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WORD MAPS, ISOTOPY AND ENTROPY

DAVID FRIED1

ABSTRACT. We find diffeomorphisms of low entropy in each isotopy class
on S3 x S3. These arise as word maps, a nonabelian analogue of toral auto-
morphisms. Hyperbolic examples of equal entropy are also found. The group
wo Diff(S3 X S3) is computed.

The rule xn+i = xn+xn-i that generates the Fibonacci sequence can be applied
to any initial pair of integers xi,x2: Fibonacci used 1, 1, Lucas used 1, 3, etc.
One can use the corresponding multiplicative rule xn+i — xnxn-i for any group
H and any initial pair of group elements. This defines a sort of discrete delay
equation, or a "second order" transformation on //, that can be viewed as a "first-
order" transformation cr on pairs of elements: cr(x,y) = (y,yx), a: H X H <->. The
Fibonacci and Lucas series are two orbits of a for H = Z.

This map a is an instance of what we call a word map on two letters, since it
assigns to the letters x,y a new pair of words in x,y and their inverses. Note a
is invertible and cr~1 is also a word map, cr~1(x,y) = (x~xy,x). Such invertible
word maps on two letters are determined by automorphisms of the free group
F2 = F(xi,x2) on two generators. For example, cr corresponds to the automorphism
sending xi to x2 and x2 to £2^1 • Similar remarks hold for word maps on n letters,
n> 1.

The case H = S1 is well known, since here an invertible word map on n letters is
just an automorphism of the torus Tn of dimension n. These toral automorphisms
are among the best-understood dynamical systems. Our interest is in the case H
a compact connected Lie group and comparing its invertible word maps with toral
automorphisms.

Suppose, for example, that H is the group SO(d) of rotations of Euclidean space
of dimension d. Then a defines a transformation a,¡ for each d. The case d = 2
gives the toral automorphism (° J) with topological entropy h(o2) = logp, p the
Golden Ratio (1 + \ß>)/2. In §1, we will show that, surprisingly, h(a3) = h(a2).
In this sense, the Fibonacci transformation on SO(3) is no more complicated than
that for dimension 2. One has /i(o-4) = 2h(a2), h(od) > ]d/2]h(o2). The same holds
true for any invertible word map. We do not know h(o~d) for d > 5.

Our main interest is in invertible word maps on H = S3 on two letters. Besides
computing their entropy we show in §2 that they furnish representatives for all
isotopy classes of the 6-manifold M = S3xS3. This determines the group structure
of 7T = 7To Diff M, the group of isotopy classes of diffeomorphisms of M. Previously
one knew a certain three-step filtration of 7r without knowing what the extensions

Received by the editors August 26, 1985.
1980 Mathematics Subject Classification (1985 Revision)   Primary 58F15, 57R52, 28D20.
1 Partially supported by the Sloan Foundation and the National Science Foundation.

©1986 American Mathematical Society
0002-9947/86 $1.00 + $.25 per page

851

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



852 DAVID FRIED

were: indeed, Kreck gave such a description for a large class of smooth manifolds
[Kr]. ^

This new information on 7r has a pleasant dynamical consequence. The natu-
ral homomorphism Diff M —> Gl2Z that assigns to diffeomorphism its action on
//3(M; Z) = Z2 is onto, just like the homomorphism Diff T2 —* Gl2Z. But whereas
the linear action of G/2Z on T2 splits the latter map, there is no splitting of the
former. In fact we show there is not even a splitting modulo isotopy; i.e., the ex-
tension it —> G/2Z does not split. This depends critically on the existence of exotic
7-spheres.

Given a diffeomorphism / of a compact manifold X, we let s(f) be the spectral
radius of the homology map f*:H*(X; R) «-^. Shub's entropy conjecture [S] is that
h(f) > logs(/). On a simply connected manifold, logs(/) is the only topological
constant available that might so bound entropy. This conjecture is not known for
X = M, but our results show that each isotopy class on M has a representative
/ with h(f) — logs(/). So, modulo this difficult conjecture, such /'s should be
representatives of greatest "efficiency" ?

We go further (in §3) and show that / can be chosen structurally stable. We
do this by an isentropic deformation of a word map, i.e., one that does not change
entropy. This / can even be chosen fitted, which is compatible with conjectures of
Shub that the lowest entropy occurs for fitted diffeomorphisms, which are hyper-
bolic transformations built using handlebodies [S]. Some counterexamples for X
not simply connected are known, e.g., for X = T4; these also use word maps [F2].
It is conceivable that these give counterexamples on M x M = (S3)4.

