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Abstract

Vision-based sign language recognition aims at helping

the deaf people to communicate with others. However, most

existing sign language datasets are limited to a small num-

ber of words. Due to the limited vocabulary size, models

learned from those datasets cannot be applied in practice.

In this paper, we introduce a new large-scale Word-Level

American Sign Language (WLASL) video dataset, contain-

ing more than 2000 words performed by over 100 signers.

This dataset will be made publicly available to the research

community. To our knowledge,it is by far the largest pub-

lic ASL dataset to facilitate word-level sign recognition re-

search.

Based on this new large-scale dataset, we are able to

experiment with several deep learning methods for word-

level sign recognition and evaluate their performances in

large scale scenarios. Specifically we implement and com-

pare two different models,i.e., (i) holistic visual appear-

ance based approach, and (ii) 2D human pose based ap-

proach. Both models are valuable baselines that will ben-

efit the community for method benchmarking. Moreover,

we also propose a novel pose-based temporal graph convo-

lution networks (Pose-TGCN) that model spatial and tem-

poral dependencies in human pose trajectories simultane-

ously, which has further boosted the performance of the

pose-based method. Our results show that pose-based

and appearance-based models achieve comparable per-

formances up to 62.63% at top-10 accuracy on 2,000

words/glosses, demonstrating the validity and challenges

of our dataset. Our dataset and baseline deep mod-

els are available at https://dxli94.github.io/

WLASL/.

1. Introduction

Sign languages, as a primary communication tool for

the deaf community, have their unique linguistic struc-

tures. Sign language interpretation methods aim at auto-

  

Figure 1: ASL signs “read” (top row) and “dance” (bottom

row) [14] differ only in the orientations of the hands.

matically translating sign languages using, for example, vi-

sion techniques. Such a process involves mainly two tasks,

namely, word-level sign language recognition (or “isolated

sign language recognition”) and sentence-level sign lan-

guage recognition (or “continuous sign language recogni-

tion”). In this paper, we target at word-level recognition

task for American Sign Language (ASL) considering that

it is widely adopted by deaf communities over 20 countries

around the world [45].

Serving as a fundamental building block for understand-

ing sign language sentences, the word-level sign recognition

task itself is also very challenging:

• The meaning of signs mainly depends on the combi-

nation of body motions, manual movements and head

poses, and subtle differences may translate into dif-

ferent meanings. As shown in Fig. 1, the signs for

“dance” and “read” only differ in the orientations of

hands.

• The vocabulary of signs in daily use is large and usu-

ally in the magnitude of thousands. In contrast, re-

lated tasks such as gesture recognition [5, 1] and ac-

tion recognition [31, 58, 12] only contains at most a

few hundred categories. This greatly challenges the

scalability of recognition methods.

• A word in sign language may have multiple coun-
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terparts in natural languages. For instance, the sign

shown in Fig. 2 (a), can be interpreted as “wish” or

“hungry” depending on the context. In addition, nouns

and verbs that are from the same lemma may have the

same sign. These subtleties are not well captured in

the existing small-scale datasets.

In order to learn a practical ASL recognition model, the

training data needs to contain a sufficient number of classes

and training examples. Considering that existing word-level

datasets do not provide a large-scale vocabulary of signs,

we firstly collect large-scale word-level signs in ASL as

well as their corresponding annotations. Furthermore, since

we want to leverage the minimal hardware requirement for

the sign recognition, only monocular RGB-based videos are

collected from the Internet. By doing so, the trained sign

recognition models do not rely on special equipment, such

as depth cameras [33] and colored gloves [51], and can be

deployed in general cases. Moreover, when people commu-

nicate with each other, they usually sign in frontal views.

Thus, we only collect videos with signers in near-frontal

views to achieve a high-quality large-scale dataset. In addi-

tion, our dataset contains annotations for dialects that are

commonly-used in ASL. In total, our proposed WLASL

dataset consists 21,083 videos performed by 119 signers,

and each video only contains one sign in ASL. Each sign is

performed by at least 3 different signers. Thus, inter-signer

variations in our dataset facilitates the generalization ability

of the trained sign recognition models.

