve lies beyond the others over the whole
range. For PER, the classifier based on word counts dominates all other confidence
measures. The three other methods show relatively similar performance.

For all results presented so far, the reference tags were determined by comparing
each hypothesis to the most similar reference. As mentioned in Section 7.2, it is also
possible to pool the references instead. Table 9 presents an assessment of the discrimi-
native power of different confidence measures for these reference tags. The conclusions
from these results are the same as for those in Table 8: The Levenshtein-based method
performs best for WER, and the count-based one for PER. All reported improvements in
CER are significant at the 1% level. The IROC values for the pooled error measures are
higher than for m-WER and m-PER for all confidence measures. Obviously, this method
of error counting is easier to assess using confidence measures. The differences in CER
are not as large here as in Table 8. However, the IROC values provide a clear indication
of the differences in quality between the classifiers.

NIST task. The third translation task that was used for the evaluation of the confidence
measures proposed in this article is part of the NIST MT evaluation campaign. The task
here is the translation of news articles from Chinese into English. As with the EPPS data,
the domain is basically unrestricted.

The experimental results are presented in Table 10. The confidence measures
that perform best on the two other tasks were evaluated on the NIST data. The
results support those achieved on the EPPS collection. All confidence measures reduce
CER over the baseline with significance at the 1% level. For reference tags defined
by m-WER, the confidence measure using Levenshtein alignment over N-best lists

Table 9
Classification performance in terms of CER (%) and IROC (%) for different confidence measures.
EPPS Spanish → English test set. Reference based on pooled WER and PER, confidence
measures optimized accordingly. Hypotheses from the phrase-based system.

Model pooled WER pooled PER
CER IROC CER IROC

baseline 23.5 − 18.5 −
99% confidence interval ±1.1 − ±1.0 −

15,000-best lists, Levenshtein 21.3 77.5 17.0 76.4
window ±3 21.8 71.5 17.1 73.2
count-based 21.8 73.7 16.7 80.6

word graphs, window ±3 21.8 73.0 18.1 74.1

IBM-1 (max.) 21.7 70.2 16.9 74.3
direct phrase-based 21.3 69.5 16.8 69.3
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Table 10
Classification performance in terms of CER (%) and IROC (%) for different confidence measures.
NIST04 Chinese → English test set. Reference based on m-WER and m-PER, confidence
measures optimized accordingly. Hypotheses from the phrase-based system.

model m-WER m-PER
CER IROC CER IROC

baseline 46.2 − 32.7 −
99% confidence interval ±1.0 − ±0.6 −

10,000-best lists, Levenshtein 37.2 67.4 30.5 67.5
window ±3 39.2 64.4 30.5 67.0
count-based 37.0 66.0 28.4 72.0

IBM-1 (max) 42.9 58.0 31.9 59.9
direct phrase-based 37.3 66.7 27.1 71.8

performs best. Especially in terms of IROC, this method is clearly superior to the
other confidence measures. The count-based method achieves a CER that is 0.2% lower,
which is not significant. For classification with respect to m-PER, there are two meth-
ods that outperform the others: the count-based confidence measure calculated over
N-best lists and the direct phrase-based approach. They achieve CER and IROC values
that differ significantly from those of the other measures. However, neither of the two
approaches is clearly superior to the other: The direct phrase-based confidence measure
achieves a lower CER of 27.1%, whereas the count-based confidence measure calculated
over N-best lists achieves a slightly higher IROC value. The confidence measure based
on IBM model 1 shows by far the worst discriminative power for both m-WER- and
m-PER-based classification. The CER obtained with this method is significantly higher
than those of all other measures.

Combination of features. Because feature combination yields good results in the exper-
iments reported in related work such as Blatz et al. (2003), we performed similar
experiments. The confidence measures investigated here were combined log-linearly
as described in Section 6. The resulting confidence measures were evaluated on all
three translation tasks. The three single word posterior probabilities that perform best
in each setting were used in the combination. For the confidence estimation with respect
to reference tags defined by m-WER, these are:

� the system-based word posterior probabilities based on Levenshtein
alignment

� the system-based word posterior probabilities performing windowing
over target positions

� the direct phrase-based method

If the reference tags are determined by m-PER, the features used differ slightly, depend-
ing on the corpus. The measures that are combined are three of the following:

� the system-based word posterior probabilities based on the word count

� the system-based word posterior probabilities performing windowing
over target positions
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� the confidence measure based on IBM model 1

� the direct phrase-based method

The experimental results for the combined confidence measures are presented in
Table 11. They show that the resulting confidence measure outperforms the best single
method. The improvement in CER is up to 1.8% in absolute terms. In terms of IROC,
the gain is up to 4.4 points. This is in the same range as the improvements achieved in
the CLSP summer workshop (Blatz et al. 2003). However, there is one case in which the
IROC decreases, namely the m-PER–based classification on EPPS Spanish to English.
This can be explained by the fact that the combination was optimized with respect
to CER. In order to avoid this type of inconsistency, the optimization could be performed
considering a combination of CER and IROC as criterion.

8. Rescoring

8.1 Approach

This section reports on the use of word posterior probabilities for rescoring of N-best
lists. The rescoring is performed as follows: For every hypothesis in the N-best list, the
confidence of each word in the sentence is calculated. These word posterior probabilities
are multiplied to obtain a score for the whole sentence. This sentence score is then
used as an additional model for N-best list rescoring. It serves as an indicator of the
overall quality of the generated hypothesis. Additionally, the minimal word posterior
probability over the sentence is determined. This can be seen as an indicator of whether
the hypothesis contains words that are likely to be incorrect. These new models are
combined with the existing models (such as the score assigned by the underlying SMT
system and additional language model scores) in a log-linear manner. The scaling
factors of all models are optimized on the development corpus using the Downhill
Simplex algorithm. This combination using the optimized factors is then applied and
evaluated on the test set.

Table 11
Classification performance in terms of CER (%) and IROC (%) for a log-linear combination of
word posterior probabilities. Test sets from all three tasks. References based on m-WER and
m-PER. Hypotheses from the phrase-based system.

Reference tag m-WER m-PER
Task confidence measure CER IROC CER IROC

TransType2 F → E baseline 42.2 − 34.2 −
best single 30.6 74.4 27.0 76.5
combination of 3 29.5 75.5 25.4 78.4

EPPS S → E baseline 30.2 − 23.5 −
best single 25.7 75.4 21.2 78.3
combination of 3 25.7 76.1 20.1 76.9

NIST C → E baseline 46.2 − 32.7 −
best single 37.3 67.2 27.4 71.3
combination of 3 35.5 68.0 25.8 75.7
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8.2 Experimental Results

Rescoring was carried out on EPPS data using the direct phrase-based confidence
measures. Within the project TC-STAR, an MT evaluation campaign was performed
in March 2005 to compare the research systems of the consortium members (Ney et al.
2005). Different conditions concerning the input data were defined. In the following,
rescoring results on the verbatim transcriptions will be presented. The translations
that RWTH submitted to this evaluation were generated by the phrase-based translation
system described in Section 2.2. N-best lists were generated for development and test
corpus, with a maximum length of 20,000 and 15,000, respectively. These were then
rescored with an IBM model 1, a 4-gram language model, and a deletion model based
on IBM-1. The weights for all these models and for the sentence probability assigned
by the SMT system were optimized with respect to BLEU score on the development
corpus. For a detailed description of the system, see Vilar et al. (2005). This system was
ranked first in the evaluation round according to all evaluation criteria (Ney et al. 2005).

Two different sets of rescoring experiments were performed. They differ only in
their starting points: The first one starts from the baseline system without rescoring.
The sub-model weights of this system were optimized with respect to BLEU on the
development set, but no additional models were used for rescoring the N-best list.
This experiment was performed to analyze the maximum improvement that can be
achieved through rescoring with confidence measures. The second experiment starts
from the system that has already been rescored with the three different models men-
tioned above. This is the system that was used in the TC-STAR evaluation campaign,
and that was ranked first there. In this setting, it can be seen whether the rescoring
with confidence measures manages to improve upon the best available system as well.
Furthermore, it is possible to analyze whether the gains from all rescoring models are
additive.

The results are shown in Table 12. The upper block evaluates the translation quality
without considering case, and the second one contains the case-sensitive evaluation.
These different figures are presented here in order to separate the effect of the transla-
tion and the true-casing process. The translation system was trained on a lower-cased
corpus, and the true-casing is performed as an additional post-processing step.