Thus, in passing from T2 to M, the behavior of entropy in an isotopy class
seems to persist. But we do not even know that word maps are points of lower
semicontinuity for entropy on DiffM, let alone that they are minima on their
components. It would be interesting to show they are local minima.

In the course of our computations, we find a surprising deformation of the action
of PGl2Z = T on T2/±l induced from the linear action of Gl2Z on T2. The
deformation passes through analytic actions of T on S2 that preserve area, and it
ends with a finite group of orthogonal motions of S2. We do not know whether the
intermediate actions are ergodic.

We thank Dan Asimov and Bill Goldman for their interesting observations.

1. Word maps. Let Fn be the free group on generators xx,...,xn, and let $„
be the automorphism group of Fn. Given any group H, there is a natural bijection
of Hn with the collection rlom(Fn, H) of homomorphisms from Fn to H given by
evaluating the homomorphism on the generators. This gives an action of $n on
Hn. If a G $n, then we denote the corresponding bijection of Hn by och. We call
an a word map on n letters since it assigns to an n-tuple in H an n-tuple of words
in the entries.

For example, suppose n = 2, 0(2:1) = x2 and a(x2) = x2Xi. Then an(hi,h2) =
(h2,h2hx) for hx,h2 G H, so an = o is the Fibonacci map discussed above.

When H = R or C, the au are linear maps. Indeed, when H is abelian, $n acts
by group automorphisms and the action factors through GlnZ, the automorphism
group of the abelianization of Fn.

2Yomdin has recently proven the conjecture for C°°f.
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For general H, H acts on Hn by conjugation:

h ■ (hi,..., hn) = (hhih^1,..., Winfo_1).

Let Cn = Cn(H) he the orbit space. Then the actions of $n and H on Hn commute,
so $„ acts on Cn. In this action, inner automorphisms act trivially, and so there is
an induced action of the outer automorphism group OutFn (= $n/Fn for n > 2)
on Cn. We denote by 75# the map on Cn induced by eta-

Now we fix n = 2. We need some results due to Nielsen [N, MKS]. First, each
aE$2 "preserves" the commutator of xx1x2'1xix2 = c(xi,x2); i.e., a(c(xi,x2)) ="
gc(xi,x2)eg~1, for some e = ±1, g G F2. This implies that the commutator map
c:H2 —> H, c(x,y) = x~1y~1xy, induces a map c:C2 —> Ci that is equivariant lor
the actions of Out Fi, i — 1,2, under the homomorphism e:F2 —> Outfi. Second,
the natural map OutÍ2 —* Gl2Z is an isomorphism. So ker(e) = Sl2Z acts on C2,
and c is a S^Z-invariant function. Note c is constant iff H is abelian.

Now we fix a compact connected Lie group H. Let T be a maximal torus and
W = N(T)/T the Weyl group, where N(T) is the normalizer of T in H. For
the obvious action of W on T, it is well known that the map T/W —> Ci is a
homeomorphism, where T/W is the orbit space of T under the finite group W.
This identifies the image of c with the orbifold T/W of dimension r = dim T.

We trivialize the tangent space of H2 by left translation and fix an ad-invariant
inner product on the Lie algebra M of //. This gives H, H2 bi-invariant Riemannian
metrics. Then the permutation a(xi) = x2, a(x2) — xi determines an isometry
an of H2, and the shear ß(xi) = xix2, ß(xi) = x2 has differential Tßn — (¡* °¡)
at (hi,h2), where A = adh2 G 0(H). Taking 7 e $2 to be any positive word in
a, ß, we find

An    Ai2\
A2i    A22j'

where the operator norms of Aij satisfy ||Ay-|| < o^, where the Oi3 are the entries
of the image ^r of 7 in G/2Z C G^R. This implies that ||T'y/fil < H^rH at all
points of H2.

Because the action of H on H2 is isometric, there is an induced Riemannian
metric on the dense open set 0 of points in C2 with least isotropy. This gives a
Riemannian metric on a regular level of C2 in 0 on which ||T7H|| < ||7r||

But any a in S/2Z of infinite order is conjugate to ±7, 7 of the above form.
We compute in PS/2Z = S/2Z/±1 S (a,b|a2 = b3 = 1), where a = ±(°x ¿), b =
=t(_i _t)- Then ab = ±(¿ j) and a6_1 = ±( J °). One can conjugate any element
of infinite order to Yli(oh)Ci(ab~1)di. Now write ab-1 = ±ßz and ab = ±azßzaz-

It follows that for any a, ||To^|| is of the order ||or||, for all n > 0, hence of
the order r™, where ra is the spectral radius of qr.