Based on WLASL, we are able to experiment with sev-

eral deep learning methods for word-level sign recognition,

based on (i) holistic visual appearance, and (ii) 2D human-

pose. For appearance-based methods, we provide a base-

line by re-training VGG backbone [57] and GRU [17] as

a representative for convolutional recurrent networks. We

also provide a 3D convolution networks baseline using fine-

tuned I3D [12], which performs better than the VGG-GRU

baseline. For pose-based methods, we firstly extract hu-

man poses from original videos and use them as input fea-

tures. We provide a baseline using GRU to model the tem-

poral movements of the poses. Giving that GRU captures

explicitly only the temporal information in pose trajecto-

ries, it may not fully utilizes the spatial relationship be-

tween body keypoints. Motivated by this, we propose a

novel pose-based model temporal graph convolutional net-

work (TGCN) that captures the temporal and spatial depen-

dencies in the pose trajectories simultaneously. Our results

show that both pose-based approach and appearance-based

approach achieve comparable classification performance on

2,000 words, reaching up to 62.63%.

2. Related Work

In this section, we briefly review some existing publicly

sign language datasets, and state-of-the-art sign language

(a) The verb “Wish” (top) and the adjective “hungry” (bottom)

correspond to the same sign.

(b) The same sign represents different words “Rice” (top) and

“soup” (bottom).

(c) Signers perform “Scream” with different hand positions and

amplitude of hand movements.

Figure 2: Ambiguity and variations of Signing. (a, b) shows

linguistic ambiguity in ASL. (c) shows signing variations of

different signers.

recognition algorithms are also discuss to demonstrate the

necessity of a large-scale ASL dataset.

2.1. Sign Language Datasets

There are three publicly released word-level ASL

datasets1, i.e. Purdue RVL-SLLL ASL Database [69],

Boston ASLLVD [6] and RWTH-BOSTON-50 [78].

Purdue RVL-SLLL ASL Database [69] contains 39

motion primitives with different hand-shapes that are com-

monly encountered in ASL. Each primitive is produced by

14 native signers. Note that, the primitives in [69] are the

elements constituting ASL signs but may not necessarily

correspond to an English word. Boston ASLLVD [6] has

1We notice that one paper [32] aims at providing an ASL dataset con-

taining 1,000 glosses. Since the dataset is not released at the time of prepar-

ing the paper, we cannot evaluate and compare with the dataset.
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Figure 3: Illustrations of the diversity of our dataset, which contains different backgrounds, illumination conditions and

signers with different appearances.

Table 1: Overview of word-level datasets in other lan-

guages.

Datasets #Gloss #Videos #Signers Type Sign Language

LSA64 [51] 64 3,200 10 RGB Argentinian

PSL Kinect 30 [34] 30 300 - RGB, depth Polish

PSL ToF [34] 84 1,680 - RGB, depth Polish

DEVISIGN [15] 2,000 24,000 8 RGB, depth Chinese

GSL [24] 20 840 6 RGB Greek

DGS Kinect [3] 40 3,000 15 RGB, depth German

LSE-sign [27] 2,400 2,400 2 RGB Spanish

2,742 words (i.e., glosses) with 9,794 examples (3.6 exam-

ples per gloss on average). Although the dataset has large

coverage of the vocabulary, more than 2,000 glosses have at

most three examples, which is unsuitable to train thousand-

way classifiers. RWTH-BOSTON-50 [78] contains 483

samples of 50 different glosses performed by 2 signers.

Moreover, RWTH-BOSTON-104 provides 200 continu-

ous sentences signed by 3 signers which in total cover 104

signs/words. RWTH-BOSTON-400, as a sentence-level

corpus, consists of 843 sentences including around 400

signs, and those sentences are performed by 5 signers. DE-

VISIGN is a large-scale word-level Chinese Sign Language

dataset, consists of 2,000 words and 24,000 examples per-

formed by 8 non-native signers in controlled lab environ-

ment. Word-level sign language datasets exist for other re-

gions, as summarized word-level sign language datasets in

other languages in Table 1.