Table 12
Translation quality for rescoring with confidence measures. EPPS Spanish → English test set.
Optimized for BLEU.

case? System WER (%) PER (%) BLEU (%) NIST

no baseline 40.9 30.4 45.5 9.83
+ direct phrase-based confidence measure 40.8 29.9 46.5 9.93

+IBM-1+LM+deletion model 40.6 29.5 46.6 9.99
+direct phrase-based confidence measure 40.4 29.4 47.2 10.04

yes baseline 42.5 32.2 45.1 9.67
+ direct phrase-based confidence measure 42.7 32.0 45.6 9.68

+IBM-1+LM+deletion model 42.5 31.7 45.9 9.75
+direct phrase-based confidence measure 42.4 31.6 46.2 9.78

second best translation system 43.9 33.4 44.1 9.47
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Let us first consider the case-insensitive results. The baseline is the single best
output of the translation system. This system can be improved through rescoring with
confidence measures by 1 BLEU point. This is only 0.1 BLEU points less than the
gain achieved from rescoring with the three other models. The system from the second
setup (rescored with IBM model 1, the language and the deletion model) improves the
BLEU score by 1.1 points over the baseline. Another 0.6 BLEU points can be gained
through additional rescoring with the direct phrase-based confidence measures. The
improvement is consistent across all four automatic evaluation criteria. Naturally, the
gain in BLEU score is higher than for the other measures, because the system was
optimized with respect to BLEU.

In the TC-STAR evaluation campaign, case information was taken into account.
The corresponding results are presented in the second block of the table. The overall
translation quality is lower if case is considered. For all models applied here, the gain
achieved through rescoring is not as big as in the case-insensitive evaluation. If only the
confidence measures are used for rescoring, the BLEU score is increased by 0.5 points.
The NIST score and the error measures change only slightly. However, when all four
rescoring models are applied, the system is significantly improved. The models used
in the TC-STAR evaluation yield an increase of 0.8 BLEU points. The word posterior
probabilities add another 0.3 points to this. This change is rather small, but comparable
to the contribution of each single rescoring model used in the evaluation campaign.
For comparison, the translation quality of the second best system in this campaign is
reported in the last row of the table. The difference in BLEU score between the RWTH
system and the second best can be significantly improved through rescoring.

9. Conclusion

In this work, we set up a probabilistic framework for the computation of word posterior
probabilities for machine translation. Within this framework, different concepts of word
posterior probabilities were defined and analyzed. Several approaches to the calculation
of word posterior probabilities were investigated and compared: system-based methods
that explore information provided by the SMT system that generated the translations,
and direct model-based methods that make use of statistical (translation) models.

The use of word posterior probabilities as confidence measures was studied, in-
cluding their application in a rescoring scenario. The proposed confidence measures
were systematically evaluated on different translation tasks and different language
pairs. On all corpora, the best methods developed here reduce the confidence error rate
significantly (at the 1% level). The direct confidence measures were also successfully
applied to output from a non-statistical MT system.

The results of the experiments can be summarized as follows:

� The performance of the confidence measures depends heavily on the
word error measure that defines the reference tags. Naturally, the
word posterior probabilities derived from Bayes risk for this word error
measure discriminate best. For WER, this is the approach based on the
Levenshtein alignment, and for PER this is the method that considers
the counts of the words.

� The direct phrase-based confidence measures perform very well on the
restricted domain of the TransType2 corpora consisting of technical
manuals. There, they outperform all other measures. However, this is
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not the case for data from domains that are basically unrestricted,
such as the EPPS and NIST corpora. There, the system-based measures
discriminate better for reference tags given by WER. For PER-based
confidence estimation, the direct phrase-based confidence measure and
the count-based confidence measure calculated over N-best lists show
the best performance.

� The confidence measures based on IBM model 1 normally perform worse
than the system-based or direct phrase-based methods. The reason for this
is that the IBM model 1 is a very simple model that does not consider the
context of a target word at all.

� The combination of several different word posterior probabilities into one
confidence measure yields better confidence estimation performance than
the best single feature. However, the word posterior probabilities
proposed here proved to be strong stand-alone features (see also
experiments reported in Blatz et al. [2003]).

� Rescoring with confidence measures was shown to improve translation
quality. The SMT system investigated here was the one that was ranked
first in the TC-STAR evaluation campaign in March 2005. It was
consistently improved through rescoring with confidence measures.
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