We specialize to the case H = S3, the group of unit quaternions. In this case
we can identify C2 with a compact region P in R3 via the real part of the graph
of the group law

r[x,y] = (Rex, Rey, Re xy),

where [x, y] denotes the conjugacy class in C2 of the pair (x, y) G S3 X S3. Clearly r
is well defined because the real part of a quaternion is invariant under conjugation.
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One can check that r is 1-1 by conjugating (x, y) to normal form with x G C and
y G C + Rj.

We identify Ci with [0,1] by the map N[x] = ||1 - z||2/4. Then c: C2 -» d can
be factored through the cubic polynomial

p(r, s, t) = 1 - (r2 + s2 + i2) + 2rst;

i.e., pr[x,y] = Nc[x,y]. Again this is easily checked in normal form. One sees that
p has critical points (0,0,0) and (ei,£2,£3), where |e¿| = 1, £i,£2,£3 = 1- It is
clear that P lies in [—1, l]3 np-1[0,1], and one checks these are equal. This was
noted independently by Dan Asimov, who observed that P is the region spanned
by the three possible pairs of correlations of three independent random variables.
He coined the term "tetrahedral pillow" for P. This captures the fact that P is
obtained from a tetrahedron inscribed in [—1, l]3 by rounding the edges so that
only the four vertices are singularities of dP. Note that P meets each side of this
cube in a diagonal segment.

We denote the level set p-1(o>) H P by Lv. For v = 0, L0 = dP = S1 x SV±1
under r, S1 C S3 any one parameter subgroup. For 0 < v < 1, Lt is an analytic
S2. For v = 1, Lx is the origin.

The action of Gl2Z preserves these levels. The action on dP = Lo is the usual
action on T2/±l (note the vertex singularities in dP correspond to the fixed points
of the involution of T2).

The action of Gl2Z on P extends to a polynomial action on R3 that preserves
volume. This can be checked on generators using the normal form: e.g., for the
shear ß,

ßH(r,s,t) = (t,s,2st-r).
It follows that each level Lv, 0 < v < 1, inherits an analytic area form invariant by
r.

Now we use S. Katok's theorem that the entropy of a diffeomorphism / of a com-
pact manifold is bounded by log s(f#), where f* is the action of / on differential
forms and s denotes spectral radius [K]. Using the invariant area, we see that the
action ff of / = äsAI'v, 0 < v < 1, on 2-forms has spectral radius zero. Because
the same holds trivially for 0-forms, s(/*) = s(ff) < logrQ, by our estimates on
HTagsH, n > 0. Altogether h(f) < logra.

For v = 0, h(ä~s3\So) = M5s0 = log*"«- Thus by [B, Corollary 18], h(ä~s3) —
sup„ /i(ö7S3 \LV) — log ra. Since a~s3 is the factor of as3 by the action of the compact
group H and the entropy of as3 on each //-orbit is clearly zero, [B, Theorem 17]
implies h(cts3) = h(äs3) = logrQ.

It follows that for all a G $2 (even with e = -1) h(ass) = logra, since both
sides double when a is replaced by a2. Note that $1 acts trivially on Ci, so the
action of G/2Z on C2 leaves c invariant.

For / = as3, the action of /» on //3(S3 x S3; Z) = Z2 is just c*z- Hence ra is
the spectral radius s(f) of the action of / on real homology. We have

THEOREM 1. For a G <S>2, h(ass) = h(äs3) = Has1) = l°gra> where ra is
the spectral radius of qr or, equally, the spectral radius of the map induced by 053
(or »sO on real homology.

The induced action of Gl2Z on C2(S3) preserves the function \\xy — yx\\2. The
level sets of this function define a deformation of the standard action of Gl2Z/ ± 1
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on T2 l+A to the linear action on S2 defined by the orthogonal representation

\        /     \^o o   -\J
( o     i \     (° l °]± -i -ih ° ° * •v       v   v1 ° °;

V1  "/     \^o o  iy

For the last statement, one checks that (_f10) corresponds to (r,s,t) —> (s,r,
2rs - t), which has order two; hence the action of $2 factors through Gl2Z/ ± 1.
Then one blows up the origin, i.e. replaces it by the sphere of directions using
spherical coordinates, to obtain the time v = 1 action for our deformation. In this
deformation the curvature of the quotient metric goes from a delta measure at the
four vertices to a constant function.