All the previously mentioned datasets have their own

properties and provide different attempts to tackle the word-

level sign recognition task. However, they fail to capture the

difficulties of the task due to insufficient amount of instance

and signer.

2.2. Sign Language Recognition Approaches

Existing word-level sign recognition models are mainly

trained and evaluated on either private [26, 38, 77, 28, 48]

or small-scale datasets with less than one hundred words [?,

38, 77, 28, 48, 42, 46, 70]. These sign recognition ap-

proaches mainly consists of three steps: the feature ex-

traction, temporal-dependency modeling and classification.

Previous works first employ different hand-crafted features

to represent static hand poses, such as SIFT-based fea-

tures [71, 74, 63], HOG-based features [43, 8, 20] and fea-

tures in the frequency domain [4, 7]. Hidden Markov Mod-

els (HMM) [60, 59] are then employed to model the tempo-

ral relationships in video sequences. Dynamic Time Warp-

ing (DTW) [41] is also exploited to handle differences of se-

quence lengths and frame rates. Classification algorithms,

such as Support Vector Machine (SVM) [47], are used to

label the signs with the corresponding words.

Similar to action recognition, some recent works [55, 35]

use CNNs to extract the holistic features from image frames

and then use the extracted features for classification. Sev-

eral approaches [37, 36] first extract body keypoints and

then concatenate their locations as a feature vector. The

extracted features are then fed into a stacked GRU for rec-

ognizing signs. These methods demonstrate the effective-

ness of using human poses in the word-level sign recog-

nition task. Instead of encoding the spatial and tempo-

ral information separately, recent works also employ 3D

CNNs [28, 75] to capture spatial-temporal features together.

However, these methods are only tested on small-scale

datasets. Thus, the generalization ability of those methods

remains unknown. Moreover, due to the lack of a stan-

dard word-level large-scale sign language dataset, the re-

sults of different methods evaluated on different small-scale

datasets are not comparable and might not reflect the prac-

tical usefulness of models.

To overcome the above issues in sign recognition,

we propose a large-scale word-level ASL dataset, coined

WLASL database. Since our dataset consists of RGB-only

videos, the algorithms trained on our dataset can be eas-

ily applied to real world cases with minimal equipment re-

quirements. Moreover, we provide a set of baselines using

state-of-the-art methods for sign recognition to facilitate the

evaluation of future works.
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Table 2: Comparisons of our WLASL dataset with existing

ASL datasets. Column “Mean” indicates the average num-

ber of video samples per gloss.

Datasets #Gloss #Videos Mean #Signers Year

Purdue RVL-SLLL [69] 39 546 14 14 2006

RWTH-BOSTON-50 [78] 50 483 9.7 3 2005

Boston ASLLVD [6] 2,742 9,794 3.6 6 2008

WLASL100 100 2,038 20.4 97 2019

WLASL300 300 5,117 17.1 109 2019

WLASL1000 1,000 13,168 13.2 116 2019

WLASL2000 2,000 21,083 10.5 119 2019

3. Our Proposed WLASL Dataset

In this section, we introduce our proposed Word-Level

American Sign Language dataset (WLASL). We first ex-

plain the data sources and the data collection process. Fol-

lowing with the description of our annotation process which

combines automatic detection procedures with manual an-

notations to ensure the correctness between signs and their

annotations. Finally, we provide statistics of our WLASL.

3.1. Dataset Collection

In order to construct a large-scale signer-independent

ASL dataset, we resort to two main sources from Internet.

First, there are multiple educational sign language websites,

such as ASLU [2] and ASL-LEX [14], and they provide

lookup function for ASL signs. The mappings between

glosses and signs from those websites are accurate since

those videos have been checked by experts before uploaded.