Note that the entropy calculations of Theorem 1 are valid for H = SO(3) =
S3/ ± 1 as well. For H = (S3)k, one has h(afí) = M<*#) = klogra and the same
holds for H covered by (S3)k.

To try to generalize Theorem 1 further, one might consider various unitary
embeddings of the compact connected Lie group and use the resulting functions
N(x, y) = ]]xy - yx]]2 to lower the dimension. This fails even for H = SU(S): since
its irreducible complex representations are tensor products of the usual represen-
tation and its dual, all representations give essentially the same N even though
dimT = 2. One can pass to level sets of c instead. Then S = c_1[l] is the image of
T X T, since commuting elements of H lie in some conjugate of T, and so on this
level set one has entropy (dimT) logra = /i(a#|S). It is not clear any longer that
other level sets have entropy bounded by this: They may have larger dimension
than S, for instance, hence more expansion. Namely, if H is semisimple (one easily
reduces to this case), then generic level sets of c have dimension dim H — dimT, S
has dimension 2dimT and dim H > 3dimT unless H is covered by (S3)fc. We do
not know the precise entropy in these cases: perhaps it is log ra ■ \ (dim H — dim T).

It would also be interesting to know whether the action of PSl2Z on each sphere
Lv, 0 < v < 1, is ergodic.

W. Goldman informed us that the invariance of p(r, s, t) under the given action
of S/2Z was known to Fricke and Klein. Their interest lay in a certain noncompact
level surface disjoint from P which serves as Teichmuller space for the punctured
torus. They viewed (r, s, t) in terms of traces of elements in Sl2R. Our application
is to S3, the compact form of the Lie algebra of S/2R, and some of the algebra
carries over.

Note that for any connected compact Lie group H with maximal torus K and
any a G $„, n > 1, the submanifold Kn C Hn is invariant for a#. This gives
h(ct}i) > h(ax) — fclogra, where k = dim/f. The real cohomology ring of H
is a fc-fold tensor product of cohomology rings of odd-dimensional spheres.  The
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action of au on cohomology is the fc-fold tensor product of the cohomology action
agi (aside from differences in grading), and so s(an) = rk. Thus Shub's entropy
conjecture holds for word maps. Taking H = S0(d), one obtains the estimates
mentioned in the introduction.

2. Isotopy classes on S3 x S3. We show that every isotopy class of M =
S3 x S3 contains word maps. It suffices to show this for isotopy classes that fix
H$(M;Z) (i.e., are homotopic to the identity) and word maps arising from inner
automorphisms, a = i(g): a —> gag*1 (a, g G F2). For the group K of such isotopy
classes, Kreck gives an exact sequence [Kr, Theorem 2, Lemma 3b]

0 -» 07 -> K Ä H3(M; Z) -» 0,

where 6-j = Z2$ is the group of smooth homotopy 7-spheres. The map \ is defined
as follows. Choose an S3 C M with trivial normal bundle and a diffeomorphism
/ that fixes H3(M; Z) and leaves S3 pointwise fixed. Then the normal part of the
derivative of / on S3 defines a map S3 —> GZg~R. Passing to the class of this map
in 7T3(GZg"R) = 7T3(SO(3)) = Z, we obtain a pairing K®H%(M; Z) —> Z, and hence
a homomorphism \-

We first compute the map x~:F2 —► H3(M;Z) that assigns to g G F2 the class
x(/(ff)), where f(g) = i(g)s3- Choose S3 = S3 x 1 c M. Then /(g) fixes S3 point-
wise. The normal bundle of S3 is trivialized by left translation, so that the normal
differential of f(g) at (x, 1) corresponds to conjugation by xa, where a — a(g) is the
sum of the exponents of xi in g, i.e., the xi component of the abelianization map
F2 —> Z2. For a — Í this conjugation is the usual action of S3 on quaternions with
zero real part that gives the generator for tt3(S0(3)). Reasoning similarly for the
other coordinate 3-sphere 1 x S3 C M, we see x 1S onto with kernel the commutator
subgroup/^ = [F2,F2].