Another main source is ASL tutorial videos on YouTube.

We select videos whose titles clearly describe the gloss of

the sign. In total, we access 68,129 videos of 20,863 ASL

glosses from 20 different websites. In each video, a signer

performs only one sign (possibly multiple repetitions) in a

nearly-frontal view with different backgrounds.

After collecting all the resources for the dataset, if the

gloss annotations are composed of more than two words

in English, we will remove those videos to ensure that the

dataset contains words only. If the number of the videos for

one gloss is less than seven, we also remove that gloss to

guarantee that enough samples are split into the training and

testing sets. Since most of the websites include daily used

words, the small number of video samples for one gloss may

imply those words are not frequently used. Therefore, re-

moving those glosses with few video samples will not affect

the usefulness of our dataset in practice. After this prelimi-

nary selection procedure, we have 34,404 video samples of

3,126 glosses for further annotations.

3.2. Annotations

In addition to providing a gloss label for each video,

some meta information, including temporal boundary, body

bounding box, signer annotation and sign dialect/variation

annotations, is also given in our dataset.

Temporal boundary: A temporal boundary is used to in-

dicate the start and end frames of a sign. When the videos

do not contain repetitions of signs, the boundaries are la-

belled as the first and last frames of the signs. Otherwise, we

manually label the boundaries between the repetitions. For

the videos containing repetitions, we only keep one sample

of the repeated sign to ensure samples in which the same

signer performs the same sign will not appear in both train-

ing and testing sets. Thus, we prevent learned models from

overfiting to the testing set.

Body Bounding-box: In order to reduce side-effects

caused by backgrounds and let models focus on the signers,

we use YOLOv3 [50] as a person detection tool to identify

body bounding-boxes of signers in videos. Note that, the

size of the bounding-box will change as a person signs, we

use the largest bounding-box size to crop the person from

the video.

Signer Diversity: A good sign recognition model should

be robust to inter-signer variations in the input data, e.g.

signer appearance and signing paces, in order to general-

ize well to real-world scenarios. For example, as shown

in Fig. 2c, the same sign is performed with slightly differ-

ent hand positioning by two signers. From this perspective,

sign datasets should have a diversity of signers. Therefore,

we identify signers in our collected dataset and then provide

the IDs of the signers as the meta information of the videos.

To this end, we first employ the face detector and the face

embedding provided by FaceNet [53] to encode faces of the

dataset, and then compare the Euclidean distances among

the face embeddings. If the distance between two embed-

dings is lower than our pre-defined threshold (i.e., 0.9), we

consider those two videos signed by the same person. After

automatic labeling, we also manually check the identifica-

tion results and correct the mislabelled ones.

Dialect Variation Annotation: Similar to natural lan-

guages, ASL signs also have dialect variations [45] and

those variations may contain different sign primitives, such

as hand-shapes and motions. To avoid the situation where

dialect variations only appear in testing dataset, we man-

ually label the variations for each gloss. Our annotators

receive training in advance to ensure that they understand

the basic knowledge of ASL, in order to distinguish the dif-

ferences from the signers variations and dialect variations.

To speed up the annotation process and control the annota-

tion quality, we design an interface which lets the annota-

tors only compare signs from two videos displayed simul-

taneously. Then we count the number of dialects and assign

labels for different dialects automatically. After the dialect

annotation, we also give each video a dialect label. With the

help of the dialect labels, we can guarantee the dialect signs

in the testing set have corresponding training samples. We

also discard the sign variations with less than five examples
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since there are not enough samples to be split into train-

ing, validation and testing sets. Furthermore, we notice that

these variations are usually not commonly used in daily life.

3.3. Dataset Arrangement

After obtaining all the annotations for each video, we ob-

tain videos with lengths ranging from 0.36 to 8.12 seconds,

and the average length of all the videos is 2.41 seconds. The

average intra-class standard deviation of the videos is 0.85

seconds.

We sort the glosses in a descending order in terms of

the sample number of a gloss. To provide better under-

standing on the difficulties of the word-level sign recogni-

tion task and the scalability of sign recognition methods,

we conduct experiments on the datasets with different vo-

cabulary sizes. In particular, we select top-K glosses with

K = {100, 300, 1000, 2000}, and organize them to four

subsets, named WLASL100, WLASL300, WLASL1000

and WLASL2000, respectively.

In Table 2, we present statistics of the four subsets

of WLASL. As indicated by Table 2, we acquire 21,083

video samples with a duration of around 14 hours for

WLASL2000 in total, and each gloss in WLASL2000 has

10.5 samples on average, which is almost three times larger

than the existing large-scale dataset Boston ASLLVD. We

show example frames of our dataset in Fig. 3.

4. Method Comparison on WLASL

Signing, as a part of human actions, shares similarities

with human action recognition and pose estimation. In this

section, we first introduce some relevant works on action

recognition and human pose estimation. Inspired by net-

work architectures of action recognition, we employ image-

appearance based and pose based baseline models for word-

level sign recognition. By doing so, we not only investigate

the usability of our collected dataset but also exam the sign

recognition performance of deep models based on different

modalities.

4.1. Image­appearance based Baselines

Early approaches employ handcrafted features to repre-

sent the spatial-temporal information from image frames

and then ensemble them as a high-dimensional code for

classification [40, 68, 54, 39, 21, 65, 67].

Benefiting from the powerful feature extraction ability of

deep neural networks, the works [56, 65] exploit deep neu-

ral networks to generate a holistic representation for each

input frame and then use the representations for recogni-

tion. To better establish the temporal relationship among

the extracted visual features, Donahue et al. [22] and Yue et

al. [76] employ use recurrent neural networks (e.g., LSTM).

Some works [23, 10] also employ the joint locations as a

guidance to extract local deep features around the joint re-

gions.

Sign language recognition, especially word-level recog-

nition, needs to focus on detailed differences between signs,

such as the orientation of hands and movement direction of

the arms, while the background context does not provide

any clue for recognition. Motivated by the action recog-

nition methods, we employ two image-based baselines to

model the temporal and spatial information of videos in dif-

ferent manners.

4.1.1 2D Convolution with Recurrent Neural Networks

2D Convolutional Neural Networks (CNN) are widely used

to extract spatial features of input images while Recurrent

Neural Networks (RNN) are employed to capture the long-

term temporal dependencies among inputs. Thus, our first

baseline is constructed by a CNN and a RNN to capture

spatio-temporal features from input video frames. In par-

ticular, we use VGG16 [57] pretrained on ImageNet to ex-

tract spatial features and then feed the extracted features to

a stacked GRU [17]. This baseline is referred to as 2D Conv

RNN, and the network architecture is illustrated in Figure 4.

To avoid overfiting the training set, the hidden sizes of

GRU for the four subsets are set to 64, 96, 128 and 256 re-

spectively, and the number of the stacked recurrent layers in

GRU is set to 2. In the training phase, we randomly select at

most 50 consecutive frames from each video. Cross-entropy

losses is imposed on the output at all the time steps as well

as the output feature from the average pooling of all the

output features. In testing, we consider all the frames in the

video and make predictions based on the average pooling of

all the output features.

4.1.2 3D Convolutional Networks

3D convolutional networks [13, 65, 62, 30] are able to es-

tablish not only the holistic representation of each frame

but also the temporal relationship between frames in a hier-

archical fashion. Carreira et al. [13] inflate 2D filters of the

Inception network [61] trained on ImageNet [52], thus ob-

taining well-initialized 3D filters. The inflated 3D filters are

also fine-tuned on the Kinetics dataset [13] to better capture

the spatial-temporal information in a video.