It now suffices to show that the isotopy class £ = [/(g)] G K, g = c(xi,x2),
corresponds to a generator of Ö7. Note i(g) = c(i(xi), i(x2)), so that if dj, j = 1,2,
is isotopic to f(xj) then d — c(di,d2) represents £. Choose a map u:S3 —> S3
homotopic to the identity so that w_1(l) is a neighborhood of 1 and set dx(x,y) =
(x,u(x)yu(x)~1), d2(x,y) — (u(y)xu(y)~1,y). Note that di fixes a tubular neigh-
borhood of the coordinate sphere 1 x S3 and preserves a tubular neighborhood of
the other coordinate sphere S3 x 1, and vice versa for d2. Thus, di and d2 commute
near S3 V S3, so d acts on R6 = M - S3 V S3 with compact support. Let <f> he the
corresponding diffeomorphism of S6 = R6 U {00}. Using qb to glue two copies of
the 7-disc along their boundaries gives the homotopy 7-sphere 6 corresponding to
£ under Kreck's exact sequence.

Let v G 7T3SO(3) be the generator mentioned above, given by the conjugation
action of unit quaternions. The commutator construction above was generalized by
Milnor [M, pp. 17-18] to a bilinear pairing 7T3S0(3) ® 7r3S0(3) —» 0-¡, so (up to
sign) v®v goes to 6. Milnor notes that 6 generates 67, and this can be checked by
showing that the Eells-Kuiper homomorphism p:6i —> Q/Z takes the value ±1/28
on 6; cf. [L].

Let 7T = 7ToDiffM. Let W:$2 —» n he the homomorphism sending a G $2 to
the isotopy class of the word map as3 ■ We have shown W is onto and Ker W C F!¿
with F^/KerW = Z28- We now compute this kernel S = KerW.
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Let Cij = c(x\,xJ2) G F!¿. Then using the bilinearity of Milnor's pairing, one sees
that W(cíj) = ij6 G 0-j C it. Now identify F2 with itiX, X a figure eight, so that
Fl¿ = ir i X where the grid X = RxZuZxRcR2is the maximal abelian covering
of X. Then W: F!¿ -» 67 induces W: HX(X; Z) -+ Z28- The class cij: i,j GZ- {0},
corresponds to a rectangular loop in X based at (0,0). These loops clearly generate
HXX. Thus W is the homomorphism which assigns to a loop *y its enclosed area
A(i) reduced modulo 28. Note that kerA = [F2,F£] and that F2/[F2,F£\ is the
nilpotent group

Hz = (x, y, z]z = c(y, z), c(x, z) = 1 = c(y)).

Clearly Hz is isomorphic to the integral Heisenberg group, i.e., the integral 3x3
matrices of form I + N with N strictly upper triangular. We have shown

THEOREM 2.   There is an exact sequence

1 -+ S % $2 ^ Tro Diff(S3 x S3) -» 1,

where [F2,F£ C S C F!¡ C F2 C $2. /n ¿Ae çuoù'eni /^/[íb,/^] - Z, S/[F2,F^]
corresponds to the subgroup 28Z.

In particular, K = Hz/z28 is nilpotent and x is a central extension. These
properties of /f (and their analogues for other manifolds of high connectivity) are
due to Bernhard Schmidt [Sc].

Let J = (° "j1) € GZ2Z, J6 = /. Then we show for the natural map $2 -* Gl2Z
induced by F2 —> Z2:

LEMMA.   Pe$2 covers J, then B6 £ S.

The next corollary follows immediately from the lemma.

COROLLARY. The natural map it —> G/2Z from isotopy classes to homotopy
classes does not split.

Let A G $2 with Ax = y, Ay = yx_1. Then A covers J and A3 = i(yx~l) o tf>,
where <j>x = x~l, 4>y = j/-1. By Nielsen's result any B covering J is of the form
B = i(g) o A for some g G F2. Then B3 = ¿(ft) o 0 for h = g • Ag ■ A2g ■ yx"1.

Since I + J + J2 has even entries, h s xly^zk mod S with i, j odd. Thus

J36 = (ß3)2 = ¿(/i. ¿(h)) ocj)2 = i(xiyjzkx-iy-:>zk) = i(zl)    mod S,

for Z odd. Since z has even order mod S (namely 28 = $7]), B6 ^ S, as desired.
This proves the lemma and corollary.