In this paper, we employ the network architecture of I3D

[13] as our second image-appearance based baseline, and

the network architecture is illustrated in Figure 4. As men-

tioned above, the original I3D network is trained on Ima-

geNet [52] and fine-tuned on Kinetics-400 [13]. In order

to model the temporal and spatial information of the sign

language, such as focusing on the hand shapes and orienta-

tions as well as arm movements, we need to fine-tune the

pre-trained I3D. In this way, the fine-tuned I3D can better

capture the spatio-temporal information of signs. Since the
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Figure 4: Illustrations of our baseline architectures.

class number varies in our WLASL subsets, only the last

classification layer is modified in accordance with the class

number.

4.2. Pose­based Baselines

Human pose estimation aims at localizing the keypoints

or joints of human bodies from a single image or videos.

Traditional approaches employ the probabilistic graphical

model [73] or pictorial structures [49] to estimate single-

person poses. Recently, deep learning techniques have

boosted the performance of pose estimation significantly.

There are two mainstream approaches: regressing the key-

point positions [64, 11], and estimating keypoint heatmaps

followed by a non-maximal suppression technique [9, 19,

18, 72]. However, pose estimation only provides the loca-

tions of the body keypoints, while the spatial dependencies

among the estimated keypoints are not explored.

Several works [29, 66] exploit human poses to recog-

nize actions. The works [29, 66] represent the locations

of body joints as a feature representation for recognition.

These methods can obtain high recognition accuracy when

the oracle annotations of the joint locations are provided. In

order to exploit the pose information for SLR, the spatial

and temporal relationships among all the keypoints require

further investigation.

4.2.1 Pose based Recurrent Neural Networks

Pose based approaches mainly utilize RNNs [44] to model

the pose sequences for analyzing human motions. Inspired

by this idea, our first pose-based baseline employs RNN

to model the temporal sequential information of the pose

movements, and the representation output by RNN is used

for the sign recognition.

In this work, we extract 55 body and hand 2D keypoints

from a frame on WLASL using OpenPose [9]. These key-

points include 13 upper-body joints and 21 joints for both

left and right hands as defined in [9]. Then, we concate-

nate all the 2D coordinates of each joint as the input feature

and feed it to a stacked GRU of 2 layers. In the design of

GRUs, we use the empirically optimized hidden sizes of 64,

64, 128 and 128 for the four subsets respectively. Similar to

the training and testing protocols in Section 4.1.1, 50 con-

secutive frames are randomly chosen from the input video.

Cross-entropy losses is employed for training. In testing, all

the frames in a video are used for classification.

4.2.2 Pose Based Temporal Graph Neural Networks

We introduce a novel pose-based approach to ISLR using

Temporal Graph Convolution Networks (TGCN). Consider

the input pose sequence X1:N = [x1,x2,x3, ...,xN ] in N

sequential frames, where xi ∈ R
K represents the concate-

nated 2D keypoint coordinates in dimension K. We pro-

pose a new graph network based architecture that models

the spatial and temporal dependencies of the pose sequence.

Different from existing works on human pose estimation,

which usually model motions using 2D joint angles, we en-

code temporal motion information as a holistic representa-

tion of the trajectories of body keypoints.

Motivated by the recent work on human pose forecasting

[16, 16], we view a human body as a fully-connected graph

with K vertices and represent the edges in the graph as a

weighted adjacency matrix A ∈ R
K×K . Although a human

body is only partially connected, we construct the human

body as fully-connected graph in order to learn the depen-

dencies among joints via a graph network. In a deep graph

convolutional network, the n-th graph layer is a function Gn

that takes as input features a matrix Hn ∈ R
K×F , where F

is the feature dimension output by its previous layer. In the

first layer, the networks takes as input the K × 2N matrix

coordinates of body keypoints. Given this formulation and

a set of trainable weights Wn ∈ R
F×F

′

, a graph convolu-

tional layer is expressed as:

Hn+1 = Gn(Hn) = σ(AnHnWn), (1)

where An is a trainable adjacency matrix for n-th layer and

σ(·) denotes the activation function tanh(·). A residual

graph convolutional block stacks two graph convolutional

layers with a residual connection as shown in Fig. 5. Our
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Figure 5: Residual Graph Convolution Block.

proposed TGCN stacks multiple residual graph convolu-

tional blocks and takes the average pooling result along the

temporal dimension as the feature representation of pose

trajectories. Then a softmax layer followed by the average

pooling layer is employed for classification.

4.3. Training and Testing Protocol

4.3.1 Data Pre-processing and Augmentation

We resize the resolution of all original video frames such

that the diagonal size of the person bounding-box is 256
pixels. For training VGG-GRU and I3D, we randomly crop

a 224×224 patch from an input frame and apply a horizon-

tal flipping with a probability of 0.5. Note that, the same

crop and flipping operations are applied to the entire video

frames instead of in a frame-wise manner. Similar to [12],

when training VGG-GRU, Pose-GRU and Pose-TGCN, for

each video consecutive 50 frames are randomly selected and

the models are asked to predict labels based on only partial

observations of the input video. In doing so, we increase

the discriminativeness of the learned model. For I3D, we

follow its original training configuration.

4.3.2 Implementation details

The models, i.e., VGG-GRU, Pose-GRU, Pose-TGCN and

I3D are implemented in PyTorch. It is important to no-

tice that we use the I3D pre-train weights provided by Car-

reira et al. [13].We train all the models with Adam opti-

mizer [34]. Note that, I3D was trained by stochastic gra-

dient descent (SGD) in [12]. However, I3D does not con-

verge when using SGD to fine-tune it in our experiments.

Thus, Adam is employed to fine-tune I3D. All the models

are trained with 200 epochs on each subset. We terminate

the training process when the validation accuracy stops in-

creasing.

We split the samples of a gloss into the training, vali-

dation and testing sets following a ratio of 4:1:1. We also

ensure each split has at least one sample per gloss. The split

information will be released publicly as part of WLASL.

4.3.3 Evaluation Metric

We evaluate the models using the mean scores of top-K

classification accuracy with K = {1, 5, 10} over all the

sign instances. As seen in Figure 2, different meanings have

very similar sign gestures, and those gestures may cause er-

rors in the classification results. However, some of the erro-

neous classification can be rectified by contextual informa-

tion. Therefore, it is more reasonable to use top-K predicted

labels for the word-level sign language recognition.

4.4. Discussion

4.4.1 Performance Evaluation of Baseline Networks

Table 3 indicates that the performance of our baseline mod-

els based on poses and image-appearance. The results

demonstrate that our pose-based TGCN further improves

the classification accuracy in comparison to the pose-based

sign recognition method Pose-GRU. This indicates that our

proposed pose-TGCN captures both spatial and temporal

relationships of the body keypoints since Pose-GRU mainly

explores the temporal dependencies of the keypoints for

classification. On the other hand, our fine-tuned I3D model

achieves better performance compared to the other image-

appearance based model VGG-GRU since I3D has larger

network capacity and is pretrained on not only ImageNet

but also Kinetics.

Although I3D is larger than our TGCN, Pose-TGCN

can still achieve comparable results with I3D at top-5 and

top-10 accuracy on the large-scale subset WLASL2000.

This demonstrates that our TGCN effectively encodes hu-

man motion information. Since we use an off-the-shelf

pose estimator [9], the erroneous estimation of poses may

degrade the recognition performance. In contrast, image

appearance-based baselines are trained in an end-to-end

fashion for sign recognition and thus the errors residing

in spatial features can be reduced during training. There-

fore, training pose-based baselines in an end-to-end fashion

could further improve the recognition performance.

4.4.2 Effect of Vocabulary Size

As seen in Table 3, our baseline methods can achieve rel-

atively high classification accuracy on small-size subsets.

i.e., WLASL100 and WLASL300. However, the subset

WLASL2000 is very close to the real-world word-level

classification scenario due to its large vocabulary. Pose-

GRU, pose-TGCN and I3D achieve similar performance

on WLASL2000. This implies that the recognition per-

formance on small vocabulary datasets does not reflect the

model performance on large vocabulary datasets, and the

large-scale sign language recognition is very challenging.