Note the essential use of the nontriviality of the subgroup 67 of homotopy 7-
spheres. Indeed for the quotient group 7r/i?7, the natural map 71/67 —* Gl2Z does
split, meaning that the usual action of GZ2Z on Z2 lifts to an action by automor-
phisms of Hz. This can easily be seen by noting that the real Heisenberg group is
the free two-step nilpotent Lie group generated by R2 and that Hz is generated by
Z2 c R2.

Also note that B6 has infinite order in <J>2 (since F2 is torsionfree and centerless),
so the word map ^53 has infinite order for all B (the only trivial word map on S3
comes from 1 G $2)- We do not know if there is a periodic map of M inducing J
on H3M; if it is smooth, then we see its period must be divisible by 24.
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3. Isentropic approximation. By the results of §1, we see that every isotopy
class on M contains diffeomorphisms of entropy log s, where s is the spectral radius
of the action on real homology. Thus if Shub's entropy conjecture holds on M,
these word maps minimize entropy in their isotopy class. But it is not even known
whether the entropy function on Diff M is lower semicontinuous at a word map,
aside from the trivial case of zero entropy.

We now show that a word map on two letters for S3 or SO(3) can be isotoped
to an isentropic (equal entropy) fitted diffeomorphism. It suffices to work on H =
S0(3), because the isotopy can be lifted to M.

The function

(Rex)2 4- (Rey)2 + (Rexy)2 - 2(Rex)(Rey)(Rexy)

on M that (essentially) arose in §1 induces a function g: H2 —► [0,1] regular over
(0,1). The critical level ¿o = g_10 is a submanifold consisting of a single //-
orbit corresponding to pairs of 180° rotations about perpendicular axes. The other
critical level ¿i = g_1l corresponds to pairs of commuting rotations, ¿i — (/, /)
is a smooth submanifold. By assigning to a commuting pair ^ (/, /) the common
axis of rotation, one obtains a flat fibration of ¿i — (/, /) over RP2, with fiber a
punctured torus T2 — 0 and monodromy ±1. There is a vector field X on H2 such
that

(a) X is //-invariant.
(b) Xg < 0 with Xg = 0 precisely on L0 U ¿i.
(c) X = 0 on ¿o and on those points of ¿i outside an e-neighborhood of (/, /).
(d) (/, /) is a source of X.
(e) ¿i — (/, /) is a normally hyperbolic repeller, and ¿o is a normally hyperbolic

attractor.
Let 4>t be the corresponding flow. For i>ra > 1, ß = <j>t o an has a chain

recurrent set R(ß) consisting of Lo, (1,1) and a family Mi C ¿i — (/, /) of DA
attractors indexed by RP2. Moreover, ß]L0 = a¡j\LL0 has finite order. Choose an
equivariant Morse function on ¿o and extend its gradient vector field to a vector
field lo supported near ¿o- Then choose a Morse function on RP2, lift its gradient
vector field to Mi using the flat connection and extend to a vector field Yi supported
on a neighborhood of Mi. Let rpt he the flow generated by Vo + Yi. Then for e > 0
and small enough, 7 = ibe o ß is Axiom A-No Cycles, with R(i) consisting of the
source (/,/), finitely many points in ¿0 and finitely many DA attractors in Mi.
Finally, double DA these DA attractors to get an Axiom A-No Cycles map 6 with
R(S) zero dimensional. The Artin-Mazur zeta functions satisfy

i(6) = c(aSi)k ■ R,

where k is the number of critical points of the Morse function on RP2 and R is a
finite product of terms (1 - tn)±l, so h(6) — h(asi) = logrQ. It is then easy to
find a fitted diffeomorphism Q-conjugate to 6 and isotopic to 8.

The case ra = 1 requires an isotopy to Morse-Smale. The same procedure clearly
works: no DA attractors arise, and one has to use instead a gradient flow on T2.
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We have shown

THEOREM 3. Every isotopy class of S3 x S3 has a fitted representative f with
entropy log s(f). The same holds for any isotopy class of S0(3) x S0(3) that
contains a word map.

See [Fl] for results and a discussion of the corresponding question for word maps
on S1, i.e., toral automorphisms. Even for T3 some isotopy classes are not known
to have a fitted representative with entropy logs. Specifically for det(x — A) =
x3 - x — 1, A G SZ(3, Z), it is not known whether the linear map A has an isentropic
fitting. On T4 there are examples where no isentropic Axiom A representative
exists in the homotopy class of a certain linear map [F2].
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