We also evaluate how the class number, i.e., vocabulary

size, impacts on the model performance. There are two
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Table 3: Top-1, top-5, top-10 accuracy (%) achieved by each model (by row) on the four WLASL subsets.

Method WLASL100 WLASL300 WLASL1000 WLASL2000

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Pose-GRU 46.51 76.74 85.66 33.68 64.37 76.05 30.01 58.42 70.15 22.54 49.81 61.38

Pose-TGCN 55.43 78.68 87.60 38.32 67.51 79.64 34.86 61.73 71.91 23.65 51.75 62.24

VGG-GRU 25.97 55.04 63.95 19.31 46.56 61.08 14.66 37.31 49.36 8.44 23.58 32.58

I3D 65.89 84.11 89.92 56.14 79.94 86.98 47.33 76.44 84.33 32.48 57.31 66.31

Table 4: Top-10 accuracy (%) of I3D (and Pose-TGCN when trained (row) and tested (column) on different WLASL subsets.

WLASL100 WLASL300 WLASL1000 WLASL2000

I3D TGCN I3D TGCN I3D TGCN I3D TGCN

WLASL100 89.92 87.60 - - - - - -

WLASL300 88.37 81.40 86.98 79.64 - - - -

WLASL1000 85.27 77.52 86.22 74.25 84.33 71.91 - -

WLASL2000 72.09 67.83 71.11 65.42 67.32 64.55 66.31 62.24

factors mainly affecting the performance: (i) deep models

themselves favor simple and easy tasks, and thus they per-

form better on smaller datasets. As indicated in Table 3,

the models trained on smaller vocabulary size sets perform

better than larger ones (comparing along columns); (ii) the

dataset itself has ambiguity. Some signs, as shown in Fig-

ure 2, are hard to recognize by even humans, and thus deep

models will be also misled by those classes. As the number

of classes increases, there will be more ambiguous signs.

In order to explain the impacts of the second factor, we

dissect the models, i.e., I3D and Pose-TGCN, trained on

WLASL2000. Here, we test our models on the WLASL100,

WLASL300, WLASL1000 and WLASL2000. As seen in

Table 4, when the test class number is smaller, the models

achieve higher accuracy (comparing along rows). The ex-

periments imply that as the number of classes decreases, the

number of ambiguous signs becomes smaller, thus making

classification easier.

4.4.3 Effect of Sample Numbers

As the class number in the dataset increases, training a deep

model requires more samples. However, as illustrated in Ta-

ble 1, although in our dataset each gloss contains more sam-

ples than other datasets, the number of training examples

per class is still relatively small compared to some large-

scale generic activity recognition datasets [25]. This brings

some difficulties for the network training. Note that, the

average training samples for each gloss in WLASL100 are

twice large as those in WLASL2000. Therefore, models

obtain better classification performance on the glosses with

more samples, as indicated in Table 3 and Table 4. Crowd-

sourcing via Amazon Mechanism Tucker (AMT) is a popu-

lar way to collect data. However, annotating ASL requires

specific domian knowledge and makes crowdsourcing in-

feasible.

5. Conclusion

In this paper, we proposed a large-scale Word-Level ASL

(WLASL) dataset covering a wide range of daily words and

evaluated the performance of deep learning based methods

on it. To the best of our knowledge, our dataset is the largest

public ASL dataset in terms of the vocabulary size and the

number of samples for each class. Since understanding

sign language requires very specific domain knowledge, la-

belling a large amount of samples per class is unaffordable.

After comparisons among deep sign recognition models on

WLASL, we conclude that developing word-level sign lan-

guage recognition algorithms on such a large-scale dataset

requires more advanced learning algorithms, such as few-

shot learning. In our future work, we also aim at utiliz-

ing word-level annotations to facilitate sentence-level and

story-level machine sign translations.
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